xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/mvm/rxmq.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2020 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2015-2017 Intel Deutschland GmbH
6  */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 
13 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
14 {
15 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
16 	u8 *data = skb->data;
17 
18 	/* Alignment concerns */
19 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
20 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
21 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
22 	BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
23 
24 	if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
25 		data += sizeof(struct ieee80211_radiotap_he);
26 	if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
27 		data += sizeof(struct ieee80211_radiotap_he_mu);
28 	if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
29 		data += sizeof(struct ieee80211_radiotap_lsig);
30 	if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
31 		struct ieee80211_vendor_radiotap *radiotap = (void *)data;
32 
33 		data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
34 	}
35 
36 	return data;
37 }
38 
39 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
40 				   int queue, struct ieee80211_sta *sta)
41 {
42 	struct iwl_mvm_sta *mvmsta;
43 	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
44 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
45 	struct iwl_mvm_key_pn *ptk_pn;
46 	int res;
47 	u8 tid, keyidx;
48 	u8 pn[IEEE80211_CCMP_PN_LEN];
49 	u8 *extiv;
50 
51 	/* do PN checking */
52 
53 	/* multicast and non-data only arrives on default queue */
54 	if (!ieee80211_is_data(hdr->frame_control) ||
55 	    is_multicast_ether_addr(hdr->addr1))
56 		return 0;
57 
58 	/* do not check PN for open AP */
59 	if (!(stats->flag & RX_FLAG_DECRYPTED))
60 		return 0;
61 
62 	/*
63 	 * avoid checking for default queue - we don't want to replicate
64 	 * all the logic that's necessary for checking the PN on fragmented
65 	 * frames, leave that to mac80211
66 	 */
67 	if (queue == 0)
68 		return 0;
69 
70 	/* if we are here - this for sure is either CCMP or GCMP */
71 	if (IS_ERR_OR_NULL(sta)) {
72 		IWL_ERR(mvm,
73 			"expected hw-decrypted unicast frame for station\n");
74 		return -1;
75 	}
76 
77 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
78 
79 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
80 	keyidx = extiv[3] >> 6;
81 
82 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
83 	if (!ptk_pn)
84 		return -1;
85 
86 	if (ieee80211_is_data_qos(hdr->frame_control))
87 		tid = ieee80211_get_tid(hdr);
88 	else
89 		tid = 0;
90 
91 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
92 	if (tid >= IWL_MAX_TID_COUNT)
93 		return -1;
94 
95 	/* load pn */
96 	pn[0] = extiv[7];
97 	pn[1] = extiv[6];
98 	pn[2] = extiv[5];
99 	pn[3] = extiv[4];
100 	pn[4] = extiv[1];
101 	pn[5] = extiv[0];
102 
103 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
104 	if (res < 0)
105 		return -1;
106 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
107 		return -1;
108 
109 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
110 	stats->flag |= RX_FLAG_PN_VALIDATED;
111 
112 	return 0;
113 }
114 
115 /* iwl_mvm_create_skb Adds the rxb to a new skb */
116 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
117 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
118 			      struct iwl_rx_cmd_buffer *rxb)
119 {
120 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
121 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
122 	unsigned int headlen, fraglen, pad_len = 0;
123 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
124 
125 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
126 		len -= 2;
127 		pad_len = 2;
128 	}
129 
130 	/* If frame is small enough to fit in skb->head, pull it completely.
131 	 * If not, only pull ieee80211_hdr (including crypto if present, and
132 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
133 	 * splice() or TCP coalesce are more efficient.
134 	 *
135 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
136 	 * least 8 bytes (possibly more for mesh) we can do the same here
137 	 * to save the cost of doing it later. That still doesn't pull in
138 	 * the actual IP header since the typical case has a SNAP header.
139 	 * If the latter changes (there are efforts in the standards group
140 	 * to do so) we should revisit this and ieee80211_data_to_8023().
141 	 */
142 	headlen = (len <= skb_tailroom(skb)) ? len :
143 					       hdrlen + crypt_len + 8;
144 
145 	/* The firmware may align the packet to DWORD.
146 	 * The padding is inserted after the IV.
147 	 * After copying the header + IV skip the padding if
148 	 * present before copying packet data.
149 	 */
150 	hdrlen += crypt_len;
151 
152 	if (WARN_ONCE(headlen < hdrlen,
153 		      "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
154 		      hdrlen, len, crypt_len)) {
155 		/*
156 		 * We warn and trace because we want to be able to see
157 		 * it in trace-cmd as well.
158 		 */
159 		IWL_DEBUG_RX(mvm,
160 			     "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
161 			     hdrlen, len, crypt_len);
162 		return -EINVAL;
163 	}
164 
165 	skb_put_data(skb, hdr, hdrlen);
166 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
167 
168 	/*
169 	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
170 	 * certain cases and starts the checksum after the SNAP. Check if
171 	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
172 	 * in the cases the hardware didn't handle, since it's rare to see
173 	 * such packets, even though the hardware did calculate the checksum
174 	 * in this case, just starting after the MAC header instead.
175 	 */
176 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
177 		struct {
178 			u8 hdr[6];
179 			__be16 type;
180 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
181 
182 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
183 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
184 			     (shdr->type != htons(ETH_P_IP) &&
185 			      shdr->type != htons(ETH_P_ARP) &&
186 			      shdr->type != htons(ETH_P_IPV6) &&
187 			      shdr->type != htons(ETH_P_8021Q) &&
188 			      shdr->type != htons(ETH_P_PAE) &&
189 			      shdr->type != htons(ETH_P_TDLS))))
190 			skb->ip_summed = CHECKSUM_NONE;
191 	}
192 
193 	fraglen = len - headlen;
194 
195 	if (fraglen) {
196 		int offset = (void *)hdr + headlen + pad_len -
197 			     rxb_addr(rxb) + rxb_offset(rxb);
198 
199 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
200 				fraglen, rxb->truesize);
201 	}
202 
203 	return 0;
204 }
205 
206 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
207 					    struct sk_buff *skb)
208 {
209 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
210 	struct ieee80211_vendor_radiotap *radiotap;
211 	const int size = sizeof(*radiotap) + sizeof(__le16);
212 
213 	if (!mvm->cur_aid)
214 		return;
215 
216 	/* ensure alignment */
217 	BUILD_BUG_ON((size + 2) % 4);
218 
219 	radiotap = skb_put(skb, size + 2);
220 	radiotap->align = 1;
221 	/* Intel OUI */
222 	radiotap->oui[0] = 0xf6;
223 	radiotap->oui[1] = 0x54;
224 	radiotap->oui[2] = 0x25;
225 	/* radiotap sniffer config sub-namespace */
226 	radiotap->subns = 1;
227 	radiotap->present = 0x1;
228 	radiotap->len = size - sizeof(*radiotap);
229 	radiotap->pad = 2;
230 
231 	/* fill the data now */
232 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
233 	/* and clear the padding */
234 	memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
235 
236 	rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
237 }
238 
239 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
240 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
241 					    struct napi_struct *napi,
242 					    struct sk_buff *skb, int queue,
243 					    struct ieee80211_sta *sta,
244 					    bool csi)
245 {
246 	if (iwl_mvm_check_pn(mvm, skb, queue, sta))
247 		kfree_skb(skb);
248 	else
249 		ieee80211_rx_napi(mvm->hw, sta, skb, napi);
250 }
251 
252 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
253 					struct ieee80211_rx_status *rx_status,
254 					u32 rate_n_flags, int energy_a,
255 					int energy_b)
256 {
257 	int max_energy;
258 	u32 rate_flags = rate_n_flags;
259 
260 	energy_a = energy_a ? -energy_a : S8_MIN;
261 	energy_b = energy_b ? -energy_b : S8_MIN;
262 	max_energy = max(energy_a, energy_b);
263 
264 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
265 			energy_a, energy_b, max_energy);
266 
267 	rx_status->signal = max_energy;
268 	rx_status->chains =
269 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
270 	rx_status->chain_signal[0] = energy_a;
271 	rx_status->chain_signal[1] = energy_b;
272 	rx_status->chain_signal[2] = S8_MIN;
273 }
274 
275 static int iwl_mvm_rx_mgmt_crypto(struct ieee80211_sta *sta,
276 				  struct ieee80211_hdr *hdr,
277 				  struct iwl_rx_mpdu_desc *desc,
278 				  u32 status)
279 {
280 	struct iwl_mvm_sta *mvmsta;
281 	struct iwl_mvm_vif *mvmvif;
282 	u8 fwkeyid = u32_get_bits(status, IWL_RX_MPDU_STATUS_KEY);
283 	u8 keyid;
284 	struct ieee80211_key_conf *key;
285 	u32 len = le16_to_cpu(desc->mpdu_len);
286 	const u8 *frame = (void *)hdr;
287 
288 	/*
289 	 * For non-beacon, we don't really care. But beacons may
290 	 * be filtered out, and we thus need the firmware's replay
291 	 * detection, otherwise beacons the firmware previously
292 	 * filtered could be replayed, or something like that, and
293 	 * it can filter a lot - though usually only if nothing has
294 	 * changed.
