1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2020 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 13 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 14 { 15 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 16 u8 *data = skb->data; 17 18 /* Alignment concerns */ 19 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 20 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 21 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 22 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 23 24 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 25 data += sizeof(struct ieee80211_radiotap_he); 26 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 27 data += sizeof(struct ieee80211_radiotap_he_mu); 28 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 29 data += sizeof(struct ieee80211_radiotap_lsig); 30 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 31 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 32 33 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 34 } 35 36 return data; 37 } 38 39 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 40 int queue, struct ieee80211_sta *sta) 41 { 42 struct iwl_mvm_sta *mvmsta; 43 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 44 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 45 struct iwl_mvm_key_pn *ptk_pn; 46 int res; 47 u8 tid, keyidx; 48 u8 pn[IEEE80211_CCMP_PN_LEN]; 49 u8 *extiv; 50 51 /* do PN checking */ 52 53 /* multicast and non-data only arrives on default queue */ 54 if (!ieee80211_is_data(hdr->frame_control) || 55 is_multicast_ether_addr(hdr->addr1)) 56 return 0; 57 58 /* do not check PN for open AP */ 59 if (!(stats->flag & RX_FLAG_DECRYPTED)) 60 return 0; 61 62 /* 63 * avoid checking for default queue - we don't want to replicate 64 * all the logic that's necessary for checking the PN on fragmented 65 * frames, leave that to mac80211 66 */ 67 if (queue == 0) 68 return 0; 69 70 /* if we are here - this for sure is either CCMP or GCMP */ 71 if (IS_ERR_OR_NULL(sta)) { 72 IWL_ERR(mvm, 73 "expected hw-decrypted unicast frame for station\n"); 74 return -1; 75 } 76 77 mvmsta = iwl_mvm_sta_from_mac80211(sta); 78 79 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 80 keyidx = extiv[3] >> 6; 81 82 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 83 if (!ptk_pn) 84 return -1; 85 86 if (ieee80211_is_data_qos(hdr->frame_control)) 87 tid = ieee80211_get_tid(hdr); 88 else 89 tid = 0; 90 91 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 92 if (tid >= IWL_MAX_TID_COUNT) 93 return -1; 94 95 /* load pn */ 96 pn[0] = extiv[7]; 97 pn[1] = extiv[6]; 98 pn[2] = extiv[5]; 99 pn[3] = extiv[4]; 100 pn[4] = extiv[1]; 101 pn[5] = extiv[0]; 102 103 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 104 if (res < 0) 105 return -1; 106 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 107 return -1; 108 109 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 110 stats->flag |= RX_FLAG_PN_VALIDATED; 111 112 return 0; 113 } 114 115 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 116 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 117 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 118 struct iwl_rx_cmd_buffer *rxb) 119 { 120 struct iwl_rx_packet *pkt = rxb_addr(rxb); 121 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 122 unsigned int headlen, fraglen, pad_len = 0; 123 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 124 125 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 126 len -= 2; 127 pad_len = 2; 128 } 129 130 /* If frame is small enough to fit in skb->head, pull it completely. 131 * If not, only pull ieee80211_hdr (including crypto if present, and 132 * an additional 8 bytes for SNAP/ethertype, see below) so that 133 * splice() or TCP coalesce are more efficient. 134 * 135 * Since, in addition, ieee80211_data_to_8023() always pull in at 136 * least 8 bytes (possibly more for mesh) we can do the same here 137 * to save the cost of doing it later. That still doesn't pull in 138 * the actual IP header since the typical case has a SNAP header. 139 * If the latter changes (there are efforts in the standards group 140 * to do so) we should revisit this and ieee80211_data_to_8023(). 141 */ 142 headlen = (len <= skb_tailroom(skb)) ? len : 143 hdrlen + crypt_len + 8; 144 145 /* The firmware may align the packet to DWORD. 146 * The padding is inserted after the IV. 147 * After copying the header + IV skip the padding if 148 * present before copying packet data. 149 */ 150 hdrlen += crypt_len; 151 152 if (WARN_ONCE(headlen < hdrlen, 153 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 154 hdrlen, len, crypt_len)) { 155 /* 156 * We warn and trace because we want to be able to see 157 * it in trace-cmd as well. 158 */ 159 IWL_DEBUG_RX(mvm, 160 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 161 hdrlen, len, crypt_len); 162 return -EINVAL; 163 } 164 165 skb_put_data(skb, hdr, hdrlen); 166 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 167 168 /* 169 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 170 * certain cases and starts the checksum after the SNAP. Check if 171 * this is the case - it's easier to just bail out to CHECKSUM_NONE 172 * in the cases the hardware didn't handle, since it's rare to see 173 * such packets, even though the hardware did calculate the checksum 174 * in this case, just starting after the MAC header instead. 175 */ 176 if (skb->ip_summed == CHECKSUM_COMPLETE) { 177 struct { 178 u8 hdr[6]; 179 __be16 type; 180 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 181 182 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 183 !ether_addr_equal(shdr->hdr, rfc1042_header) || 184 (shdr->type != htons(ETH_P_IP) && 185 shdr->type != htons(ETH_P_ARP) && 186 shdr->type != htons(ETH_P_IPV6) && 187 shdr->type != htons(ETH_P_8021Q) && 188 shdr->type != htons(ETH_P_PAE) && 189 shdr->type != htons(ETH_P_TDLS)))) 190 skb->ip_summed = CHECKSUM_NONE; 191 } 192 193 fraglen = len - headlen; 194 195 if (fraglen) { 196 int offset = (void *)hdr + headlen + pad_len - 197 rxb_addr(rxb) + rxb_offset(rxb); 198 199 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 200 fraglen, rxb->truesize); 201 } 202 203 return 0; 204 } 205 206 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 207 struct sk_buff *skb) 208 { 209 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 210 struct ieee80211_vendor_radiotap *radiotap; 211 const int size = sizeof(*radiotap) + sizeof(__le16); 212 213 if (!mvm->cur_aid) 214 return; 215 216 /* ensure alignment */ 217 BUILD_BUG_ON((size + 2) % 4); 218 219 radiotap = skb_put(skb, size + 2); 220 radiotap->align = 1; 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->subns = 1; 227 radiotap->present = 0x1; 228 radiotap->len = size - sizeof(*radiotap); 229 radiotap->pad = 2; 230 231 /* fill the data now */ 232 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 233 /* and clear the padding */ 234 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 235 236 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 237 } 238 239 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 240 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 241 struct napi_struct *napi, 242 struct sk_buff *skb, int queue, 243 struct ieee80211_sta *sta, 244 bool csi) 245 { 246 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 247 kfree_skb(skb); 248 else 249 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 250 } 251 252 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 253 struct ieee80211_rx_status *rx_status, 254 u32 rate_n_flags, int energy_a, 255 int energy_b) 256 { 257 int max_energy; 258 u32 rate_flags = rate_n_flags; 259 260 energy_a = energy_a ? -energy_a : S8_MIN; 261 energy_b = energy_b ? -energy_b : S8_MIN; 262 max_energy = max(energy_a, energy_b); 263 264 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 265 energy_a, energy_b, max_energy); 266 267 rx_status->signal = max_energy; 268 rx_status->chains = 269 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 270 rx_status->chain_signal[0] = energy_a; 271 rx_status->chain_signal[1] = energy_b; 272 rx_status->chain_signal[2] = S8_MIN; 273 } 274 275 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 276 struct ieee80211_hdr *hdr, 277 struct iwl_rx_mpdu_desc *desc, 278 u32 status) 279 { 280 struct iwl_mvm_sta *mvmsta; 281 struct iwl_mvm_vif *mvmvif; 282 u8 fwkeyid = u32_get_bits(status, IWL_RX_MPDU_STATUS_KEY); 283 u8 keyid; 284 struct ieee80211_key_conf *key; 285 u32 len = le16_to_cpu(desc->mpdu_len); 286 const u8 *frame = (void *)hdr; 287 288 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 289 return 0; 290 291 /* 292 * For non-beacon, we don't really care. But beacons may 293 * be filtered out, and we thus need the firmware's replay 294 * detection, otherwise beacons the firmware previously 295 * filtered could be replayed, or something like that, and 296 * it can filter a lot - though usually only if nothing has 297 * changed. 