1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <ilw@linux.intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *****************************************************************************/
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include "iwl-trans.h"
66 #include "mvm.h"
67 #include "fw-api.h"
68 
69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
70 {
71 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
72 	u8 *data = skb->data;
73 
74 	/* Alignment concerns */
75 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
76 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
77 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
78 	BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
79 
80 	if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
81 		data += sizeof(struct ieee80211_radiotap_he);
82 	if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
83 		data += sizeof(struct ieee80211_radiotap_he_mu);
84 	if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
85 		data += sizeof(struct ieee80211_radiotap_lsig);
86 	if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
87 		struct ieee80211_vendor_radiotap *radiotap = (void *)data;
88 
89 		data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
90 	}
91 
92 	return data;
93 }
94 
95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
96 				   int queue, struct ieee80211_sta *sta)
97 {
98 	struct iwl_mvm_sta *mvmsta;
99 	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
100 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
101 	struct iwl_mvm_key_pn *ptk_pn;
102 	int res;
103 	u8 tid, keyidx;
104 	u8 pn[IEEE80211_CCMP_PN_LEN];
105 	u8 *extiv;
106 
107 	/* do PN checking */
108 
109 	/* multicast and non-data only arrives on default queue */
110 	if (!ieee80211_is_data(hdr->frame_control) ||
111 	    is_multicast_ether_addr(hdr->addr1))
112 		return 0;
113 
114 	/* do not check PN for open AP */
115 	if (!(stats->flag & RX_FLAG_DECRYPTED))
116 		return 0;
117 
118 	/*
119 	 * avoid checking for default queue - we don't want to replicate
120 	 * all the logic that's necessary for checking the PN on fragmented
121 	 * frames, leave that to mac80211
122 	 */
123 	if (queue == 0)
124 		return 0;
125 
126 	/* if we are here - this for sure is either CCMP or GCMP */
127 	if (IS_ERR_OR_NULL(sta)) {
128 		IWL_ERR(mvm,
129 			"expected hw-decrypted unicast frame for station\n");
130 		return -1;
131 	}
132 
133 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
134 
135 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
136 	keyidx = extiv[3] >> 6;
137 
138 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
139 	if (!ptk_pn)
140 		return -1;
141 
142 	if (ieee80211_is_data_qos(hdr->frame_control))
143 		tid = ieee80211_get_tid(hdr);
144 	else
145 		tid = 0;
146 
147 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
148 	if (tid >= IWL_MAX_TID_COUNT)
149 		return -1;
150 
151 	/* load pn */
152 	pn[0] = extiv[7];
153 	pn[1] = extiv[6];
154 	pn[2] = extiv[5];
155 	pn[3] = extiv[4];
156 	pn[4] = extiv[1];
157 	pn[5] = extiv[0];
158 
159 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
160 	if (res < 0)
161 		return -1;
162 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
163 		return -1;
164 
165 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
166 	stats->flag |= RX_FLAG_PN_VALIDATED;
167 
168 	return 0;
169 }
170 
171 /* iwl_mvm_create_skb Adds the rxb to a new skb */
172 static void iwl_mvm_create_skb(struct sk_buff *skb, struct ieee80211_hdr *hdr,
173 			       u16 len, u8 crypt_len,
174 			       struct iwl_rx_cmd_buffer *rxb)
175 {
176 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
177 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
178 	unsigned int headlen, fraglen, pad_len = 0;
179 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
180 
181 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
182 		len -= 2;
183 		pad_len = 2;
184 	}
185 
186 	/* If frame is small enough to fit in skb->head, pull it completely.
187 	 * If not, only pull ieee80211_hdr (including crypto if present, and
188 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
189 	 * splice() or TCP coalesce are more efficient.
190 	 *
191 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
192 	 * least 8 bytes (possibly more for mesh) we can do the same here
193 	 * to save the cost of doing it later. That still doesn't pull in
194 	 * the actual IP header since the typical case has a SNAP header.
195 	 * If the latter changes (there are efforts in the standards group
196 	 * to do so) we should revisit this and ieee80211_data_to_8023().
197 	 */
198 	headlen = (len <= skb_tailroom(skb)) ? len :
199 					       hdrlen + crypt_len + 8;
200 
201 	/* The firmware may align the packet to DWORD.
202 	 * The padding is inserted after the IV.
203 	 * After copying the header + IV skip the padding if
204 	 * present before copying packet data.
205 	 */
206 	hdrlen += crypt_len;
207 	skb_put_data(skb, hdr, hdrlen);
208 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
209 
210 	fraglen = len - headlen;
211 
212 	if (fraglen) {
213 		int offset = (void *)hdr + headlen + pad_len -
214 			     rxb_addr(rxb) + rxb_offset(rxb);
215 
216 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
217 				fraglen, rxb->truesize);
218 	}
219 }
220 
221 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
222 					    struct sk_buff *skb)
223 {
224 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
225 	struct ieee80211_vendor_radiotap *radiotap;
226 	const int size = sizeof(*radiotap) + sizeof(__le16);
227 
228 	if (!mvm->cur_aid)
229 		return;
230 
231 	/* ensure alignment */
232 	BUILD_BUG_ON((size + 2) % 4);
233 
234 	radiotap = skb_put(skb, size + 2);
235 	radiotap->align = 1;
236 	/* Intel OUI */
237 	radiotap->oui[0] = 0xf6;
238 	radiotap->oui[1] = 0x54;
239 	radiotap->oui[2] = 0x25;
240 	/* radiotap sniffer config sub-namespace */
241 	radiotap->subns = 1;
242 	radiotap->present = 0x1;
243 	radiotap->len = size - sizeof(*radiotap);
244 	radiotap->pad = 2;
245 
246 	/* fill the data now */
247 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
248 	/* and clear the padding */
249 	memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
250 
251 	rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
252 }
253 
254 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
255 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
256 					    struct napi_struct *napi,
257 					    struct sk_buff *skb, int queue,
258 					    struct ieee80211_sta *sta,
259 					    bool csi)
260 {
261 	if (iwl_mvm_check_pn(mvm, skb, queue, sta))
262 		kfree_skb(skb);
263 	else
264 		ieee80211_rx_napi(mvm->hw, sta, skb, napi);
265 }
266 
267 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
268 					struct ieee80211_rx_status *rx_status,
269 					u32 rate_n_flags, int energy_a,
270 					int energy_b)
271 {
272 	int max_energy;
273 	u32 rate_flags = rate_n_flags;
274 
275 	energy_a = energy_a ? -energy_a : S8_MIN;
276 	energy_b = energy_b ? -energy_b : S8_MIN;
277 	max_energy = max(energy_a, energy_b);
278 
279 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
280 			energy_a, energy_b, max_energy);
281 
282 	rx_status->signal = max_energy;
283 	rx_status->chains =
284 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
285 	rx_status->chain_signal[0] = energy_a;
286 	rx_status->chain_signal[1] = energy_b;
287 	rx_status->chain_signal[2] = S8_MIN;
288 }
289 
290 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
291 			     struct ieee80211_rx_status *stats, u16 phy_info,
292 			     struct iwl_rx_mpdu_desc *desc,
293 			     u32 pkt_flags, int queue, u8 *crypt_len)
294 {
295 	u16 status = le16_to_cpu(desc->status);
296 
297 	/*
298 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
299 	 * (where we don't have the keys).