295 	 */
296 	if (!ieee80211_is_beacon(hdr->frame_control))
297 		return 0;
298 
299 	/* good cases */
300 	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
301 		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)))
302 		return 0;
303 
304 	if (!sta)
305 		return -1;
306 
307 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
308 
309 	/* what? */
310 	if (fwkeyid != 6 && fwkeyid != 7)
311 		return -1;
312 
313 	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
314 
315 	key = rcu_dereference(mvmvif->bcn_prot.keys[fwkeyid - 6]);
316 	if (!key)
317 		return -1;
318 
319 	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
320 		return -1;
321 
322 	/*
323 	 * See if the key ID matches - if not this may be due to a
324 	 * switch and the firmware may erroneously report !MIC_OK.
325 	 */
326 	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
327 	if (keyid != fwkeyid)
328 		return -1;
329 
330 	/* Report status to mac80211 */
331 	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
332 		ieee80211_key_mic_failure(key);
333 	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
334 		ieee80211_key_replay(key);
335 
336 	return -1;
337 }
338 
339 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
340 			     struct ieee80211_hdr *hdr,
341 			     struct ieee80211_rx_status *stats, u16 phy_info,
342 			     struct iwl_rx_mpdu_desc *desc,
343 			     u32 pkt_flags, int queue, u8 *crypt_len)
344 {
345 	u32 status = le32_to_cpu(desc->status);
346 
347 	/*
348 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
349 	 * (where we don't have the keys).
350 	 * We limit this to aggregation because in TKIP this is a valid
351 	 * scenario, since we may not have the (correct) TTAK (phase 1
352 	 * key) in the firmware.
353 	 */
354 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
355 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
356 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
357 		return -1;
358 
359 	if (!ieee80211_has_protected(hdr->frame_control) ||
360 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
361 	    IWL_RX_MPDU_STATUS_SEC_NONE)
362 		return 0;
363 
364 	/* TODO: handle packets encrypted with unknown alg */
365 
366 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
367 	case IWL_RX_MPDU_STATUS_SEC_CCM:
368 	case IWL_RX_MPDU_STATUS_SEC_GCM:
369 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
370 		/* alg is CCM: check MIC only */
371 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
372 			return -1;
373 
374 		stats->flag |= RX_FLAG_DECRYPTED;
375 		if (pkt_flags & FH_RSCSR_RADA_EN)
376 			stats->flag |= RX_FLAG_MIC_STRIPPED;
377 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
378 		return 0;
379 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
380 		/* Don't drop the frame and decrypt it in SW */
381 		if (!fw_has_api(&mvm->fw->ucode_capa,
382 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
383 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
384 			return 0;
385 
386 		if (mvm->trans->trans_cfg->gen2 &&
387 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
388 			stats->flag |= RX_FLAG_MMIC_ERROR;
389 
390 		*crypt_len = IEEE80211_TKIP_IV_LEN;
391 		fallthrough;
392 	case IWL_RX_MPDU_STATUS_SEC_WEP:
393 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
394 			return -1;
395 
396 		stats->flag |= RX_FLAG_DECRYPTED;
397 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
398 				IWL_RX_MPDU_STATUS_SEC_WEP)
399 			*crypt_len = IEEE80211_WEP_IV_LEN;
400 
401 		if (pkt_flags & FH_RSCSR_RADA_EN) {
402 			stats->flag |= RX_FLAG_ICV_STRIPPED;
403 			if (mvm->trans->trans_cfg->gen2)
404 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
405 		}
406 
407 		return 0;
408 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
409 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
410 			return -1;
411 		stats->flag |= RX_FLAG_DECRYPTED;
412 		return 0;
413 	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
414 		return iwl_mvm_rx_mgmt_crypto(sta, hdr, desc, status);
415 	default:
416 		/*
417 		 * Sometimes we can get frames that were not decrypted
418 		 * because the firmware didn't have the keys yet. This can
419 		 * happen after connection where we can get multicast frames
420 		 * before the GTK is installed.
421 		 * Silently drop those frames.
422 		 * Also drop un-decrypted frames in monitor mode.
423 		 */
424 		if (!is_multicast_ether_addr(hdr->addr1) &&
425 		    !mvm->monitor_on && net_ratelimit())
426 			IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
427 	}
428 
429 	return 0;
430 }
431 
432 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
433 			    struct ieee80211_sta *sta,
434 			    struct sk_buff *skb,
435 			    struct iwl_rx_packet *pkt)
436 {
437 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
438 
439 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
440 		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
441 			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
442 
443 			skb->ip_summed = CHECKSUM_COMPLETE;
444 			skb->csum = csum_unfold(~(__force __sum16)hwsum);
445 		}
446 	} else {
447 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
448 		struct iwl_mvm_vif *mvmvif;
449 		u16 flags = le16_to_cpu(desc->l3l4_flags);
450 		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
451 				  IWL_RX_L3_PROTO_POS);
452 
453 		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
454 
455 		if (mvmvif->features & NETIF_F_RXCSUM &&
456 		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
457 		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
458 		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
459 		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
460 			skb->ip_summed = CHECKSUM_UNNECESSARY;
461 	}
462 }
463 
464 /*
465  * returns true if a packet is a duplicate and should be dropped.
466  * Updates AMSDU PN tracking info
467  */
468 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
469 			   struct ieee80211_rx_status *rx_status,
470 			   struct ieee80211_hdr *hdr,
471 			   struct iwl_rx_mpdu_desc *desc)
472 {
473 	struct iwl_mvm_sta *mvm_sta;
474 	struct iwl_mvm_rxq_dup_data *dup_data;
475 	u8 tid, sub_frame_idx;
476 
477 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
478 		return false;
479 
480 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
481 	dup_data = &mvm_sta->dup_data[queue];
482 
483 	/*
484 	 * Drop duplicate 802.11 retransmissions
485 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
486 	 */
487 	if (ieee80211_is_ctl(hdr->frame_control) ||
488 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
489 	    is_multicast_ether_addr(hdr->addr1)) {
490 		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
491 		return false;
492 	}
493 
494 	if (ieee80211_is_data_qos(hdr->frame_control))
495 		/* frame has qos control */
496 		tid = ieee80211_get_tid(hdr);
497 	else
498 		tid = IWL_MAX_TID_COUNT;
499 
500 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
501 	sub_frame_idx = desc->amsdu_info &
502 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
503 
504 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
505 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
506 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
507 		return true;
508 
509 	/* Allow same PN as the first subframe for following sub frames */
510 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
511 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
512 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
513 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
514 
515 	dup_data->last_seq[tid] = hdr->seq_ctrl;
516 	dup_data->last_sub_frame[tid] = sub_frame_idx;
517 
518 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
519 
520 	return false;
521 }
522 
523 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
524 			    const struct iwl_mvm_internal_rxq_notif *notif,
525 			    u32 notif_size, bool async)
526 {
527 	u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
528 	       sizeof(struct iwl_mvm_rss_sync_notif)];
529 	struct iwl_rxq_sync_cmd *cmd = (void *)buf;
530 	u32 data_size = sizeof(*cmd) + notif_size;
531 	int ret;
532 
533 	/*
534 	 * size must be a multiple of DWORD
535 	 * Ensure we don't overflow buf
536 	 */
537 	if (WARN_ON(notif_size & 3 ||
538 		    notif_size > sizeof(struct iwl_mvm_rss_sync_notif)))
539 		return -EINVAL;
540 
541 	cmd->rxq_mask = cpu_to_le32(rxq_mask);
542 	cmd->count =  cpu_to_le32(notif_size);
543 	cmd->flags = 0;
544 	memcpy(cmd->payload, notif, notif_size);
545 
546 	ret = iwl_mvm_send_cmd_pdu(mvm,
547 				   WIDE_ID(DATA_PATH_GROUP,
548 					   TRIGGER_RX_QUEUES_NOTIF_CMD),
549 				   async ? CMD_ASYNC : 0, data_size, cmd);
550 
551 	return ret;
552 }
553 
554 /*
555  * Returns true if sn2 - buffer_size < sn1 < sn2.
