1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
10  * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
11  * Copyright(c) 2018 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
33  * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
34  * Copyright(c) 2018 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *
63  *****************************************************************************/
64 
65 #ifndef __sta_h__
66 #define __sta_h__
67 
68 #include <linux/spinlock.h>
69 #include <net/mac80211.h>
70 #include <linux/wait.h>
71 
72 #include "iwl-trans.h" /* for IWL_MAX_TID_COUNT */
73 #include "fw-api.h" /* IWL_MVM_STATION_COUNT */
74 #include "rs.h"
75 
76 struct iwl_mvm;
77 struct iwl_mvm_vif;
78 
79 /**
80  * DOC: DQA - Dynamic Queue Allocation -introduction
81  *
82  * Dynamic Queue Allocation (AKA "DQA") is a feature implemented in iwlwifi
83  * driver to allow dynamic allocation of queues on-demand, rather than allocate
84  * them statically ahead of time. Ideally, we would like to allocate one queue
85  * per RA/TID, thus allowing an AP - for example - to send BE traffic to STA2
86  * even if it also needs to send traffic to a sleeping STA1, without being
87  * blocked by the sleeping station.
88  *
89  * Although the queues in DQA mode are dynamically allocated, there are still
90  * some queues that are statically allocated:
91  *	TXQ #0 - command queue
92  *	TXQ #1 - aux frames
93  *	TXQ #2 - P2P device frames
94  *	TXQ #3 - P2P GO/SoftAP GCAST/BCAST frames
95  *	TXQ #4 - BSS DATA frames queue
96  *	TXQ #5-8 - Non-QoS and MGMT frames queue pool
97  *	TXQ #9 - P2P GO/SoftAP probe responses
98  *	TXQ #10-31 - DATA frames queue pool
99  * The queues are dynamically taken from either the MGMT frames queue pool or
100  * the DATA frames one. See the %iwl_mvm_dqa_txq for more information on every
101  * queue.
102  *
103  * When a frame for a previously unseen RA/TID comes in, it needs to be deferred
104  * until a queue is allocated for it, and only then can be TXed. Therefore, it
105  * is placed into %iwl_mvm_tid_data.deferred_tx_frames, and a worker called
106  * %mvm->add_stream_wk later allocates the queues and TXes the deferred frames.
107  *
108  * For convenience, MGMT is considered as if it has TID=8, and go to the MGMT
109  * queues in the pool. If there is no longer a free MGMT queue to allocate, a
110  * queue will be allocated from the DATA pool instead. Since QoS NDPs can create
111  * a problem for aggregations, they too will use a MGMT queue.
112  *
113  * When adding a STA, a DATA queue is reserved for it so that it can TX from
114  * it. If no such free queue exists for reserving, the STA addition will fail.
115  *
116  * If the DATA queue pool gets exhausted, no new STA will be accepted, and if a
117  * new RA/TID comes in for an existing STA, one of the STA's queues will become
118  * shared and will serve more than the single TID (but always for the same RA!).
119  *
120  * When a RA/TID needs to become aggregated, no new queue is required to be
121  * allocated, only mark the queue as aggregated via the ADD_STA command. Note,
122  * however, that a shared queue cannot be aggregated, and only after the other
123  * TIDs become inactive and are removed - only then can the queue be
124  * reconfigured and become aggregated.
125  *
126  * When removing a station, its queues are returned to the pool for reuse. Here
127  * we also need to make sure that we are synced with the worker thread that TXes
128  * the deferred frames so we don't get into a situation where the queues are
129  * removed and then the worker puts deferred frames onto the released queues or
130  * tries to allocate new queues for a STA we don't need anymore.
131  */
132 
133 /**
134  * DOC: station table - introduction
135  *
136  * The station table is a list of data structure that reprensent the stations.
137  * In STA/P2P client mode, the driver will hold one station for the AP/ GO.
138  * In GO/AP mode, the driver will have as many stations as associated clients.
139  * All these stations are reflected in the fw's station table. The driver
140  * keeps the fw's station table up to date with the ADD_STA command. Stations
141  * can be removed by the REMOVE_STA command.
142  *
143  * All the data related to a station is held in the structure %iwl_mvm_sta
144  * which is embed in the mac80211's %ieee80211_sta (in the drv_priv) area.
