1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2015-2017 Intel Deutschland GmbH
6  */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 #include "time-sync.h"
13 
14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 				   int queue, struct ieee80211_sta *sta)
16 {
17 	struct iwl_mvm_sta *mvmsta;
18 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 	struct iwl_mvm_key_pn *ptk_pn;
21 	int res;
22 	u8 tid, keyidx;
23 	u8 pn[IEEE80211_CCMP_PN_LEN];
24 	u8 *extiv;
25 
26 	/* do PN checking */
27 
28 	/* multicast and non-data only arrives on default queue */
29 	if (!ieee80211_is_data(hdr->frame_control) ||
30 	    is_multicast_ether_addr(hdr->addr1))
31 		return 0;
32 
33 	/* do not check PN for open AP */
34 	if (!(stats->flag & RX_FLAG_DECRYPTED))
35 		return 0;
36 
37 	/*
38 	 * avoid checking for default queue - we don't want to replicate
39 	 * all the logic that's necessary for checking the PN on fragmented
40 	 * frames, leave that to mac80211
41 	 */
42 	if (queue == 0)
43 		return 0;
44 
45 	/* if we are here - this for sure is either CCMP or GCMP */
46 	if (IS_ERR_OR_NULL(sta)) {
47 		IWL_DEBUG_DROP(mvm,
48 			       "expected hw-decrypted unicast frame for station\n");
49 		return -1;
50 	}
51 
52 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
53 
54 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 	keyidx = extiv[3] >> 6;
56 
57 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 	if (!ptk_pn)
59 		return -1;
60 
61 	if (ieee80211_is_data_qos(hdr->frame_control))
62 		tid = ieee80211_get_tid(hdr);
63 	else
64 		tid = 0;
65 
66 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 	if (tid >= IWL_MAX_TID_COUNT)
68 		return -1;
69 
70 	/* load pn */
71 	pn[0] = extiv[7];
72 	pn[1] = extiv[6];
73 	pn[2] = extiv[5];
74 	pn[3] = extiv[4];
75 	pn[4] = extiv[1];
76 	pn[5] = extiv[0];
77 
78 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 	if (res < 0)
80 		return -1;
81 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 		return -1;
83 
84 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 	stats->flag |= RX_FLAG_PN_VALIDATED;
86 
87 	return 0;
88 }
89 
90 /* iwl_mvm_create_skb Adds the rxb to a new skb */
91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 			      struct iwl_rx_cmd_buffer *rxb)
94 {
95 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 	unsigned int headlen, fraglen, pad_len = 0;
98 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101 
102 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 		len -= 2;
104 		pad_len = 2;
105 	}
106 
107 	/*
108 	 * For non monitor interface strip the bytes the RADA might not have
109 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 	 * interface cannot exist with other interfaces, this removal is safe
111 	 * and sufficient, in monitor mode there's no decryption being done.
112 	 */
113 	if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 		len -= mic_crc_len;
115 
116 	/* If frame is small enough to fit in skb->head, pull it completely.
117 	 * If not, only pull ieee80211_hdr (including crypto if present, and
118 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 	 * splice() or TCP coalesce are more efficient.
120 	 *
121 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 	 * least 8 bytes (possibly more for mesh) we can do the same here
123 	 * to save the cost of doing it later. That still doesn't pull in
124 	 * the actual IP header since the typical case has a SNAP header.
125 	 * If the latter changes (there are efforts in the standards group
126 	 * to do so) we should revisit this and ieee80211_data_to_8023().
127 	 */
128 	headlen = (len <= skb_tailroom(skb)) ? len :
129 					       hdrlen + crypt_len + 8;
130 
131 	/* The firmware may align the packet to DWORD.
132 	 * The padding is inserted after the IV.
133 	 * After copying the header + IV skip the padding if
134 	 * present before copying packet data.