556  * To be used only in order to compare reorder buffer head with NSSN.
557  * We fully trust NSSN unless it is behind us due to reorder timeout.
558  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
559  */
560 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
561 {
562 	return ieee80211_sn_less(sn1, sn2) &&
563 	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
564 }
565 
566 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
567 {
568 	if (IWL_MVM_USE_NSSN_SYNC) {
569 		struct iwl_mvm_rss_sync_notif notif = {
570 			.metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
571 			.metadata.sync = 0,
572 			.nssn_sync.baid = baid,
573 			.nssn_sync.nssn = nssn,
574 		};
575 
576 		iwl_mvm_sync_rx_queues_internal(mvm, (void *)&notif,
577 						sizeof(notif));
578 	}
579 }
580 
581 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
582 
583 enum iwl_mvm_release_flags {
584 	IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
585 	IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
586 };
587 
588 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
589 				   struct ieee80211_sta *sta,
590 				   struct napi_struct *napi,
591 				   struct iwl_mvm_baid_data *baid_data,
592 				   struct iwl_mvm_reorder_buffer *reorder_buf,
593 				   u16 nssn, u32 flags)
594 {
595 	struct iwl_mvm_reorder_buf_entry *entries =
596 		&baid_data->entries[reorder_buf->queue *
597 				    baid_data->entries_per_queue];
598 	u16 ssn = reorder_buf->head_sn;
599 
600 	lockdep_assert_held(&reorder_buf->lock);
601 
602 	/*
603 	 * We keep the NSSN not too far behind, if we are sync'ing it and it
604 	 * is more than 2048 ahead of us, it must be behind us. Discard it.
605 	 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
606 	 * behind and this queue already processed packets. The next if
607 	 * would have caught cases where this queue would have processed less
608 	 * than 64 packets, but it may have processed more than 64 packets.
609 	 */
610 	if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
611 	    ieee80211_sn_less(nssn, ssn))
612 		goto set_timer;
613 
614 	/* ignore nssn smaller than head sn - this can happen due to timeout */
615 	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
616 		goto set_timer;
617 
618 	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
619 		int index = ssn % reorder_buf->buf_size;
620 		struct sk_buff_head *skb_list = &entries[index].e.frames;
621 		struct sk_buff *skb;
622 
623 		ssn = ieee80211_sn_inc(ssn);
624 		if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
625 		    (ssn == 2048 || ssn == 0))
626 			iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
627 
628 		/*
629 		 * Empty the list. Will have more than one frame for A-MSDU.
630 		 * Empty list is valid as well since nssn indicates frames were
631 		 * received.
632 		 */
633 		while ((skb = __skb_dequeue(skb_list))) {
634 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
635 							reorder_buf->queue,
636 							sta, false);
637 			reorder_buf->num_stored--;
638 		}
639 	}
640 	reorder_buf->head_sn = nssn;
641 
642 set_timer:
643 	if (reorder_buf->num_stored && !reorder_buf->removed) {
644 		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
645 
646 		while (skb_queue_empty(&entries[index].e.frames))
647 			index = (index + 1) % reorder_buf->buf_size;
648 		/* modify timer to match next frame's expiration time */
649 		mod_timer(&reorder_buf->reorder_timer,
650 			  entries[index].e.reorder_time + 1 +
651 			  RX_REORDER_BUF_TIMEOUT_MQ);
652 	} else {
653 		del_timer(&reorder_buf->reorder_timer);
654 	}
655 }
656 
657 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
658 {
659 	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
660 	struct iwl_mvm_baid_data *baid_data =
661 		iwl_mvm_baid_data_from_reorder_buf(buf);
662 	struct iwl_mvm_reorder_buf_entry *entries =
663 		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
664 	int i;
665 	u16 sn = 0, index = 0;
666 	bool expired = false;
667 	bool cont = false;
668 
669 	spin_lock(&buf->lock);
670 
671 	if (!buf->num_stored || buf->removed) {
672 		spin_unlock(&buf->lock);
673 		return;
674 	}
675 
676 	for (i = 0; i < buf->buf_size ; i++) {
677 		index = (buf->head_sn + i) % buf->buf_size;
678 
679 		if (skb_queue_empty(&entries[index].e.frames)) {
680 			/*
681 			 * If there is a hole and the next frame didn't expire
682 			 * we want to break and not advance SN
683 			 */
684 			cont = false;
685 			continue;
686 		}
687 		if (!cont &&
688 		    !time_after(jiffies, entries[index].e.reorder_time +
689 					 RX_REORDER_BUF_TIMEOUT_MQ))
690 			break;
691 
692 		expired = true;
693 		/* continue until next hole after this expired frames */
694 		cont = true;
695 		sn = ieee80211_sn_add(buf->head_sn, i + 1);
696 	}
697 
698 	if (expired) {
699 		struct ieee80211_sta *sta;
700 		struct iwl_mvm_sta *mvmsta;
701 		u8 sta_id = baid_data->sta_id;
702 
703 		rcu_read_lock();
704 		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
705 		mvmsta = iwl_mvm_sta_from_mac80211(sta);
706 
707 		/* SN is set to the last expired frame + 1 */
708 		IWL_DEBUG_HT(buf->mvm,
709 			     "Releasing expired frames for sta %u, sn %d\n",
710 			     sta_id, sn);
711 		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
712 						     sta, baid_data->tid);
713 		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
714 				       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
715 		rcu_read_unlock();
716 	} else {
717 		/*
718 		 * If no frame expired and there are stored frames, index is now
719 		 * pointing to the first unexpired frame - modify timer
720 		 * accordingly to this frame.