298 */ 299 if (!ieee80211_is_beacon(hdr->frame_control)) 300 return 0; 301 302 /* good cases */ 303 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 304 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) 305 return 0; 306 307 if (!sta) 308 return -1; 309 310 mvmsta = iwl_mvm_sta_from_mac80211(sta); 311 312 /* what? */ 313 if (fwkeyid != 6 && fwkeyid != 7) 314 return -1; 315 316 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 317 318 key = rcu_dereference(mvmvif->bcn_prot.keys[fwkeyid - 6]); 319 if (!key) 320 return -1; 321 322 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 323 return -1; 324 325 /* 326 * See if the key ID matches - if not this may be due to a 327 * switch and the firmware may erroneously report !MIC_OK. 328 */ 329 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 330 if (keyid != fwkeyid) 331 return -1; 332 333 /* Report status to mac80211 */ 334 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 335 ieee80211_key_mic_failure(key); 336 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 337 ieee80211_key_replay(key); 338 339 return -1; 340 } 341 342 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 343 struct ieee80211_hdr *hdr, 344 struct ieee80211_rx_status *stats, u16 phy_info, 345 struct iwl_rx_mpdu_desc *desc, 346 u32 pkt_flags, int queue, u8 *crypt_len) 347 { 348 u32 status = le32_to_cpu(desc->status); 349 350 /* 351 * Drop UNKNOWN frames in aggregation, unless in monitor mode 352 * (where we don't have the keys). 353 * We limit this to aggregation because in TKIP this is a valid 354 * scenario, since we may not have the (correct) TTAK (phase 1 355 * key) in the firmware. 356 */ 357 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 358 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 359 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 360 return -1; 361 362 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 363 !ieee80211_has_protected(hdr->frame_control))) 364 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status); 365 366 if (!ieee80211_has_protected(hdr->frame_control) || 367 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 368 IWL_RX_MPDU_STATUS_SEC_NONE) 369 return 0; 370 371 /* TODO: handle packets encrypted with unknown alg */ 372 373 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 374 case IWL_RX_MPDU_STATUS_SEC_CCM: 375 case IWL_RX_MPDU_STATUS_SEC_GCM: 376 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 377 /* alg is CCM: check MIC only */ 378 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 379 return -1; 380 381 stats->flag |= RX_FLAG_DECRYPTED; 382 if (pkt_flags & FH_RSCSR_RADA_EN) 383 stats->flag |= RX_FLAG_MIC_STRIPPED; 384 *crypt_len = IEEE80211_CCMP_HDR_LEN; 385 return 0; 386 case IWL_RX_MPDU_STATUS_SEC_TKIP: 387 /* Don't drop the frame and decrypt it in SW */ 388 if (!fw_has_api(&mvm->fw->ucode_capa, 389 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 390 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 391 return 0; 392 393 if (mvm->trans->trans_cfg->gen2 && 394 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 395 stats->flag |= RX_FLAG_MMIC_ERROR; 396 397 *crypt_len = IEEE80211_TKIP_IV_LEN; 398 fallthrough; 399 case IWL_RX_MPDU_STATUS_SEC_WEP: 400 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 401 return -1; 402 403 stats->flag |= RX_FLAG_DECRYPTED; 404 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 405 IWL_RX_MPDU_STATUS_SEC_WEP) 406 *crypt_len = IEEE80211_WEP_IV_LEN; 407 408 if (pkt_flags & FH_RSCSR_RADA_EN) { 409 stats->flag |= RX_FLAG_ICV_STRIPPED; 410 if (mvm->trans->trans_cfg->gen2) 411 stats->flag |= RX_FLAG_MMIC_STRIPPED; 412 } 413 414 return 0; 415 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 416 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 417 return -1; 418 stats->flag |= RX_FLAG_DECRYPTED; 419 return 0; 420 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 421 break; 422 default: 423 /* 424 * Sometimes we can get frames that were not decrypted 425 * because the firmware didn't have the keys yet. This can 426 * happen after connection where we can get multicast frames 427 * before the GTK is installed. 428 * Silently drop those frames. 429 * Also drop un-decrypted frames in monitor mode. 430 */ 431 if (!is_multicast_ether_addr(hdr->addr1) && 432 !mvm->monitor_on && net_ratelimit()) 433 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 434 } 435 436 return 0; 437 } 438 439 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 440 struct ieee80211_sta *sta, 441 struct sk_buff *skb, 442 struct iwl_rx_packet *pkt) 443 { 444 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 445 446 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 447 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 448 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 449 450 skb->ip_summed = CHECKSUM_COMPLETE; 451 skb->csum = csum_unfold(~(__force __sum16)hwsum); 452 } 453 } else { 454 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 455 struct iwl_mvm_vif *mvmvif; 456 u16 flags = le16_to_cpu(desc->l3l4_flags); 457 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 458 IWL_RX_L3_PROTO_POS); 459 460 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 461 462 if (mvmvif->features & NETIF_F_RXCSUM && 463 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 464 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 465 l3_prot == IWL_RX_L3_TYPE_IPV6 || 466 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 467 skb->ip_summed = CHECKSUM_UNNECESSARY; 468 } 469 } 470 471 /* 472 * returns true if a packet is a duplicate and should be dropped. 473 * Updates AMSDU PN tracking info 474 */ 475 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 476 struct ieee80211_rx_status *rx_status, 477 struct ieee80211_hdr *hdr, 478 struct iwl_rx_mpdu_desc *desc) 479 { 480 struct iwl_mvm_sta *mvm_sta; 481 struct iwl_mvm_rxq_dup_data *dup_data; 482 u8 tid, sub_frame_idx; 483 484 if (WARN_ON(IS_ERR_OR_NULL(sta))) 485 return false; 486 487 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 488 dup_data = &mvm_sta->dup_data[queue]; 489 490 /* 491 * Drop duplicate 802.11 retransmissions 492 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 493 */ 494 if (ieee80211_is_ctl(hdr->frame_control) || 495 ieee80211_is_qos_nullfunc(hdr->frame_control) || 496 is_multicast_ether_addr(hdr->addr1)) { 497 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 498 return false; 499 } 500 501 if (ieee80211_is_data_qos(hdr->frame_control)) 502 /* frame has qos control */ 503 tid = ieee80211_get_tid(hdr); 504 else 505 tid = IWL_MAX_TID_COUNT; 506 507 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 508 sub_frame_idx = desc->amsdu_info & 509 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 510 511 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 512 dup_data->last_seq[tid] == hdr->seq_ctrl && 513 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 514 return true; 515 516 /* Allow same PN as the first subframe for following sub frames */ 517 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 518 sub_frame_idx > dup_data->last_sub_frame[tid] && 519 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 520 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 521 522 dup_data->last_seq[tid] = hdr->seq_ctrl; 523 dup_data->last_sub_frame[tid] = sub_frame_idx; 524 525 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 526 527 return false; 528 } 529 530 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask, 531 const struct iwl_mvm_internal_rxq_notif *notif, 532 u32 notif_size, bool async) 533 { 534 u8 buf[sizeof(struct iwl_rxq_sync_cmd) + 535 sizeof(struct iwl_mvm_rss_sync_notif)]; 536 struct iwl_rxq_sync_cmd *cmd = (void *)buf; 537 u32 data_size = sizeof(*cmd) + notif_size; 538 int ret; 539 540 /* 541 * size must be a multiple of DWORD 542 * Ensure we don't overflow buf 543 */ 544 if (WARN_ON(notif_size & 3 || 545 notif_size > sizeof(struct iwl_mvm_rss_sync_notif))) 546 return -EINVAL; 547 548 cmd->rxq_mask = cpu_to_le32(rxq_mask); 549 cmd->count = cpu_to_le32(notif_size); 550 cmd->flags = 0; 551 memcpy(cmd->payload, notif, notif_size); 552 553 ret = iwl_mvm_send_cmd_pdu(mvm, 554 WIDE_ID(DATA_PATH_GROUP, 555 TRIGGER_RX_QUEUES_NOTIF_CMD), 556 async ? CMD_ASYNC : 0, data_size, cmd); 557 558 return ret; 559 } 560 561 /* 562 * Returns true if sn2 - buffer_size < sn1 < sn2. 563 * To be used only in order to compare reorder buffer head with NSSN. 564 * We fully trust NSSN unless it is behind us due to reorder timeout. 565 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 566 */ 567 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 568 { 569 return ieee80211_sn_less(sn1, sn2) && 570 !ieee80211_sn_less(sn1, sn2 - buffer_size); 571 } 572 573 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 574 { 575 if (IWL_MVM_USE_NSSN_SYNC) { 576 struct iwl_mvm_rss_sync_notif notif = { 577 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC, 578 .metadata.sync = 0, 579 .nssn_sync.baid = baid, 580 .nssn_sync.nssn = nssn, 581 }; 582 583 iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if, 584 sizeof(notif)); 585 } 586 } 587 588 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 589 590 enum iwl_mvm_release_flags { 591 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 592 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 593 }; 594 595 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 596 struct ieee80211_sta *sta, 597 struct napi_struct *napi, 598 struct iwl_mvm_baid_data *baid_data, 599 struct iwl_mvm_reorder_buffer *reorder_buf, 600 u16 nssn, u32 flags) 601 { 602 struct iwl_mvm_reorder_buf_entry *entries = 603 &baid_data->entries[reorder_buf->queue * 604 baid_data->entries_per_queue]; 605 u16 ssn = reorder_buf->head_sn; 606 607 lockdep_assert_held(&reorder_buf->lock); 608 609 /* 610 * We keep the NSSN not too far behind, if we are sync'ing it and it 611 * is more than 2048 ahead of us, it must be behind us. Discard it. 612 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 613 * behind and this queue already processed packets. The next if 614 * would have caught cases where this queue would have processed less 615 * than 64 packets, but it may have processed more than 64 packets. 