1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <net/mac80211.h> 8 9 #include "iwl-debug.h" 10 #include "iwl-io.h" 11 #include "iwl-prph.h" 12 #include "iwl-csr.h" 13 #include "mvm.h" 14 #include "fw/api/rs.h" 15 #include "fw/img.h" 16 17 /* 18 * Will return 0 even if the cmd failed when RFKILL is asserted unless 19 * CMD_WANT_SKB is set in cmd->flags. 20 */ 21 int iwl_mvm_send_cmd(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd) 22 { 23 int ret; 24 25 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 26 if (WARN_ON(mvm->d3_test_active)) 27 return -EIO; 28 #endif 29 30 /* 31 * Synchronous commands from this op-mode must hold 32 * the mutex, this ensures we don't try to send two 33 * (or more) synchronous commands at a time. 34 */ 35 if (!(cmd->flags & CMD_ASYNC)) 36 lockdep_assert_held(&mvm->mutex); 37 38 ret = iwl_trans_send_cmd(mvm->trans, cmd); 39 40 /* 41 * If the caller wants the SKB, then don't hide any problems, the 42 * caller might access the response buffer which will be NULL if 43 * the command failed. 44 */ 45 if (cmd->flags & CMD_WANT_SKB) 46 return ret; 47 48 /* 49 * Silently ignore failures if RFKILL is asserted or 50 * we are in suspend\resume process 51 */ 52 if (!ret || ret == -ERFKILL || ret == -EHOSTDOWN) 53 return 0; 54 return ret; 55 } 56 57 int iwl_mvm_send_cmd_pdu(struct iwl_mvm *mvm, u32 id, 58 u32 flags, u16 len, const void *data) 59 { 60 struct iwl_host_cmd cmd = { 61 .id = id, 62 .len = { len, }, 63 .data = { data, }, 64 .flags = flags, 65 }; 66 67 return iwl_mvm_send_cmd(mvm, &cmd); 68 } 69 70 /* 71 * We assume that the caller set the status to the success value 72 */ 73 int iwl_mvm_send_cmd_status(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd, 74 u32 *status) 75 { 76 struct iwl_rx_packet *pkt; 77 struct iwl_cmd_response *resp; 78 int ret, resp_len; 79 80 lockdep_assert_held(&mvm->mutex); 81 82 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 83 if (WARN_ON(mvm->d3_test_active)) 84 return -EIO; 85 #endif 86 87 /* 88 * Only synchronous commands can wait for status, 89 * we use WANT_SKB so the caller can't. 90 */ 91 if (WARN_ONCE(cmd->flags & (CMD_ASYNC | CMD_WANT_SKB), 92 "cmd flags %x", cmd->flags)) 93 return -EINVAL; 94 95 cmd->flags |= CMD_WANT_SKB; 96 97 ret = iwl_trans_send_cmd(mvm->trans, cmd); 98 if (ret == -ERFKILL) { 99 /* 100 * The command failed because of RFKILL, don't update 101 * the status, leave it as success and return 0. 102 */ 103 return 0; 104 } else if (ret) { 105 return ret; 106 } 107 108 pkt = cmd->resp_pkt; 109 110 resp_len = iwl_rx_packet_payload_len(pkt); 111 if (WARN_ON_ONCE(resp_len != sizeof(*resp))) { 112 ret = -EIO; 113 goto out_free_resp; 114 } 115 116 resp = (void *)pkt->data; 117 *status = le32_to_cpu(resp->status); 118 out_free_resp: 119 iwl_free_resp(cmd); 120 return ret; 121 } 122 123 /* 124 * We assume that the caller set the status to the sucess value 125 */ 126 int iwl_mvm_send_cmd_pdu_status(struct iwl_mvm *mvm, u32 id, u16 len, 127 const void *data, u32 *status) 128 { 129 struct iwl_host_cmd cmd = { 130 .id = id, 131 .len = { len, }, 132 .data = { data, }, 133 }; 134 135 return iwl_mvm_send_cmd_status(mvm, &cmd, status); 136 } 137 138 int iwl_mvm_legacy_hw_idx_to_mac80211_idx(u32 rate_n_flags, 139 enum nl80211_band band) 140 { 141 int format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 142 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK; 143 bool is_LB = band == NL80211_BAND_2GHZ; 144 145 if (format == RATE_MCS_LEGACY_OFDM_MSK) 146 return is_LB ? rate + IWL_FIRST_OFDM_RATE : 147 rate; 148 149 /* CCK is not allowed in HB */ 150 return is_LB ? rate : -1; 151 } 152 153 int iwl_mvm_legacy_rate_to_mac80211_idx(u32 rate_n_flags, 154 enum nl80211_band band) 155 { 156 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK_V1; 157 int idx; 158 int band_offset = 0; 159 160 /* Legacy rate format, search for match in table */ 161 if (band != NL80211_BAND_2GHZ) 162 band_offset = IWL_FIRST_OFDM_RATE; 163 for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++) 164 if (iwl_fw_rate_idx_to_plcp(idx) == rate) 165 return idx - band_offset; 166 167 return -1; 168 } 169 170 u8 iwl_mvm_mac80211_idx_to_hwrate(const struct iwl_fw *fw, int rate_idx) 171 { 172 if (iwl_fw_lookup_cmd_ver(fw, LONG_GROUP, 173 TX_CMD, 0) > 8) 174 /* In the new rate legacy rates are indexed: 175 * 0 - 3 for CCK and 0 - 7 for OFDM. 176 */ 177 return (rate_idx >= IWL_FIRST_OFDM_RATE ? 