721 		 */
722 		mod_timer(&buf->reorder_timer,
723 			  entries[index].e.reorder_time +
724 			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
725 	}
726 	spin_unlock(&buf->lock);
727 }
728 
729 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
730 			   struct iwl_mvm_delba_data *data)
731 {
732 	struct iwl_mvm_baid_data *ba_data;
733 	struct ieee80211_sta *sta;
734 	struct iwl_mvm_reorder_buffer *reorder_buf;
735 	u8 baid = data->baid;
736 
737 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
738 		return;
739 
740 	rcu_read_lock();
741 
742 	ba_data = rcu_dereference(mvm->baid_map[baid]);
743 	if (WARN_ON_ONCE(!ba_data))
744 		goto out;
745 
746 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
747 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
748 		goto out;
749 
750 	reorder_buf = &ba_data->reorder_buf[queue];
751 
752 	/* release all frames that are in the reorder buffer to the stack */
753 	spin_lock_bh(&reorder_buf->lock);
754 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
755 			       ieee80211_sn_add(reorder_buf->head_sn,
756 						reorder_buf->buf_size),
757 			       0);
758 	spin_unlock_bh(&reorder_buf->lock);
759 	del_timer_sync(&reorder_buf->reorder_timer);
760 
761 out:
762 	rcu_read_unlock();
763 }
764 
765 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
766 					      struct napi_struct *napi,
767 					      u8 baid, u16 nssn, int queue,
768 					      u32 flags)
769 {
770 	struct ieee80211_sta *sta;
771 	struct iwl_mvm_reorder_buffer *reorder_buf;
772 	struct iwl_mvm_baid_data *ba_data;
773 
774 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
775 		     baid, nssn);
776 
777 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
778 			 baid >= ARRAY_SIZE(mvm->baid_map)))
779 		return;
780 
781 	rcu_read_lock();
782 
783 	ba_data = rcu_dereference(mvm->baid_map[baid]);
784 	if (WARN_ON_ONCE(!ba_data))
785 		goto out;
786 
787 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
788 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
789 		goto out;
790 
791 	reorder_buf = &ba_data->reorder_buf[queue];
792 
793 	spin_lock_bh(&reorder_buf->lock);
794 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
795 			       reorder_buf, nssn, flags);
796 	spin_unlock_bh(&reorder_buf->lock);
797 
798 out:
799 	rcu_read_unlock();
800 }
801 
802 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
803 			      struct napi_struct *napi, int queue,
804 			      const struct iwl_mvm_nssn_sync_data *data)
805 {
806 	iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
807 					  data->nssn, queue,
808 					  IWL_MVM_RELEASE_FROM_RSS_SYNC);
809 }
810 
811 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
812 			    struct iwl_rx_cmd_buffer *rxb, int queue)
813 {
814 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
815 	struct iwl_rxq_sync_notification *notif;
816 	struct iwl_mvm_internal_rxq_notif *internal_notif;
817 	u32 len = iwl_rx_packet_payload_len(pkt);
818 
819 	notif = (void *)pkt->data;
820 	internal_notif = (void *)notif->payload;
821 
822 	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
823 		      "invalid notification size %d (%d)",
824 		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
825 		return;
826 	/* remove only the firmware header, we want all of our payload below */
827 	len -= sizeof(*notif);
828 
829 	if (internal_notif->sync &&
830 	    mvm->queue_sync_cookie != internal_notif->cookie) {
831 		WARN_ONCE(1, "Received expired RX queue sync message\n");
832 		return;
833 	}
834 
835 	switch (internal_notif->type) {
836 	case IWL_MVM_RXQ_EMPTY:
837 		WARN_ONCE(len != sizeof(*internal_notif),
838 			  "invalid empty notification size %d (%d)",
839 			  len, (int)sizeof(*internal_notif));
840 		break;
841 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
842 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_rss_sync_notif),
843 			      "invalid delba notification size %d (%d)",
844 			      len, (int)sizeof(struct iwl_mvm_rss_sync_notif)))
845 			break;
846 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
847 		break;
848 	case IWL_MVM_RXQ_NSSN_SYNC:
849 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_rss_sync_notif),
850 			      "invalid nssn sync notification size %d (%d)",
851 			      len, (int)sizeof(struct iwl_mvm_rss_sync_notif)))
852 			break;
853 		iwl_mvm_nssn_sync(mvm, napi, queue,
854 				  (void *)internal_notif->data);
855 		break;
856 	default:
857 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
858 	}
859 
860 	if (internal_notif->sync) {
861 		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
862 			  "queue sync: queue %d responded a second time!\n",
863 			  queue);
864 		if (READ_ONCE(mvm->queue_sync_state) == 0)
865 			wake_up(&mvm->rx_sync_waitq);
866 	}
867 }
868 
869 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
870 				     struct ieee80211_sta *sta, int tid,
871 				     struct iwl_mvm_reorder_buffer *buffer,
872 				     u32 reorder, u32 gp2, int queue)
873 {
874 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
875 
876 	if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
877 		/* we have a new (A-)MPDU ... */
878 
879 		/*
880 		 * reset counter to 0 if we didn't have any oldsn in
881 		 * the last A-MPDU (as detected by GP2 being identical)
882 		 */
883 		if (!buffer->consec_oldsn_prev_drop)
884 			buffer->consec_oldsn_drops = 0;
885 
886 		/* either way, update our tracking state */
887 		buffer->consec_oldsn_ampdu_gp2 = gp2;
888 	} else if (buffer->consec_oldsn_prev_drop) {
889 		/*
890 		 * tracking state didn't change, and we had an old SN
891 		 * indication before - do nothing in this case, we
892 		 * already noted this one down and are waiting for the
893 		 * next A-MPDU (by GP2)
894 		 */
895 		return;
896 	}
897 
898 	/* return unless this MPDU has old SN */
899 	if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
900 		return;
901 
902 	/* update state */
903 	buffer->consec_oldsn_prev_drop = 1;
904 	buffer->consec_oldsn_drops++;
905 
906 	/* if limit is reached, send del BA and reset state */
907 	if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
908 		IWL_WARN(mvm,
909 			 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
910 			 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
911 			 sta->addr, queue, tid);
912 		ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
913 		buffer->consec_oldsn_prev_drop = 0;
914 		buffer->consec_oldsn_drops = 0;
915 	}
916 }
917 
918 /*
919  * Returns true if the MPDU was buffered\dropped, false if it should be passed
920  * to upper layer.
921  */
922 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
923 			    struct napi_struct *napi,
924 			    int queue,
925 			    struct ieee80211_sta *sta,
926 			    struct sk_buff *skb,
927 			    struct iwl_rx_mpdu_desc *desc)
928 {
929 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
930 	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
931 	struct iwl_mvm_sta *mvm_sta;
932 	struct iwl_mvm_baid_data *baid_data;
933 	struct iwl_mvm_reorder_buffer *buffer;
934 	struct sk_buff *tail;
935 	u32 reorder = le32_to_cpu(desc->reorder_data);
936 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
937 	bool last_subframe =
938 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
939 	u8 tid = ieee80211_get_tid(hdr);
940 	u8 sub_frame_idx = desc->amsdu_info &
941 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
942 	struct iwl_mvm_reorder_buf_entry *entries;
943 	int index;
944 	u16 nssn, sn;
945 	u8 baid;
946 
947 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
948 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
949 
950 	/*
951 	 * This also covers the case of receiving a Block Ack Request
952 	 * outside a BA session; we'll pass it to mac80211 and that
953 	 * then sends a delBA action frame.
954 	 * This also covers pure monitor mode, in which case we won't
955 	 * have any BA sessions.
956 	 */
957 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
958 		return false;
959 
960 	/* no sta yet */
961 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
962 		      "Got valid BAID without a valid station assigned\n"))
963 		return false;
964 
965 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
966 
967 	/* not a data packet or a bar */
968 	if (!ieee80211_is_back_req(hdr->frame_control) &&
969 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
970 	     is_multicast_ether_addr(hdr->addr1)))
971 		return false;
972 
973 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
974 		return false;
975 
976 	baid_data = rcu_dereference(mvm->baid_map[baid]);
977 	if (!baid_data) {
978 		IWL_DEBUG_RX(mvm,
979 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
980 			      baid, reorder);
981 		return false;
982 	}
983 
984 	if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
985 		 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
986 		 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
987 		 tid))
988 		return false;
989 
990 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
991 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
992 		IWL_RX_MPDU_REORDER_SN_SHIFT;
993 
994 	buffer = &baid_data->reorder_buf[queue];
995 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
996 
997 	spin_lock_bh(&buffer->lock);
998 
999 	if (!buffer->valid) {
1000 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1001 			spin_unlock_bh(&buffer->lock);
1002 			return false;
1003 		}
1004 		buffer->valid = true;
1005 	}
1006 
1007 	if (ieee80211_is_back_req(hdr->frame_control)) {
1008 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1009 				       buffer, nssn, 0);
1010 		goto drop;
1011 	}
1012 
1013 	/*
1014 	 * If there was a significant jump in the nssn - adjust.
1015 	 * If the SN is smaller than the NSSN it might need to first go into
1016 	 * the reorder buffer, in which case we just release up to it and the
1017 	 * rest of the function will take care of storing it and releasing up to
1018 	 * the nssn.
1019 	 * This should not happen. This queue has been lagging and it should
1020 	 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1021 	 * and update the other queues.
1022 	 */
1023 	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1024 				buffer->buf_size) ||
1025 	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1026 		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1027 
1028 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1029 				       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1030 	}
1031 
1032 	iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1033 				 rx_status->device_timestamp, queue);
1034 
1035 	/* drop any oudated packets */
1036 	if (ieee80211_sn_less(sn, buffer->head_sn))
1037 		goto drop;
1038 
1039 	/* release immediately if allowed by nssn and no stored frames */
1040 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1041 		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1042 				       buffer->buf_size) &&
1043 		   (!amsdu || last_subframe)) {
1044 			/*
1045 			 * If we crossed the 2048 or 0 SN, notify all the
1046 			 * queues. This is done in order to avoid having a
1047 			 * head_sn that lags behind for too long. When that
1048 			 * happens, we can get to a situation where the head_sn
1049 			 * is within the interval [nssn - buf_size : nssn]
1050 			 * which will make us think that the nssn is a packet
1051 			 * that we already freed because of the reordering
1052 			 * buffer and we will ignore it. So maintain the
1053 			 * head_sn somewhat updated across all the queues:
1054 			 * when it crosses 0 and 2048.