145  * This data includes the index of the station in the fw, per tid information
146  * (sequence numbers, Block-ack state machine, etc...). The stations are
147  * created and deleted by the %sta_state callback from %ieee80211_ops.
148  *
149  * The driver holds a map: %fw_id_to_mac_id that allows to fetch a
150  * %ieee80211_sta (and the %iwl_mvm_sta embedded into it) based on a fw
151  * station index. That way, the driver is able to get the tid related data in
152  * O(1) in time sensitive paths (Tx / Tx response / BA notification). These
153  * paths are triggered by the fw, and the driver needs to get a pointer to the
154  * %ieee80211 structure. This map helps to get that pointer quickly.
155  */
156 
157 /**
158  * DOC: station table - locking
159  *
160  * As stated before, the station is created / deleted by mac80211's %sta_state
161  * callback from %ieee80211_ops which can sleep. The next paragraph explains
162  * the locking of a single stations, the next ones relates to the station
163  * table.
164  *
165  * The station holds the sequence number per tid. So this data needs to be
166  * accessed in the Tx path (which is softIRQ). It also holds the Block-Ack
167  * information (the state machine / and the logic that checks if the queues
168  * were drained), so it also needs to be accessible from the Tx response flow.
169  * In short, the station needs to be access from sleepable context as well as
170  * from tasklets, so the station itself needs a spinlock.
171  *
172  * The writers of %fw_id_to_mac_id map are serialized by the global mutex of
173  * the mvm op_mode. This is possible since %sta_state can sleep.
174  * The pointers in this map are RCU protected, hence we won't replace the
175  * station while we have Tx / Tx response / BA notification running.
176  *
177  * If a station is deleted while it still has packets in its A-MPDU queues,
178  * then the reclaim flow will notice that there is no station in the map for
179  * sta_id and it will dump the responses.
180  */
181 
182 /**
183  * DOC: station table - internal stations
184  *
185  * The FW needs a few internal stations that are not reflected in
186  * mac80211, such as broadcast station in AP / GO mode, or AUX sta for
187  * scanning and P2P device (during the GO negotiation).
188  * For these kind of stations we have %iwl_mvm_int_sta struct which holds the
189  * data relevant for them from both %iwl_mvm_sta and %ieee80211_sta.
190  * Usually the data for these stations is static, so no locking is required,
191  * and no TID data as this is also not needed.
192  * One thing to note, is that these stations have an ID in the fw, but not
193  * in mac80211. In order to "reserve" them a sta_id in %fw_id_to_mac_id
194  * we fill ERR_PTR(EINVAL) in this mapping and all other dereferencing of
195  * pointers from this mapping need to check that the value is not error
196  * or NULL.
197  *
198  * Currently there is only one auxiliary station for scanning, initialized
199  * on init.
200  */
201 
202 /**
203  * DOC: station table - AP Station in STA mode
204  *
205  * %iwl_mvm_vif includes the index of the AP station in the fw's STA table:
206  * %ap_sta_id. To get the point to the corresponding %ieee80211_sta,
207  * &fw_id_to_mac_id can be used. Due to the way the fw works, we must not remove
208  * the AP station from the fw before setting the MAC context as unassociated.
209  * Hence, %fw_id_to_mac_id[%ap_sta_id] will be NULLed when the AP station is
210  * removed by mac80211, but the station won't be removed in the fw until the
211  * VIF is set as unassociated. Then, %ap_sta_id will be invalidated.
212  */
213 
214 /**
215  * DOC: station table - Drain vs. Flush
216  *
217  * Flush means that all the frames in the SCD queue are dumped regardless the
218  * station to which they were sent. We do that when we disassociate and before
219  * we remove the STA of the AP. The flush can be done synchronously against the
220  * fw.
221  * Drain means that the fw will drop all the frames sent to a specific station.
222  * This is useful when a client (if we are IBSS / GO or AP) disassociates.
223  */
224 
225 /**
226  * DOC: station table - fw restart
227  *
228  * When the fw asserts, or we have any other issue that requires to reset the
229  * driver, we require mac80211 to reconfigure the driver. Since the private
230  * data of the stations is embed in mac80211's %ieee80211_sta, that data will
231  * not be zeroed and needs to be reinitialized manually.