178 rate_idx - IWL_FIRST_OFDM_RATE : 179 rate_idx); 180 181 return iwl_fw_rate_idx_to_plcp(rate_idx); 182 } 183 184 u8 iwl_mvm_mac80211_ac_to_ucode_ac(enum ieee80211_ac_numbers ac) 185 { 186 static const u8 mac80211_ac_to_ucode_ac[] = { 187 AC_VO, 188 AC_VI, 189 AC_BE, 190 AC_BK 191 }; 192 193 return mac80211_ac_to_ucode_ac[ac]; 194 } 195 196 void iwl_mvm_rx_fw_error(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb) 197 { 198 struct iwl_rx_packet *pkt = rxb_addr(rxb); 199 struct iwl_error_resp *err_resp = (void *)pkt->data; 200 201 IWL_ERR(mvm, "FW Error notification: type 0x%08X cmd_id 0x%02X\n", 202 le32_to_cpu(err_resp->error_type), err_resp->cmd_id); 203 IWL_ERR(mvm, "FW Error notification: seq 0x%04X service 0x%08X\n", 204 le16_to_cpu(err_resp->bad_cmd_seq_num), 205 le32_to_cpu(err_resp->error_service)); 206 IWL_ERR(mvm, "FW Error notification: timestamp 0x%016llX\n", 207 le64_to_cpu(err_resp->timestamp)); 208 } 209 210 /* 211 * Returns the first antenna as ANT_[ABC], as defined in iwl-config.h. 212 * The parameter should also be a combination of ANT_[ABC]. 213 */ 214 u8 first_antenna(u8 mask) 215 { 216 BUILD_BUG_ON(ANT_A != BIT(0)); /* using ffs is wrong if not */ 217 if (WARN_ON_ONCE(!mask)) /* ffs will return 0 if mask is zeroed */ 218 return BIT(0); 219 return BIT(ffs(mask) - 1); 220 } 221 222 #define MAX_ANT_NUM 2 223 /* 224 * Toggles between TX antennas to send the probe request on. 225 * Receives the bitmask of valid TX antennas and the *index* used 226 * for the last TX, and returns the next valid *index* to use. 227 * In order to set it in the tx_cmd, must do BIT(idx). 228 */ 229 u8 iwl_mvm_next_antenna(struct iwl_mvm *mvm, u8 valid, u8 last_idx) 230 { 231 u8 ind = last_idx; 232 int i; 233 234 for (i = 0; i < MAX_ANT_NUM; i++) { 235 ind = (ind + 1) % MAX_ANT_NUM; 236 if (valid & BIT(ind)) 237 return ind; 238 } 239 240 WARN_ONCE(1, "Failed to toggle between antennas 0x%x", valid); 241 return last_idx; 242 } 243 244 int iwl_mvm_reconfig_scd(struct iwl_mvm *mvm, int queue, int fifo, int sta_id, 245 int tid, int frame_limit, u16 ssn) 246 { 247 struct iwl_scd_txq_cfg_cmd cmd = { 248 .scd_queue = queue, 249 .action = SCD_CFG_ENABLE_QUEUE, 250 .window = frame_limit, 251 .sta_id = sta_id, 252 .ssn = cpu_to_le16(ssn), 253 .tx_fifo = fifo, 254 .aggregate = (queue >= IWL_MVM_DQA_MIN_DATA_QUEUE || 255 queue == IWL_MVM_DQA_BSS_CLIENT_QUEUE), 256 .tid = tid, 257 }; 258 int ret; 259 260 if (WARN_ON(iwl_mvm_has_new_tx_api(mvm))) 261 return -EINVAL; 262 263 if (WARN(mvm->queue_info[queue].tid_bitmap == 0, 264 "Trying to reconfig unallocated queue %d\n", queue)) 265 return -ENXIO; 266 267 IWL_DEBUG_TX_QUEUES(mvm, "Reconfig SCD for TXQ #%d\n", queue); 268 269 ret = iwl_mvm_send_cmd_pdu(mvm, SCD_QUEUE_CFG, 0, sizeof(cmd), &cmd); 270 WARN_ONCE(ret, "Failed to re-configure queue %d on FIFO %d, ret=%d\n", 271 queue, fifo, ret); 272 273 return ret; 274 } 275 276 /** 277 * iwl_mvm_send_lq_cmd() - Send link quality command 278 * @mvm: Driver data. 279 * @lq: Link quality command to send. 280 * 281 * The link quality command is sent as the last step of station creation. 282 * This is the special case in which init is set and we call a callback in 283 * this case to clear the state indicating that station creation is in 284 * progress. 285 */ 286 int iwl_mvm_send_lq_cmd(struct iwl_mvm *mvm, struct iwl_lq_cmd *lq) 287 { 288 struct iwl_host_cmd cmd = { 289 .id = LQ_CMD, 290 .len = { sizeof(struct iwl_lq_cmd), }, 291 .flags = CMD_ASYNC, 292 .data = { lq, }, 293 }; 294 295 if (WARN_ON(lq->sta_id == IWL_MVM_INVALID_STA || 296 iwl_mvm_has_tlc_offload(mvm))) 297 return -EINVAL; 298 299 return iwl_mvm_send_cmd(mvm, &cmd); 300 } 301 302 /** 303 * iwl_mvm_update_smps - Get a request to change the SMPS mode 304 * @mvm: Driver data. 305 * @vif: Pointer to the ieee80211_vif structure 306 * @req_type: The part of the driver who call for a change. 