1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <net/mac80211.h> 8 9 #include "iwl-debug.h" 10 #include "iwl-io.h" 11 #include "iwl-prph.h" 12 #include "iwl-csr.h" 13 #include "mvm.h" 14 #include "fw/api/rs.h" 15 #include "fw/img.h" 16 17 /* 18 * Will return 0 even if the cmd failed when RFKILL is asserted unless 19 * CMD_WANT_SKB is set in cmd->flags. 20 */ 21 int iwl_mvm_send_cmd(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd) 22 { 23 int ret; 24 25 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 26 if (WARN_ON(mvm->d3_test_active)) 27 return -EIO; 28 #endif 29 30 /* 31 * Synchronous commands from this op-mode must hold 32 * the mutex, this ensures we don't try to send two 33 * (or more) synchronous commands at a time. 34 */ 35 if (!(cmd->flags & CMD_ASYNC)) 36 lockdep_assert_held(&mvm->mutex); 37 38 ret = iwl_trans_send_cmd(mvm->trans, cmd); 39 40 /* 41 * If the caller wants the SKB, then don't hide any problems, the 42 * caller might access the response buffer which will be NULL if 43 * the command failed. 44 */ 45 if (cmd->flags & CMD_WANT_SKB) 46 return ret; 47 48 /* 49 * Silently ignore failures if RFKILL is asserted or 50 * we are in suspend\resume process 51 */ 52 if (!ret || ret == -ERFKILL || ret == -EHOSTDOWN) 53 return 0; 54 return ret; 55 } 56 57 int iwl_mvm_send_cmd_pdu(struct iwl_mvm *mvm, u32 id, 58 u32 flags, u16 len, const void *data) 59 { 60 struct iwl_host_cmd cmd = { 61 .id = id, 62 .len = { len, }, 63 .data = { data, }, 64 .flags = flags, 65 }; 66 67 return iwl_mvm_send_cmd(mvm, &cmd); 68 } 69 70 /* 71 * We assume that the caller set the status to the success value 72 */ 73 int iwl_mvm_send_cmd_status(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd, 74 u32 *status) 75 { 76 struct iwl_rx_packet *pkt; 77 struct iwl_cmd_response *resp; 78 int ret, resp_len; 79 80 lockdep_assert_held(&mvm->mutex); 81 82 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 83 if (WARN_ON(mvm->d3_test_active)) 84 return -EIO; 85 #endif 86 87 /* 88 * Only synchronous commands can wait for status, 89 * we use WANT_SKB so the caller can't. 90 */ 91 if (WARN_ONCE(cmd->flags & (CMD_ASYNC | CMD_WANT_SKB), 92 "cmd flags %x", cmd->flags)) 93 return -EINVAL; 94 95 cmd->flags |= CMD_WANT_SKB; 96 97 ret = iwl_trans_send_cmd(mvm->trans, cmd); 98 if (ret == -ERFKILL) { 99 /* 100 * The command failed because of RFKILL, don't update 101 * the status, leave it as success and return 0. 102 */ 103 return 0; 104 } else if (ret) { 105 return ret; 106 } 107 108 pkt = cmd->resp_pkt; 109 110 resp_len = iwl_rx_packet_payload_len(pkt); 111 if (WARN_ON_ONCE(resp_len != sizeof(*resp))) { 112 ret = -EIO; 113 goto out_free_resp; 114 } 115 116 resp = (void *)pkt->data; 117 *status = le32_to_cpu(resp->status); 118 out_free_resp: 119 iwl_free_resp(cmd); 120 return ret; 121 } 122 123 /* 124 * We assume that the caller set the status to the sucess value 125 */ 126 int iwl_mvm_send_cmd_pdu_status(struct iwl_mvm *mvm, u32 id, u16 len, 127 const void *data, u32 *status) 128 { 129 struct iwl_host_cmd cmd = { 130 .id = id, 131 .len = { len, }, 132 .data = { data, }, 133 }; 134 135 return iwl_mvm_send_cmd_status(mvm, &cmd, status); 136 } 137 138 #define IWL_DECLARE_RATE_INFO(r) \ 139 [IWL_RATE_##r##M_INDEX] = IWL_RATE_##r##M_PLCP 140 141 /* 142 * Translate from fw_rate_index (IWL_RATE_XXM_INDEX) to PLCP 143 */ 144 static const u8 fw_rate_idx_to_plcp[IWL_RATE_COUNT] = { 145 IWL_DECLARE_RATE_INFO(1), 146 IWL_DECLARE_RATE_INFO(2), 147 IWL_DECLARE_RATE_INFO(5), 148 IWL_DECLARE_RATE_INFO(11), 149 IWL_DECLARE_RATE_INFO(6), 150 IWL_DECLARE_RATE_INFO(9), 151 IWL_DECLARE_RATE_INFO(12), 152 IWL_DECLARE_RATE_INFO(18), 153 IWL_DECLARE_RATE_INFO(24), 154 IWL_DECLARE_RATE_INFO(36), 155 IWL_DECLARE_RATE_INFO(48), 156 IWL_DECLARE_RATE_INFO(54), 157 }; 158 159 int iwl_mvm_legacy_rate_to_mac80211_idx(u32 rate_n_flags, 160 enum nl80211_band band) 161 { 162 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK; 163 int idx; 164 int band_offset = 0; 165 166 /* Legacy