616 */ 617 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 618 ieee80211_sn_less(nssn, ssn)) 619 goto set_timer; 620 621 /* ignore nssn smaller than head sn - this can happen due to timeout */ 622 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 623 goto set_timer; 624 625 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 626 int index = ssn % reorder_buf->buf_size; 627 struct sk_buff_head *skb_list = &entries[index].e.frames; 628 struct sk_buff *skb; 629 630 ssn = ieee80211_sn_inc(ssn); 631 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 632 (ssn == 2048 || ssn == 0)) 633 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 634 635 /* 636 * Empty the list. Will have more than one frame for A-MSDU. 637 * Empty list is valid as well since nssn indicates frames were 638 * received. 639 */ 640 while ((skb = __skb_dequeue(skb_list))) { 641 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 642 reorder_buf->queue, 643 sta, false); 644 reorder_buf->num_stored--; 645 } 646 } 647 reorder_buf->head_sn = nssn; 648 649 set_timer: 650 if (reorder_buf->num_stored && !reorder_buf->removed) { 651 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 652 653 while (skb_queue_empty(&entries[index].e.frames)) 654 index = (index + 1) % reorder_buf->buf_size; 655 /* modify timer to match next frame's expiration time */ 656 mod_timer(&reorder_buf->reorder_timer, 657 entries[index].e.reorder_time + 1 + 658 RX_REORDER_BUF_TIMEOUT_MQ); 659 } else { 660 del_timer(&reorder_buf->reorder_timer); 661 } 662 } 663 664 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 665 { 666 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 667 struct iwl_mvm_baid_data *baid_data = 668 iwl_mvm_baid_data_from_reorder_buf(buf); 669 struct iwl_mvm_reorder_buf_entry *entries = 670 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 671 int i; 672 u16 sn = 0, index = 0; 673 bool expired = false; 674 bool cont = false; 675 676 spin_lock(&buf->lock); 677 678 if (!buf->num_stored || buf->removed) { 679 spin_unlock(&buf->lock); 680 return; 681 } 682 683 for (i = 0; i < buf->buf_size ; i++) { 684 index = (buf->head_sn + i) % buf->buf_size; 685 686 if (skb_queue_empty(&entries[index].e.frames)) { 687 /* 688 * If there is a hole and the next frame didn't expire 689 * we want to break and not advance SN 690 */ 691 cont = false; 692 continue; 693 } 694 if (!cont && 695 !time_after(jiffies, entries[index].e.reorder_time + 696 RX_REORDER_BUF_TIMEOUT_MQ)) 697 break; 698 699 expired = true; 700 /* continue until next hole after this expired frames */ 701 cont = true; 702 sn = ieee80211_sn_add(buf->head_sn, i + 1); 703 } 704 705 if (expired) { 706 struct ieee80211_sta *sta; 707 struct iwl_mvm_sta *mvmsta; 708 u8 sta_id = baid_data->sta_id; 709 710 rcu_read_lock(); 711 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 712 mvmsta = iwl_mvm_sta_from_mac80211(sta); 713 714 /* SN is set to the last expired frame + 1 */ 715 IWL_DEBUG_HT(buf->mvm, 716 "Releasing expired frames for sta %u, sn %d\n", 717 sta_id, sn); 718 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 719 sta, baid_data->tid); 720 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 721 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 722 rcu_read_unlock(); 723 } else { 724 /* 725 * If no frame expired and there are stored frames, index is now 726 * pointing to the first unexpired frame - modify timer 727 * accordingly to this frame. 728 */ 729 mod_timer(&buf->reorder_timer, 730 entries[index].e.reorder_time + 731 1 + RX_REORDER_BUF_TIMEOUT_MQ); 732 } 733 spin_unlock(&buf->lock); 734 } 735 736 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 737 struct iwl_mvm_delba_data *data) 738 { 739 struct iwl_mvm_baid_data *ba_data; 740 struct ieee80211_sta *sta; 741 struct iwl_mvm_reorder_buffer *reorder_buf; 742 u8 baid = data->baid; 743 744 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 745 return; 746 747 rcu_read_lock(); 748 749 ba_data = rcu_dereference(mvm->baid_map[baid]); 750 if (WARN_ON_ONCE(!ba_data)) 751 goto out; 752 753 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 754 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 755 goto out; 756 757 reorder_buf = &ba_data->reorder_buf[queue]; 758 759 /* release all frames that are in the reorder buffer to the stack */ 760 spin_lock_bh(&reorder_buf->lock); 761 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 762 ieee80211_sn_add(reorder_buf->head_sn, 763 reorder_buf->buf_size), 764 0); 765 spin_unlock_bh(&reorder_buf->lock); 766 del_timer_sync(&reorder_buf->reorder_timer); 767 768 out: 769 rcu_read_unlock(); 770 } 771 772 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 773 struct napi_struct *napi, 774 u8 baid, u16 nssn, int queue, 775 u32 flags) 776 { 777 struct ieee80211_sta *sta; 778 struct iwl_mvm_reorder_buffer *reorder_buf; 779 struct iwl_mvm_baid_data *ba_data; 780 781 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 782 baid, nssn); 783 784 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 785 baid >= ARRAY_SIZE(mvm->baid_map))) 786 return; 787 788 rcu_read_lock(); 789 790 ba_data = rcu_dereference(mvm->baid_map[baid]); 791 if (WARN_ON_ONCE(!ba_data)) 792 goto out; 793 794 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 795 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 796 goto out; 797 798 reorder_buf = &ba_data->reorder_buf[queue]; 799 800 spin_lock_bh(&reorder_buf->lock); 801 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 802 reorder_buf, nssn, flags); 803 spin_unlock_bh(&reorder_buf->lock); 804 805 out: 806 rcu_read_unlock(); 807 } 808 809 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 810 struct napi_struct *napi, int queue, 811 const struct iwl_mvm_nssn_sync_data *data) 812 { 813 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 814 data->nssn, queue, 815 IWL_MVM_RELEASE_FROM_RSS_SYNC); 816 } 817 818 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 819 struct iwl_rx_cmd_buffer *rxb, int queue) 820 { 821 struct iwl_rx_packet *pkt = rxb_addr(rxb); 822 struct iwl_rxq_sync_notification *notif; 823 struct iwl_mvm_internal_rxq_notif *internal_notif; 824 u32 len = iwl_rx_packet_payload_len(pkt); 825 826 notif = (void *)pkt->data; 827 internal_notif = (void *)notif->payload; 828 829 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 830 "invalid notification size %d (%d)", 831 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 832 return; 833 /* remove only the firmware header, we want all of our payload below */ 834 len -= sizeof(*notif); 835 836 if (internal_notif->sync && 837 mvm->queue_sync_cookie != internal_notif->cookie) { 838 WARN_ONCE(1, "Received expired RX queue sync message\n"); 839 return; 840 } 841 842 switch (internal_notif->type) { 843 case IWL_MVM_RXQ_EMPTY: 844 WARN_ONCE(len != sizeof(*internal_notif), 845 "invalid empty notification size %d (%d)", 846 len, (int)sizeof(*internal_notif)); 847 break; 848 case IWL_MVM_RXQ_NOTIF_DEL_BA: 849 if (WARN_ONCE(len != sizeof(struct iwl_mvm_rss_sync_notif), 850 "invalid delba notification size %d (%d)", 851 len, (int)sizeof(struct iwl_mvm_rss_sync_notif))) 852 break; 853 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 854 break; 855 case IWL_MVM_RXQ_NSSN_SYNC: 856 if (WARN_ONCE(len != sizeof(struct iwl_mvm_rss_sync_notif), 857 "invalid nssn sync notification size %d (%d)", 858 len, (int)sizeof(struct iwl_mvm_rss_sync_notif))) 859 break; 860 iwl_mvm_nssn_sync(mvm, napi, queue, 861 (void *)internal_notif->data); 862 break; 863 default: 864 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 865 } 866 867 if (internal_notif->sync) { 868 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 869 "queue sync: queue %d responded a second time!\n", 870 queue); 871 if (READ_ONCE(mvm->queue_sync_state) == 0) 872 wake_up(&mvm->rx_sync_waitq); 873 } 874 } 875 876 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 877 struct ieee80211_sta *sta, int tid, 878 struct iwl_mvm_reorder_buffer *buffer, 879 u32 reorder, u32 gp2, int queue) 880 { 881 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 882 883 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 884 /* we have a new (A-)MPDU ... */ 885 886 /* 887 * reset counter to 0 if we didn't have any oldsn in 888 * the last A-MPDU (as detected by GP2 being identical) 889 */ 890 if (!buffer->consec_oldsn_prev_drop) 891 buffer->consec_oldsn_drops = 0; 892 893 /* either way, update our tracking state */ 894 buffer->consec_oldsn_ampdu_gp2 = gp2; 895 } else if (buffer->consec_oldsn_prev_drop) { 896 /* 897 * tracking state didn't change, and we had an old SN 898 * indication before - do nothing in this case, we 899 * already noted this one down and are waiting for the 900 * next A-MPDU (by GP2) 901 */ 902 return; 903 } 904 905 /* return unless this MPDU has old SN */ 906 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 907 return; 908 909 /* update state */ 910 buffer->consec_oldsn_prev_drop = 1; 911 buffer->consec_oldsn_drops++; 912 913 /* if limit is reached, send del BA and reset state */ 914 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 915 IWL_WARN(mvm, 916 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 917 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 918 sta->addr, queue, tid); 919 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 920 buffer->consec_oldsn_prev_drop = 0; 921 buffer->consec_oldsn_drops = 0; 922 } 923 } 924 925 /* 926 * Returns true if the MPDU was buffered\dropped, false if it should be passed 927 * to upper layer. 