300 	 * We limit this to aggregation because in TKIP this is a valid
301 	 * scenario, since we may not have the (correct) TTAK (phase 1
302 	 * key) in the firmware.
303 	 */
304 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
305 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
306 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
307 		return -1;
308 
309 	if (!ieee80211_has_protected(hdr->frame_control) ||
310 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
311 	    IWL_RX_MPDU_STATUS_SEC_NONE)
312 		return 0;
313 
314 	/* TODO: handle packets encrypted with unknown alg */
315 
316 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
317 	case IWL_RX_MPDU_STATUS_SEC_CCM:
318 	case IWL_RX_MPDU_STATUS_SEC_GCM:
319 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
320 		/* alg is CCM: check MIC only */
321 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
322 			return -1;
323 
324 		stats->flag |= RX_FLAG_DECRYPTED;
325 		if (pkt_flags & FH_RSCSR_RADA_EN)
326 			stats->flag |= RX_FLAG_MIC_STRIPPED;
327 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
328 		return 0;
329 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
330 		/* Don't drop the frame and decrypt it in SW */
331 		if (!fw_has_api(&mvm->fw->ucode_capa,
332 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
333 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
334 			return 0;
335 
336 		if (mvm->trans->cfg->gen2 &&
337 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
338 			stats->flag |= RX_FLAG_MMIC_ERROR;
339 
340 		*crypt_len = IEEE80211_TKIP_IV_LEN;
341 		/* fall through */
342 	case IWL_RX_MPDU_STATUS_SEC_WEP:
343 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
344 			return -1;
345 
346 		stats->flag |= RX_FLAG_DECRYPTED;
347 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
348 				IWL_RX_MPDU_STATUS_SEC_WEP)
349 			*crypt_len = IEEE80211_WEP_IV_LEN;
350 
351 		if (pkt_flags & FH_RSCSR_RADA_EN) {
352 			stats->flag |= RX_FLAG_ICV_STRIPPED;
353 			if (mvm->trans->cfg->gen2)
354 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
355 		}
356 
357 		return 0;
358 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
359 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
360 			return -1;
361 		stats->flag |= RX_FLAG_DECRYPTED;
362 		return 0;
363 	default:
364 		/* Expected in monitor (not having the keys) */
365 		if (!mvm->monitor_on)
366 			IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
367 	}
368 
369 	return 0;
370 }
371 
372 static void iwl_mvm_rx_csum(struct ieee80211_sta *sta,
373 			    struct sk_buff *skb,
374 			    struct iwl_rx_mpdu_desc *desc)
375 {
376 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
377 	struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
378 	u16 flags = le16_to_cpu(desc->l3l4_flags);
379 	u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
380 			  IWL_RX_L3_PROTO_POS);
381 
382 	if (mvmvif->features & NETIF_F_RXCSUM &&
383 	    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
384 	    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
385 	     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
386 	     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
387 		skb->ip_summed = CHECKSUM_UNNECESSARY;
388 }
389 
390 /*
391  * returns true if a packet is a duplicate and should be dropped.
392  * Updates AMSDU PN tracking info
393  */
394 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
395 			   struct ieee80211_rx_status *rx_status,
396 			   struct ieee80211_hdr *hdr,
397 			   struct iwl_rx_mpdu_desc *desc)
398 {
399 	struct iwl_mvm_sta *mvm_sta;
400 	struct iwl_mvm_rxq_dup_data *dup_data;
401 	u8 tid, sub_frame_idx;
402 
403 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
404 		return false;
405 
406 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
407 	dup_data = &mvm_sta->dup_data[queue];
408 
409 	/*
410 	 * Drop duplicate 802.11 retransmissions
411 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
412 	 */
413 	if (ieee80211_is_ctl(hdr->frame_control) ||
414 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
415 	    is_multicast_ether_addr(hdr->addr1)) {
416 		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
417 		return false;
418 	}
419 
420 	if (ieee80211_is_data_qos(hdr->frame_control))
421 		/* frame has qos control */
422 		tid = ieee80211_get_tid(hdr);
423 	else
424 		tid = IWL_MAX_TID_COUNT;
425 
426 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
427 	sub_frame_idx = desc->amsdu_info &
428 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
429 
430 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
431 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
432 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
433 		return true;
434 
435 	/* Allow same PN as the first subframe for following sub frames */
436 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
437 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
438 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
439 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
440 
441 	dup_data->last_seq[tid] = hdr->seq_ctrl;
442 	dup_data->last_sub_frame[tid] = sub_frame_idx;
443 
444 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
445 
446 	return false;
447 }
448 
449 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
450 			    const u8 *data, u32 count)
451 {
452 	struct iwl_rxq_sync_cmd *cmd;
453 	u32 data_size = sizeof(*cmd) + count;
454 	int ret;
455 
456 	/* should be DWORD aligned */
457 	if (WARN_ON(count & 3 || count > IWL_MULTI_QUEUE_SYNC_MSG_MAX_SIZE))
458 		return -EINVAL;
459 
460 	cmd = kzalloc(data_size, GFP_KERNEL);
461 	if (!cmd)
462 		return -ENOMEM;
463 
464 	cmd->rxq_mask = cpu_to_le32(rxq_mask);
465 	cmd->count =  cpu_to_le32(count);
466 	cmd->flags = 0;
467 	memcpy(cmd->payload, data, count);
468 
469 	ret = iwl_mvm_send_cmd_pdu(mvm,
470 				   WIDE_ID(DATA_PATH_GROUP,
471 					   TRIGGER_RX_QUEUES_NOTIF_CMD),
472 				   0, data_size, cmd);
473 
474 	kfree(cmd);
475 	return ret;
476 }
477 
478 /*
479  * Returns true if sn2 - buffer_size < sn1 < sn2.
480  * To be used only in order to compare reorder buffer head with NSSN.
481  * We fully trust NSSN unless it is behind us due to reorder timeout.