rate format, search for match in table */ 167 if (band != NL80211_BAND_2GHZ) 168 band_offset = IWL_FIRST_OFDM_RATE; 169 for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++) 170 if (fw_rate_idx_to_plcp[idx] == rate) 171 return idx - band_offset; 172 173 return -1; 174 } 175 176 u8 iwl_mvm_mac80211_idx_to_hwrate(int rate_idx) 177 { 178 /* Get PLCP rate for tx_cmd->rate_n_flags */ 179 return fw_rate_idx_to_plcp[rate_idx]; 180 } 181 182 u8 iwl_mvm_mac80211_ac_to_ucode_ac(enum ieee80211_ac_numbers ac) 183 { 184 static const u8 mac80211_ac_to_ucode_ac[] = { 185 AC_VO, 186 AC_VI, 187 AC_BE, 188 AC_BK 189 }; 190 191 return mac80211_ac_to_ucode_ac[ac]; 192 } 193 194 void iwl_mvm_rx_fw_error(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb) 195 { 196 struct iwl_rx_packet *pkt = rxb_addr(rxb); 197 struct iwl_error_resp *err_resp = (void *)pkt->data; 198 199 IWL_ERR(mvm, "FW Error notification: type 0x%08X cmd_id 0x%02X\n", 200 le32_to_cpu(err_resp->error_type), err_resp->cmd_id); 201 IWL_ERR(mvm, "FW Error notification: seq 0x%04X service 0x%08X\n", 202 le16_to_cpu(err_resp->bad_cmd_seq_num), 203 le32_to_cpu(err_resp->error_service)); 204 IWL_ERR(mvm, "FW Error notification: timestamp 0x%016llX\n", 205 le64_to_cpu(err_resp->timestamp)); 206 } 207 208 /* 209 * Returns the first antenna as ANT_[ABC], as defined in iwl-config.h. 210 * The parameter should also be a combination of ANT_[ABC]. 211 */ 212 u8 first_antenna(u8 mask) 213 { 214 BUILD_BUG_ON(ANT_A != BIT(0)); /* using ffs is wrong if not */ 215 if (WARN_ON_ONCE(!mask)) /* ffs will return 0 if mask is zeroed */ 216 return BIT(0); 217 return BIT(ffs(mask) - 1); 218 } 219 220 /* 221 * Toggles between TX antennas to send the probe request on. 222 * Receives the bitmask of valid TX antennas and the *index* used 223 * for the last TX, and returns the next valid *index* to use. 224 * In order to set it in the tx_cmd, must do BIT(idx). 225 */ 226 u8 iwl_mvm_next_antenna(struct iwl_mvm *mvm, u8 valid, u8 last_idx) 227 { 228 u8 ind = last_idx; 229 int i; 230 231 for (i = 0; i < MAX_ANT_NUM; i++) { 232 ind = (ind + 1) % MAX_ANT_NUM; 233 if (valid & BIT(ind)) 234 return ind; 235 } 236 237 WARN_ONCE(1, "Failed to toggle between antennas 0x%x", valid); 238 return last_idx; 239 } 240 241 int iwl_mvm_reconfig_scd(struct iwl_mvm *mvm, int queue, int fifo, int sta_id, 242 int tid, int frame_limit, u16 ssn) 243 { 244 struct iwl_scd_txq_cfg_cmd cmd = { 245 .scd_queue = queue, 246 .action = SCD_CFG_ENABLE_QUEUE, 247 .window = frame_limit, 248 .sta_id = sta_id, 249 .ssn = cpu_to_le16(ssn), 250 .tx_fifo = fifo, 251 .aggregate = (queue >= IWL_MVM_DQA_MIN_DATA_QUEUE || 252 queue == IWL_MVM_DQA_BSS_CLIENT_QUEUE), 253 .tid = tid, 254 }; 255 int ret; 256 257 if (WARN_ON(iwl_mvm_has_new_tx_api(mvm))) 258 return -EINVAL; 259 260 if (WARN(mvm->queue_info[queue].tid_bitmap == 0, 261 "Trying to reconfig unallocated queue %d\n", queue)) 262 return -ENXIO; 263 264 IWL_DEBUG_TX_QUEUES(mvm, "Reconfig SCD for TXQ #%d\n", queue); 265 266 ret = iwl_mvm_send_cmd_pdu(mvm, SCD_QUEUE_CFG, 0, sizeof(cmd), &cmd); 267 WARN_ONCE(ret, "Failed to re-configure queue %d on FIFO %d, ret=%d\n", 268 queue, fifo, ret); 269 270 return ret; 271 } 272 273 /** 274 * iwl_mvm_send_lq_cmd() - Send link quality command 275 * @mvm: Driver data. 276 * @lq: Link quality command to send. 277 * 278 * The link quality command is sent as the last step of station creation. 279 * This is the special case in which init is set and we call a callback in 280 * this case to clear the state indicating that station creation is in 281 * progress. 282 */ 283 int iwl_mvm_send_lq_cmd(struct iwl_mvm *mvm, struct iwl_lq_cmd *lq) 284 { 285 struct iwl_host_cmd cmd = { 286 .id = LQ_CMD, 287 .len = { sizeof(struct iwl_lq_cmd), }, 288 .flags = CMD_ASYNC, 289 .data = { lq, }, 290 }; 291 292 if (WARN_ON(lq->sta_id == IWL_MVM_INVALID_STA || 293 iwl_mvm_has_tlc_offload(mvm))) 294 return -EINVAL; 295 296 return iwl_mvm_send_cmd(mvm, &cmd); 297 } 298 299 /** 300 * iwl_mvm_update_smps - Get a request to change the SMPS mode 301 * @mvm: Driver data. 302 * @vif: Pointer to the ieee80211_vif structure 303 * @req_type: The part of the driver who call for a change. 