1055 			 */
1056 			if (sn == 2048 || sn == 0)
1057 				iwl_mvm_sync_nssn(mvm, baid, sn);
1058 			buffer->head_sn = nssn;
1059 		}
1060 		/* No need to update AMSDU last SN - we are moving the head */
1061 		spin_unlock_bh(&buffer->lock);
1062 		return false;
1063 	}
1064 
1065 	/*
1066 	 * release immediately if there are no stored frames, and the sn is
1067 	 * equal to the head.
1068 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
1069 	 * When we released everything, and we got the next frame in the
1070 	 * sequence, according to the NSSN we can't release immediately,
1071 	 * while technically there is no hole and we can move forward.
1072 	 */
1073 	if (!buffer->num_stored && sn == buffer->head_sn) {
1074 		if (!amsdu || last_subframe) {
1075 			if (sn == 2048 || sn == 0)
1076 				iwl_mvm_sync_nssn(mvm, baid, sn);
1077 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1078 		}
1079 		/* No need to update AMSDU last SN - we are moving the head */
1080 		spin_unlock_bh(&buffer->lock);
1081 		return false;
1082 	}
1083 
1084 	index = sn % buffer->buf_size;
1085 
1086 	/*
1087 	 * Check if we already stored this frame
1088 	 * As AMSDU is either received or not as whole, logic is simple:
1089 	 * If we have frames in that position in the buffer and the last frame
1090 	 * originated from AMSDU had a different SN then it is a retransmission.
1091 	 * If it is the same SN then if the subframe index is incrementing it
1092 	 * is the same AMSDU - otherwise it is a retransmission.
1093 	 */
1094 	tail = skb_peek_tail(&entries[index].e.frames);
1095 	if (tail && !amsdu)
1096 		goto drop;
1097 	else if (tail && (sn != buffer->last_amsdu ||
1098 			  buffer->last_sub_index >= sub_frame_idx))
1099 		goto drop;
1100 
1101 	/* put in reorder buffer */
1102 	__skb_queue_tail(&entries[index].e.frames, skb);
1103 	buffer->num_stored++;
1104 	entries[index].e.reorder_time = jiffies;
1105 
1106 	if (amsdu) {
1107 		buffer->last_amsdu = sn;
1108 		buffer->last_sub_index = sub_frame_idx;
1109 	}
1110 
1111 	/*
1112 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1113 	 * The reason is that NSSN advances on the first sub-frame, and may
1114 	 * cause the reorder buffer to advance before all the sub-frames arrive.
1115 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1116 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1117 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1118 	 * already ahead and it will be dropped.
1119 	 * If the last sub-frame is not on this queue - we will get frame
1120 	 * release notification with up to date NSSN.
1121 	 */
1122 	if (!amsdu || last_subframe)
1123 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1124 				       buffer, nssn,
1125 				       IWL_MVM_RELEASE_SEND_RSS_SYNC);
1126 
1127 	spin_unlock_bh(&buffer->lock);
1128 	return true;
1129 
1130 drop:
1131 	kfree_skb(skb);
1132 	spin_unlock_bh(&buffer->lock);
1133 	return true;
1134 }
1135 
1136 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1137 				    u32 reorder_data, u8 baid)
1138 {
1139 	unsigned long now = jiffies;
1140 	unsigned long timeout;
1141 	struct iwl_mvm_baid_data *data;
1142 
1143 	rcu_read_lock();
1144 
1145 	data = rcu_dereference(mvm->baid_map[baid]);
1146 	if (!data) {
1147 		IWL_DEBUG_RX(mvm,
1148 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1149 			      baid, reorder_data);
1150 		goto out;
1151 	}
1152 
1153 	if (!data->timeout)
1154 		goto out;
1155 
1156 	timeout = data->timeout;
1157 	/*
1158 	 * Do not update last rx all the time to avoid cache bouncing
1159 	 * between the rx queues.
1160 	 * Update it every timeout. Worst case is the session will
1161 	 * expire after ~ 2 * timeout, which doesn't matter that much.
1162 	 */
1163 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1164 		/* Update is atomic */
1165 		data->last_rx = now;
1166 
1167 out:
1168 	rcu_read_unlock();
1169 }
1170 
1171 static void iwl_mvm_flip_address(u8 *addr)
1172 {
1173 	int i;
1174 	u8 mac_addr[ETH_ALEN];
1175 
1176 	for (i = 0; i < ETH_ALEN; i++)
1177 		mac_addr[i] = addr[ETH_ALEN - i - 1];
1178 	ether_addr_copy(addr, mac_addr);
1179 }
1180 
1181 struct iwl_mvm_rx_phy_data {
1182 	enum iwl_rx_phy_info_type info_type;
1183 	__le32 d0, d1, d2, d3;
1184 	__le16 d4;
1185 };
1186 
1187 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1188 				     struct iwl_mvm_rx_phy_data *phy_data,
1189 				     u32 rate_n_flags,
1190 				     struct ieee80211_radiotap_he_mu *he_mu)
1191 {
1192 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
1193 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
1194 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
1195 
1196 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1197 		he_mu->flags1 |=
1198 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1199 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1200 
1201 		he_mu->flags1 |=
1202 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1203 						   phy_data4),
1204 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1205 
1206 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1207 					     phy_data2);
1208 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1209 					     phy_data3);
1210 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1211 					     phy_data2);
1212 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1213 					     phy_data3);
1214 	}
1215 
1216 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1217 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1218 		he_mu->flags1 |=
1219 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1220 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1221 
1222 		he_mu->flags2 |=
1223 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1224 						   phy_data4),
1225 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1226 
1227 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1228 					     phy_data2);
1229 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1230 					     phy_data3);
1231 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1232 					     phy_data2);
1233 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1234 					     phy_data3);
1235 	}
1236 }
1237 
1238 static void
1239 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1240 			       u32 rate_n_flags,
1241 			       struct ieee80211_radiotap_he *he,
1242 			       struct ieee80211_radiotap_he_mu *he_mu,
1243 			       struct ieee80211_rx_status *rx_status)
1244 {
1245 	/*
1246 	 * Unfortunately, we have to leave the mac80211 data
1247 	 * incorrect for the case that we receive an HE-MU
1248 	 * transmission and *don't* have the HE phy data (due
1249 	 * to the bits being used for TSF). This shouldn't
1250 	 * happen though as management frames where we need
1251 	 * the TSF/timers are not be transmitted in HE-MU.