482  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
483  */
484 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
485 {
486 	return ieee80211_sn_less(sn1, sn2) &&
487 	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
488 }
489 
490 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
491 
492 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
493 				   struct ieee80211_sta *sta,
494 				   struct napi_struct *napi,
495 				   struct iwl_mvm_baid_data *baid_data,
496 				   struct iwl_mvm_reorder_buffer *reorder_buf,
497 				   u16 nssn)
498 {
499 	struct iwl_mvm_reorder_buf_entry *entries =
500 		&baid_data->entries[reorder_buf->queue *
501 				    baid_data->entries_per_queue];
502 	u16 ssn = reorder_buf->head_sn;
503 
504 	lockdep_assert_held(&reorder_buf->lock);
505 
506 	/* ignore nssn smaller than head sn - this can happen due to timeout */
507 	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
508 		goto set_timer;
509 
510 	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
511 		int index = ssn % reorder_buf->buf_size;
512 		struct sk_buff_head *skb_list = &entries[index].e.frames;
513 		struct sk_buff *skb;
514 
515 		ssn = ieee80211_sn_inc(ssn);
516 
517 		/*
518 		 * Empty the list. Will have more than one frame for A-MSDU.
519 		 * Empty list is valid as well since nssn indicates frames were
520 		 * received.
521 		 */
522 		while ((skb = __skb_dequeue(skb_list))) {
523 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
524 							reorder_buf->queue,
525 							sta, false);
526 			reorder_buf->num_stored--;
527 		}
528 	}
529 	reorder_buf->head_sn = nssn;
530 
531 set_timer:
532 	if (reorder_buf->num_stored && !reorder_buf->removed) {
533 		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
534 
535 		while (skb_queue_empty(&entries[index].e.frames))
536 			index = (index + 1) % reorder_buf->buf_size;
537 		/* modify timer to match next frame's expiration time */
538 		mod_timer(&reorder_buf->reorder_timer,
539 			  entries[index].e.reorder_time + 1 +
540 			  RX_REORDER_BUF_TIMEOUT_MQ);
541 	} else {
542 		del_timer(&reorder_buf->reorder_timer);
543 	}
544 }
545 
546 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
547 {
548 	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
549 	struct iwl_mvm_baid_data *baid_data =
550 		iwl_mvm_baid_data_from_reorder_buf(buf);
551 	struct iwl_mvm_reorder_buf_entry *entries =
552 		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
553 	int i;
554 	u16 sn = 0, index = 0;
555 	bool expired = false;
556 	bool cont = false;
557 
558 	spin_lock(&buf->lock);
559 
560 	if (!buf->num_stored || buf->removed) {
561 		spin_unlock(&buf->lock);
562 		return;
563 	}
564 
565 	for (i = 0; i < buf->buf_size ; i++) {
566 		index = (buf->head_sn + i) % buf->buf_size;
567 
568 		if (skb_queue_empty(&entries[index].e.frames)) {
569 			/*
570 			 * If there is a hole and the next frame didn't expire
571 			 * we want to break and not advance SN
572 			 */
573 			cont = false;
574 			continue;
575 		}
576 		if (!cont &&
577 		    !time_after(jiffies, entries[index].e.reorder_time +
578 					 RX_REORDER_BUF_TIMEOUT_MQ))
579 			break;
580 
581 		expired = true;
582 		/* continue until next hole after this expired frames */
583 		cont = true;
584 		sn = ieee80211_sn_add(buf->head_sn, i + 1);
585 	}
586 
587 	if (expired) {
588 		struct ieee80211_sta *sta;
589 		struct iwl_mvm_sta *mvmsta;
590 		u8 sta_id = baid_data->sta_id;
591 
592 		rcu_read_lock();
593 		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
594 		mvmsta = iwl_mvm_sta_from_mac80211(sta);
595 
596 		/* SN is set to the last expired frame + 1 */
597 		IWL_DEBUG_HT(buf->mvm,
598 			     "Releasing expired frames for sta %u, sn %d\n",
599 			     sta_id, sn);
600 		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
601 						     sta, baid_data->tid);
602 		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, buf, sn);
603 		rcu_read_unlock();
604 	} else {
605 		/*
606 		 * If no frame expired and there are stored frames, index is now
607 		 * pointing to the first unexpired frame - modify timer
608 		 * accordingly to this frame.
609 		 */
610 		mod_timer(&buf->reorder_timer,
611 			  entries[index].e.reorder_time +
612 			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
613 	}
614 	spin_unlock(&buf->lock);
615 }
616 
617 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
618 			   struct iwl_mvm_delba_data *data)
619 {
620 	struct iwl_mvm_baid_data *ba_data;
621 	struct ieee80211_sta *sta;
622 	struct iwl_mvm_reorder_buffer *reorder_buf;
623 	u8 baid = data->baid;
624 
625 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
626 		return;
627 
628 	rcu_read_lock();
629 
630 	ba_data = rcu_dereference(mvm->baid_map[baid]);
631 	if (WARN_ON_ONCE(!ba_data))
632 		goto out;
633 
634 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
635 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
636 		goto out;
637 
638 	reorder_buf = &ba_data->reorder_buf[queue];
639 
640 	/* release all frames that are in the reorder buffer to the stack */
641 	spin_lock_bh(&reorder_buf->lock);
642 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
643 			       ieee80211_sn_add(reorder_buf->head_sn,
644 						reorder_buf->buf_size));
645 	spin_unlock_bh(&reorder_buf->lock);
646 	del_timer_sync(&reorder_buf->reorder_timer);
647 
648 out:
649 	rcu_read_unlock();
650 }
651 
652 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb,
653 			    int queue)
654 {
655 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
656 	struct iwl_rxq_sync_notification *notif;
657 	struct iwl_mvm_internal_rxq_notif *internal_notif;
658 
659 	notif = (void *)pkt->data;
660 	internal_notif = (void *)notif->payload;
661 
662 	if (internal_notif->sync &&
663 	    mvm->queue_sync_cookie != internal_notif->cookie) {
664 		WARN_ONCE(1, "Received expired RX queue sync message\n");
665 		return;
666 	}
667 
668 	switch (internal_notif->type) {
669 	case IWL_MVM_RXQ_EMPTY:
670 		break;
671 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
672 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
673 		break;
674 	default:
675 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
676 	}
677 
678 	if (internal_notif->sync &&
679 	    !atomic_dec_return(&mvm->queue_sync_counter))
680 		wake_up(&mvm->rx_sync_waitq);
681 }
682 
683 /*
684  * Returns true if the MPDU was buffered\dropped, false if it should be passed
685  * to upper layer.