135 	 */
136 	hdrlen += crypt_len;
137 
138 	if (unlikely(headlen < hdrlen))
139 		return -EINVAL;
140 
141 	/* Since data doesn't move data while putting data on skb and that is
142 	 * the only way we use, data + len is the next place that hdr would be put
143 	 */
144 	skb_set_mac_header(skb, skb->len);
145 	skb_put_data(skb, hdr, hdrlen);
146 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147 
148 	/*
149 	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 	 * certain cases and starts the checksum after the SNAP. Check if
151 	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 	 * in the cases the hardware didn't handle, since it's rare to see
153 	 * such packets, even though the hardware did calculate the checksum
154 	 * in this case, just starting after the MAC header instead.
155 	 *
156 	 * Starting from Bz hardware, it calculates starting directly after
157 	 * the MAC header, so that matches mac80211's expectation.
158 	 */
159 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 		struct {
161 			u8 hdr[6];
162 			__be16 type;
163 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164 
165 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 			     (shdr->type != htons(ETH_P_IP) &&
168 			      shdr->type != htons(ETH_P_ARP) &&
169 			      shdr->type != htons(ETH_P_IPV6) &&
170 			      shdr->type != htons(ETH_P_8021Q) &&
171 			      shdr->type != htons(ETH_P_PAE) &&
172 			      shdr->type != htons(ETH_P_TDLS))))
173 			skb->ip_summed = CHECKSUM_NONE;
174 		else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 			/* mac80211 assumes full CSUM including SNAP header */
176 			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 	}
178 
179 	fraglen = len - headlen;
180 
181 	if (fraglen) {
182 		int offset = (u8 *)hdr + headlen + pad_len -
183 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184 
185 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 				fraglen, rxb->truesize);
187 	}
188 
189 	return 0;
190 }
191 
192 /* put a TLV on the skb and return data pointer
193  *
194  * Also pad to 4 the len and zero out all data part
195  */
196 static void *
197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198 {
199 	struct ieee80211_radiotap_tlv *tlv;
200 
201 	tlv = skb_put(skb, sizeof(*tlv));
202 	tlv->type = cpu_to_le16(type);
203 	tlv->len = cpu_to_le16(len);
204 	return skb_put_zero(skb, ALIGN(len, 4));
205 }
206 
207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 					    struct sk_buff *skb)
209 {
210 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 	struct ieee80211_radiotap_vendor_content *radiotap;
212 	const u16 vendor_data_len = sizeof(mvm->cur_aid);
213 
214 	if (!mvm->cur_aid)
215 		return;
216 
217 	radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 					    sizeof(*radiotap) + vendor_data_len);
220 
221 	/* Intel OUI */
222 	radiotap->oui[0] = 0xf6;
223 	radiotap->oui[1] = 0x54;
224 	radiotap->oui[2] = 0x25;
225 	/* radiotap sniffer config sub-namespace */
226 	radiotap->oui_subtype = 1;
227 	radiotap->vendor_type = 0;
228 
229 	/* fill the data now */
230 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231 
232 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233 }
234 
235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 					    struct napi_struct *napi,
238 					    struct sk_buff *skb, int queue,
239 					    struct ieee80211_sta *sta,
240 					    struct ieee80211_link_sta *link_sta)
241 {
242 	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
243 		kfree_skb(skb);
244 		return;
245 	}
246 
247 	if (sta && sta->valid_links && link_sta) {
248 		struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
249 
250 		rx_status->link_valid = 1;
251 		rx_status->link_id = link_sta->link_id;
252 	}
253 
254 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
255 }
256 
257 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
258 					struct ieee80211_rx_status *rx_status,
259 					u32 rate_n_flags, int energy_a,
260 					int energy_b)
261 {
262 	int max_energy;
263 	u32 rate_flags = rate_n_flags;
264 
265 	energy_a = energy_a ? -energy_a : S8_MIN;
266 	energy_b = energy_b ? -energy_b : S8_MIN;
267 	max_energy = max(energy_a, energy_b);
268 
269 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
270 			energy_a, energy_b, max_energy);
271 
272 	rx_status->signal = max_energy;
273 	rx_status->chains =
274 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
275 	rx_status->chain_signal[0] = energy_a;
276 	rx_status->chain_signal[1] = energy_b;
277 }
278 
279 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
280 				struct ieee80211_hdr *hdr,
281 				struct iwl_rx_mpdu_desc *desc,
282 				u32 status,
283 				struct ieee80211_rx_status *stats)
284 {
285 	struct iwl_mvm_sta *mvmsta;
286 	struct iwl_mvm_vif *mvmvif;
287 	u8 keyid;
288 	struct ieee80211_key_conf *key;
289 	u32 len = le16_to_cpu(desc->mpdu_len);
290 	const u8 *frame = (void *)hdr;
291 
292 	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
293 		return 0;
294 
295 	/*
296 	 * For non-beacon, we don't really care. But beacons may
297 	 * be filtered out, and we thus need the firmware's replay
298 	 * detection, otherwise beacons the firmware previously
299 	 * filtered could be replayed, or something like that, and
300 	 * it can filter a lot - though usually only if nothing has
301 	 * changed.