304 * @smps_request: The request to change the SMPS mode. 305 * 306 * Get a requst to change the SMPS mode, 307 * and change it according to all other requests in the driver. 308 */ 309 void iwl_mvm_update_smps(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 310 enum iwl_mvm_smps_type_request req_type, 311 enum ieee80211_smps_mode smps_request) 312 { 313 struct iwl_mvm_vif *mvmvif; 314 enum ieee80211_smps_mode smps_mode = IEEE80211_SMPS_AUTOMATIC; 315 int i; 316 317 lockdep_assert_held(&mvm->mutex); 318 319 /* SMPS is irrelevant for NICs that don't have at least 2 RX antenna */ 320 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 321 return; 322 323 if (vif->type != NL80211_IFTYPE_STATION) 324 return; 325 326 mvmvif = iwl_mvm_vif_from_mac80211(vif); 327 mvmvif->smps_requests[req_type] = smps_request; 328 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 329 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC) { 330 smps_mode = IEEE80211_SMPS_STATIC; 331 break; 332 } 333 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) 334 smps_mode = IEEE80211_SMPS_DYNAMIC; 335 } 336 337 ieee80211_request_smps(vif, smps_mode); 338 } 339 340 int iwl_mvm_request_statistics(struct iwl_mvm *mvm, bool clear) 341 { 342 struct iwl_statistics_cmd scmd = { 343 .flags = clear ? cpu_to_le32(IWL_STATISTICS_FLG_CLEAR) : 0, 344 }; 345 struct iwl_host_cmd cmd = { 346 .id = STATISTICS_CMD, 347 .len[0] = sizeof(scmd), 348 .data[0] = &scmd, 349 .flags = CMD_WANT_SKB, 350 }; 351 int ret; 352 353 ret = iwl_mvm_send_cmd(mvm, &cmd); 354 if (ret) 355 return ret; 356 357 iwl_mvm_handle_rx_statistics(mvm, cmd.resp_pkt); 358 iwl_free_resp(&cmd); 359 360 if (clear) 361 iwl_mvm_accu_radio_stats(mvm); 362 363 return 0; 364 } 365 366 void iwl_mvm_accu_radio_stats(struct iwl_mvm *mvm) 367 { 368 mvm->accu_radio_stats.rx_time += mvm->radio_stats.rx_time; 369 mvm->accu_radio_stats.tx_time += mvm->radio_stats.tx_time; 370 mvm->accu_radio_stats.on_time_rf += mvm->radio_stats.on_time_rf; 371 mvm->accu_radio_stats.on_time_scan += mvm->radio_stats.on_time_scan; 372 } 373 374 struct iwl_mvm_diversity_iter_data { 375 struct iwl_mvm_phy_ctxt *ctxt; 376 bool result; 377 }; 378 379 static void iwl_mvm_diversity_iter(void *_data, u8 *mac, 380 struct ieee80211_vif *vif) 381 { 382 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 383 struct iwl_mvm_diversity_iter_data *data = _data; 384 int i; 385 386 if (mvmvif->phy_ctxt != data->ctxt) 387 return; 388 389 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 390 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC || 391 mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) { 392 data->result = false; 393 break; 394 } 395 } 396 } 397 398 bool iwl_mvm_rx_diversity_allowed(struct iwl_mvm *mvm, 399 struct iwl_mvm_phy_ctxt *ctxt) 400 { 401 struct iwl_mvm_diversity_iter_data data = { 402 .ctxt = ctxt, 403 .result = true, 404 }; 405 406 lockdep_assert_held(&mvm->mutex); 407 408 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 409 return false; 410 411 if (mvm->cfg->rx_with_siso_diversity) 412 return false; 413 414 ieee80211_iterate_active_interfaces_atomic( 415 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 416 iwl_mvm_diversity_iter, &data); 417 418 return data.result; 419 } 420 421 void iwl_mvm_send_low_latency_cmd(struct iwl_mvm *mvm, 422 bool low_latency, u16 mac_id) 423 { 424 struct iwl_mac_low_latency_cmd cmd = { 425 .mac_id = cpu_to_le32(mac_id) 426 }; 427 428 if (!fw_has_capa(&mvm->fw->ucode_capa, 429 IWL_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) 430 return; 431 432 if (low_latency) { 433 /* currently we don't care about the direction */ 434 cmd.low_latency_rx = 1; 435 cmd.low_latency_tx = 1; 436 } 437 438 if (iwl_mvm_send_cmd_pdu(mvm, iwl_cmd_id(LOW_LATENCY_CMD, 439 MAC_CONF_GROUP, 0), 440 0, sizeof(cmd), &cmd)) 