686  */
687 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
688 			    struct napi_struct *napi,
689 			    int queue,
690 			    struct ieee80211_sta *sta,
691 			    struct sk_buff *skb,
692 			    struct iwl_rx_mpdu_desc *desc)
693 {
694 	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
695 	struct iwl_mvm_sta *mvm_sta;
696 	struct iwl_mvm_baid_data *baid_data;
697 	struct iwl_mvm_reorder_buffer *buffer;
698 	struct sk_buff *tail;
699 	u32 reorder = le32_to_cpu(desc->reorder_data);
700 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
701 	bool last_subframe =
702 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
703 	u8 tid = ieee80211_get_tid(hdr);
704 	u8 sub_frame_idx = desc->amsdu_info &
705 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
706 	struct iwl_mvm_reorder_buf_entry *entries;
707 	int index;
708 	u16 nssn, sn;
709 	u8 baid;
710 
711 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
712 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
713 
714 	/*
715 	 * This also covers the case of receiving a Block Ack Request
716 	 * outside a BA session; we'll pass it to mac80211 and that
717 	 * then sends a delBA action frame.
718 	 * This also covers pure monitor mode, in which case we won't
719 	 * have any BA sessions.
720 	 */
721 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
722 		return false;
723 
724 	/* no sta yet */
725 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
726 		      "Got valid BAID without a valid station assigned\n"))
727 		return false;
728 
729 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
730 
731 	/* not a data packet or a bar */
732 	if (!ieee80211_is_back_req(hdr->frame_control) &&
733 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
734 	     is_multicast_ether_addr(hdr->addr1)))
735 		return false;
736 
737 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
738 		return false;
739 
740 	baid_data = rcu_dereference(mvm->baid_map[baid]);
741 	if (!baid_data) {
742 		IWL_DEBUG_RX(mvm,
743 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
744 			      baid, reorder);
745 		return false;
746 	}
747 
748 	if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
749 		 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
750 		 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
751 		 tid))
752 		return false;
753 
754 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
755 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
756 		IWL_RX_MPDU_REORDER_SN_SHIFT;
757 
758 	buffer = &baid_data->reorder_buf[queue];
759 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
760 
761 	spin_lock_bh(&buffer->lock);
762 
763 	if (!buffer->valid) {
764 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
765 			spin_unlock_bh(&buffer->lock);
766 			return false;
767 		}
768 		buffer->valid = true;
769 	}
770 
771 	if (ieee80211_is_back_req(hdr->frame_control)) {
772 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, nssn);
773 		goto drop;
774 	}
775 
776 	/*
777 	 * If there was a significant jump in the nssn - adjust.
778 	 * If the SN is smaller than the NSSN it might need to first go into
779 	 * the reorder buffer, in which case we just release up to it and the
780 	 * rest of the function will take care of storing it and releasing up to
781 	 * the nssn
782 	 */
783 	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
784 				buffer->buf_size) ||
785 	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
786 		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
787 
788 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
789 				       min_sn);
790 	}
791 
792 	/* drop any oudated packets */
793 	if (ieee80211_sn_less(sn, buffer->head_sn))
794 		goto drop;
795 
796 	/* release immediately if allowed by nssn and no stored frames */
797 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
798 		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
799 				       buffer->buf_size) &&
800 		   (!amsdu || last_subframe))
801 			buffer->head_sn = nssn;
802 		/* No need to update AMSDU last SN - we are moving the head */
803 		spin_unlock_bh(&buffer->lock);
804 		return false;
805 	}
806 
807 	/*
808 	 * release immediately if there are no stored frames, and the sn is
809 	 * equal to the head.
810 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
811 	 * When we released everything, and we got the next frame in the
812 	 * sequence, according to the NSSN we can't release immediately,
813 	 * while technically there is no hole and we can move forward.
814 	 */
815 	if (!buffer->num_stored && sn == buffer->head_sn) {
816 		if (!amsdu || last_subframe)
817 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
818 		/* No need to update AMSDU last SN - we are moving the head */
819 		spin_unlock_bh(&buffer->lock);
820 		return false;
821 	}
822 
823 	index = sn % buffer->buf_size;
824 
825 	/*
826 	 * Check if we already stored this frame
827 	 * As AMSDU is either received or not as whole, logic is simple:
828 	 * If we have frames in that position in the buffer and the last frame
829 	 * originated from AMSDU had a different SN then it is a retransmission.
830 	 * If it is the same SN then if the subframe index is incrementing it
831 	 * is the same AMSDU - otherwise it is a retransmission.
832 	 */
833 	tail = skb_peek_tail(&entries[index].e.frames);
834 	if (tail && !amsdu)
835 		goto drop;
836 	else if (tail && (sn != buffer->last_amsdu ||
837 			  buffer->last_sub_index >= sub_frame_idx))
838 		goto drop;
839 
840 	/* put in reorder buffer */
841 	__skb_queue_tail(&entries[index].e.frames, skb);
842 	buffer->num_stored++;
843 	entries[index].e.reorder_time = jiffies;
844 
845 	if (amsdu) {
846 		buffer->last_amsdu = sn;
847 		buffer->last_sub_index = sub_frame_idx;
848 	}
849 
850 	/*
851 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
852 	 * The reason is that NSSN advances on the first sub-frame, and may
853 	 * cause the reorder buffer to advance before all the sub-frames arrive.
854 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
855 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
856 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
857 	 * already ahead and it will be dropped.
858 	 * If the last sub-frame is not on this queue - we will get frame
859 	 * release notification with up to date NSSN.
860 	 */
861 	if (!amsdu || last_subframe)
862 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, nssn);
863 
864 	spin_unlock_bh(&buffer->lock);
865 	return true;
866 
867 drop:
868 	kfree_skb(skb);
869 	spin_unlock_bh(&buffer->lock);
870 	return true;
871 }
872 
873 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
874 				    u32 reorder_data, u8 baid)
875 {
876 	unsigned long now = jiffies;
877 	unsigned long timeout;
878 	struct iwl_mvm_baid_data *data;
879 
880 	rcu_read_lock();
881 
882 	data = rcu_dereference(mvm->baid_map[baid]);
883 	if (!data) {
884 		IWL_DEBUG_RX(mvm,
885 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
886 			      baid, reorder_data);
887 		goto out;
888 	}
889 
890 	if (!data->timeout)
891 		goto out;
892 
893 	timeout = data->timeout;
894 	/*
895 	 * Do not update last rx all the time to avoid cache bouncing
896 	 * between the rx queues.
897 	 * Update it every timeout. Worst case is the session will
898 	 * expire after ~ 2 * timeout, which doesn't matter that much.