302 	 */
303 	if (!ieee80211_is_beacon(hdr->frame_control))
304 		return 0;
305 
306 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
307 	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
308 		return -1;
309 
310 	/* good cases */
311 	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
312 		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
313 		stats->flag |= RX_FLAG_DECRYPTED;
314 		return 0;
315 	}
316 
317 	if (!sta)
318 		return -1;
319 
320 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
321 
322 	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
323 
324 	/*
325 	 * both keys will have the same cipher and MIC length, use
326 	 * whichever one is available
327 	 */
328 	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
329 	if (!key) {
330 		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
331 		if (!key)
332 			return -1;
333 	}
334 
335 	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
336 		return -1;
337 
338 	/* get the real key ID */
339 	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
340 	/* and if that's the other key, look it up */
341 	if (keyid != key->keyidx) {
342 		/*
343 		 * shouldn't happen since firmware checked, but be safe
344 		 * in case the MIC length is wrong too, for example
345 		 */
346 		if (keyid != 6 && keyid != 7)
347 			return -1;
348 		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
349 		if (!key)
350 			return -1;
351 	}
352 
353 	/* Report status to mac80211 */
354 	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
355 		ieee80211_key_mic_failure(key);
356 	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
357 		ieee80211_key_replay(key);
358 
359 	return -1;
360 }
361 
362 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
363 			     struct ieee80211_hdr *hdr,
364 			     struct ieee80211_rx_status *stats, u16 phy_info,
365 			     struct iwl_rx_mpdu_desc *desc,
366 			     u32 pkt_flags, int queue, u8 *crypt_len)
367 {
368 	u32 status = le32_to_cpu(desc->status);
369 
370 	/*
371 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
372 	 * (where we don't have the keys).
373 	 * We limit this to aggregation because in TKIP this is a valid
374 	 * scenario, since we may not have the (correct) TTAK (phase 1
375 	 * key) in the firmware.
376 	 */
377 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
378 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
379 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
380 		return -1;
381 
382 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
383 		     !ieee80211_has_protected(hdr->frame_control)))
384 		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
385 
386 	if (!ieee80211_has_protected(hdr->frame_control) ||
387 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
388 	    IWL_RX_MPDU_STATUS_SEC_NONE)
389 		return 0;
390 
391 	/* TODO: handle packets encrypted with unknown alg */
392 
393 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
394 	case IWL_RX_MPDU_STATUS_SEC_CCM:
395 	case IWL_RX_MPDU_STATUS_SEC_GCM:
396 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
397 		/* alg is CCM: check MIC only */
398 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
399 			return -1;
400 
401 		stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
402 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
403 		return 0;
404 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
405 		/* Don't drop the frame and decrypt it in SW */
406 		if (!fw_has_api(&mvm->fw->ucode_capa,
407 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
408 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
409 			return 0;
410 
411 		if (mvm->trans->trans_cfg->gen2 &&
412 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
413 			stats->flag |= RX_FLAG_MMIC_ERROR;
414 
415 		*crypt_len = IEEE80211_TKIP_IV_LEN;
416 		fallthrough;
417 	case IWL_RX_MPDU_STATUS_SEC_WEP:
418 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
419 			return -1;
420 
421 		stats->flag |= RX_FLAG_DECRYPTED;
422 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
423 				IWL_RX_MPDU_STATUS_SEC_WEP)
424 			*crypt_len = IEEE80211_WEP_IV_LEN;
425 
426 		if (pkt_flags & FH_RSCSR_RADA_EN) {
427 			stats->flag |= RX_FLAG_ICV_STRIPPED;
428 			if (mvm->trans->trans_cfg->gen2)
429 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
430 		}
431 
432 		return 0;
433 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
434 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
435 			return -1;
436 		stats->flag |= RX_FLAG_DECRYPTED;
437 		return 0;
438 	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
439 		break;
440 	default:
441 		/*
442 		 * Sometimes we can get frames that were not decrypted
443 		 * because the firmware didn't have the keys yet. This can
444 		 * happen after connection where we can get multicast frames
445 		 * before the GTK is installed.