307 * @smps_request: The request to change the SMPS mode. 308 * 309 * Get a requst to change the SMPS mode, 310 * and change it according to all other requests in the driver. 311 */ 312 void iwl_mvm_update_smps(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 313 enum iwl_mvm_smps_type_request req_type, 314 enum ieee80211_smps_mode smps_request) 315 { 316 struct iwl_mvm_vif *mvmvif; 317 enum ieee80211_smps_mode smps_mode = IEEE80211_SMPS_AUTOMATIC; 318 int i; 319 320 lockdep_assert_held(&mvm->mutex); 321 322 /* SMPS is irrelevant for NICs that don't have at least 2 RX antenna */ 323 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 324 return; 325 326 if (vif->type != NL80211_IFTYPE_STATION) 327 return; 328 329 mvmvif = iwl_mvm_vif_from_mac80211(vif); 330 mvmvif->smps_requests[req_type] = smps_request; 331 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 332 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC) { 333 smps_mode = IEEE80211_SMPS_STATIC; 334 break; 335 } 336 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) 337 smps_mode = IEEE80211_SMPS_DYNAMIC; 338 } 339 340 ieee80211_request_smps(vif, smps_mode); 341 } 342 343 static bool iwl_wait_stats_complete(struct iwl_notif_wait_data *notif_wait, 344 struct iwl_rx_packet *pkt, void *data) 345 { 346 WARN_ON(pkt->hdr.cmd != STATISTICS_NOTIFICATION); 347 348 return true; 349 } 350 351 int iwl_mvm_request_statistics(struct iwl_mvm *mvm, bool clear) 352 { 353 struct iwl_statistics_cmd scmd = { 354 .flags = clear ? cpu_to_le32(IWL_STATISTICS_FLG_CLEAR) : 0, 355 }; 356 357 struct iwl_host_cmd cmd = { 358 .id = STATISTICS_CMD, 359 .len[0] = sizeof(scmd), 360 .data[0] = &scmd, 361 }; 362 int ret; 363 364 /* From version 15 - STATISTICS_NOTIFICATION, the reply for 365 * STATISTICS_CMD is empty, and the response is with 366 * STATISTICS_NOTIFICATION notification 367 */ 368 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 369 STATISTICS_NOTIFICATION, 0) < 15) { 370 cmd.flags = CMD_WANT_SKB; 371 372 ret = iwl_mvm_send_cmd(mvm, &cmd); 373 if (ret) 374 return ret; 375 376 iwl_mvm_handle_rx_statistics(mvm, cmd.resp_pkt); 377 iwl_free_resp(&cmd); 378 } else { 379 struct iwl_notification_wait stats_wait; 380 static const u16 stats_complete[] = { 381 STATISTICS_NOTIFICATION, 382 }; 383 384 iwl_init_notification_wait(&mvm->notif_wait, &stats_wait, 385 stats_complete, ARRAY_SIZE(stats_complete), 386 iwl_wait_stats_complete, NULL); 387 388 ret = iwl_mvm_send_cmd(mvm, &cmd); 389 if (ret) { 390 iwl_remove_notification(&mvm->notif_wait, &stats_wait); 391 return ret; 392 } 393 394 /* 200ms should be enough for FW to collect data from all 395 * LMACs and send STATISTICS_NOTIFICATION to host 396 */ 397 ret = iwl_wait_notification(&mvm->notif_wait, &stats_wait, HZ / 5); 398 if (ret) 399 return ret; 400 } 401 402 if (clear) 403 iwl_mvm_accu_radio_stats(mvm); 404 405 return 0; 406 } 407 408 void iwl_mvm_accu_radio_stats(struct iwl_mvm *mvm) 409 { 410 mvm->accu_radio_stats.rx_time += mvm->radio_stats.rx_time; 411 mvm->accu_radio_stats.tx_time += mvm->radio_stats.tx_time; 412 mvm->accu_radio_stats.on_time_rf += mvm->radio_stats.on_time_rf; 413 mvm->accu_radio_stats.on_time_scan += mvm->radio_stats.on_time_scan; 414 } 415 416 struct iwl_mvm_diversity_iter_data { 417 struct iwl_mvm_phy_ctxt *ctxt; 418 bool result; 419 }; 420 421 static void iwl_mvm_diversity_iter(void *_data, u8 *mac, 422 struct ieee80211_vif *vif) 423 { 424 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 425 struct iwl_mvm_diversity_iter_data *data = _data; 426 int i; 427 428 if (mvmvif->phy_ctxt != data->ctxt) 429 return; 430 431 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 432 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC || 433 mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) { 434 data->result = false; 435 break; 436 } 437 } 438 } 439 440 bool iwl_mvm_rx_diversity_allowed(struct iwl_mvm *mvm, 441 struct iwl_mvm_phy_ctxt *ctxt) 442 { 443 struct iwl_mvm_diversity_iter_data data = { 444 .ctxt = ctxt, 445 .result = true, 446 }; 447 448 lockdep_assert_held(&mvm->mutex); 449 450 if (iwlmvm_mod_params.power_scheme != IWL_POWER_SCHEME_CAM) 451 return false; 452 453 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 