1252 	 */
1253 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1254 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1255 	u8 offs = 0;
1256 
1257 	rx_status->bw = RATE_INFO_BW_HE_RU;
1258 
1259 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1260 
1261 	switch (ru) {
1262 	case 0 ... 36:
1263 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1264 		offs = ru;
1265 		break;
1266 	case 37 ... 52:
1267 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1268 		offs = ru - 37;
1269 		break;
1270 	case 53 ... 60:
1271 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1272 		offs = ru - 53;
1273 		break;
1274 	case 61 ... 64:
1275 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1276 		offs = ru - 61;
1277 		break;
1278 	case 65 ... 66:
1279 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1280 		offs = ru - 65;
1281 		break;
1282 	case 67:
1283 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1284 		break;
1285 	case 68:
1286 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1287 		break;
1288 	}
1289 	he->data2 |= le16_encode_bits(offs,
1290 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1291 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1292 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1293 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1294 		he->data2 |=
1295 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1296 
1297 #define CHECK_BW(bw) \
1298 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1299 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1300 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1301 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1302 	CHECK_BW(20);
1303 	CHECK_BW(40);
1304 	CHECK_BW(80);
1305 	CHECK_BW(160);
1306 
1307 	if (he_mu)
1308 		he_mu->flags2 |=
1309 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1310 						   rate_n_flags),
1311 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1312 	else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1313 		he->data6 |=
1314 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1315 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1316 						   rate_n_flags),
1317 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1318 }
1319 
1320 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1321 				       struct iwl_mvm_rx_phy_data *phy_data,
1322 				       struct ieee80211_radiotap_he *he,
1323 				       struct ieee80211_radiotap_he_mu *he_mu,
1324 				       struct ieee80211_rx_status *rx_status,
1325 				       u32 rate_n_flags, int queue)
1326 {
1327 	switch (phy_data->info_type) {
1328 	case IWL_RX_PHY_INFO_TYPE_NONE:
1329 	case IWL_RX_PHY_INFO_TYPE_CCK:
1330 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1331 	case IWL_RX_PHY_INFO_TYPE_HT:
1332 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1333 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1334 		return;
1335 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1336 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1337 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1338 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1339 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1340 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1341 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1342 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1343 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1344 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1345 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1346 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1347 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1348 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1349 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1350 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1351 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1352 		fallthrough;
1353 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1354 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1355 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1356 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1357 		/* HE common */
1358 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1359 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1360 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1361 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1362 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1363 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1364 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1365 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1366 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1367 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1368 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1369 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1370 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1371 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1372 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1373 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1374 		}
1375 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1376 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1377 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1378 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1379 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1380 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1381 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1382 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1383 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1384 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1385 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1386 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1387 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1388 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1389 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1390 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1391 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1392 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1393 		break;
1394 	}
1395 
1396 	switch (phy_data->info_type) {
1397 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1398 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1399 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1400 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1401 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1402 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1403 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1404 		break;
1405 	default:
1406 		/* nothing here */
1407 		break;
1408 	}
1409 
1410 	switch (phy_data->info_type) {
1411 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1412 		he_mu->flags1 |=
1413 			le16_encode_bits(le16_get_bits(phy_data->d4,
1414 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1415 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1416 		he_mu->flags1 |=
1417 			le16_encode_bits(le16_get_bits(phy_data->d4,
1418 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1419 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1420 		he_mu->flags2 |=
1421 			le16_encode_bits(le16_get_bits(phy_data->d4,
1422 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1423 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1424 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1425 		fallthrough;
1426 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1427 		he_mu->flags2 |=
1428 			le16_encode_bits(le32_get_bits(phy_data->d1,
1429 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1430 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1431 		he_mu->flags2 |=
1432 			le16_encode_bits(le32_get_bits(phy_data->d1,
1433 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1434 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1435 		fallthrough;
1436 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1437 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1438 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1439 					       he, he_mu, rx_status);
1440 		break;
1441 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1442 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1443 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1444 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1445 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1446 		break;
1447 	default:
1448 		/* nothing */
1449 		break;
1450 	}
1451 }
1452 
1453 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1454 			  struct iwl_mvm_rx_phy_data *phy_data,
1455 			  u32 rate_n_flags, u16 phy_info, int queue)
1456 {
1457 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1458 	struct ieee80211_radiotap_he *he = NULL;
1459 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1460 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1461 	u8 stbc, ltf;
1462 	static const struct ieee80211_radiotap_he known = {
1463 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1464 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1465 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1466 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1467 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1468 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1469 	};
1470 	static const struct ieee80211_radiotap_he_mu mu_known = {
1471 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1472 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1473 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1474 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1475 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1476 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1477 	};
1478 
1479 	he = skb_put_data(skb, &known, sizeof(known));
1480 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1481 
1482 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1483 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1484 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1485 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1486 	}
1487 
1488 	/* report the AMPDU-EOF bit on single frames */
1489 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1490 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1491 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1492 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1493 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1494 	}
1495 
1496 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1497 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1498 					   rate_n_flags, queue);
1499 
1500 	/* update aggregation data for monitor sake on default queue */
1501 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1502 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1503 		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1504 
1505 		/* toggle is switched whenever new aggregation starts */
1506 		if (toggle_bit != mvm->ampdu_toggle) {
1507 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1508 			if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1509 				rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1510 		}
1511 	}
1512 
1513 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1514 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1515 		rx_status->bw = RATE_INFO_BW_HE_RU;
1516 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1517 	}
1518 
1519 	/* actually data is filled in mac80211 */
1520 	if (he_type == RATE_MCS_HE_TYPE_SU ||
1521 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1522 		he->data1 |=
1523 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1524 
1525 	stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1526 	rx_status->nss =
1527 		((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1528 					RATE_VHT_MCS_NSS_POS) + 1;
1529 	rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1530 	rx_status->encoding = RX_ENC_HE;
1531 	rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1532 	if (rate_n_flags & RATE_MCS_BF_MSK)
1533 		rx_status->enc_flags |= RX_ENC_FLAG_BF;
1534 
1535 	rx_status->he_dcm =
1536 		!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1537 
1538 #define CHECK_TYPE(F)							\
1539 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1540 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1541 
1542 	CHECK_TYPE(SU);
1543 	CHECK_TYPE(EXT_SU);
1544 	CHECK_TYPE(MU);
1545 	CHECK_TYPE(TRIG);
1546 
1547 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1548 
1549 	if (rate_n_flags & RATE_MCS_BF_MSK)
1550 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1551 
1552 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1553 		RATE_MCS_HE_GI_LTF_POS) {
1554 	case 0:
1555 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1556 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1557 		else
1558 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1559 		if (he_type == RATE_MCS_HE_TYPE_MU)
1560 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1561 		else
1562 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1563 		break;
1564 	case 1:
1565 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1566 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1567 		else
1568 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1569 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1570 		break;
1571 	case 2:
1572 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1573 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1574 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1575 		} else {
1576 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1577 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1578 		}
1579 		break;
1580 	case 3:
1581 		if ((he_type == RATE_MCS_HE_TYPE_SU ||
1582 		     he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1583 		    rate_n_flags & RATE_MCS_SGI_MSK)
1584 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1585 		else
1586 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1587 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1588 		break;
1589 	}
1590 
1591 	he->data5 |= le16_encode_bits(ltf,
1592 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1593 }
1594 
1595 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1596 				struct iwl_mvm_rx_phy_data *phy_data)
1597 {
1598 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1599 	struct ieee80211_radiotap_lsig *lsig;
1600 
1601 	switch (phy_data->info_type) {
1602 	case IWL_RX_PHY_INFO_TYPE_HT:
1603 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1604 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1605 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1606 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1607 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1608 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1609 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1610 		lsig = skb_put(skb, sizeof(*lsig));
1611 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1612 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1613 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1614 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1615 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1616 		break;
1617 	default:
1618 		break;
1619 	}
1620 }
1621 
1622 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1623 {
1624 	switch (phy_band) {
1625 	case PHY_BAND_24:
1626 		return NL80211_BAND_2GHZ;
1627 	case PHY_BAND_5:
1628 		return NL80211_BAND_5GHZ;
1629 	case PHY_BAND_6:
1630 		return NL80211_BAND_6GHZ;
1631 	default:
1632 		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1633 		return NL80211_BAND_5GHZ;
1634 	}
1635 }
1636 
1637 struct iwl_rx_sta_csa {
1638 	bool all_sta_unblocked;
1639 	struct ieee80211_vif *vif;
1640 };
1641 
1642 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1643 {
1644 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1645 	struct iwl_rx_sta_csa *rx_sta_csa = data;
1646 
1647 	if (mvmsta->vif != rx_sta_csa->vif)
1648 		return;
1649 
1650 	if (mvmsta->disable_tx)
1651 		rx_sta_csa->all_sta_unblocked = false;
1652 }
1653 
1654 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1655 			struct iwl_rx_cmd_buffer *rxb, int queue)
1656 {
1657 	struct ieee80211_rx_status *rx_status;
1658 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1659 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1660 	struct ieee80211_hdr *hdr;
1661 	u32 len;
1662 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
1663 	u32 rate_n_flags, gp2_on_air_rise;
1664 	u16 phy_info;
1665 	struct ieee80211_sta *sta = NULL;
1666 	struct sk_buff *skb;
1667 	u8 crypt_len = 0, channel, energy_a, energy_b;
1668 	size_t desc_size;
1669 	struct iwl_mvm_rx_phy_data phy_data = {
1670 		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1671 	};
1672 	bool csi = false;
1673 
1674 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1675 		return;
1676 
1677 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1678 		desc_size = sizeof(*desc);
1679 	else
1680 		desc_size = IWL_RX_DESC_SIZE_V1;
1681 
1682 	if (unlikely(pkt_len < desc_size)) {
1683 		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
1684 		return;
1685 	}
1686 
1687 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1688 		rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1689 		channel = desc->v3.channel;
1690 		gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1691 		energy_a = desc->v3.energy_a;
1692 		energy_b = desc->v3.energy_b;
1693 
1694 		phy_data.d0 = desc->v3.phy_data0;
1695 		phy_data.d1 = desc->v3.phy_data1;
1696 		phy_data.d2 = desc->v3.phy_data2;
1697 		phy_data.d3 = desc->v3.phy_data3;
1698 	} else {
1699 		rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1700 		channel = desc->v1.channel;
1701 		gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1702 		energy_a = desc->v1.energy_a;
1703 		energy_b = desc->v1.energy_b;
1704 
1705 		phy_data.d0 = desc->v1.phy_data0;
1706 		phy_data.d1 = desc->v1.phy_data1;
1707 		phy_data.d2 = desc->v1.phy_data2;
1708 		phy_data.d3 = desc->v1.phy_data3;
1709 	}
1710 
1711 	len = le16_to_cpu(desc->mpdu_len);
1712 
1713 	if (unlikely(len + desc_size > pkt_len)) {
1714 		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
1715 		return;
1716 	}
1717 
1718 	phy_info = le16_to_cpu(desc->phy_info);
1719 	phy_data.d4 = desc->phy_data4;
1720 
1721 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1722 		phy_data.info_type =
1723 			le32_get_bits(phy_data.d1,
1724 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1725 
1726 	hdr = (void *)(pkt->data + desc_size);
1727 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1728 	 * ieee80211_hdr pulled.