446 		 * Silently drop those frames.
447 		 * Also drop un-decrypted frames in monitor mode.
448 		 */
449 		if (!is_multicast_ether_addr(hdr->addr1) &&
450 		    !mvm->monitor_on && net_ratelimit())
451 			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
452 	}
453 
454 	return 0;
455 }
456 
457 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
458 			    struct ieee80211_sta *sta,
459 			    struct sk_buff *skb,
460 			    struct iwl_rx_packet *pkt)
461 {
462 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
463 
464 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
465 		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
466 			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
467 
468 			skb->ip_summed = CHECKSUM_COMPLETE;
469 			skb->csum = csum_unfold(~(__force __sum16)hwsum);
470 		}
471 	} else {
472 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
473 		struct iwl_mvm_vif *mvmvif;
474 		u16 flags = le16_to_cpu(desc->l3l4_flags);
475 		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
476 				  IWL_RX_L3_PROTO_POS);
477 
478 		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
479 
480 		if (mvmvif->features & NETIF_F_RXCSUM &&
481 		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
482 		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
483 		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
484 		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
485 			skb->ip_summed = CHECKSUM_UNNECESSARY;
486 	}
487 }
488 
489 /*
490  * returns true if a packet is a duplicate or invalid tid and should be dropped.
491  * Updates AMSDU PN tracking info
492  */
493 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
494 			   struct ieee80211_rx_status *rx_status,
495 			   struct ieee80211_hdr *hdr,
496 			   struct iwl_rx_mpdu_desc *desc)
497 {
498 	struct iwl_mvm_sta *mvm_sta;
499 	struct iwl_mvm_rxq_dup_data *dup_data;
500 	u8 tid, sub_frame_idx;
501 
502 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
503 		return false;
504 
505 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
506 
507 	if (WARN_ON_ONCE(!mvm_sta->dup_data))
508 		return false;
509 
510 	dup_data = &mvm_sta->dup_data[queue];
511 
512 	/*
513 	 * Drop duplicate 802.11 retransmissions
514 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
515 	 */
516 	if (ieee80211_is_ctl(hdr->frame_control) ||
517 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
518 	    is_multicast_ether_addr(hdr->addr1)) {
519 		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
520 		return false;
521 	}
522 
523 	if (ieee80211_is_data_qos(hdr->frame_control)) {
524 		/* frame has qos control */
525 		tid = ieee80211_get_tid(hdr);
526 		if (tid >= IWL_MAX_TID_COUNT)
527 			return true;
528 	} else {
529 		tid = IWL_MAX_TID_COUNT;
530 	}
531 
532 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
533 	sub_frame_idx = desc->amsdu_info &
534 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
535 
536 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
537 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
538 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
539 		return true;
540 
541 	/* Allow same PN as the first subframe for following sub frames */
542 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
543 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
544 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
545 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
546 
547 	dup_data->last_seq[tid] = hdr->seq_ctrl;
548 	dup_data->last_sub_frame[tid] = sub_frame_idx;
549 
550 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
551 
552 	return false;
553 }
554 
555 /*
556  * Returns true if sn2 - buffer_size < sn1 < sn2.