454 return false; 455 456 if (mvm->cfg->rx_with_siso_diversity) 457 return false; 458 459 ieee80211_iterate_active_interfaces_atomic( 460 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 461 iwl_mvm_diversity_iter, &data); 462 463 return data.result; 464 } 465 466 void iwl_mvm_send_low_latency_cmd(struct iwl_mvm *mvm, 467 bool low_latency, u16 mac_id) 468 { 469 struct iwl_mac_low_latency_cmd cmd = { 470 .mac_id = cpu_to_le32(mac_id) 471 }; 472 473 if (!fw_has_capa(&mvm->fw->ucode_capa, 474 IWL_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) 475 return; 476 477 if (low_latency) { 478 /* currently we don't care about the direction */ 479 cmd.low_latency_rx = 1; 480 cmd.low_latency_tx = 1; 481 } 482 483 if (iwl_mvm_send_cmd_pdu(mvm, iwl_cmd_id(LOW_LATENCY_CMD, 484 MAC_CONF_GROUP, 0), 485 0, sizeof(cmd), &cmd)) 486 IWL_ERR(mvm, "Failed to send low latency command\n"); 487 } 488 489 int iwl_mvm_update_low_latency(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 490 bool low_latency, 491 enum iwl_mvm_low_latency_cause cause) 492 { 493 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 494 int res; 495 bool prev; 496 497 lockdep_assert_held(&mvm->mutex); 498 499 prev = iwl_mvm_vif_low_latency(mvmvif); 500 iwl_mvm_vif_set_low_latency(mvmvif, low_latency, cause); 501 502 low_latency = iwl_mvm_vif_low_latency(mvmvif); 503 504 if (low_latency == prev) 505 return 0; 506 507 iwl_mvm_send_low_latency_cmd(mvm, low_latency, mvmvif->id); 508 509 res = iwl_mvm_update_quotas(mvm, false, NULL); 510 if (res) 511 return res; 512 513 iwl_mvm_bt_coex_vif_change(mvm); 514 515 return iwl_mvm_power_update_mac(mvm); 516 } 517 518 struct iwl_mvm_low_latency_iter { 519 bool result; 520 bool result_per_band[NUM_NL80211_BANDS]; 521 }; 522 523 static void iwl_mvm_ll_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 524 { 525 struct iwl_mvm_low_latency_iter *result = _data; 526 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 527 enum nl80211_band band; 528 529 if (iwl_mvm_vif_low_latency(mvmvif)) { 530 result->result = true; 531 532 if (!mvmvif->phy_ctxt) 533 return; 534 535 band = mvmvif->phy_ctxt->channel->band; 536 result->result_per_band[band] = true; 537 } 538 } 539 540 bool iwl_mvm_low_latency(struct iwl_mvm *mvm) 541 { 542 struct iwl_mvm_low_latency_iter data = {}; 543 544 ieee80211_iterate_active_interfaces_atomic( 545 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 546 iwl_mvm_ll_iter, &data); 547 548 return data.result; 549 } 550 551 bool iwl_mvm_low_latency_band(struct iwl_mvm *mvm, enum nl80211_band band) 552 { 553 struct iwl_mvm_low_latency_iter data = {}; 554 555 ieee80211_iterate_active_interfaces_atomic( 556 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 557 iwl_mvm_ll_iter, &data); 558 559 return data.result_per_band[band]; 560 } 561 562 struct iwl_bss_iter_data { 563 struct ieee80211_vif *vif; 564 bool error; 565 }; 566 567 static void iwl_mvm_bss_iface_iterator(void *_data, u8 *mac, 568 struct ieee80211_vif *vif) 569 { 570 struct iwl_bss_iter_data *data = _data; 571 572 if (vif->type != NL80211_IFTYPE_STATION || vif->p2p) 573 return; 574 575 if (data->vif) { 576 data->error = true; 577 return; 578 } 579 580 data->vif = vif; 581 } 582 583 struct ieee80211_vif *iwl_mvm_get_bss_vif(struct iwl_mvm *mvm) 584 { 585 struct iwl_bss_iter_data bss_iter_data = {}; 586 587 ieee80211_iterate_active_interfaces_atomic( 588 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 589 iwl_mvm_bss_iface_iterator, &bss_iter_data); 590 591 if (bss_iter_data.error) { 592 IWL_ERR(mvm, "More than one managed interface active!