928 */ 929 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 930 struct napi_struct *napi, 931 int queue, 932 struct ieee80211_sta *sta, 933 struct sk_buff *skb, 934 struct iwl_rx_mpdu_desc *desc) 935 { 936 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 937 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 938 struct iwl_mvm_sta *mvm_sta; 939 struct iwl_mvm_baid_data *baid_data; 940 struct iwl_mvm_reorder_buffer *buffer; 941 struct sk_buff *tail; 942 u32 reorder = le32_to_cpu(desc->reorder_data); 943 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 944 bool last_subframe = 945 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 946 u8 tid = ieee80211_get_tid(hdr); 947 u8 sub_frame_idx = desc->amsdu_info & 948 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 949 struct iwl_mvm_reorder_buf_entry *entries; 950 int index; 951 u16 nssn, sn; 952 u8 baid; 953 954 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 955 IWL_RX_MPDU_REORDER_BAID_SHIFT; 956 957 /* 958 * This also covers the case of receiving a Block Ack Request 959 * outside a BA session; we'll pass it to mac80211 and that 960 * then sends a delBA action frame. 961 * This also covers pure monitor mode, in which case we won't 962 * have any BA sessions. 963 */ 964 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 965 return false; 966 967 /* no sta yet */ 968 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 969 "Got valid BAID without a valid station assigned\n")) 970 return false; 971 972 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 973 974 /* not a data packet or a bar */ 975 if (!ieee80211_is_back_req(hdr->frame_control) && 976 (!ieee80211_is_data_qos(hdr->frame_control) || 977 is_multicast_ether_addr(hdr->addr1))) 978 return false; 979 980 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 981 return false; 982 983 baid_data = rcu_dereference(mvm->baid_map[baid]); 984 if (!baid_data) { 985 IWL_DEBUG_RX(mvm, 986 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 987 baid, reorder); 988 return false; 989 } 990 991 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 992 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 993 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 994 tid)) 995 return false; 996 997 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 998 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 999 IWL_RX_MPDU_REORDER_SN_SHIFT; 1000 1001 buffer = &baid_data->reorder_buf[queue]; 1002 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 1003 1004 spin_lock_bh(&buffer->lock); 1005 1006 if (!buffer->valid) { 1007 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 1008 spin_unlock_bh(&buffer->lock); 1009 return false; 1010 } 1011 buffer->valid = true; 1012 } 1013 1014 if (ieee80211_is_back_req(hdr->frame_control)) { 1015 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1016 buffer, nssn, 0); 1017 goto drop; 1018 } 1019 1020 /* 1021 * If there was a significant jump in the nssn - adjust. 1022 * If the SN is smaller than the NSSN it might need to first go into 1023 * the reorder buffer, in which case we just release up to it and the 1024 * rest of the function will take care of storing it and releasing up to 1025 * the nssn. 1026 * This should not happen. This queue has been lagging and it should 1027 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1028 * and update the other queues. 1029 */ 1030 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1031 buffer->buf_size) || 1032 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1033 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1034 1035 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1036 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1037 } 1038 1039 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1040 rx_status->device_timestamp, queue); 1041 1042 /* drop any oudated packets */ 1043 if (ieee80211_sn_less(sn, buffer->head_sn)) 1044 goto drop; 1045 1046 /* release immediately if allowed by nssn and no stored frames */ 1047 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1048 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1049 buffer->buf_size) && 1050 (!amsdu || last_subframe)) { 1051 /* 1052 * If we crossed the 2048 or 0 SN, notify all the 1053 * queues. This is done in order to avoid having a 1054 * head_sn that lags behind for too long. When that 1055 * happens, we can get to a situation where the head_sn 1056 * is within the interval [nssn - buf_size : nssn] 1057 * which will make us think that the nssn is a packet 1058 * that we already freed because of the reordering 1059 * buffer and we will ignore it. So maintain the 1060 * head_sn somewhat updated across all the queues: 1061 * when it crosses 0 and 2048. 1062 */ 1063 if (sn == 2048 || sn == 0) 1064 iwl_mvm_sync_nssn(mvm, baid, sn); 1065 buffer->head_sn = nssn; 1066 } 1067 /* No need to update AMSDU last SN - we are moving the head */ 1068 spin_unlock_bh(&buffer->lock); 1069 return false; 1070 } 1071 1072 /* 1073 * release immediately if there are no stored frames, and the sn is 1074 * equal to the head. 1075 * This can happen due to reorder timer, where NSSN is behind head_sn. 1076 * When we released everything, and we got the next frame in the 1077 * sequence, according to the NSSN we can't release immediately, 1078 * while technically there is no hole and we can move forward. 1079 */ 1080 if (!buffer->num_stored && sn == buffer->head_sn) { 1081 if (!amsdu || last_subframe) { 1082 if (sn == 2048 || sn == 0) 1083 iwl_mvm_sync_nssn(mvm, baid, sn); 1084 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1085 } 1086 /* No need to update AMSDU last SN - we are moving the head */ 1087 spin_unlock_bh(&buffer->lock); 1088 return false; 1089 } 1090 1091 index = sn % buffer->buf_size; 1092 1093 /* 1094 * Check if we already stored this frame 1095 * As AMSDU is either received or not as whole, logic is simple: 1096 * If we have frames in that position in the buffer and the last frame 1097 * originated from AMSDU had a different SN then it is a retransmission. 1098 * If it is the same SN then if the subframe index is incrementing it 1099 * is the same AMSDU - otherwise it is a retransmission. 1100 */ 1101 tail = skb_peek_tail(&entries[index].e.frames); 1102 if (tail && !amsdu) 1103 goto drop; 1104 else if (tail && (sn != buffer->last_amsdu || 1105 buffer->last_sub_index >= sub_frame_idx)) 1106 goto drop; 1107 1108 /* put in reorder buffer */ 1109 __skb_queue_tail(&entries[index].e.frames, skb); 1110 buffer->num_stored++; 1111 entries[index].e.reorder_time = jiffies; 1112 1113 if (amsdu) { 1114 buffer->last_amsdu = sn; 1115 buffer->last_sub_index = sub_frame_idx; 1116 } 1117 1118 /* 1119 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1120 * The reason is that NSSN advances on the first sub-frame, and may 1121 * cause the reorder buffer to advance before all the sub-frames arrive. 1122 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1123 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1124 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1125 * already ahead and it will be dropped. 1126 * If the last sub-frame is not on this queue - we will get frame 1127 * release notification with up to date NSSN. 1128 */ 1129 if (!amsdu || last_subframe) 1130 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1131 buffer, nssn, 1132 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1133 1134 spin_unlock_bh(&buffer->lock); 1135 return true; 1136 1137 drop: 1138 kfree_skb(skb); 1139 spin_unlock_bh(&buffer->lock); 1140 return true; 1141 } 1142 1143 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1144 u32 reorder_data, u8 baid) 1145 { 1146 unsigned long now = jiffies; 1147 unsigned long timeout; 1148 struct iwl_mvm_baid_data *data; 1149 1150 rcu_read_lock(); 1151 1152 data = rcu_dereference(mvm->baid_map[baid]); 1153 if (!data) { 1154 IWL_DEBUG_RX(mvm, 1155 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1156 baid, reorder_data); 1157 goto out; 1158 } 1159 1160 if (!data->timeout) 1161 goto out; 1162 1163 timeout = data->timeout; 1164 /* 1165 * Do not update last rx all the time to avoid cache bouncing 1166 * between the rx queues. 