557  * To be used only in order to compare reorder buffer head with NSSN.
558  * We fully trust NSSN unless it is behind us due to reorder timeout.
559  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
560  */
561 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
562 {
563 	return ieee80211_sn_less(sn1, sn2) &&
564 	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
565 }
566 
567 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
568 {
569 	if (IWL_MVM_USE_NSSN_SYNC) {
570 		struct iwl_mvm_nssn_sync_data notif = {
571 			.baid = baid,
572 			.nssn = nssn,
573 		};
574 
575 		iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
576 						&notif, sizeof(notif));
577 	}
578 }
579 
580 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
581 
582 enum iwl_mvm_release_flags {
583 	IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
584 	IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
585 };
586 
587 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
588 				   struct ieee80211_sta *sta,
589 				   struct napi_struct *napi,
590 				   struct iwl_mvm_baid_data *baid_data,
591 				   struct iwl_mvm_reorder_buffer *reorder_buf,
592 				   u16 nssn, u32 flags)
593 {
594 	struct iwl_mvm_reorder_buf_entry *entries =
595 		&baid_data->entries[reorder_buf->queue *
596 				    baid_data->entries_per_queue];
597 	u16 ssn = reorder_buf->head_sn;
598 
599 	lockdep_assert_held(&reorder_buf->lock);
600 
601 	/*
602 	 * We keep the NSSN not too far behind, if we are sync'ing it and it
603 	 * is more than 2048 ahead of us, it must be behind us. Discard it.
604 	 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
605 	 * behind and this queue already processed packets. The next if
606 	 * would have caught cases where this queue would have processed less
607 	 * than 64 packets, but it may have processed more than 64 packets.
608 	 */
609 	if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
610 	    ieee80211_sn_less(nssn, ssn))
611 		goto set_timer;
612 
613 	/* ignore nssn smaller than head sn - this can happen due to timeout */
614 	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
615 		goto set_timer;
616 
617 	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
618 		int index = ssn % reorder_buf->buf_size;
619 		struct sk_buff_head *skb_list = &entries[index].e.frames;
620 		struct sk_buff *skb;
621 
622 		ssn = ieee80211_sn_inc(ssn);
623 		if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
624 		    (ssn == 2048 || ssn == 0))
625 			iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
626 
627 		/*
628 		 * Empty the list. Will have more than one frame for A-MSDU.
629 		 * Empty list is valid as well since nssn indicates frames were
630 		 * received.
631 		 */
632 		while ((skb = __skb_dequeue(skb_list))) {
633 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
634 							reorder_buf->queue,
635 							sta, NULL /* FIXME */);
636 			reorder_buf->num_stored--;
637 		}
638 	}
639 	reorder_buf->head_sn = nssn;
640 
641 set_timer:
642 	if (reorder_buf->num_stored && !reorder_buf->removed) {
643 		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
644 
645 		while (skb_queue_empty(&entries[index].e.frames))
646 			index = (index + 1) % reorder_buf->buf_size;
647 		/* modify timer to match next frame's expiration time */
648 		mod_timer(&reorder_buf->reorder_timer,
649 			  entries[index].e.reorder_time + 1 +
650 			  RX_REORDER_BUF_TIMEOUT_MQ);
651 	} else {
652 		del_timer(&reorder_buf->reorder_timer);
653 	}
654 }
655 
656 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
657 {
658 	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
659 	struct iwl_mvm_baid_data *baid_data =
660 		iwl_mvm_baid_data_from_reorder_buf(buf);
661 	struct iwl_mvm_reorder_buf_entry *entries =
662 		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
663 	int i;
664 	u16 sn = 0, index = 0;
665 	bool expired = false;
666 	bool cont = false;
667 
668 	spin_lock(&buf->lock);
669 
670 	if (!buf->num_stored || buf->removed) {
671 		spin_unlock(&buf->lock);
672 		return;
673 	}
674 
675 	for (i = 0; i < buf->buf_size ; i++) {