899 	 */
900 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
901 		/* Update is atomic */
902 		data->last_rx = now;
903 
904 out:
905 	rcu_read_unlock();
906 }
907 
908 static void iwl_mvm_flip_address(u8 *addr)
909 {
910 	int i;
911 	u8 mac_addr[ETH_ALEN];
912 
913 	for (i = 0; i < ETH_ALEN; i++)
914 		mac_addr[i] = addr[ETH_ALEN - i - 1];
915 	ether_addr_copy(addr, mac_addr);
916 }
917 
918 struct iwl_mvm_rx_phy_data {
919 	enum iwl_rx_phy_info_type info_type;
920 	__le32 d0, d1, d2, d3;
921 	__le16 d4;
922 };
923 
924 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
925 				     struct iwl_mvm_rx_phy_data *phy_data,
926 				     u32 rate_n_flags,
927 				     struct ieee80211_radiotap_he_mu *he_mu)
928 {
929 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
930 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
931 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
932 
933 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
934 		he_mu->flags1 |=
935 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
936 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
937 
938 		he_mu->flags1 |=
939 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
940 						   phy_data4),
941 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
942 
943 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
944 					     phy_data2);
945 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
946 					     phy_data3);
947 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
948 					     phy_data2);
949 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
950 					     phy_data3);
951 	}
952 
953 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
954 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
955 		he_mu->flags1 |=
956 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
957 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
958 
959 		he_mu->flags2 |=
960 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
961 						   phy_data4),
962 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
963 
964 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
965 					     phy_data2);
966 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
967 					     phy_data3);
968 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
969 					     phy_data2);
970 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
971 					     phy_data3);
972 	}
973 }
974 
975 static void
976 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
977 			       u32 rate_n_flags,
978 			       struct ieee80211_radiotap_he *he,
979 			       struct ieee80211_radiotap_he_mu *he_mu,
980 			       struct ieee80211_rx_status *rx_status)
981 {
982 	/*
983 	 * Unfortunately, we have to leave the mac80211 data
984 	 * incorrect for the case that we receive an HE-MU
985 	 * transmission and *don't* have the HE phy data (due
986 	 * to the bits being used for TSF). This shouldn't
987 	 * happen though as management frames where we need
988 	 * the TSF/timers are not be transmitted in HE-MU.
989 	 */
990 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
991 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
992 	u8 offs = 0;
993 
994 	rx_status->bw = RATE_INFO_BW_HE_RU;
995 
996 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
997 
998 	switch (ru) {
999 	case 0 ... 36:
1000 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1001 		offs = ru;
1002 		break;
1003 	case 37 ... 52:
1004 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1005 		offs = ru - 37;
1006 		break;
1007 	case 53 ... 60:
1008 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1009 		offs = ru - 53;
1010 		break;
1011 	case 61 ... 64:
1012 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1013 		offs = ru - 61;
1014 		break;
1015 	case 65 ... 66:
1016 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1017 		offs = ru - 65;
1018 		break;
1019 	case 67:
1020 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1021 		break;
1022 	case 68:
1023 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1024 		break;
1025 	}
1026 	he->data2 |= le16_encode_bits(offs,
1027 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1028 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1029 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1030 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1031 		he->data2 |=
1032 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1033 
1034 #define CHECK_BW(bw) \
1035 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1036 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1037 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1038 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1039 	CHECK_BW(20);
1040 	CHECK_BW(40);
1041 	CHECK_BW(80);
1042 	CHECK_BW(160);
1043 
1044 	if (he_mu)
1045 		he_mu->flags2 |=
1046 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1047 						   rate_n_flags),
1048 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1049 	else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1050 		he->data6 |=
1051 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1052 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1053 						   rate_n_flags),
1054 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1055 }
1056 
1057 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1058 				       struct iwl_mvm_rx_phy_data *phy_data,
1059 				       struct ieee80211_radiotap_he *he,
1060 				       struct ieee80211_radiotap_he_mu *he_mu,
1061 				       struct ieee80211_rx_status *rx_status,
1062 				       u32 rate_n_flags, int queue)
1063 {
1064 	switch (phy_data->info_type) {
1065 	case IWL_RX_PHY_INFO_TYPE_NONE:
1066 	case IWL_RX_PHY_INFO_TYPE_CCK:
1067 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1068 	case IWL_RX_PHY_INFO_TYPE_HT:
1069 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1070 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1071 		return;
1072 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1073 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1074 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1075 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1076 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1077 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1078 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1079 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1080 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1081 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1082 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1083 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1084 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1085 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1086 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1087 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1088 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1089 		/* fall through */
1090 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1091 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1092 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1093 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1094 		/* HE common */
1095 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1096 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1097 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1098 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1099 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1100 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1101 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1102 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1103 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1104 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1105 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1106 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1107 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1108 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1109 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1110 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1111 		}
1112 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1113 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1114 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1115 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1116 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1117 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1118 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1119 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1120 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1121 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1122 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1123 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1124 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1125 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1126 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1127 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1128 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1129 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1130 		break;
1131 	}
1132 
1133 	switch (phy_data->info_type) {
1134 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1135 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1136 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1137 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1138 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1139 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1140 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1141 		break;
1142 	default:
1143 		/* nothing here */
1144 		break;
1145 	}
1146 
1147 	switch (phy_data->info_type) {
1148 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1149 		he_mu->flags1 |=
1150 			le16_encode_bits(le16_get_bits(phy_data->d4,
1151 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1152 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1153 		he_mu->flags1 |=
1154 			le16_encode_bits(le16_get_bits(phy_data->d4,
1155 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1156 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1157 		he_mu->flags2 |=
1158 			le16_encode_bits(le16_get_bits(phy_data->d4,
1159 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1160 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1161 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1162 		/* fall through */