\n"); 593 return ERR_PTR(-EINVAL); 594 } 595 596 return bss_iter_data.vif; 597 } 598 599 struct iwl_bss_find_iter_data { 600 struct ieee80211_vif *vif; 601 u32 macid; 602 }; 603 604 static void iwl_mvm_bss_find_iface_iterator(void *_data, u8 *mac, 605 struct ieee80211_vif *vif) 606 { 607 struct iwl_bss_find_iter_data *data = _data; 608 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 609 610 if (mvmvif->id == data->macid) 611 data->vif = vif; 612 } 613 614 struct ieee80211_vif *iwl_mvm_get_vif_by_macid(struct iwl_mvm *mvm, u32 macid) 615 { 616 struct iwl_bss_find_iter_data data = { 617 .macid = macid, 618 }; 619 620 lockdep_assert_held(&mvm->mutex); 621 622 ieee80211_iterate_active_interfaces_atomic( 623 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 624 iwl_mvm_bss_find_iface_iterator, &data); 625 626 return data.vif; 627 } 628 629 struct iwl_sta_iter_data { 630 bool assoc; 631 }; 632 633 static void iwl_mvm_sta_iface_iterator(void *_data, u8 *mac, 634 struct ieee80211_vif *vif) 635 { 636 struct iwl_sta_iter_data *data = _data; 637 638 if (vif->type != NL80211_IFTYPE_STATION) 639 return; 640 641 if (vif->bss_conf.assoc) 642 data->assoc = true; 643 } 644 645 bool iwl_mvm_is_vif_assoc(struct iwl_mvm *mvm) 646 { 647 struct iwl_sta_iter_data data = { 648 .assoc = false, 649 }; 650 651 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 652 IEEE80211_IFACE_ITER_NORMAL, 653 iwl_mvm_sta_iface_iterator, 654 &data); 655 return data.assoc; 656 } 657 658 unsigned int iwl_mvm_get_wd_timeout(struct iwl_mvm *mvm, 659 struct ieee80211_vif *vif, 660 bool tdls, bool cmd_q) 661 { 662 struct iwl_fw_dbg_trigger_tlv *trigger; 663 struct iwl_fw_dbg_trigger_txq_timer *txq_timer; 664 unsigned int default_timeout = cmd_q ? 665 IWL_DEF_WD_TIMEOUT : 666 mvm->trans->trans_cfg->base_params->wd_timeout; 667 668 if (!iwl_fw_dbg_trigger_enabled(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS)) { 669 /* 670 * We can't know when the station is asleep or awake, so we 671 * must disable the queue hang detection. 672 */ 673 if (fw_has_capa(&mvm->fw->ucode_capa, 674 IWL_UCODE_TLV_CAPA_STA_PM_NOTIF) && 675 vif && vif->type == NL80211_IFTYPE_AP) 676 return IWL_WATCHDOG_DISABLED; 677 return default_timeout; 678 } 679 680 trigger = iwl_fw_dbg_get_trigger(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS); 681 txq_timer = (void *)trigger->data; 682 683 if (tdls) 684 return le32_to_cpu(txq_timer->tdls); 685 686 if (cmd_q) 687 return le32_to_cpu(txq_timer->command_queue); 688 689 if (WARN_ON(!vif)) 690 return default_timeout; 691 692 switch (ieee80211_vif_type_p2p(vif)) { 693 case NL80211_IFTYPE_ADHOC: 694 return le32_to_cpu(txq_timer->ibss); 695 case NL80211_IFTYPE_STATION: 696 return le32_to_cpu(txq_timer->bss); 697 case NL80211_IFTYPE_AP: 698 return le32_to_cpu(txq_timer->softap); 699 case NL80211_IFTYPE_P2P_CLIENT: 700 return le32_to_cpu(txq_timer->p2p_client); 701 case NL80211_IFTYPE_P2P_GO: 702 return le32_to_cpu(txq_timer->p2p_go); 703 case NL80211_IFTYPE_P2P_DEVICE: 704 return le32_to_cpu(txq_timer->p2p_device); 705 case NL80211_IFTYPE_MONITOR: 706 return default_timeout; 707 default: 708 WARN_ON(1); 709 return mvm->trans->trans_cfg->base_params->wd_timeout; 710 } 711 } 712 713 void iwl_mvm_connection_loss(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 714 const char *errmsg) 715 { 716 struct iwl_fw_dbg_trigger_tlv *trig; 717 struct iwl_fw_dbg_trigger_mlme *trig_mlme; 718 719 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 720 FW_DBG_TRIGGER_MLME); 721 if (!trig) 722 goto out; 723 724 trig_mlme = (void *)trig->data; 725 726 if (trig_mlme->stop_connection_loss && 727 --trig_mlme->stop_connection_loss) 728 goto out; 729 730 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, "%s", errmsg); 731 732 out: 733 ieee80211_connection_loss(vif); 734 } 735 736 void iwl_mvm_event_frame_timeout_callback(struct iwl_mvm *mvm, 737 struct ieee80211_vif *vif, 738 const struct ieee80211_sta *sta, 739 u16 tid) 740 { 741 struct iwl_fw_dbg_trigger_tlv *trig; 742 struct iwl_fw_dbg_trigger_ba *ba_trig; 743 744 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 745 FW_DBG_TRIGGER_BA); 746 if (!trig) 747 return; 748 749 ba_trig = (void *)trig->data; 750 751 if (!