676 		index = (buf->head_sn + i) % buf->buf_size;
677 
678 		if (skb_queue_empty(&entries[index].e.frames)) {
679 			/*
680 			 * If there is a hole and the next frame didn't expire
681 			 * we want to break and not advance SN
682 			 */
683 			cont = false;
684 			continue;
685 		}
686 		if (!cont &&
687 		    !time_after(jiffies, entries[index].e.reorder_time +
688 					 RX_REORDER_BUF_TIMEOUT_MQ))
689 			break;
690 
691 		expired = true;
692 		/* continue until next hole after this expired frames */
693 		cont = true;
694 		sn = ieee80211_sn_add(buf->head_sn, i + 1);
695 	}
696 
697 	if (expired) {
698 		struct ieee80211_sta *sta;
699 		struct iwl_mvm_sta *mvmsta;
700 		u8 sta_id = ffs(baid_data->sta_mask) - 1;
701 
702 		rcu_read_lock();
703 		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
704 		if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) {
705 			rcu_read_unlock();
706 			goto out;
707 		}
708 
709 		mvmsta = iwl_mvm_sta_from_mac80211(sta);
710 
711 		/* SN is set to the last expired frame + 1 */
712 		IWL_DEBUG_HT(buf->mvm,
713 			     "Releasing expired frames for sta %u, sn %d\n",
714 			     sta_id, sn);
715 		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
716 						     sta, baid_data->tid);
717 		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
718 				       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
719 		rcu_read_unlock();
720 	} else {
721 		/*
722 		 * If no frame expired and there are stored frames, index is now
723 		 * pointing to the first unexpired frame - modify timer
724 		 * accordingly to this frame.
725 		 */
726 		mod_timer(&buf->reorder_timer,
727 			  entries[index].e.reorder_time +
728 			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
729 	}
730 
731 out:
732 	spin_unlock(&buf->lock);
733 }
734 
735 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
736 			   struct iwl_mvm_delba_data *data)
737 {
738 	struct iwl_mvm_baid_data *ba_data;
739 	struct ieee80211_sta *sta;
740 	struct iwl_mvm_reorder_buffer *reorder_buf;
741 	u8 baid = data->baid;
742 	u32 sta_id;
743 
744 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
745 		return;
746 
747 	rcu_read_lock();
748 
749 	ba_data = rcu_dereference(mvm->baid_map[baid]);
750 	if (WARN_ON_ONCE(!ba_data))
751 		goto out;
752 
753 	/* pick any STA ID to find the pointer */
754 	sta_id = ffs(ba_data->sta_mask) - 1;
755 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
756 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
757 		goto out;
758 
759 	reorder_buf = &ba_data->reorder_buf[queue];
760 
761 	/* release all frames that are in the reorder buffer to the stack */
762 	spin_lock_bh(&reorder_buf->lock);
763 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
764 			       ieee80211_sn_add(reorder_buf->head_sn,
765 						reorder_buf->buf_size),
766 			       0);
767 	spin_unlock_bh(&reorder_buf->lock);
768 	del_timer_sync(&reorder_buf->reorder_timer);
769 
770 out:
771 	rcu_read_unlock();
772 }
773 
774 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
775 					      struct napi_struct *napi,
776 					      u8 baid, u16 nssn, int queue,
777 					      u32 flags)
778 {
779 	struct ieee80211_sta *sta;
780 	struct iwl_mvm_reorder_buffer *reorder_buf;
781 	struct iwl_mvm_baid_data *ba_data;
782 	u32 sta_id;
783 
784 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
785 		     baid, nssn);
786 
787 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
788 			 baid >= ARRAY_SIZE(mvm->baid_map)))
789 		return;
790 
791 	rcu_read_lock();
792 
793 	ba_data = rcu_dereference(mvm->baid_map[baid]);
794 	if (!ba_data) {
795 		WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
796 		     "BAID %d not found in map\n", baid);
797 		goto out;
798 	}
799 
800 	/* pick any STA ID to find the pointer */
801 	sta_id = ffs(ba_data->sta_mask) - 1;
802 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
803 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
804 		goto out;
805 
806 	reorder_buf = &ba_data->reorder_buf[queue];
807 
808 	spin_lock_bh(&reorder_buf->lock);
809 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
810 			       reorder_buf, nssn, flags);