232  * %IWL_MVM_STATUS_IN_HW_RESTART is set during restart and that will hint us
233  * that we must not allocate a new sta_id but reuse the previous one. This
234  * means that the stations being re-added after the reset will have the same
235  * place in the fw as before the reset. We do need to zero the %fw_id_to_mac_id
236  * map, since the stations aren't in the fw any more. Internal stations that
237  * are not added by mac80211 will be re-added in the init flow that is called
238  * after the restart: mac80211 call's %iwl_mvm_mac_start which calls to
239  * %iwl_mvm_up.
240  */
241 
242 /**
243  * DOC: AP mode - PS
244  *
245  * When a station is asleep, the fw will set it as "asleep". All frames on
246  * shared queues (i.e. non-aggregation queues) to that station will be dropped
247  * by the fw (%TX_STATUS_FAIL_DEST_PS failure code).
248  *
249  * AMPDUs are in a separate queue that is stopped by the fw. We just need to
250  * let mac80211 know when there are frames in these queues so that it can
251  * properly handle trigger frames.
252  *
253  * When a trigger frame is received, mac80211 tells the driver to send frames
254  * from the AMPDU queues or sends frames to non-aggregation queues itself,
255  * depending on which ACs are delivery-enabled and what TID has frames to
256  * transmit. Note that mac80211 has all the knowledge since all the non-agg
257  * frames are buffered / filtered, and the driver tells mac80211 about agg
258  * frames). The driver needs to tell the fw to let frames out even if the
259  * station is asleep. This is done by %iwl_mvm_sta_modify_sleep_tx_count.
260  *
261  * When we receive a frame from that station with PM bit unset, the driver
262  * needs to let the fw know that this station isn't asleep any more. This is
263  * done by %iwl_mvm_sta_modify_ps_wake in response to mac80211 signaling the
264  * station's wakeup.
265  *
266  * For a GO, the Service Period might be cut short due to an absence period
267  * of the GO. In this (and all other cases) the firmware notifies us with the
268  * EOSP_NOTIFICATION, and we notify mac80211 of that. Further frames that we
269  * already sent to the device will be rejected again.
270  *
271  * See also "AP support for powersaving clients" in mac80211.h.
272  */
273 
274 /**
275  * enum iwl_mvm_agg_state
276  *
277  * The state machine of the BA agreement establishment / tear down.
278  * These states relate to a specific RA / TID.
279  *
280  * @IWL_AGG_OFF: aggregation is not used
281  * @IWL_AGG_QUEUED: aggregation start work has been queued
282  * @IWL_AGG_STARTING: aggregation are starting (between start and oper)
283  * @IWL_AGG_ON: aggregation session is up
284  * @IWL_EMPTYING_HW_QUEUE_ADDBA: establishing a BA session - waiting for the
285  *	HW queue to be empty from packets for this RA /TID.
286  * @IWL_EMPTYING_HW_QUEUE_DELBA: tearing down a BA session - waiting for the
287  *	HW queue to be empty from packets for this RA /TID.
288  */
289 enum iwl_mvm_agg_state {
290 	IWL_AGG_OFF = 0,
291 	IWL_AGG_QUEUED,
292 	IWL_AGG_STARTING,
293 	IWL_AGG_ON,
294 	IWL_EMPTYING_HW_QUEUE_ADDBA,
295 	IWL_EMPTYING_HW_QUEUE_DELBA,
296 };
297 
298 /**
299  * struct iwl_mvm_tid_data - holds the states for each RA / TID
300  * @deferred_tx_frames: deferred TX frames for this RA/TID
301  * @seq_number: the next WiFi sequence number to use
302  * @next_reclaimed: the WiFi sequence number of the next packet to be acked.
303  *	This is basically (last acked packet++).
304  * @rate_n_flags: Rate at which Tx was attempted. Holds the data between the
305  *	Tx response (TX_CMD), and the block ack notification (COMPRESSED_BA).
306  * @lq_color: the color of the LQ command as it appears in tx response.
307  * @amsdu_in_ampdu_allowed: true if A-MSDU in A-MPDU is allowed.
308  * @state: state of the BA agreement establishment / tear down.
309  * @txq_id: Tx queue used by the BA session / DQA
310  * @ssn: the first packet to be sent in AGG HW queue in Tx AGG start flow, or
311  *	the first packet to be sent in legacy HW queue in Tx AGG stop flow.