1729 	 */
1730 	skb = alloc_skb(128, GFP_ATOMIC);
1731 	if (!skb) {
1732 		IWL_ERR(mvm, "alloc_skb failed\n");
1733 		return;
1734 	}
1735 
1736 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1737 		/*
1738 		 * If the device inserted padding it means that (it thought)
1739 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
1740 		 * this case, reserve two bytes at the start of the SKB to
1741 		 * align the payload properly in case we end up copying it.
1742 		 */
1743 		skb_reserve(skb, 2);
1744 	}
1745 
1746 	rx_status = IEEE80211_SKB_RXCB(skb);
1747 
1748 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1749 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1750 	case RATE_MCS_CHAN_WIDTH_20:
1751 		break;
1752 	case RATE_MCS_CHAN_WIDTH_40:
1753 		rx_status->bw = RATE_INFO_BW_40;
1754 		break;
1755 	case RATE_MCS_CHAN_WIDTH_80:
1756 		rx_status->bw = RATE_INFO_BW_80;
1757 		break;
1758 	case RATE_MCS_CHAN_WIDTH_160:
1759 		rx_status->bw = RATE_INFO_BW_160;
1760 		break;
1761 	}
1762 
1763 	if (rate_n_flags & RATE_MCS_HE_MSK)
1764 		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1765 			      phy_info, queue);
1766 
1767 	iwl_mvm_decode_lsig(skb, &phy_data);
1768 
1769 	/*
1770 	 * Keep packets with CRC errors (and with overrun) for monitor mode
1771 	 * (otherwise the firmware discards them) but mark them as bad.
1772 	 */
1773 	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1774 	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1775 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1776 			     le32_to_cpu(desc->status));
1777 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1778 	}
1779 	/* set the preamble flag if appropriate */
1780 	if (rate_n_flags & RATE_MCS_CCK_MSK &&
1781 	    phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1782 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1783 
1784 	if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1785 		u64 tsf_on_air_rise;
1786 
1787 		if (mvm->trans->trans_cfg->device_family >=
1788 		    IWL_DEVICE_FAMILY_AX210)
1789 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1790 		else
1791 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1792 
1793 		rx_status->mactime = tsf_on_air_rise;
1794 		/* TSF as indicated by the firmware is at INA time */
1795 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1796 	}
1797 
1798 	rx_status->device_timestamp = gp2_on_air_rise;
1799 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1800 		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1801 
1802 		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1803 	} else {
1804 		rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1805 			NL80211_BAND_2GHZ;
1806 	}
1807 	rx_status->freq = ieee80211_channel_to_frequency(channel,
1808 							 rx_status->band);
1809 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1810 				    energy_b);
1811 
1812 	/* update aggregation data for monitor sake on default queue */
1813 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1814 		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1815 
1816 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1817 		/*
1818 		 * Toggle is switched whenever new aggregation starts. Make
1819 		 * sure ampdu_reference is never 0 so we can later use it to
1820 		 * see if the frame was really part of an A-MPDU or not.
1821 		 */
1822 		if (toggle_bit != mvm->ampdu_toggle) {
1823 			mvm->ampdu_ref++;
1824 			if (mvm->ampdu_ref == 0)
1825 				mvm->ampdu_ref++;
1826 			mvm->ampdu_toggle = toggle_bit;
1827 		}
1828 		rx_status->ampdu_reference = mvm->ampdu_ref;
1829 	}
1830 
1831 	if (unlikely(mvm->monitor_on))
1832 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1833 
1834 	rcu_read_lock();
1835 
1836 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1837 		u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
1838 
1839 		if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
1840 			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1841 			if (IS_ERR(sta))
1842 				sta = NULL;
1843 		}
1844 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
1845 		/*
1846 		 * This is fine since we prevent two stations with the same
1847 		 * address from being added.
1848 		 */
1849 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1850 	}
1851 
1852 	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc,
1853 			      le32_to_cpu(pkt->len_n_flags), queue,
1854 			      &crypt_len)) {
1855 		kfree_skb(skb);
1856 		goto out;
1857 	}
1858 
1859 	if (sta) {
1860 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1861 		struct ieee80211_vif *tx_blocked_vif =
1862 			rcu_dereference(mvm->csa_tx_blocked_vif);
1863 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1864 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
1865 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
1866 		struct iwl_fw_dbg_trigger_tlv *trig;
1867 		struct ieee80211_vif *vif = mvmsta->vif;
1868 
1869 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1870 		    !is_multicast_ether_addr(hdr->addr1) &&
1871 		    ieee80211_is_data(hdr->frame_control) &&
1872 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1873 			schedule_delayed_work(&mvm->tcm.work, 0);
1874 
1875 		/*
1876 		 * We have tx blocked stations (with CS bit). If we heard
1877 		 * frames from a blocked station on a new channel we can
1878 		 * TX to it again.
1879 		 */
1880 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1881 			struct iwl_mvm_vif *mvmvif =
1882 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1883 			struct iwl_rx_sta_csa rx_sta_csa = {
1884 				.all_sta_unblocked = true,
1885 				.vif = tx_blocked_vif,
1886 			};
1887 
1888 			if (mvmvif->csa_target_freq == rx_status->freq)
1889 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1890 								 false);
1891 			ieee80211_iterate_stations_atomic(mvm->hw,
1892 							  iwl_mvm_rx_get_sta_block_tx,
1893 							  &rx_sta_csa);
1894 
1895 			if (rx_sta_csa.all_sta_unblocked) {
1896 				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
1897 				/* Unblock BCAST / MCAST station */
1898 				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
1899 				cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork);
1900 			}
1901 		}
1902 
1903 		rs_update_last_rssi(mvm, mvmsta, rx_status);
1904 
1905 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1906 					     ieee80211_vif_to_wdev(vif),
1907 					     FW_DBG_TRIGGER_RSSI);
1908 
1909 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1910 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1911 			s32 rssi;
1912 
1913 			rssi_trig = (void *)trig->data;
1914 			rssi = le32_to_cpu(rssi_trig->rssi);
1915 
1916 			if (rx_status->signal < rssi)
1917 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1918 							NULL);
1919 		}
1920 
1921 		if (ieee80211_is_data(hdr->frame_control))
1922 			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
1923 
1924 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1925 			kfree_skb(skb);
1926 			goto out;
1927 		}
1928 
1929 		/*
1930 		 * Our hardware de-aggregates AMSDUs but copies the mac header
1931 		 * as it to the de-aggregated MPDUs. We need to turn off the
1932 		 * AMSDU bit in the QoS control ourselves.