(le16_to_cpu(ba_trig->frame_timeout) & BIT(tid))) 752 return; 753 754 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 755 "Frame from %pM timed out, tid %d", 756 sta->addr, tid); 757 } 758 759 u8 iwl_mvm_tcm_load_percentage(u32 airtime, u32 elapsed) 760 { 761 if (!elapsed) 762 return 0; 763 764 return (100 * airtime / elapsed) / USEC_PER_MSEC; 765 } 766 767 static enum iwl_mvm_traffic_load 768 iwl_mvm_tcm_load(struct iwl_mvm *mvm, u32 airtime, unsigned long elapsed) 769 { 770 u8 load = iwl_mvm_tcm_load_percentage(airtime, elapsed); 771 772 if (load > IWL_MVM_TCM_LOAD_HIGH_THRESH) 773 return IWL_MVM_TRAFFIC_HIGH; 774 if (load > IWL_MVM_TCM_LOAD_MEDIUM_THRESH) 775 return IWL_MVM_TRAFFIC_MEDIUM; 776 777 return IWL_MVM_TRAFFIC_LOW; 778 } 779 780 static void iwl_mvm_tcm_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 781 { 782 struct iwl_mvm *mvm = _data; 783 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 784 bool low_latency, prev = mvmvif->low_latency & LOW_LATENCY_TRAFFIC; 785 786 if (mvmvif->id >= NUM_MAC_INDEX_DRIVER) 787 return; 788 789 low_latency = mvm->tcm.result.low_latency[mvmvif->id]; 790 791 if (!mvm->tcm.result.change[mvmvif->id] && 792 prev == low_latency) { 793 iwl_mvm_update_quotas(mvm, false, NULL); 794 return; 795 } 796 797 if (prev != low_latency) { 798 /* this sends traffic load and updates quota as well */ 799 iwl_mvm_update_low_latency(mvm, vif, low_latency, 800 LOW_LATENCY_TRAFFIC); 801 } else { 802 iwl_mvm_update_quotas(mvm, false, NULL); 803 } 804 } 805 806 static void iwl_mvm_tcm_results(struct iwl_mvm *mvm) 807 { 808 mutex_lock(&mvm->mutex); 809 810 ieee80211_iterate_active_interfaces( 811 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 812 iwl_mvm_tcm_iter, mvm); 813 814 if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) 815 iwl_mvm_config_scan(mvm); 816 817 mutex_unlock(&mvm->mutex); 818 } 819 820 static void iwl_mvm_tcm_uapsd_nonagg_detected_wk(struct work_struct *wk) 821 { 822 struct iwl_mvm *mvm; 823 struct iwl_mvm_vif *mvmvif; 824 struct ieee80211_vif *vif; 825 826 mvmvif = container_of(wk, struct iwl_mvm_vif, 827 uapsd_nonagg_detected_wk.work); 828 vif = container_of((void *)mvmvif, struct ieee80211_vif, drv_priv); 829 mvm = mvmvif->mvm; 830 831 if (mvm->tcm.data[mvmvif->id].opened_rx_ba_sessions) 832 return; 833 834 /* remember that this AP is broken */ 835 memcpy(mvm->uapsd_noagg_bssids[mvm->uapsd_noagg_bssid_write_idx].addr, 836 vif->bss_conf.bssid, ETH_ALEN); 837 mvm->uapsd_noagg_bssid_write_idx++; 838 if (mvm->uapsd_noagg_bssid_write_idx >= IWL_MVM_UAPSD_NOAGG_LIST_LEN) 839 mvm->uapsd_noagg_bssid_write_idx = 0; 840 841 iwl_mvm_connection_loss(mvm, vif, 842 "AP isn't using AMPDU with uAPSD enabled"); 843 } 844 845 static void iwl_mvm_uapsd_agg_disconnect(struct iwl_mvm *mvm, 846 struct ieee80211_vif *vif) 847 { 848 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 849 850 if (vif->type != NL80211_IFTYPE_STATION) 851 return; 852 853 if (!vif->bss_conf.assoc) 854 return; 855 856 if (!mvmvif->queue_params[IEEE80211_AC_VO].uapsd && 857 !mvmvif->queue_params[IEEE80211_AC_VI].uapsd && 858 !mvmvif->queue_params[IEEE80211_AC_BE].uapsd && 859 !mvmvif->queue_params[IEEE80211_AC_BK].uapsd) 860 return; 861 862 if (mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected) 863 return; 864 865 mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected = true; 866 IWL_INFO(mvm, 867 "detected AP should do aggregation but isn't, likely due to U-APSD\n"); 868 schedule_delayed_work(&mvmvif->uapsd_nonagg_detected_wk, 15 * HZ); 869 } 870 871 static void iwl_mvm_check_uapsd_agg_expected_tpt(struct iwl_mvm *mvm, 872 unsigned int elapsed, 873 int mac) 874 { 875 u64 bytes = mvm->tcm.data[mac].uapsd_nonagg_detect.rx_bytes; 876 u64 tpt; 877 unsigned long rate; 878 struct ieee80211_vif *vif; 879 880 rate = ewma_rate_read(&mvm->tcm.data[mac].uapsd_nonagg_detect.rate); 881 882 if (!rate || mvm->tcm.data[mac].opened_rx_ba_sessions || 883 mvm->tcm.data[mac].uapsd_nonagg_detect.detected) 884 return; 885 886 if (iwl_mvm_has_new_rx_api(mvm)) { 887 tpt = 8 * bytes; /* kbps */ 888 do_div(tpt, elapsed); 889 rate *= 1000; /* kbps */ 890 if (tpt < 22 * rate / 100) 891 return; 892 } else { 893 /* 894 * the rate here is actually the threshold, in 100Kbps units, 895 * so do the needed conversion from bytes to 100Kbps: 896 * 100kb = bits / (100 * 1000), 897 * 100kbps = 100kb / (msecs / 1000) == 898 * (bits / (100 * 1000)) / (msecs / 1000) == 899 * bits / (100 * msecs) 900 */ 901 tpt = (8 * bytes); 902 do_div(tpt, elapsed * 100); 903 if (tpt < rate) 904 return; 905 } 906 907 rcu_read_lock(); 908 vif = rcu_dereference(mvm->vif_id_to_mac[mac]); 909 if (vif) 910 iwl_mvm_uapsd_agg_disconnect(mvm, vif); 911 rcu_read_unlock(); 