312  *	Basically when next_reclaimed reaches ssn, we can tell mac80211 that
313  *	we are ready to finish the Tx AGG stop / start flow.
314  * @tx_time: medium time consumed by this A-MPDU
315  * @tpt_meas_start: time of the throughput measurements start, is reset every HZ
316  * @tx_count_last: number of frames transmitted during the last second
317  * @tx_count: counts the number of frames transmitted since the last reset of
318  *	 tpt_meas_start
319  */
320 struct iwl_mvm_tid_data {
321 	struct sk_buff_head deferred_tx_frames;
322 	u16 seq_number;
323 	u16 next_reclaimed;
324 	/* The rest is Tx AGG related */
325 	u32 rate_n_flags;
326 	u8 lq_color;
327 	bool amsdu_in_ampdu_allowed;
328 	enum iwl_mvm_agg_state state;
329 	u16 txq_id;
330 	u16 ssn;
331 	u16 tx_time;
332 	unsigned long tpt_meas_start;
333 	u32 tx_count_last;
334 	u32 tx_count;
335 };
336 
337 struct iwl_mvm_key_pn {
338 	struct rcu_head rcu_head;
339 	struct {
340 		u8 pn[IWL_MAX_TID_COUNT][IEEE80211_CCMP_PN_LEN];
341 	} ____cacheline_aligned_in_smp q[];
342 };
343 
344 struct iwl_mvm_delba_data {
345 	u32 baid;
346 } __packed;
347 
348 struct iwl_mvm_delba_notif {
349 	struct iwl_mvm_internal_rxq_notif metadata;
350 	struct iwl_mvm_delba_data delba;
351 } __packed;
352 
353 /**
354  * struct iwl_mvm_rxq_dup_data - per station per rx queue data
355  * @last_seq: last sequence per tid for duplicate packet detection
356  * @last_sub_frame: last subframe packet
357  */
358 struct iwl_mvm_rxq_dup_data {
359 	__le16 last_seq[IWL_MAX_TID_COUNT + 1];
360 	u8 last_sub_frame[IWL_MAX_TID_COUNT + 1];
361 } ____cacheline_aligned_in_smp;
362 
363 /**
364  * struct iwl_mvm_sta - representation of a station in the driver
365  * @sta_id: the index of the station in the fw (will be replaced by id_n_color)
366  * @tfd_queue_msk: the tfd queues used by the station
367  * @mac_id_n_color: the MAC context this station is linked to
368  * @tid_disable_agg: bitmap: if bit(tid) is set, the fw won't send ampdus for
369  *	tid.
370  * @max_agg_bufsize: the maximal size of the AGG buffer for this station
371  * @sta_type: station type
372  * @sta_state: station state according to enum %ieee80211_sta_state
373  * @bt_reduced_txpower: is reduced tx power enabled for this station
374  * @next_status_eosp: the next reclaimed packet is a PS-Poll response and
375  *	we need to signal the EOSP
376  * @lock: lock to protect the whole struct. Since %tid_data is access from Tx
377  * and from Tx response flow, it needs a spinlock.
378  * @tid_data: per tid data + mgmt. Look at %iwl_mvm_tid_data.
379  * @tid_to_baid: a simple map of TID to baid
380  * @lq_sta: holds rate scaling data, either for the case when RS is done in
381  *	the driver - %rs_drv or in the FW - %rs_fw.
382  * @reserved_queue: the queue reserved for this STA for DQA purposes
383  *	Every STA has is given one reserved queue to allow it to operate. If no
384  *	such queue can be guaranteed, the STA addition will fail.
385  * @tx_protection: reference counter for controlling the Tx protection.
386  * @tt_tx_protection: is thermal throttling enable Tx protection?
387  * @disable_tx: is tx to this STA disabled?
388  * @amsdu_enabled: bitmap of TX AMSDU allowed TIDs.
389  *	In case TLC offload is not active it is either 0xFFFF or 0.
390  * @max_amsdu_len: max AMSDU length
391  * @agg_tids: bitmap of tids whose status is operational aggregated (IWL_AGG_ON)
392  * @sleep_tx_count: the number of frames that we told the firmware to let out
393  *	even when that station is asleep. This is useful in case the queue
394  *	gets empty before all the frames were sent, which can happen when
395  *	we are sending frames from an AMPDU queue and there was a hole in
396  *	the BA window. To be used for UAPSD only.