441 IWL_ERR(mvm, "Failed to send low latency command\n"); 442 } 443 444 int iwl_mvm_update_low_latency(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 445 bool low_latency, 446 enum iwl_mvm_low_latency_cause cause) 447 { 448 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 449 int res; 450 bool prev; 451 452 lockdep_assert_held(&mvm->mutex); 453 454 prev = iwl_mvm_vif_low_latency(mvmvif); 455 iwl_mvm_vif_set_low_latency(mvmvif, low_latency, cause); 456 457 low_latency = iwl_mvm_vif_low_latency(mvmvif); 458 459 if (low_latency == prev) 460 return 0; 461 462 iwl_mvm_send_low_latency_cmd(mvm, low_latency, mvmvif->id); 463 464 res = iwl_mvm_update_quotas(mvm, false, NULL); 465 if (res) 466 return res; 467 468 iwl_mvm_bt_coex_vif_change(mvm); 469 470 return iwl_mvm_power_update_mac(mvm); 471 } 472 473 struct iwl_mvm_low_latency_iter { 474 bool result; 475 bool result_per_band[NUM_NL80211_BANDS]; 476 }; 477 478 static void iwl_mvm_ll_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 479 { 480 struct iwl_mvm_low_latency_iter *result = _data; 481 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 482 enum nl80211_band band; 483 484 if (iwl_mvm_vif_low_latency(mvmvif)) { 485 result->result = true; 486 487 if (!mvmvif->phy_ctxt) 488 return; 489 490 band = mvmvif->phy_ctxt->channel->band; 491 result->result_per_band[band] = true; 492 } 493 } 494 495 bool iwl_mvm_low_latency(struct iwl_mvm *mvm) 496 { 497 struct iwl_mvm_low_latency_iter data = {}; 498 499 ieee80211_iterate_active_interfaces_atomic( 500 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 501 iwl_mvm_ll_iter, &data); 502 503 return data.result; 504 } 505 506 bool iwl_mvm_low_latency_band(struct iwl_mvm *mvm, enum nl80211_band band) 507 { 508 struct iwl_mvm_low_latency_iter data = {}; 509 510 ieee80211_iterate_active_interfaces_atomic( 511 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 512 iwl_mvm_ll_iter, &data); 513 514 return data.result_per_band[band]; 515 } 516 517 struct iwl_bss_iter_data { 518 struct ieee80211_vif *vif; 519 bool error; 520 }; 521 522 static void iwl_mvm_bss_iface_iterator(void *_data, u8 *mac, 523 struct ieee80211_vif *vif) 524 { 525 struct iwl_bss_iter_data *data = _data; 526 527 if (vif->type != NL80211_IFTYPE_STATION || vif->p2p) 528 return; 529 530 if (data->vif) { 531 data->error = true; 532 return; 533 } 534 535 data->vif = vif; 536 } 537 538 struct ieee80211_vif *iwl_mvm_get_bss_vif(struct iwl_mvm *mvm) 539 { 540 struct iwl_bss_iter_data bss_iter_data = {}; 541 542 ieee80211_iterate_active_interfaces_atomic( 543 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 544 iwl_mvm_bss_iface_iterator, &bss_iter_data); 545 546 if (bss_iter_data.error) { 547 IWL_ERR(mvm, "More than one managed interface active!\n"); 548 return ERR_PTR(-EINVAL); 549 } 550 551 return bss_iter_data.vif; 552 } 553 554 struct iwl_bss_find_iter_data { 555 struct ieee80211_vif *vif; 556 u32 macid; 557 }; 558 559 static void iwl_mvm_bss_find_iface_iterator(void *_data, u8 *mac, 560 struct ieee80211_vif *vif) 561 { 562 struct iwl_bss_find_iter_data *data = _data; 563 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 564 565 if (mvmvif->id == data->macid) 566 data->vif = vif; 567 } 568 569 struct ieee80211_vif *iwl_mvm_get_vif_by_macid(struct iwl_mvm *mvm, u32 macid) 570 { 571 struct iwl_bss_find_iter_data data = { 572 .macid = macid, 573 }; 574 575 lockdep_assert_held(&mvm->mutex); 576 577 ieee80211_iterate_active_interfaces_atomic( 578 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 579 iwl_mvm_bss_find_iface_iterator, &data); 580 581 return data.vif; 582 } 583 584 struct iwl_sta_iter_data { 585 bool assoc; 586 }; 587 588 static void iwl_mvm_sta_iface_iterator(void *_data, u8 *mac, 589 struct ieee80211_vif *vif) 590 { 591 struct iwl_sta_iter_data *data = _data; 592 593 if (vif->type != NL80211_IFTYPE_STATION) 594 return; 595 596 if (vif->bss_conf.assoc) 597 data->assoc = true; 598 } 599 600 bool iwl_mvm_is_vif_assoc(struct iwl_mvm *mvm) 601 { 602 struct iwl_sta_iter_data data = { 603 .assoc = false, 604 }; 605 606 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 607 IEEE80211_IFACE_ITER_NORMAL, 608 iwl_mvm_sta_iface_iterator, 609 &data); 610 return data.assoc; 611 } 612 613 unsigned int iwl_mvm_get_wd_timeout(struct iwl_mvm *mvm, 614 struct ieee80211_vif *vif, 615 bool tdls, bool cmd_q) 616 { 617 struct iwl_fw_dbg_trigger_tlv *trigger; 618 struct iwl_fw_dbg_trigger_txq_timer *txq_timer; 619 unsigned int default_timeout = cmd_q ? 