912 } 913 914 static void iwl_mvm_tcm_iterator(void *_data, u8 *mac, 915 struct ieee80211_vif *vif) 916 { 917 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 918 u32 *band = _data; 919 920 if (!mvmvif->phy_ctxt) 921 return; 922 923 band[mvmvif->id] = mvmvif->phy_ctxt->channel->band; 924 } 925 926 static unsigned long iwl_mvm_calc_tcm_stats(struct iwl_mvm *mvm, 927 unsigned long ts, 928 bool handle_uapsd) 929 { 930 unsigned int elapsed = jiffies_to_msecs(ts - mvm->tcm.ts); 931 unsigned int uapsd_elapsed = 932 jiffies_to_msecs(ts - mvm->tcm.uapsd_nonagg_ts); 933 u32 total_airtime = 0; 934 u32 band_airtime[NUM_NL80211_BANDS] = {0}; 935 u32 band[NUM_MAC_INDEX_DRIVER] = {0}; 936 int ac, mac, i; 937 bool low_latency = false; 938 enum iwl_mvm_traffic_load load, band_load; 939 bool handle_ll = time_after(ts, mvm->tcm.ll_ts + MVM_LL_PERIOD); 940 941 if (handle_ll) 942 mvm->tcm.ll_ts = ts; 943 if (handle_uapsd) 944 mvm->tcm.uapsd_nonagg_ts = ts; 945 946 mvm->tcm.result.elapsed = elapsed; 947 948 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 949 IEEE80211_IFACE_ITER_NORMAL, 950 iwl_mvm_tcm_iterator, 951 &band); 952 953 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 954 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 955 u32 vo_vi_pkts = 0; 956 u32 airtime = mdata->rx.airtime + mdata->tx.airtime; 957 958 total_airtime += airtime; 959 band_airtime[band[mac]] += airtime; 960 961 load = iwl_mvm_tcm_load(mvm, airtime, elapsed); 962 mvm->tcm.result.change[mac] = load != mvm->tcm.result.load[mac]; 963 mvm->tcm.result.load[mac] = load; 964 mvm->tcm.result.airtime[mac] = airtime; 965 966 for (ac = IEEE80211_AC_VO; ac <= IEEE80211_AC_VI; ac++) 967 vo_vi_pkts += mdata->rx.pkts[ac] + 968 mdata->tx.pkts[ac]; 969 970 /* enable immediately with enough packets but defer disabling */ 971 if (vo_vi_pkts > IWL_MVM_TCM_LOWLAT_ENABLE_THRESH) 972 mvm->tcm.result.low_latency[mac] = true; 973 else if (handle_ll) 974 mvm->tcm.result.low_latency[mac] = false; 975 976 if (handle_ll) { 977 /* clear old data */ 978 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 979 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 980 } 981 low_latency |= mvm->tcm.result.low_latency[mac]; 982 983 if (!mvm->tcm.result.low_latency[mac] && handle_uapsd) 984 iwl_mvm_check_uapsd_agg_expected_tpt(mvm, uapsd_elapsed, 985 mac); 986 /* clear old data */ 987 if (handle_uapsd) 988 mdata->uapsd_nonagg_detect.rx_bytes = 0; 989 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 990 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 991 } 992 993 load = iwl_mvm_tcm_load(mvm, total_airtime, elapsed); 994 mvm->tcm.result.global_load = load; 995 996 for (i = 0; i < NUM_NL80211_BANDS; i++) { 997 band_load = iwl_mvm_tcm_load(mvm, band_airtime[i], elapsed); 998 mvm->tcm.result.band_load[i] = band_load; 999 } 1000 1001 /* 1002 * If the current load isn't low we need to force re-evaluation 1003 * in the TCM period, so that we can return to low load if there 1004 * was no traffic at all (and thus iwl_mvm_recalc_tcm didn't get 1005 * triggered by traffic). 1006 */ 1007 if (load != IWL_MVM_TRAFFIC_LOW) 1008 return MVM_TCM_PERIOD; 1009 /* 1010 * If low-latency is active we need to force re-evaluation after 1011 * (the longer) MVM_LL_PERIOD, so that we can disable low-latency 1012 * when there's no traffic at all. 1013 */ 1014 if (low_latency) 1015 return MVM_LL_PERIOD; 1016 /* 1017 * Otherwise, we don't need to run the work struct because we're 1018 * in the default "idle" state - traffic indication is low (which 1019 * also covers the "no traffic" case) and low-latency is disabled 1020 * so there's no state that may need to be disabled when there's 1021 * no traffic at all. 1022 * 1023 * Note that this has no impact on the regular scheduling of the 1024 * updates triggered by traffic - those happen whenever one of the 1025 * two timeouts expire (if there's traffic at all.) 1026 */ 1027 return 0; 1028 } 1029 1030 void iwl_mvm_recalc_tcm(struct iwl_mvm *mvm) 1031 { 1032 unsigned long ts = jiffies; 1033 bool handle_uapsd = 1034 time_after(ts, mvm->tcm.uapsd_nonagg_ts + 1035 msecs_to_jiffies(IWL_MVM_UAPSD_NONAGG_PERIOD)); 1036 1037 