397  * @ptk_pn: per-queue PTK PN data structures
398  * @dup_data: per queue duplicate packet detection data
399  * @deferred_traffic_tid_map: indication bitmap of deferred traffic per-TID
400  *
401  * When mac80211 creates a station it reserves some space (hw->sta_data_size)
402  * in the structure for use by driver. This structure is placed in that
403  * space.
404  *
405  */
406 struct iwl_mvm_sta {
407 	u32 sta_id;
408 	u32 tfd_queue_msk;
409 	u32 mac_id_n_color;
410 	u16 tid_disable_agg;
411 	u16 max_agg_bufsize;
412 	enum iwl_sta_type sta_type;
413 	enum ieee80211_sta_state sta_state;
414 	bool bt_reduced_txpower;
415 	bool next_status_eosp;
416 	spinlock_t lock;
417 	struct iwl_mvm_tid_data tid_data[IWL_MAX_TID_COUNT + 1];
418 	u8 tid_to_baid[IWL_MAX_TID_COUNT];
419 	union {
420 		struct iwl_lq_sta_rs_fw rs_fw;
421 		struct iwl_lq_sta rs_drv;
422 	} lq_sta;
423 	struct ieee80211_vif *vif;
424 	struct iwl_mvm_key_pn __rcu *ptk_pn[4];
425 	struct iwl_mvm_rxq_dup_data *dup_data;
426 
427 	u16 deferred_traffic_tid_map;
428 
429 	u8 reserved_queue;
430 
431 	/* Temporary, until the new TLC will control the Tx protection */
432 	s8 tx_protection;
433 	bool tt_tx_protection;
434 
435 	bool disable_tx;
436 	u16 amsdu_enabled;
437 	u16 max_amsdu_len;
438 	bool sleeping;
439 	u8 agg_tids;
440 	u8 sleep_tx_count;
441 	u8 avg_energy;
442 };
443 
444 u16 iwl_mvm_tid_queued(struct iwl_mvm *mvm, struct iwl_mvm_tid_data *tid_data);
445 
446 static inline struct iwl_mvm_sta *
447 iwl_mvm_sta_from_mac80211(struct ieee80211_sta *sta)
448 {
449 	return (void *)sta->drv_priv;
450 }
451 
452 /**
453  * struct iwl_mvm_int_sta - representation of an internal station (auxiliary or
454  * broadcast)
455  * @sta_id: the index of the station in the fw (will be replaced by id_n_color)
456  * @type: station type
457  * @tfd_queue_msk: the tfd queues used by the station
458  */
459 struct iwl_mvm_int_sta {
460 	u32 sta_id;
461 	enum iwl_sta_type type;
462 	u32 tfd_queue_msk;
463 };
464 
465 /**
466  * Send the STA info to the FW.
467  *
468  * @mvm: the iwl_mvm* to use
469  * @sta: the STA
470  * @update: this is true if the FW is being updated about a STA it already knows
471  *	about. Otherwise (if this is a new STA), this should be false.
472  * @flags: if update==true, this marks what is being changed via ORs of values
473  *	from enum iwl_sta_modify_flag. Otherwise, this is ignored.