1167 * Update it every timeout. Worst case is the session will 1168 * expire after ~ 2 * timeout, which doesn't matter that much. 1169 */ 1170 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1171 /* Update is atomic */ 1172 data->last_rx = now; 1173 1174 out: 1175 rcu_read_unlock(); 1176 } 1177 1178 static void iwl_mvm_flip_address(u8 *addr) 1179 { 1180 int i; 1181 u8 mac_addr[ETH_ALEN]; 1182 1183 for (i = 0; i < ETH_ALEN; i++) 1184 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1185 ether_addr_copy(addr, mac_addr); 1186 } 1187 1188 struct iwl_mvm_rx_phy_data { 1189 enum iwl_rx_phy_info_type info_type; 1190 __le32 d0, d1, d2, d3; 1191 __le16 d4; 1192 }; 1193 1194 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1195 struct iwl_mvm_rx_phy_data *phy_data, 1196 u32 rate_n_flags, 1197 struct ieee80211_radiotap_he_mu *he_mu) 1198 { 1199 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1200 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1201 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1202 1203 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1204 he_mu->flags1 |= 1205 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1206 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1207 1208 he_mu->flags1 |= 1209 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1210 phy_data4), 1211 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1212 1213 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1214 phy_data2); 1215 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1216 phy_data3); 1217 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1218 phy_data2); 1219 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1220 phy_data3); 1221 } 1222 1223 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1224 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { 1225 he_mu->flags1 |= 1226 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1227 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1228 1229 he_mu->flags2 |= 1230 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1231 phy_data4), 1232 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1233 1234 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1235 phy_data2); 1236 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1237 phy_data3); 1238 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1239 phy_data2); 1240 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1241 phy_data3); 1242 } 1243 } 1244 1245 static void 1246 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1247 u32 rate_n_flags, 1248 struct ieee80211_radiotap_he *he, 1249 struct ieee80211_radiotap_he_mu *he_mu, 1250 struct ieee80211_rx_status *rx_status) 1251 { 1252 /* 1253 * Unfortunately, we have to leave the mac80211 data 1254 * incorrect for the case that we receive an HE-MU 1255 * transmission and *don't* have the HE phy data (due 1256 * to the bits being used for TSF). This shouldn't 1257 * happen though as management frames where we need 1258 * the TSF/timers are not be transmitted in HE-MU. 1259 */ 1260 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1261 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1262 u8 offs = 0; 1263 1264 rx_status->bw = RATE_INFO_BW_HE_RU; 1265 1266 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1267 1268 switch (ru) { 1269 case 0 ... 36: 1270 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1271 offs = ru; 1272 break; 1273 case 37 ... 52: 1274 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1275 offs = ru - 37; 1276 break; 1277 case 53 ... 60: 1278 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1279 offs = ru - 53; 1280 break; 1281 case 61 ... 64: 1282 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1283 offs = ru - 61; 1284 break; 1285 case 65 ... 66: 1286 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1287 offs = ru - 65; 1288 break; 1289 case 67: 1290 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1291 break; 1292 case 68: 1293 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1294 break; 1295 } 1296 he->data2 |= le16_encode_bits(offs, 1297 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1298 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1299 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1300 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1301 he->data2 |= 1302 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1303 1304 #define CHECK_BW(bw) \ 1305 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1306 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1307 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1308 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1309 CHECK_BW(20); 1310 CHECK_BW(40); 1311 CHECK_BW(80); 1312 CHECK_BW(160); 1313 1314 if (he_mu) 1315 he_mu->flags2 |= 1316 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1317 rate_n_flags), 1318 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1319 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 1320 he->data6 |= 1321 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1322 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1323 rate_n_flags), 1324 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1325 } 1326 1327 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1328 struct iwl_mvm_rx_phy_data *phy_data, 1329 struct ieee80211_radiotap_he *he, 1330 struct ieee80211_radiotap_he_mu *he_mu, 1331 struct ieee80211_rx_status *rx_status, 1332 u32 rate_n_flags, int queue) 1333 { 1334 switch (phy_data->info_type) { 1335 case IWL_RX_PHY_INFO_TYPE_NONE: 1336 case IWL_RX_PHY_INFO_TYPE_CCK: 1337 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1338 case IWL_RX_PHY_INFO_TYPE_HT: 1339 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1340 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1341 return; 1342 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1343 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1344 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1345 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1346 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1347 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1348 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1349 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1350 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1351 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1352 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1353 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1354 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1355 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1356 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1357 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1358 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1359 fallthrough; 1360 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1361 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1362 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1363 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1364 /* HE common */ 1365 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1366 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1367 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1368 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1369 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1370 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1371 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1372 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1373 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1374 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1375 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1376 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1377 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1378 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1379 IWL_RX_PHY_DATA0_HE_UPLINK), 1380 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1381 } 1382 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1383 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1384 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1385 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1386 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1387 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1388 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1389 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1390 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1391 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1392 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1393 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1394 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1395 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1396 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1397 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1398 IWL_RX_PHY_DATA0_HE_DOPPLER), 1399 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1400 break; 1401 } 1402 1403 switch (phy_data->info_type) { 1404 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1405 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1406 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1407 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1408 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1409 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1410 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1411 break; 1412 default: 1413 /* nothing here */ 1414 break; 1415 } 1416 1417 switch (phy_data->info_type) { 1418 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1419 he_mu->flags1 |= 1420 le16_encode_bits(le16_get_bits(phy_data->d4, 1421 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1422 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1423 he_mu->flags1 |= 1424 le16_encode_bits(le16_get_bits(phy_data->d4, 1425 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1426 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1427 he_mu->flags2 |= 1428 le16_encode_bits(le16_get_bits(phy_data->d4, 1429 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1430 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1431 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1432 fallthrough; 1433 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1434 he_mu->flags2 |= 1435 le16_encode_bits(le32_get_bits(phy_data->d1, 1436 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1437 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1438 he_mu->flags2 |= 1439 le16_encode_bits(le32_get_bits(phy_data->d1, 1440 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1441 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1442 fallthrough; 1443 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1444 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1445 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1446 he, he_mu, rx_status); 1447 break; 1448 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1449 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1450 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1451 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1452 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1453 break; 1454 default: 1455 /* nothing */ 1456 break; 1457 } 1458 } 1459 1460 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1461 struct iwl_mvm_rx_phy_data *phy_data, 1462 u32 rate_n_flags, u16 phy_info, int queue) 1463 { 1464 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1465 struct ieee80211_radiotap_he *he = NULL; 1466 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1467 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1468 u8 stbc, ltf; 1469 static const struct ieee80211_radiotap_he known = { 1470 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1471 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1472 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1473 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1474 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1475 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1476 }; 1477 static const struct ieee80211_radiotap_he_mu mu_known = { 1478 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1479 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1480 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1481 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1482 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1483 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1484 }; 1485 1486 he = skb_put_data(skb, &known, sizeof(known)); 1487 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1488 1489 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1490 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1491 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1492 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1493 } 1494 1495 /* report the AMPDU-EOF bit on single frames */ 1496 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1497 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1498 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1499 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1500 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1501 } 1502 1503 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1504 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1505 rate_n_flags, queue); 1506 1507 /* update aggregation data for monitor sake on default queue */ 1508 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1509 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1510 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1511 1512 /* toggle is switched whenever new aggregation starts */ 1513 if (toggle_bit != mvm->ampdu_toggle) { 1514 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1515 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1516 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1517 } 1518 } 1519 1520 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1521 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1522 rx_status->bw = RATE_INFO_BW_HE_RU; 1523 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1524 } 1525 1526 /* actually data is filled in mac80211 */ 1527 if (he_type == RATE_MCS_HE_TYPE_SU || 1528 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1529 he->data1 |= 1530 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1531 1532 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1533 rx_status->nss = 1534 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1535 RATE_VHT_MCS_NSS_POS) + 1; 1536 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1537 rx_status->encoding = RX_ENC_HE; 1538 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1539 if (rate_n_flags & RATE_MCS_BF_MSK) 1540 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1541 1542 rx_status->he_dcm = 1543 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1544 1545 #define CHECK_TYPE(F) \ 1546 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1547 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1548 1549 CHECK_TYPE(SU); 1550 CHECK_TYPE(EXT_SU); 1551 CHECK_TYPE(MU); 1552 CHECK_TYPE(TRIG); 1553 1554 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1555 1556 if (rate_n_flags & RATE_MCS_BF_MSK) 1557 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1558 1559 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1560 RATE_MCS_HE_GI_LTF_POS) { 1561 case 0: 1562 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1563 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1564 else 1565 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1566 if (he_type == RATE_MCS_HE_TYPE_MU) 1567 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1568 else 1569 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1570 break; 1571 case 1: 1572 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1573 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1574 else 1575 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1576 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1577 break; 1578 case 2: 1579 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1580 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1581 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1582 } else { 1583 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1584 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1585 } 1586 break; 1587 case 3: 1588 if ((he_type == RATE_MCS_HE_TYPE_SU || 1589 he_type == RATE_MCS_HE_TYPE_EXT_SU) && 1590 rate_n_flags & RATE_MCS_SGI_MSK) 1591 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1592 else 1593 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1594 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1595 break; 1596 } 1597 1598 he->data5 |= le16_encode_bits(ltf, 1599 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1600 } 1601 1602 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1603 struct iwl_mvm_rx_phy_data *phy_data) 1604 { 1605 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1606 struct ieee80211_radiotap_lsig *lsig; 1607 1608 switch (phy_data->info_type) { 1609 case IWL_RX_PHY_INFO_TYPE_HT: 1610 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1611 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1612 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1613 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1614 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1615 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1616 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1617 lsig = skb_put(skb, sizeof(*lsig)); 1618 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1619 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1620 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1621 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1622 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1623 break; 1624 default: 1625 break; 1626 } 1627 } 1628 1629 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1630 { 1631 switch (phy_band) { 1632 case PHY_BAND_24: 1633 return NL80211_BAND_2GHZ; 1634 case PHY_BAND_5: 1635 return NL80211_BAND_5GHZ; 1636 case PHY_BAND_6: 1637 return NL80211_BAND_6GHZ; 1638 default: 1639 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1640 return NL80211_BAND_5GHZ; 1641 } 1642 } 1643 1644 struct iwl_rx_sta_csa { 1645 bool all_sta_unblocked; 1646 struct ieee80211_vif *vif; 1647 }; 1648 1649 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1650 { 1651 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1652 struct iwl_rx_sta_csa *rx_sta_csa = data; 1653 1654 if (mvmsta->vif != rx_sta_csa->vif) 1655 return; 1656 1657 if (mvmsta->disable_tx) 1658 rx_sta_csa->all_sta_unblocked = false; 1659 } 1660 1661 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1662 struct iwl_rx_cmd_buffer *rxb, int queue) 1663 { 1664 struct ieee80211_rx_status *rx_status; 1665 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1666 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1667 struct ieee80211_hdr *hdr; 1668 u32 len; 1669 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 1670 u32 rate_n_flags, gp2_on_air_rise; 1671 u16 phy_info; 1672 struct