620 IWL_DEF_WD_TIMEOUT : 621 mvm->trans->trans_cfg->base_params->wd_timeout; 622 623 if (!iwl_fw_dbg_trigger_enabled(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS)) { 624 /* 625 * We can't know when the station is asleep or awake, so we 626 * must disable the queue hang detection. 627 */ 628 if (fw_has_capa(&mvm->fw->ucode_capa, 629 IWL_UCODE_TLV_CAPA_STA_PM_NOTIF) && 630 vif && vif->type == NL80211_IFTYPE_AP) 631 return IWL_WATCHDOG_DISABLED; 632 return default_timeout; 633 } 634 635 trigger = iwl_fw_dbg_get_trigger(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS); 636 txq_timer = (void *)trigger->data; 637 638 if (tdls) 639 return le32_to_cpu(txq_timer->tdls); 640 641 if (cmd_q) 642 return le32_to_cpu(txq_timer->command_queue); 643 644 if (WARN_ON(!vif)) 645 return default_timeout; 646 647 switch (ieee80211_vif_type_p2p(vif)) { 648 case NL80211_IFTYPE_ADHOC: 649 return le32_to_cpu(txq_timer->ibss); 650 case NL80211_IFTYPE_STATION: 651 return le32_to_cpu(txq_timer->bss); 652 case NL80211_IFTYPE_AP: 653 return le32_to_cpu(txq_timer->softap); 654 case NL80211_IFTYPE_P2P_CLIENT: 655 return le32_to_cpu(txq_timer->p2p_client); 656 case NL80211_IFTYPE_P2P_GO: 657 return le32_to_cpu(txq_timer->p2p_go); 658 case NL80211_IFTYPE_P2P_DEVICE: 659 return le32_to_cpu(txq_timer->p2p_device); 660 case NL80211_IFTYPE_MONITOR: 661 return default_timeout; 662 default: 663 WARN_ON(1); 664 return mvm->trans->trans_cfg->base_params->wd_timeout; 665 } 666 } 667 668 void iwl_mvm_connection_loss(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 669 const char *errmsg) 670 { 671 struct iwl_fw_dbg_trigger_tlv *trig; 672 struct iwl_fw_dbg_trigger_mlme *trig_mlme; 673 674 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 675 FW_DBG_TRIGGER_MLME); 676 if (!trig) 677 goto out; 678 679 trig_mlme = (void *)trig->data; 680 681 if (trig_mlme->stop_connection_loss && 682 --trig_mlme->stop_connection_loss) 683 goto out; 684 685 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, "%s", errmsg); 686 687 out: 688 ieee80211_connection_loss(vif); 689 } 690 691 void iwl_mvm_event_frame_timeout_callback(struct iwl_mvm *mvm, 692 struct ieee80211_vif *vif, 693 const struct ieee80211_sta *sta, 694 u16 tid) 695 { 696 struct iwl_fw_dbg_trigger_tlv *trig; 697 struct iwl_fw_dbg_trigger_ba *ba_trig; 698 699 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 700 FW_DBG_TRIGGER_BA); 701 if (!trig) 702 return; 703 704 ba_trig = (void *)trig->data; 705 706 if (!(le16_to_cpu(ba_trig->frame_timeout) & BIT(tid))) 707 return; 708 709 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 710 "Frame from %pM timed out, tid %d", 711 sta->addr, tid); 712 } 713 714 u8 iwl_mvm_tcm_load_percentage(u32 airtime, u32 elapsed) 715 { 716 if (!elapsed) 717 return 0; 718 719 return (100 * airtime / elapsed) / USEC_PER_MSEC; 720 } 721 722 static enum iwl_mvm_traffic_load 723 iwl_mvm_tcm_load(struct iwl_mvm *mvm, u32 airtime, unsigned long elapsed) 724 { 725 u8 load = iwl_mvm_tcm_load_percentage(airtime, elapsed); 726 727 if (load > IWL_MVM_TCM_LOAD_HIGH_THRESH) 728 return IWL_MVM_TRAFFIC_HIGH; 729 if (load > IWL_MVM_TCM_LOAD_MEDIUM_THRESH) 730 return IWL_MVM_TRAFFIC_MEDIUM; 731 732 return IWL_MVM_TRAFFIC_LOW; 733 } 734 735 static void iwl_mvm_tcm_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 736 { 737 struct iwl_mvm *mvm = _data; 738 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 739 bool low_latency, prev = mvmvif->low_latency & LOW_LATENCY_TRAFFIC; 740 741 if (mvmvif->id >= NUM_MAC_INDEX_DRIVER) 742 return; 743 744 low_latency = mvm->tcm.result.low_latency[mvmvif->id]; 745 746 if (!mvm->tcm.result.change[mvmvif->id] && 747 prev == low_latency) { 748 iwl_mvm_update_quotas(mvm, false, NULL); 749 return; 750 } 751 752 if (prev != low_latency) { 753 /* this sends traffic load and updates quota as well */ 754 iwl_mvm_update_low_latency(mvm, vif, low_latency, 755 LOW_LATENCY_TRAFFIC); 756 } else { 757 iwl_mvm_update_quotas(mvm, false, NULL); 758 } 759 } 760 761 static void iwl_mvm_tcm_results(struct iwl_mvm *mvm) 762 { 763 mutex_lock(&mvm->mutex); 764 765 ieee80211_iterate_active_interfaces( 766 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 767 iwl_mvm_tcm_iter, mvm); 768 769 if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) 770 iwl_mvm_config_scan(mvm); 771 772 mutex_unlock(&mvm->mutex); 773 } 774 775 static void iwl_mvm_tcm_uapsd_nonagg_detected_wk(struct work_struct *wk) 776 { 777 struct iwl_mvm *mvm; 778 struct iwl_mvm_vif *mvmvif; 779 struct ieee80211_vif *vif; 780 781 mvmvif = container_of(wk, struct iwl_mvm_vif, 782 uapsd_nonagg_detected_wk.work); 783 vif = container_of((void *)mvmvif, struct ieee80211_vif, drv_priv); 784 mvm = mvmvif->mvm; 785 786 if (mvm->tcm.data[mvmvif->id].opened_rx_ba_sessions) 787 return; 788 789 /* remember that this AP is broken */ 790 memcpy(mvm->uapsd_noagg_bssids[mvm->uapsd_noagg_bssid_write_idx].addr, 791 vif->bss_conf.bssid, ETH_ALEN); 792 mvm->uapsd_noagg_bssid_write_idx++; 793 if (mvm->uapsd_noagg_bssid_write_idx >= IWL_MVM_UAPSD_NOAGG_LIST_LEN) 794 mvm->uapsd_noagg_bssid_write_idx = 0; 795 796 iwl_mvm_connection_loss(mvm, vif, 797 "AP isn't using AMPDU with uAPSD enabled"); 798 } 799 800 static void iwl_mvm_uapsd_agg_disconnect(struct iwl_mvm *mvm, 801 struct ieee80211_vif *vif) 802 { 803 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 804 805 if (vif->type != NL80211_IFTYPE_STATION) 806 return; 807 808 if (!vif->bss_conf.assoc) 809 return; 810 811 if (!mvmvif->queue_params[IEEE80211_AC_VO].uapsd && 812 !mvmvif->queue_params[IEEE80211_AC_VI].uapsd && 813 !mvmvif->queue_params[IEEE80211_AC_BE].uapsd && 814 !mvmvif->queue_params[IEEE80211_AC_BK].uapsd) 815 return; 816 817 if (mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected) 818 return; 819 820 mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected = true; 821 IWL_INFO(mvm, 822 "detected AP should do aggregation but isn't, likely due to U-APSD\n"); 823 schedule_delayed_work(&mvmvif->uapsd_nonagg_detected_wk, 15 * HZ); 824 } 825 826 static void iwl_mvm_check_uapsd_agg_expected_tpt(struct iwl_mvm *mvm, 827 unsigned int elapsed, 828 int mac) 829 { 830 u64 bytes = mvm->tcm.data[mac].uapsd_nonagg_detect.rx_bytes; 831 u64 tpt; 832 unsigned long rate; 833 struct ieee80211_vif *vif; 834 835 rate = ewma_rate_read(&mvm->tcm.data[mac].uapsd_nonagg_detect.rate); 836 837 if (!rate || mvm->tcm.data[mac].opened_rx_ba_sessions || 838 mvm->tcm.data[mac].uapsd_nonagg_detect.detected) 839 return; 840 841 if (iwl_mvm_has_new_rx_api(mvm)) { 842 tpt = 8 * bytes; /* kbps */ 843 do_div(tpt, elapsed); 844 rate *= 1000; /* kbps */ 845 if (tpt < 22 * rate / 100) 846 return; 847 } else { 848 /* 849 * the rate here is actually the threshold, in 100Kbps units, 850 * so do the needed conversion from bytes to 100Kbps: 851 * 100kb = bits / (100 * 1000), 852 * 100kbps = 100kb / (msecs / 1000) == 853 * (bits / (100 * 1000)) / (msecs / 1000) == 854 * bits / (100 * msecs) 855 */ 856 tpt = (8 * bytes); 857 do_div(tpt, elapsed * 100); 858 if (tpt < rate) 859 return; 860 } 861 862 rcu_read_lock(); 863 vif = rcu_dereference(mvm->vif_id_to_mac[mac]); 864 if (vif) 865 iwl_mvm_uapsd_agg_disconnect(mvm, vif); 866 rcu_read_unlock(); 867 } 868 869 static void iwl_mvm_tcm_iterator(void *_data, u8 *mac, 870 struct ieee80211_vif *vif) 871 { 872 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 873 u32 *band = _data; 874 875 if (!mvmvif->phy_ctxt) 876 return; 877 878 band[mvmvif->id] = mvmvif->phy_ctxt->channel->band; 879 } 880 