474  */
475 int iwl_mvm_sta_send_to_fw(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
476 			   bool update, unsigned int flags);
477 int iwl_mvm_add_sta(struct iwl_mvm *mvm,
478 		    struct ieee80211_vif *vif,
479 		    struct ieee80211_sta *sta);
480 
481 static inline int iwl_mvm_update_sta(struct iwl_mvm *mvm,
482 				     struct ieee80211_vif *vif,
483 				     struct ieee80211_sta *sta)
484 {
485 	return iwl_mvm_sta_send_to_fw(mvm, sta, true, 0);
486 }
487 
488 int iwl_mvm_wait_sta_queues_empty(struct iwl_mvm *mvm,
489 				  struct iwl_mvm_sta *mvm_sta);
490 int iwl_mvm_rm_sta(struct iwl_mvm *mvm,
491 		   struct ieee80211_vif *vif,
492 		   struct ieee80211_sta *sta);
493 int iwl_mvm_rm_sta_id(struct iwl_mvm *mvm,
494 		      struct ieee80211_vif *vif,
495 		      u8 sta_id);
496 int iwl_mvm_set_sta_key(struct iwl_mvm *mvm,
497 			struct ieee80211_vif *vif,
498 			struct ieee80211_sta *sta,
499 			struct ieee80211_key_conf *keyconf,
500 			u8 key_offset);
501 int iwl_mvm_remove_sta_key(struct iwl_mvm *mvm,
502 			   struct ieee80211_vif *vif,
503 			   struct ieee80211_sta *sta,
504 			   struct ieee80211_key_conf *keyconf);
505 
506 void iwl_mvm_update_tkip_key(struct iwl_mvm *mvm,
507 			     struct ieee80211_vif *vif,
508 			     struct ieee80211_key_conf *keyconf,
509 			     struct ieee80211_sta *sta, u32 iv32,
510 			     u16 *phase1key);
511 
512 void iwl_mvm_rx_eosp_notif(struct iwl_mvm *mvm,
513 			   struct iwl_rx_cmd_buffer *rxb);
514 
515 /* AMPDU */
516 int iwl_mvm_sta_rx_agg(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
517 		       int tid, u16 ssn, bool start, u16 buf_size, u16 timeout);
518 int iwl_mvm_sta_tx_agg_start(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
519 			struct ieee80211_sta *sta, u16 tid, u16 *ssn);
520 int iwl_mvm_sta_tx_agg_oper(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
521 			    struct ieee80211_sta *sta, u16 tid, u16 buf_size,
522 			    bool amsdu);
523 int iwl_mvm_sta_tx_agg_stop(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
524 			    struct ieee80211_sta *sta, u16 tid);
525 int iwl_mvm_sta_tx_agg_flush(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
526 			    struct ieee80211_sta *sta, u16 tid);
527 
528 int iwl_mvm_sta_tx_agg(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
529 		       int tid, u8 queue, bool start);
530 
531 int iwl_mvm_add_aux_sta(struct iwl_mvm *mvm);
532 void iwl_mvm_del_aux_sta(struct iwl_mvm *mvm);
533 
534 int iwl_mvm_alloc_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
535 int iwl_mvm_send_add_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
536 int iwl_mvm_add_p2p_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
537 int iwl_mvm_send_rm_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
538 int iwl_mvm_rm_p2p_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
539 int iwl_mvm_add_mcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
540 int iwl_mvm_rm_mcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
541 int iwl_mvm_allocate_int_sta(struct iwl_mvm *mvm,
542 			     struct iwl_mvm_int_sta *sta,
543 				    u32 qmask, enum nl80211_iftype iftype,
544 				    enum iwl_sta_type type);
545 void iwl_mvm_dealloc_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
546 void iwl_mvm_dealloc_int_sta(struct iwl_mvm *mvm, struct iwl_mvm_int_sta *sta);
547 int iwl_mvm_add_snif_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
548 int iwl_mvm_rm_snif_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
549 void iwl_mvm_dealloc_snif_sta(struct iwl_mvm *mvm);
550 
551 void iwl_mvm_sta_modify_ps_wake(struct iwl_mvm *mvm,
552 				struct ieee80211_sta *sta);
553 void iwl_mvm_sta_modify_sleep_tx_count(struct iwl_mvm *mvm,
554 				       struct ieee80211_sta *sta,
555 				       enum ieee80211_frame_release_type reason,
556 				       u16 cnt, u16 tids, bool more_data,
557 				       bool single_sta_queue);
558 int iwl_mvm_drain_sta(struct iwl_mvm *mvm, struct iwl_mvm_sta *mvmsta,
559 		      bool drain);
560 void iwl_mvm_sta_modify_disable_tx(struct iwl_mvm *mvm,
561 				   struct iwl_mvm_sta *mvmsta, bool disable);
562 void iwl_mvm_sta_modify_disable_tx_ap(struct iwl_mvm *mvm,
563 				      struct ieee80211_sta *sta,
564 				      bool disable);
565 void iwl_mvm_modify_all_sta_disable_tx(struct iwl_mvm *mvm,
566 				       struct iwl_mvm_vif *mvmvif,
567 				       bool disable);
568 void iwl_mvm_csa_client_absent(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
569 void iwl_mvm_add_new_dqa_stream_wk(struct work_struct *wk);
570 
571 #endif /* __sta_h__ */
572