ieee80211_sta *sta = NULL; 1673 struct sk_buff *skb; 1674 u8 crypt_len = 0, channel, energy_a, energy_b; 1675 size_t desc_size; 1676 struct iwl_mvm_rx_phy_data phy_data = { 1677 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1678 }; 1679 bool csi = false; 1680 1681 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1682 return; 1683 1684 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1685 desc_size = sizeof(*desc); 1686 else 1687 desc_size = IWL_RX_DESC_SIZE_V1; 1688 1689 if (unlikely(pkt_len < desc_size)) { 1690 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 1691 return; 1692 } 1693 1694 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1695 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1696 channel = desc->v3.channel; 1697 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1698 energy_a = desc->v3.energy_a; 1699 energy_b = desc->v3.energy_b; 1700 1701 phy_data.d0 = desc->v3.phy_data0; 1702 phy_data.d1 = desc->v3.phy_data1; 1703 phy_data.d2 = desc->v3.phy_data2; 1704 phy_data.d3 = desc->v3.phy_data3; 1705 } else { 1706 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1707 channel = desc->v1.channel; 1708 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1709 energy_a = desc->v1.energy_a; 1710 energy_b = desc->v1.energy_b; 1711 1712 phy_data.d0 = desc->v1.phy_data0; 1713 phy_data.d1 = desc->v1.phy_data1; 1714 phy_data.d2 = desc->v1.phy_data2; 1715 phy_data.d3 = desc->v1.phy_data3; 1716 } 1717 1718 len = le16_to_cpu(desc->mpdu_len); 1719 1720 if (unlikely(len + desc_size > pkt_len)) { 1721 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 1722 return; 1723 } 1724 1725 phy_info = le16_to_cpu(desc->phy_info); 1726 phy_data.d4 = desc->phy_data4; 1727 1728 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1729 phy_data.info_type = 1730 le32_get_bits(phy_data.d1, 1731 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1732 1733 hdr = (void *)(pkt->data + desc_size); 1734 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1735 * ieee80211_hdr pulled. 1736 */ 1737 skb = alloc_skb(128, GFP_ATOMIC); 1738 if (!skb) { 1739 IWL_ERR(mvm, "alloc_skb failed\n"); 1740 return; 1741 } 1742 1743 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1744 /* 1745 * If the device inserted padding it means that (it thought) 1746 * the 802.11 header wasn't a multiple of 4 bytes long. In 1747 * this case, reserve two bytes at the start of the SKB to 1748 * align the payload properly in case we end up copying it. 1749 */ 1750 skb_reserve(skb, 2); 1751 } 1752 1753 rx_status = IEEE80211_SKB_RXCB(skb); 1754 1755 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1756 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1757 case RATE_MCS_CHAN_WIDTH_20: 1758 break; 1759 case RATE_MCS_CHAN_WIDTH_40: 1760 rx_status->bw = RATE_INFO_BW_40; 1761 break; 1762 case RATE_MCS_CHAN_WIDTH_80: 1763 rx_status->bw = RATE_INFO_BW_80; 1764 break; 1765 case RATE_MCS_CHAN_WIDTH_160: 1766 rx_status->bw = RATE_INFO_BW_160; 1767 break; 1768 } 1769 1770 if (rate_n_flags & RATE_MCS_HE_MSK) 1771 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1772 phy_info, queue); 1773 1774 iwl_mvm_decode_lsig(skb, &phy_data); 1775 1776 /* 1777 * Keep packets with CRC errors (and with overrun) for monitor mode 1778 * (otherwise the firmware discards them) but mark them as bad. 1779 */ 1780 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1781 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1782 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1783 le32_to_cpu(desc->status)); 1784 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1785 } 1786 /* set the preamble flag if appropriate */ 1787 if (rate_n_flags & RATE_MCS_CCK_MSK && 1788 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1789 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1790 1791 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1792 u64 tsf_on_air_rise; 1793 1794 if (mvm->trans->trans_cfg->device_family >= 1795 IWL_DEVICE_FAMILY_AX210) 1796 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1797 else 1798 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1799 1800 rx_status->mactime = tsf_on_air_rise; 1801 /* TSF as indicated by the firmware is at INA time */ 1802 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1803 } 1804 1805 rx_status->device_timestamp = gp2_on_air_rise; 1806 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1807 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1808 1809 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1810 } else { 1811 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1812 NL80211_BAND_2GHZ; 1813 } 1814 rx_status->freq = ieee80211_channel_to_frequency(channel, 1815 rx_status->band); 1816 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1817 energy_b); 1818 1819 /* update aggregation data for monitor sake on default queue */ 1820 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1821 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1822 1823 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1824 /* 1825 * Toggle is switched whenever new aggregation starts. Make 1826 * sure ampdu_reference is never 0 so we can later use it to 1827 * see if the frame was really part of an A-MPDU or not. 1828 */ 1829 if (toggle_bit != mvm->ampdu_toggle) { 1830 mvm->ampdu_ref++; 1831 if (mvm->ampdu_ref == 0) 1832 mvm->ampdu_ref++; 1833 mvm->ampdu_toggle = toggle_bit; 1834 } 1835 rx_status->ampdu_reference = mvm->ampdu_ref; 1836 } 1837 1838 if (unlikely(mvm->monitor_on)) 1839 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1840 1841 rcu_read_lock(); 1842 1843 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1844 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 1845 1846 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 1847 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1848 if (IS_ERR(sta)) 1849 sta = NULL; 1850 } 1851 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1852 /* 1853 * This is fine since we prevent two stations with the same 1854 * address from being added. 1855 */ 1856 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1857 } 1858 1859 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc, 1860 le32_to_cpu(pkt->len_n_flags), queue, 1861 &crypt_len)) { 1862 kfree_skb(skb); 1863 goto out; 1864 } 1865 1866 if (sta) { 1867 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1868 struct ieee80211_vif *tx_blocked_vif = 1869 rcu_dereference(mvm->csa_tx_blocked_vif); 1870 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1871 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1872 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1873 struct iwl_fw_dbg_trigger_tlv *trig; 1874 struct ieee80211_vif *vif = mvmsta->vif; 1875 1876 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1877 !is_multicast_ether_addr(hdr->addr1) && 1878 ieee80211_is_data(hdr->frame_control) && 1879 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1880 schedule_delayed_work(&mvm->tcm.work, 0); 1881 1882 /* 1883 * We have tx blocked stations (with CS bit). If we heard 1884 * frames from a blocked station on a new channel we can 1885 * TX to it again. 1886 */ 1887 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1888 struct iwl_mvm_vif *mvmvif = 1889 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1890 struct iwl_rx_sta_csa rx_sta_csa = { 1891 .all_sta_unblocked = true, 1892 .vif = tx_blocked_vif, 1893 }; 1894 1895 if (mvmvif->csa_target_freq == rx_status->freq) 1896 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1897 false); 1898 ieee80211_iterate_stations_atomic(mvm->hw, 1899 iwl_mvm_rx_get_sta_block_tx, 1900 &rx_sta_csa); 1901 1902 if (rx_sta_csa.all_sta_unblocked) { 1903 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 1904 /* Unblock BCAST / MCAST station */ 1905 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 1906 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork); 1907 } 1908 } 1909 1910 rs_update_last_rssi(mvm, mvmsta, rx_status); 1911 1912 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1913 ieee80211_vif_to_wdev(vif), 1914 FW_DBG_TRIGGER_RSSI); 1915 1916 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1917 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1918 s32 rssi; 1919 1920 rssi_trig = (void *)trig->data; 1921 rssi = le32_to_cpu(rssi_trig->rssi); 1922 1923 if (rx_status->signal < rssi) 1924 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1925 NULL); 1926 } 1927 1928 if (ieee80211_is_data(hdr->frame_control)) 1929 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 1930 1931 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1932 kfree_skb(skb); 1933 goto out; 1934 } 1935 1936 /* 1937 * Our hardware de-aggregates AMSDUs but copies the mac header 1938 * as it to the de-aggregated MPDUs. We need to turn off the 1939 * AMSDU bit in the QoS control ourselves. 