1163 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1164 		he_mu->flags2 |=
1165 			le16_encode_bits(le32_get_bits(phy_data->d1,
1166 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1167 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1168 		he_mu->flags2 |=
1169 			le16_encode_bits(le32_get_bits(phy_data->d1,
1170 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1171 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1172 		/* fall through */
1173 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1174 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1175 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1176 					       he, he_mu, rx_status);
1177 		break;
1178 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1179 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1180 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1181 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1182 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1183 		break;
1184 	default:
1185 		/* nothing */
1186 		break;
1187 	}
1188 }
1189 
1190 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1191 			  struct iwl_mvm_rx_phy_data *phy_data,
1192 			  u32 rate_n_flags, u16 phy_info, int queue)
1193 {
1194 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1195 	struct ieee80211_radiotap_he *he = NULL;
1196 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1197 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1198 	u8 stbc, ltf;
1199 	static const struct ieee80211_radiotap_he known = {
1200 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1201 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1202 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1203 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1204 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1205 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1206 	};
1207 	static const struct ieee80211_radiotap_he_mu mu_known = {
1208 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1209 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1210 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1211 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1212 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1213 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1214 	};
1215 
1216 	he = skb_put_data(skb, &known, sizeof(known));
1217 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1218 
1219 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1220 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1221 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1222 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1223 	}
1224 
1225 	/* report the AMPDU-EOF bit on single frames */
1226 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1227 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1228 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1229 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1230 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1231 	}
1232 
1233 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1234 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1235 					   rate_n_flags, queue);
1236 
1237 	/* update aggregation data for monitor sake on default queue */
1238 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1239 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1240 		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1241 
1242 		/* toggle is switched whenever new aggregation starts */
1243 		if (toggle_bit != mvm->ampdu_toggle) {
1244 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1245 			if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1246 				rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1247 		}
1248 	}
1249 
1250 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1251 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1252 		rx_status->bw = RATE_INFO_BW_HE_RU;
1253 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1254 	}
1255 
1256 	/* actually data is filled in mac80211 */
1257 	if (he_type == RATE_MCS_HE_TYPE_SU ||
1258 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1259 		he->data1 |=
1260 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1261 
1262 	stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1263 	rx_status->nss =
1264 		((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1265 					RATE_VHT_MCS_NSS_POS) + 1;
1266 	rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1267 	rx_status->encoding = RX_ENC_HE;
1268 	rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1269 	if (rate_n_flags & RATE_MCS_BF_MSK)
1270 		rx_status->enc_flags |= RX_ENC_FLAG_BF;
1271 
1272 	rx_status->he_dcm =
1273 		!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1274 
1275 #define CHECK_TYPE(F)							\
1276 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1277 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1278 
1279 	CHECK_TYPE(SU);
1280 	CHECK_TYPE(EXT_SU);
1281 	CHECK_TYPE(MU);
1282 	CHECK_TYPE(TRIG);
1283 
1284 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1285 
1286 	if (rate_n_flags & RATE_MCS_BF_MSK)
1287 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1288 
1289 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1290 		RATE_MCS_HE_GI_LTF_POS) {
1291 	case 0:
1292 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1293 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1294 		else
1295 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1296 		if (he_type == RATE_MCS_HE_TYPE_MU)
1297 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1298 		else
1299 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1300 		break;
1301 	case 1:
1302 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1303 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1304 		else
1305 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1306 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1307 		break;
1308 	case 2:
1309 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1310 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1311 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1312 		} else {
1313 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1314 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1315 		}
1316 		break;
1317 	case 3:
1318 		if ((he_type == RATE_MCS_HE_TYPE_SU ||
1319 		     he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1320 		    rate_n_flags & RATE_MCS_SGI_MSK)
1321 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1322 		else
1323 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1324 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1325 		break;
1326 	}
1327 
1328 	he->data5 |= le16_encode_bits(ltf,
1329 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1330 }
1331 
1332 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1333 				struct iwl_mvm_rx_phy_data *phy_data)
1334 {
1335 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1336 	struct ieee80211_radiotap_lsig *lsig;
1337 
1338 	switch (phy_data->info_type) {
1339 	case IWL_RX_PHY_INFO_TYPE_HT:
1340 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1341 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1342 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1343 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1344 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1345 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1346 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1347 		lsig = skb_put(skb, sizeof(*lsig));
1348 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1349 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1350 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1351 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1352 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1353 		break;
1354 	default:
1355 		break;
1356 	}
1357 }
1358 
1359 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1360 			struct iwl_rx_cmd_buffer *rxb, int queue)
1361 {
1362 	struct ieee80211_rx_status *rx_status;
1363 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1364 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1365 	struct ieee80211_hdr *hdr;
1366 	u32 len = le16_to_cpu(desc->mpdu_len);
1367 	u32 rate_n_flags, gp2_on_air_rise;
1368 	u16 phy_info = le16_to_cpu(desc->phy_info);
1369 	struct ieee80211_sta *sta = NULL;
1370 	struct sk_buff *skb;
1371 	u8 crypt_len = 0, channel, energy_a, energy_b;
1372 	size_t desc_size;
1373 	struct iwl_mvm_rx_phy_data phy_data = {
1374 		.d4 = desc->phy_data4,
1375 		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1376 	};
1377 	bool csi = false;
1378 
1379 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1380 		return;
1381 
1382 	if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
1383 		rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1384 		channel = desc->v3.channel;
1385 		gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1386 		energy_a = desc->v3.energy_a;
1387 		energy_b = desc->v3.energy_b;
1388 		desc_size = sizeof(*desc);
1389 
1390 		phy_data.d0 = desc->v3.phy_data0;
1391 		phy_data.d1 = desc->v3.phy_data1;
1392 		phy_data.d2 = desc->v3.phy_data2;
1393 		phy_data.d3 = desc->v3.phy_data3;
1394 	} else {
1395 		rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1396 		channel = desc->v1.channel;
1397 		gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1398 		energy_a = desc->v1.energy_a;
1399 		energy_b = desc->v1.energy_b;
1400 		desc_size = IWL_RX_DESC_SIZE_V1;
1401 
1402 		phy_data.d0 = desc->v1.phy_data0;
1403 		phy_data.d1 = desc->v1.phy_data1;
1404 		phy_data.d2 = desc->v1.phy_data2;
1405 		phy_data.d3 = desc->v1.phy_data3;
1406 	}
1407 
1408 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1409 		phy_data.info_type =
1410 			le32_get_bits(phy_data.d1,
1411 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1412 
1413 	hdr = (void *)(pkt->data + desc_size);
1414 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1415 	 * ieee80211_hdr pulled.
1416 	 */
1417 	skb = alloc_skb(128, GFP_ATOMIC);
1418 	if (!skb) {
1419 		IWL_ERR(mvm, "alloc_skb failed\n");
1420 		return;
1421 	}
1422 
1423 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1424 		/*
1425 		 * If the device inserted padding it means that (it thought)
1426 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
1427 		 * this case, reserve two bytes at the start of the SKB to
1428 		 * align the payload properly in case we end up copying it.