881 static unsigned long iwl_mvm_calc_tcm_stats(struct iwl_mvm *mvm, 882 unsigned long ts, 883 bool handle_uapsd) 884 { 885 unsigned int elapsed = jiffies_to_msecs(ts - mvm->tcm.ts); 886 unsigned int uapsd_elapsed = 887 jiffies_to_msecs(ts - mvm->tcm.uapsd_nonagg_ts); 888 u32 total_airtime = 0; 889 u32 band_airtime[NUM_NL80211_BANDS] = {0}; 890 u32 band[NUM_MAC_INDEX_DRIVER] = {0}; 891 int ac, mac, i; 892 bool low_latency = false; 893 enum iwl_mvm_traffic_load load, band_load; 894 bool handle_ll = time_after(ts, mvm->tcm.ll_ts + MVM_LL_PERIOD); 895 896 if (handle_ll) 897 mvm->tcm.ll_ts = ts; 898 if (handle_uapsd) 899 mvm->tcm.uapsd_nonagg_ts = ts; 900 901 mvm->tcm.result.elapsed = elapsed; 902 903 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 904 IEEE80211_IFACE_ITER_NORMAL, 905 iwl_mvm_tcm_iterator, 906 &band); 907 908 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 909 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 910 u32 vo_vi_pkts = 0; 911 u32 airtime = mdata->rx.airtime + mdata->tx.airtime; 912 913 total_airtime += airtime; 914 band_airtime[band[mac]] += airtime; 915 916 load = iwl_mvm_tcm_load(mvm, airtime, elapsed); 917 mvm->tcm.result.change[mac] = load != mvm->tcm.result.load[mac]; 918 mvm->tcm.result.load[mac] = load; 919 mvm->tcm.result.airtime[mac] = airtime; 920 921 for (ac = IEEE80211_AC_VO; ac <= IEEE80211_AC_VI; ac++) 922 vo_vi_pkts += mdata->rx.pkts[ac] + 923 mdata->tx.pkts[ac]; 924 925 /* enable immediately with enough packets but defer disabling */ 926 if (vo_vi_pkts > IWL_MVM_TCM_LOWLAT_ENABLE_THRESH) 927 mvm->tcm.result.low_latency[mac] = true; 928 else if (handle_ll) 929 mvm->tcm.result.low_latency[mac] = false; 930 931 if (handle_ll) { 932 /* clear old data */ 933 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 934 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 935 } 936 low_latency |= mvm->tcm.result.low_latency[mac]; 937 938 if (!mvm->tcm.result.low_latency[mac] && handle_uapsd) 939 iwl_mvm_check_uapsd_agg_expected_tpt(mvm, uapsd_elapsed, 940 mac); 941 /* clear old data */ 942 if (handle_uapsd) 943 mdata->uapsd_nonagg_detect.rx_bytes = 0; 944 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 945 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 946 } 947 948 load = iwl_mvm_tcm_load(mvm, total_airtime, elapsed); 949 mvm->tcm.result.global_load = load; 950 951 for (i = 0; i < NUM_NL80211_BANDS; i++) { 952 band_load = iwl_mvm_tcm_load(mvm, band_airtime[i], elapsed); 953 mvm->tcm.result.band_load[i] = band_load; 954 } 955 956 /* 957 * If the current load isn't low we need to force re-evaluation 958 * in the TCM period, so that we can return to low load if there 959 * was no traffic at all (and thus iwl_mvm_recalc_tcm didn't get 960 * triggered by traffic). 961 */ 962 if (load != IWL_MVM_TRAFFIC_LOW) 963 return MVM_TCM_PERIOD; 964 /* 965 * If low-latency is active we need to force re-evaluation after 966 * (the longer) MVM_LL_PERIOD, so that we can disable low-latency 967 * when there's no traffic at all. 968 */ 969 if (low_latency) 970 return MVM_LL_PERIOD; 971 /* 972 * Otherwise, we don't need to run the work struct because we're 973 * in the default "idle" state - traffic indication is low (which 974 * also covers the "no traffic" case) and low-latency is disabled 975 * so there's no state that may need to be disabled when there's 976 * no traffic at all. 977 * 978 * Note that this has no impact on the regular scheduling of the 979 * updates triggered by traffic - those happen whenever one of the 980 * two timeouts expire (if there's traffic at all.) 981 */ 982 return 0; 983 } 984 985 void iwl_mvm_recalc_tcm(struct iwl_mvm *mvm) 986 { 987 unsigned long ts = jiffies; 988 bool handle_uapsd = 989 time_after(ts, mvm->tcm.uapsd_nonagg_ts + 990 msecs_to_jiffies(IWL_MVM_UAPSD_NONAGG_PERIOD)); 991 992 spin_lock(&mvm->tcm.lock); 993 if (mvm->tcm.paused || !time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 994 spin_unlock(&mvm->tcm.lock); 995 return; 996 } 997 