spin_lock(&mvm->tcm.lock); 1038 if (mvm->tcm.paused || !time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1039 spin_unlock(&mvm->tcm.lock); 1040 return; 1041 } 1042 spin_unlock(&mvm->tcm.lock); 1043 1044 if (handle_uapsd && iwl_mvm_has_new_rx_api(mvm)) { 1045 mutex_lock(&mvm->mutex); 1046 if (iwl_mvm_request_statistics(mvm, true)) 1047 handle_uapsd = false; 1048 mutex_unlock(&mvm->mutex); 1049 } 1050 1051 spin_lock(&mvm->tcm.lock); 1052 /* re-check if somebody else won the recheck race */ 1053 if (!mvm->tcm.paused && time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1054 /* calculate statistics */ 1055 unsigned long work_delay = iwl_mvm_calc_tcm_stats(mvm, ts, 1056 handle_uapsd); 1057 1058 /* the memset needs to be visible before the timestamp */ 1059 smp_mb(); 1060 mvm->tcm.ts = ts; 1061 if (work_delay) 1062 schedule_delayed_work(&mvm->tcm.work, work_delay); 1063 } 1064 spin_unlock(&mvm->tcm.lock); 1065 1066 iwl_mvm_tcm_results(mvm); 1067 } 1068 1069 void iwl_mvm_tcm_work(struct work_struct *work) 1070 { 1071 struct delayed_work *delayed_work = to_delayed_work(work); 1072 struct iwl_mvm *mvm = container_of(delayed_work, struct iwl_mvm, 1073 tcm.work); 1074 1075 iwl_mvm_recalc_tcm(mvm); 1076 } 1077 1078 void iwl_mvm_pause_tcm(struct iwl_mvm *mvm, bool with_cancel) 1079 { 1080 spin_lock_bh(&mvm->tcm.lock); 1081 mvm->tcm.paused = true; 1082 spin_unlock_bh(&mvm->tcm.lock); 1083 if (with_cancel) 1084 cancel_delayed_work_sync(&mvm->tcm.work); 1085 } 1086 1087 void iwl_mvm_resume_tcm(struct iwl_mvm *mvm) 1088 { 1089 int mac; 1090 bool low_latency = false; 1091 1092 spin_lock_bh(&mvm->tcm.lock); 1093 mvm->tcm.ts = jiffies; 1094 mvm->tcm.ll_ts = jiffies; 1095 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 1096 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 1097 1098 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 1099 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 1100 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 1101 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 1102 1103 if (mvm->tcm.result.low_latency[mac]) 1104 low_latency = true; 1105 } 1106 /* The TCM data needs to be reset before "paused" flag changes */ 1107 smp_mb(); 1108 mvm->tcm.paused = false; 1109 1110 /* 1111 * if the current load is not low or low latency is active, force 1112 * re-evaluation to cover the case of no traffic. 1113 */ 1114 if (mvm->tcm.result.global_load > IWL_MVM_TRAFFIC_LOW) 1115 schedule_delayed_work(&mvm->tcm.work, MVM_TCM_PERIOD); 1116 else if (low_latency) 1117 schedule_delayed_work(&mvm->tcm.work, MVM_LL_PERIOD); 1118 1119 spin_unlock_bh(&mvm->tcm.lock); 1120 } 1121 1122 void iwl_mvm_tcm_add_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1123 { 1124 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1125 1126 INIT_DELAYED_WORK(&mvmvif->uapsd_nonagg_detected_wk, 1127 iwl_mvm_tcm_uapsd_nonagg_detected_wk); 1128 } 1129 1130 void iwl_mvm_tcm_rm_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1131 { 1132 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1133 1134 cancel_delayed_work_sync(&mvmvif->uapsd_nonagg_detected_wk); 1135 } 1136 1137 u32 iwl_mvm_get_systime(struct iwl_mvm *mvm) 1138 { 1139 u32 reg_addr = DEVICE_SYSTEM_TIME_REG; 1140 1141 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22000 && 1142 mvm->trans->cfg->gp2_reg_addr) 1143 reg_addr = mvm->trans->cfg->gp2_reg_addr; 1144 1145 return iwl_read_prph(mvm->trans, reg_addr); 1146 } 1147 1148 void iwl_mvm_get_sync_time(struct iwl_mvm *mvm, int clock_type, 1149 u32 *gp2, u64 *boottime, ktime_t *realtime) 1150 { 1151 bool ps_disabled; 1152 1153 lockdep_assert_held(&mvm->mutex); 1154 1155 /* Disable power save when reading GP2 */ 1156 ps_disabled = mvm->ps_disabled; 1157 if (!ps_disabled) { 1158 mvm->ps_disabled = true; 1159 iwl_mvm_power_update_device(mvm); 1160 } 1161 1162 *gp2 = iwl_mvm_get_systime(mvm); 1163 1164 if (clock_type == CLOCK_BOOTTIME && boottime) 1165 *boottime = ktime_get_boottime_ns(); 1166 else if (clock_type == CLOCK_REALTIME && realtime) 1167 *realtime = ktime_get_real(); 1168 1169 if (!ps_disabled) { 1170 mvm->ps_disabled = ps_disabled; 1171 iwl_mvm_power_update_device(mvm); 1172 } 1173 } 1174