1429 		 */
1430 		skb_reserve(skb, 2);
1431 	}
1432 
1433 	rx_status = IEEE80211_SKB_RXCB(skb);
1434 
1435 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1436 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1437 	case RATE_MCS_CHAN_WIDTH_20:
1438 		break;
1439 	case RATE_MCS_CHAN_WIDTH_40:
1440 		rx_status->bw = RATE_INFO_BW_40;
1441 		break;
1442 	case RATE_MCS_CHAN_WIDTH_80:
1443 		rx_status->bw = RATE_INFO_BW_80;
1444 		break;
1445 	case RATE_MCS_CHAN_WIDTH_160:
1446 		rx_status->bw = RATE_INFO_BW_160;
1447 		break;
1448 	}
1449 
1450 	if (rate_n_flags & RATE_MCS_HE_MSK)
1451 		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1452 			      phy_info, queue);
1453 
1454 	iwl_mvm_decode_lsig(skb, &phy_data);
1455 
1456 	rx_status = IEEE80211_SKB_RXCB(skb);
1457 
1458 	if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1459 			      le32_to_cpu(pkt->len_n_flags), queue,
1460 			      &crypt_len)) {
1461 		kfree_skb(skb);
1462 		return;
1463 	}
1464 
1465 	/*
1466 	 * Keep packets with CRC errors (and with overrun) for monitor mode
1467 	 * (otherwise the firmware discards them) but mark them as bad.
1468 	 */
1469 	if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1470 	    !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1471 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1472 			     le16_to_cpu(desc->status));
1473 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1474 	}
1475 	/* set the preamble flag if appropriate */
1476 	if (rate_n_flags & RATE_MCS_CCK_MSK &&
1477 	    phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1478 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1479 
1480 	if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1481 		u64 tsf_on_air_rise;
1482 
1483 		if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1484 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1485 		else
1486 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1487 
1488 		rx_status->mactime = tsf_on_air_rise;
1489 		/* TSF as indicated by the firmware is at INA time */
1490 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1491 	}
1492 
1493 	rx_status->device_timestamp = gp2_on_air_rise;
1494 	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1495 		NL80211_BAND_2GHZ;
1496 	rx_status->freq = ieee80211_channel_to_frequency(channel,
1497 							 rx_status->band);
1498 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1499 				    energy_b);
1500 
1501 	/* update aggregation data for monitor sake on default queue */
1502 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1503 		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1504 
1505 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1506 		/*
1507 		 * Toggle is switched whenever new aggregation starts. Make
1508 		 * sure ampdu_reference is never 0 so we can later use it to
1509 		 * see if the frame was really part of an A-MPDU or not.
1510 		 */
1511 		if (toggle_bit != mvm->ampdu_toggle) {
1512 			mvm->ampdu_ref++;
1513 			if (mvm->ampdu_ref == 0)
1514 				mvm->ampdu_ref++;
1515 			mvm->ampdu_toggle = toggle_bit;
1516 		}
1517 		rx_status->ampdu_reference = mvm->ampdu_ref;
1518 	}
1519 
1520 	if (unlikely(mvm->monitor_on))
1521 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1522 
1523 	rcu_read_lock();
1524 
1525 	if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1526 		u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
1527 
1528 		if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
1529 			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1530 			if (IS_ERR(sta))
1531 				sta = NULL;
1532 		}
1533 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
1534 		/*
1535 		 * This is fine since we prevent two stations with the same
1536 		 * address from being added.
1537 		 */
1538 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1539 	}
1540 
1541 	if (sta) {
1542 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1543 		struct ieee80211_vif *tx_blocked_vif =
1544 			rcu_dereference(mvm->csa_tx_blocked_vif);
1545 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1546 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
1547 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
1548 		struct iwl_fw_dbg_trigger_tlv *trig;
1549 		struct ieee80211_vif *vif = mvmsta->vif;
1550 
1551 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1552 		    !is_multicast_ether_addr(hdr->addr1) &&
1553 		    ieee80211_is_data(hdr->frame_control) &&
1554 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1555 			schedule_delayed_work(&mvm->tcm.work, 0);
1556 
1557 		/*
1558 		 * We have tx blocked stations (with CS bit). If we heard
1559 		 * frames from a blocked station on a new channel we can
1560 		 * TX to it again.
1561 		 */
1562 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1563 			struct iwl_mvm_vif *mvmvif =
1564 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1565 
1566 			if (mvmvif->csa_target_freq == rx_status->freq)
1567 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1568 								 false);
1569 		}
1570 
1571 		rs_update_last_rssi(mvm, mvmsta, rx_status);
1572 
1573 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1574 					     ieee80211_vif_to_wdev(vif),
1575 					     FW_DBG_TRIGGER_RSSI);
1576 
1577 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1578 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1579 			s32 rssi;
1580 
1581 			rssi_trig = (void *)trig->data;
1582 			rssi = le32_to_cpu(rssi_trig->rssi);
1583 
1584 			if (rx_status->signal < rssi)
1585 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1586 							NULL);
1587 		}
1588 
1589 		if (ieee80211_is_data(hdr->frame_control))
1590 			iwl_mvm_rx_csum(sta, skb, desc);
1591 
1592 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1593 			kfree_skb(skb);
1594 			goto out;
1595 		}
1596 
1597 		/*
1598 		 * Our hardware de-aggregates AMSDUs but copies the mac header
1599 		 * as it to the de-aggregated MPDUs. We need to turn off the
1600 		 * AMSDU bit in the QoS control ourselves.