1933 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
1934 		 */
1935 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1936 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1937 			u8 *qc = ieee80211_get_qos_ctl(hdr);
1938 
1939 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1940 
1941 			if (mvm->trans->trans_cfg->device_family ==
1942 			    IWL_DEVICE_FAMILY_9000) {
1943 				iwl_mvm_flip_address(hdr->addr3);
1944 
1945 				if (ieee80211_has_a4(hdr->frame_control))
1946 					iwl_mvm_flip_address(hdr->addr4);
1947 			}
1948 		}
1949 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1950 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
1951 
1952 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1953 		}
1954 	}
1955 
1956 	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1957 	    rate_n_flags & RATE_MCS_SGI_MSK)
1958 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1959 	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1960 		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1961 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1962 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1963 	if (rate_n_flags & RATE_MCS_HT_MSK) {
1964 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1965 				RATE_MCS_STBC_POS;
1966 		rx_status->encoding = RX_ENC_HT;
1967 		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1968 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1969 	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1970 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1971 				RATE_MCS_STBC_POS;
1972 		rx_status->nss =
1973 			((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1974 						RATE_VHT_MCS_NSS_POS) + 1;
1975 		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1976 		rx_status->encoding = RX_ENC_VHT;
1977 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1978 		if (rate_n_flags & RATE_MCS_BF_MSK)
1979 			rx_status->enc_flags |= RX_ENC_FLAG_BF;
1980 	} else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1981 		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1982 							       rx_status->band);
1983 
1984 		if (WARN(rate < 0 || rate > 0xFF,
1985 			 "Invalid rate flags 0x%x, band %d,\n",
1986 			 rate_n_flags, rx_status->band)) {
1987 			kfree_skb(skb);
1988 			goto out;
1989 		}
1990 		rx_status->rate_idx = rate;
1991 	}
1992 
1993 	/* management stuff on default queue */
1994 	if (!queue) {
1995 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1996 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
1997 			     mvm->sched_scan_pass_all ==
1998 			     SCHED_SCAN_PASS_ALL_ENABLED))
1999 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2000 
2001 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2002 			     ieee80211_is_probe_resp(hdr->frame_control)))
2003 			rx_status->boottime_ns = ktime_get_boottime_ns();
2004 	}
2005 
2006 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2007 		kfree_skb(skb);
2008 		goto out;
2009 	}
2010 
2011 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
2012 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
2013 						sta, csi);
2014 out:
2015 	rcu_read_unlock();
2016 }
2017 
2018 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2019 				struct iwl_rx_cmd_buffer *rxb, int queue)
2020 {
2021 	struct ieee80211_rx_status *rx_status;
2022 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2023 	struct iwl_rx_no_data *desc = (void *)pkt->data;
2024 	u32 rate_n_flags = le32_to_cpu(desc->rate);
2025 	u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2026 	u32 rssi = le32_to_cpu(desc->rssi);
2027 	u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2028 	u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2029 	struct ieee80211_sta *sta = NULL;
2030 	struct sk_buff *skb;
2031 	u8 channel, energy_a, energy_b;
2032 	struct iwl_mvm_rx_phy_data phy_data = {
2033 		.d0 = desc->phy_info[0],
2034 		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
2035 	};
2036 
2037 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc)))
2038 		return;
2039 
2040 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2041 		return;
2042 
2043 	energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
2044 	energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
2045 	channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
2046 
2047 	phy_data.info_type =
2048 		le32_get_bits(desc->phy_info[1],
2049 			      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
2050 
2051 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2052 	 * ieee80211_hdr pulled.
2053 	 */
2054 	skb = alloc_skb(128, GFP_ATOMIC);
2055 	if (!skb) {
2056 		IWL_ERR(mvm, "alloc_skb failed\n");
2057 		return;
2058 	}
2059 
2060 	rx_status = IEEE80211_SKB_RXCB(skb);
2061 
2062 	/* 0-length PSDU */
2063 	rx_status->flag |= RX_FLAG_NO_PSDU;
2064 
2065 	switch (info_type) {
2066 	case RX_NO_DATA_INFO_TYPE_NDP:
2067 		rx_status->zero_length_psdu_type =
2068 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2069 		break;
2070 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2071 	case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
2072 		rx_status->zero_length_psdu_type =
2073 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2074 		break;
2075 	default:
2076 		rx_status->zero_length_psdu_type =
2077 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2078 		break;
2079 	}
2080 
2081 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2082 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2083 	case RATE_MCS_CHAN_WIDTH_20:
2084 		break;
2085 	case RATE_MCS_CHAN_WIDTH_40:
2086 		rx_status->bw = RATE_INFO_BW_40;
2087 		break;
2088 	case RATE_MCS_CHAN_WIDTH_80:
2089 		rx_status->bw = RATE_INFO_BW_80;
2090 		break;
2091 	case RATE_MCS_CHAN_WIDTH_160:
2092 		rx_status->bw = RATE_INFO_BW_160;
2093 		break;
2094 	}
2095 
2096 	if (rate_n_flags & RATE_MCS_HE_MSK)
2097 		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
2098 			      phy_info, queue);
2099 
2100 	iwl_mvm_decode_lsig(skb, &phy_data);
2101 
2102 	rx_status->device_timestamp = gp2_on_air_rise;
2103 	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
2104 		NL80211_BAND_2GHZ;
2105 	rx_status->freq = ieee80211_channel_to_frequency(channel,
2106 							 rx_status->band);
2107 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
2108 				    energy_b);
2109 
2110 	rcu_read_lock();
2111 
2112 	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
2113 	    rate_n_flags & RATE_MCS_SGI_MSK)
2114 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2115 	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
2116 		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
2117 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
2118 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2119 	if (rate_n_flags & RATE_MCS_HT_MSK) {
2120 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2121 				RATE_MCS_STBC_POS;
2122 		rx_status->encoding = RX_ENC_HT;
2123 		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
2124 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2125 	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2126 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2127 				RATE_MCS_STBC_POS;
2128 		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2129 		rx_status->encoding = RX_ENC_VHT;
2130 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2131 		if (rate_n_flags & RATE_MCS_BF_MSK)
2132 			rx_status->enc_flags |= RX_ENC_FLAG_BF;
2133 		/*
2134 		 * take the nss from the rx_vec since the rate_n_flags has
2135 		 * only 2 bits for the nss which gives a max of 4 ss but
2136 		 * there may be up to 8 spatial streams
2137 		 */
2138 		rx_status->nss =
2139 			le32_get_bits(desc->rx_vec[0],
2140 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2141 	} else if (rate_n_flags & RATE_MCS_HE_MSK) {
2142 		rx_status->nss =
2143 			le32_get_bits(desc->rx_vec[0],
2144 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2145 	} else {
2146 		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2147 							       rx_status->band);
2148 
2149 		if (WARN(rate < 0 || rate > 0xFF,
2150 			 "Invalid rate flags 0x%x, band %d,\n",
2151 			 rate_n_flags, rx_status->band)) {
2152 			kfree_skb(skb);
2153 			goto out;
2154 		}
2155 		rx_status->rate_idx = rate;
2156 	}
2157 
2158 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2159 out:
2160 	rcu_read_unlock();
2161 }
2162 
2163 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2164 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2165 {
2166 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2167 	struct iwl_frame_release *release = (void *)pkt->data;
2168 
2169 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2170 		return;
2171 
2172 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2173 					  le16_to_cpu(release->nssn),
2174 					  queue, 0);
2175 }
2176 
2177 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2178 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2179 {
2180 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2181 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2182 	unsigned int baid = le32_get_bits(release->ba_info,
2183 					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2184 	unsigned int nssn = le32_get_bits(release->ba_info,
2185 					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2186 	unsigned int sta_id = le32_get_bits(release->sta_tid,
2187 					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2188 	unsigned int tid = le32_get_bits(release->sta_tid,
2189 					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2190 	struct iwl_mvm_baid_data *baid_data;
2191 
2192 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2193 		return;
2194 
2195 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2196 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2197 		return;
2198 
2199 	rcu_read_lock();
2200 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2201 	if (!baid_data) {
2202 		IWL_DEBUG_RX(mvm,
2203 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2204 			      baid);
2205 		goto out;
2206 	}
2207 
2208 	if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2209 		 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2210 		 baid, baid_data->sta_id, baid_data->tid, sta_id,
2211 		 tid))
2212 		goto out;
2213 
2214 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2215 out:
2216 	rcu_read_unlock();
2217 }
2218