spin_unlock(&mvm->tcm.lock); 998 999 if (handle_uapsd && iwl_mvm_has_new_rx_api(mvm)) { 1000 mutex_lock(&mvm->mutex); 1001 if (iwl_mvm_request_statistics(mvm, true)) 1002 handle_uapsd = false; 1003 mutex_unlock(&mvm->mutex); 1004 } 1005 1006 spin_lock(&mvm->tcm.lock); 1007 /* re-check if somebody else won the recheck race */ 1008 if (!mvm->tcm.paused && time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1009 /* calculate statistics */ 1010 unsigned long work_delay = iwl_mvm_calc_tcm_stats(mvm, ts, 1011 handle_uapsd); 1012 1013 /* the memset needs to be visible before the timestamp */ 1014 smp_mb(); 1015 mvm->tcm.ts = ts; 1016 if (work_delay) 1017 schedule_delayed_work(&mvm->tcm.work, work_delay); 1018 } 1019 spin_unlock(&mvm->tcm.lock); 1020 1021 iwl_mvm_tcm_results(mvm); 1022 } 1023 1024 void iwl_mvm_tcm_work(struct work_struct *work) 1025 { 1026 struct delayed_work *delayed_work = to_delayed_work(work); 1027 struct iwl_mvm *mvm = container_of(delayed_work, struct iwl_mvm, 1028 tcm.work); 1029 1030 iwl_mvm_recalc_tcm(mvm); 1031 } 1032 1033 void iwl_mvm_pause_tcm(struct iwl_mvm *mvm, bool with_cancel) 1034 { 1035 spin_lock_bh(&mvm->tcm.lock); 1036 mvm->tcm.paused = true; 1037 spin_unlock_bh(&mvm->tcm.lock); 1038 if (with_cancel) 1039 cancel_delayed_work_sync(&mvm->tcm.work); 1040 } 1041 1042 void iwl_mvm_resume_tcm(struct iwl_mvm *mvm) 1043 { 1044 int mac; 1045 bool low_latency = false; 1046 1047 spin_lock_bh(&mvm->tcm.lock); 1048 mvm->tcm.ts = jiffies; 1049 mvm->tcm.ll_ts = jiffies; 1050 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 1051 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 1052 1053 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 1054 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 1055 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 1056 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 1057 1058 if (mvm->tcm.result.low_latency[mac]) 1059 low_latency = true; 1060 } 1061 /* The TCM data needs to be reset before "paused" flag changes */ 1062 smp_mb(); 1063 mvm->tcm.paused = false; 1064 1065 /* 1066 * if the current load is not low or low latency is active, force 1067 * re-evaluation to cover the case of no traffic. 1068 */ 1069 if (mvm->tcm.result.global_load > IWL_MVM_TRAFFIC_LOW) 1070 schedule_delayed_work(&mvm->tcm.work, MVM_TCM_PERIOD); 1071 else if (low_latency) 1072 schedule_delayed_work(&mvm->tcm.work, MVM_LL_PERIOD); 1073 1074 spin_unlock_bh(&mvm->tcm.lock); 1075 } 1076 1077 void iwl_mvm_tcm_add_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1078 { 1079 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1080 1081 INIT_DELAYED_WORK(&mvmvif->uapsd_nonagg_detected_wk, 1082 iwl_mvm_tcm_uapsd_nonagg_detected_wk); 1083 } 1084 1085 void iwl_mvm_tcm_rm_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1086 { 1087 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1088 1089 cancel_delayed_work_sync(&mvmvif->uapsd_nonagg_detected_wk); 1090 } 1091 1092 u32 iwl_mvm_get_systime(struct iwl_mvm *mvm) 1093 { 1094 u32 reg_addr = DEVICE_SYSTEM_TIME_REG; 1095 1096 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22000 && 1097 mvm->trans->cfg->gp2_reg_addr) 1098 reg_addr = mvm->trans->cfg->gp2_reg_addr; 1099 1100 return iwl_read_prph(mvm->trans, reg_addr); 1101 } 1102 1103 void iwl_mvm_get_sync_time(struct iwl_mvm *mvm, int clock_type, 1104 u32 *gp2, u64 *boottime, ktime_t *realtime) 1105 { 1106 bool ps_disabled; 1107 1108 lockdep_assert_held(&mvm->mutex); 1109 1110 /* Disable power save when reading GP2 */ 1111 ps_disabled = mvm->ps_disabled; 1112 if (!ps_disabled) { 1113 mvm->ps_disabled = true; 1114 iwl_mvm_power_update_device(mvm); 1115 } 1116 1117 *gp2 = iwl_mvm_get_systime(mvm); 1118 1119 if (clock_type == CLOCK_BOOTTIME && boottime) 1120 *boottime = ktime_get_boottime_ns(); 1121 else if (clock_type == CLOCK_REALTIME && realtime) 1122 *realtime = ktime_get_real(); 1123 1124 if (!ps_disabled) { 1125 mvm->ps_disabled = ps_disabled; 1126 iwl_mvm_power_update_device(mvm); 1127 } 1128 } 1129