1940 * In addition, HW reverses addr3 and addr4 - reverse it back. 1941 */ 1942 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1943 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1944 u8 *qc = ieee80211_get_qos_ctl(hdr); 1945 1946 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1947 1948 if (mvm->trans->trans_cfg->device_family == 1949 IWL_DEVICE_FAMILY_9000) { 1950 iwl_mvm_flip_address(hdr->addr3); 1951 1952 if (ieee80211_has_a4(hdr->frame_control)) 1953 iwl_mvm_flip_address(hdr->addr4); 1954 } 1955 } 1956 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1957 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1958 1959 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1960 } 1961 } 1962 1963 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1964 rate_n_flags & RATE_MCS_SGI_MSK) 1965 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1966 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1967 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1968 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1969 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1970 if (rate_n_flags & RATE_MCS_HT_MSK) { 1971 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1972 RATE_MCS_STBC_POS; 1973 rx_status->encoding = RX_ENC_HT; 1974 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1975 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1976 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 1977 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1978 RATE_MCS_STBC_POS; 1979 rx_status->nss = 1980 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1981 RATE_VHT_MCS_NSS_POS) + 1; 1982 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1983 rx_status->encoding = RX_ENC_VHT; 1984 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1985 if (rate_n_flags & RATE_MCS_BF_MSK) 1986 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1987 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) { 1988 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 1989 rx_status->band); 1990 1991 if (WARN(rate < 0 || rate > 0xFF, 1992 "Invalid rate flags 0x%x, band %d,\n", 1993 rate_n_flags, rx_status->band)) { 1994 kfree_skb(skb); 1995 goto out; 1996 } 1997 rx_status->rate_idx = rate; 1998 } 1999 2000 /* management stuff on default queue */ 2001 if (!queue) { 2002 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2003 ieee80211_is_probe_resp(hdr->frame_control)) && 2004 mvm->sched_scan_pass_all == 2005 SCHED_SCAN_PASS_ALL_ENABLED)) 2006 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2007 2008 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2009 ieee80211_is_probe_resp(hdr->frame_control))) 2010 rx_status->boottime_ns = ktime_get_boottime_ns(); 2011 } 2012 2013 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2014 kfree_skb(skb); 2015 goto out; 2016 } 2017 2018 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 2019 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 2020 sta, csi); 2021 out: 2022 rcu_read_unlock(); 2023 } 2024 2025 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2026 struct iwl_rx_cmd_buffer *rxb, int queue) 2027 { 2028 struct ieee80211_rx_status *rx_status; 2029 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2030 struct iwl_rx_no_data *desc = (void *)pkt->data; 2031 u32 rate_n_flags = le32_to_cpu(desc->rate); 2032 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2033 u32 rssi = le32_to_cpu(desc->rssi); 2034 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2035 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2036 struct ieee80211_sta *sta = NULL; 2037 struct sk_buff *skb; 2038 u8 channel, energy_a, energy_b; 2039 struct iwl_mvm_rx_phy_data phy_data = { 2040 .d0 = desc->phy_info[0], 2041 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 2042 }; 2043 2044 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc))) 2045 return; 2046 2047 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2048 return; 2049 2050 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 2051 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 2052 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 2053 2054 phy_data.info_type = 2055 le32_get_bits(desc->phy_info[1], 2056 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 2057 2058 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2059 * ieee80211_hdr pulled. 2060 */ 2061 skb = alloc_skb(128, GFP_ATOMIC); 2062 if (!skb) { 2063 IWL_ERR(mvm, "alloc_skb failed\n"); 2064 return; 2065 } 2066 2067 rx_status = IEEE80211_SKB_RXCB(skb); 2068 2069 /* 0-length PSDU */ 2070 rx_status->flag |= RX_FLAG_NO_PSDU; 2071 2072 switch (info_type) { 2073 case RX_NO_DATA_INFO_TYPE_NDP: 2074 rx_status->zero_length_psdu_type = 2075 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2076 break; 2077 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2078 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 2079 rx_status->zero_length_psdu_type = 2080 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2081 break; 2082 default: 2083 rx_status->zero_length_psdu_type = 2084 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2085 break; 2086 } 2087 2088 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2089 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2090 case RATE_MCS_CHAN_WIDTH_20: 2091 break; 2092 case RATE_MCS_CHAN_WIDTH_40: 2093 rx_status->bw = RATE_INFO_BW_40; 2094 break; 2095 case RATE_MCS_CHAN_WIDTH_80: 2096 rx_status->bw = RATE_INFO_BW_80; 2097 break; 2098 case RATE_MCS_CHAN_WIDTH_160: 2099 rx_status->bw = RATE_INFO_BW_160; 2100 break; 2101 } 2102 2103 if (rate_n_flags & RATE_MCS_HE_MSK) 2104 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 2105 phy_info, queue); 2106 2107 iwl_mvm_decode_lsig(skb, &phy_data); 2108 2109 rx_status->device_timestamp = gp2_on_air_rise; 2110 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 2111 NL80211_BAND_2GHZ; 2112 rx_status->freq = ieee80211_channel_to_frequency(channel, 2113 rx_status->band); 2114 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 2115 energy_b); 2116 2117 rcu_read_lock(); 2118 2119 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 2120 rate_n_flags & RATE_MCS_SGI_MSK) 2121 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2122 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 2123 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 2124 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2125 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2126 if (rate_n_flags & RATE_MCS_HT_MSK) { 2127 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2128 RATE_MCS_STBC_POS; 2129 rx_status->encoding = RX_ENC_HT; 2130 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 2131 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2132 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 2133 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2134 RATE_MCS_STBC_POS; 2135 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 2136 rx_status->encoding = RX_ENC_VHT; 2137 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2138 if (rate_n_flags & RATE_MCS_BF_MSK) 2139 rx_status->enc_flags |= RX_ENC_FLAG_BF; 2140 /* 2141 * take the nss from the rx_vec since the rate_n_flags has 2142 * only 2 bits for the nss which gives a max of 4 ss but 2143 * there may be up to 8 spatial streams 2144 */ 2145 rx_status->nss = 2146 le32_get_bits(desc->rx_vec[0], 2147 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2148 } else if (rate_n_flags & RATE_MCS_HE_MSK) { 2149 rx_status->nss = 2150 le32_get_bits(desc->rx_vec[0], 2151 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2152 } else { 2153 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 2154 rx_status->band); 2155 2156 if (WARN(rate < 0 || rate > 0xFF, 2157 "Invalid rate flags 0x%x, band %d,\n", 2158 rate_n_flags, rx_status->band)) { 2159 kfree_skb(skb); 2160 goto out; 2161 } 2162 rx_status->rate_idx = rate; 2163 } 2164 2165 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2166 out: 2167 rcu_read_unlock(); 2168 } 2169 2170 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2171 struct iwl_rx_cmd_buffer *rxb, int queue) 2172 { 2173 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2174 struct iwl_frame_release *release = (void *)pkt->data; 2175 2176 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2177 return; 2178 2179 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2180 le16_to_cpu(release->nssn), 2181 queue, 0); 2182 } 2183 2184 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2185 struct iwl_rx_cmd_buffer *rxb, int queue) 2186 { 2187 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2188 struct iwl_bar_frame_release *release = (void *)pkt->data; 2189 unsigned int baid = le32_get_bits(release->ba_info, 2190 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2191 unsigned int nssn = le32_get_bits(release->ba_info, 2192 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2193 unsigned int sta_id = le32_get_bits(release->sta_tid, 2194 IWL_BAR_FRAME_RELEASE_STA_MASK); 2195 unsigned int tid = le32_get_bits(release->sta_tid, 2196 IWL_BAR_FRAME_RELEASE_TID_MASK); 2197 struct iwl_mvm_baid_data *baid_data; 2198 2199 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2200 return; 2201 2202 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2203 baid >= ARRAY_SIZE(mvm->baid_map))) 2204 return; 2205 2206 rcu_read_lock(); 2207 baid_data = rcu_dereference(mvm->baid_map[baid]); 2208 if (!baid_data) { 2209 IWL_DEBUG_RX(mvm, 2210 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2211 baid); 2212 goto out; 2213 } 2214 2215 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2216 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2217 baid, baid_data->sta_id, baid_data->tid, sta_id, 2218 tid)) 2219 goto out; 2220 2221 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2222 out: 2223 rcu_read_unlock(); 2224 } 2225