1601 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
1602 		 */
1603 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1604 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1605 			u8 *qc = ieee80211_get_qos_ctl(hdr);
1606 
1607 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1608 
1609 			if (mvm->trans->cfg->device_family ==
1610 			    IWL_DEVICE_FAMILY_9000) {
1611 				iwl_mvm_flip_address(hdr->addr3);
1612 
1613 				if (ieee80211_has_a4(hdr->frame_control))
1614 					iwl_mvm_flip_address(hdr->addr4);
1615 			}
1616 		}
1617 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1618 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
1619 
1620 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1621 		}
1622 	}
1623 
1624 	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1625 	    rate_n_flags & RATE_MCS_SGI_MSK)
1626 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1627 	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1628 		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1629 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1630 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1631 	if (rate_n_flags & RATE_MCS_HT_MSK) {
1632 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1633 				RATE_MCS_STBC_POS;
1634 		rx_status->encoding = RX_ENC_HT;
1635 		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1636 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1637 	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1638 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1639 				RATE_MCS_STBC_POS;
1640 		rx_status->nss =
1641 			((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1642 						RATE_VHT_MCS_NSS_POS) + 1;
1643 		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1644 		rx_status->encoding = RX_ENC_VHT;
1645 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1646 		if (rate_n_flags & RATE_MCS_BF_MSK)
1647 			rx_status->enc_flags |= RX_ENC_FLAG_BF;
1648 	} else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1649 		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1650 							       rx_status->band);
1651 
1652 		if (WARN(rate < 0 || rate > 0xFF,
1653 			 "Invalid rate flags 0x%x, band %d,\n",
1654 			 rate_n_flags, rx_status->band)) {
1655 			kfree_skb(skb);
1656 			goto out;
1657 		}
1658 		rx_status->rate_idx = rate;
1659 	}
1660 
1661 	/* management stuff on default queue */
1662 	if (!queue) {
1663 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1664 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
1665 			     mvm->sched_scan_pass_all ==
1666 			     SCHED_SCAN_PASS_ALL_ENABLED))
1667 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1668 
1669 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1670 			     ieee80211_is_probe_resp(hdr->frame_control)))
1671 			rx_status->boottime_ns = ktime_get_boot_ns();
1672 	}
1673 
1674 	iwl_mvm_create_skb(skb, hdr, len, crypt_len, rxb);
1675 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1676 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1677 						sta, csi);
1678 out:
1679 	rcu_read_unlock();
1680 }
1681 
1682 void iwl_mvm_rx_monitor_ndp(struct iwl_mvm *mvm, struct napi_struct *napi,
1683 			    struct iwl_rx_cmd_buffer *rxb, int queue)
1684 {
1685 	struct ieee80211_rx_status *rx_status;
1686 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1687 	struct iwl_rx_no_data *desc = (void *)pkt->data;
1688 	u32 rate_n_flags = le32_to_cpu(desc->rate);
1689 	u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1690 	u32 rssi = le32_to_cpu(desc->rssi);
1691 	u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1692 	u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1693 	struct ieee80211_sta *sta = NULL;
1694 	struct sk_buff *skb;
1695 	u8 channel, energy_a, energy_b;
1696 	struct iwl_mvm_rx_phy_data phy_data = {
1697 		.d0 = desc->phy_info[0],
1698 		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1699 	};
1700 
1701 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1702 		return;
1703 
1704 	/* Currently only NDP type is supported */
1705 	if (info_type != RX_NO_DATA_INFO_TYPE_NDP)
1706 		return;
1707 
1708 	energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1709 	energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1710 	channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1711 
1712 	phy_data.info_type =
1713 		le32_get_bits(desc->phy_info[1],
1714 			      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1715 
1716 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1717 	 * ieee80211_hdr pulled.
1718 	 */
1719 	skb = alloc_skb(128, GFP_ATOMIC);
1720 	if (!skb) {
1721 		IWL_ERR(mvm, "alloc_skb failed\n");
1722 		return;
1723 	}
1724 
1725 	rx_status = IEEE80211_SKB_RXCB(skb);
1726 
1727 	/* 0-length PSDU */
1728 	rx_status->flag |= RX_FLAG_NO_PSDU;
1729 	/* currently this is the only type for which we get this notif */
1730 	rx_status->zero_length_psdu_type =
1731 		IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
1732 
1733 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1734 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1735 	case RATE_MCS_CHAN_WIDTH_20:
1736 		break;
1737 	case RATE_MCS_CHAN_WIDTH_40:
1738 		rx_status->bw = RATE_INFO_BW_40;
1739 		break;
1740 	case RATE_MCS_CHAN_WIDTH_80:
1741 		rx_status->bw = RATE_INFO_BW_80;
1742 		break;
1743 	case RATE_MCS_CHAN_WIDTH_160:
1744 		rx_status->bw = RATE_INFO_BW_160;
1745 		break;
1746 	}
1747 
1748 	if (rate_n_flags & RATE_MCS_HE_MSK)
1749 		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1750 			      phy_info, queue);
1751 
1752 	iwl_mvm_decode_lsig(skb, &phy_data);
1753 
1754 	rx_status->device_timestamp = gp2_on_air_rise;
1755 	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1756 		NL80211_BAND_2GHZ;
1757 	rx_status->freq = ieee80211_channel_to_frequency(channel,
1758 							 rx_status->band);
1759 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1760 				    energy_b);
1761 
1762 	rcu_read_lock();
1763 
1764 	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1765 	    rate_n_flags & RATE_MCS_SGI_MSK)
1766 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1767 	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1768 		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1769 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1770 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1771 	if (rate_n_flags & RATE_MCS_HT_MSK) {
1772 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1773 				RATE_MCS_STBC_POS;
1774 		rx_status->encoding = RX_ENC_HT;
1775 		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1776 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1777 	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1778 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1779 				RATE_MCS_STBC_POS;
1780 		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1781 		rx_status->encoding = RX_ENC_VHT;
1782 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1783 		if (rate_n_flags & RATE_MCS_BF_MSK)
1784 			rx_status->enc_flags |= RX_ENC_FLAG_BF;
1785 		/*
1786 		 * take the nss from the rx_vec since the rate_n_flags has
1787 		 * only 2 bits for the nss which gives a max of 4 ss but
1788 		 * there may be up to 8 spatial streams
1789 		 */
1790 		rx_status->nss =
1791 			le32_get_bits(desc->rx_vec[0],
1792 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
1793 	} else if (rate_n_flags & RATE_MCS_HE_MSK) {
1794 		rx_status->nss =
1795 			le32_get_bits(desc->rx_vec[0],
1796 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
1797 	} else {
1798 		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1799 							       rx_status->band);
1800 
1801 		if (WARN(rate < 0 || rate > 0xFF,
1802 			 "Invalid rate flags 0x%x, band %d,\n",
1803 			 rate_n_flags, rx_status->band)) {
1804 			kfree_skb(skb);
1805 			goto out;
1806 		}
1807 		rx_status->rate_idx = rate;
1808 	}
1809 
1810 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
1811 out:
1812 	rcu_read_unlock();
1813 }
1814 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
1815 			      struct iwl_rx_cmd_buffer *rxb, int queue)
1816 {
1817 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1818 	struct iwl_frame_release *release = (void *)pkt->data;
1819 	struct ieee80211_sta *sta;
1820 	struct iwl_mvm_reorder_buffer *reorder_buf;
1821 	struct iwl_mvm_baid_data *ba_data;
1822 
1823 	int baid = release->baid;
1824 
1825 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
1826 		     release->baid, le16_to_cpu(release->nssn));
1827 
1828 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID))
1829 		return;
1830 
1831 	rcu_read_lock();
1832 
1833 	ba_data = rcu_dereference(mvm->baid_map[baid]);
1834 	if (WARN_ON_ONCE(!ba_data))
1835 		goto out;
1836 
1837 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
1838 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
1839 		goto out;
1840 
1841 	reorder_buf = &ba_data->reorder_buf[queue];
1842 
1843 	spin_lock_bh(&reorder_buf->lock);
1844 	iwl_mvm_release_frames(mvm, sta, napi, ba_data, reorder_buf,
1845 			       le16_to_cpu(release->nssn));
1846 	spin_unlock_bh(&reorder_buf->lock);
1847 
1848 out:
1849 	rcu_read_unlock();
1850 }
1851