811 	spin_unlock_bh(&reorder_buf->lock);
812 
813 out:
814 	rcu_read_unlock();
815 }
816 
817 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
818 			      struct napi_struct *napi, int queue,
819 			      const struct iwl_mvm_nssn_sync_data *data)
820 {
821 	iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
822 					  data->nssn, queue,
823 					  IWL_MVM_RELEASE_FROM_RSS_SYNC);
824 }
825 
826 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
827 			    struct iwl_rx_cmd_buffer *rxb, int queue)
828 {
829 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
830 	struct iwl_rxq_sync_notification *notif;
831 	struct iwl_mvm_internal_rxq_notif *internal_notif;
832 	u32 len = iwl_rx_packet_payload_len(pkt);
833 
834 	notif = (void *)pkt->data;
835 	internal_notif = (void *)notif->payload;
836 
837 	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
838 		      "invalid notification size %d (%d)",
839 		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
840 		return;
841 	len -= sizeof(*notif) + sizeof(*internal_notif);
842 
843 	if (internal_notif->sync &&
844 	    mvm->queue_sync_cookie != internal_notif->cookie) {
845 		WARN_ONCE(1, "Received expired RX queue sync message\n");
846 		return;
847 	}
848 
849 	switch (internal_notif->type) {
850 	case IWL_MVM_RXQ_EMPTY:
851 		WARN_ONCE(len, "invalid empty notification size %d", len);
852 		break;
853 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
854 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
855 			      "invalid delba notification size %d (%d)",
856 			      len, (int)sizeof(struct iwl_mvm_delba_data)))
857 			break;
858 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
859 		break;
860 	case IWL_MVM_RXQ_NSSN_SYNC:
861 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
862 			      "invalid nssn sync notification size %d (%d)",
863 			      len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
864 			break;
865 		iwl_mvm_nssn_sync(mvm, napi, queue,
866 				  (void *)internal_notif->data);
867 		break;
868 	default:
869 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
870 	}
871 
872 	if (internal_notif->sync) {
873 		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
874 			  "queue sync: queue %d responded a second time!\n",
875 			  queue);
876 		if (READ_ONCE(mvm->queue_sync_state) == 0)
877 			wake_up(&mvm->rx_sync_waitq);
878 	}
879 }
880 
881 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
882 				     struct ieee80211_sta *sta, int tid,
883 				     struct iwl_mvm_reorder_buffer *buffer,
884 				     u32 reorder, u32 gp2, int queue)
885 {
886 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
887 
888 	if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
889 		/* we have a new (A-)MPDU ... */
890 
891 		/*
892 		 * reset counter to 0 if we didn't have any oldsn in
893 		 * the last A-MPDU (as detected by GP2 being identical)
894 		 */
895 		if (!buffer->consec_oldsn_prev_drop)
896 			buffer->consec_oldsn_drops = 0;
897 
898 		/* either way, update our tracking state */
899 		buffer->consec_oldsn_ampdu_gp2 = gp2;
900 	} else if (buffer->consec_oldsn_prev_drop) {
901 		/*
902 		 * tracking state didn't change, and we had an old SN
903 		 * indication before - do nothing in this case, we
904 		 * already noted this one down and are waiting for the
905 		 * next A-MPDU (by GP2)
906 		 */
907 		return;
908 	}
909 
910 	/* return unless this MPDU has old SN */
911 	if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
912 		return;
913 
914 	/* update state */
915 	buffer->consec_oldsn_prev_drop = 1;
916 	buffer->consec_oldsn_drops++;
917 
918 	/* if limit is reached, send del BA and reset state */
919 	if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
920 		IWL_WARN(mvm,
921 			 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
922 			 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
923 			 sta->addr, queue, tid);
924 		ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
925 		buffer->consec_oldsn_prev_drop = 0;
926 		buffer->consec_oldsn_drops = 0;
927 	}
928 }
929 
930 /*
931  * Returns true if the MPDU was buffered\dropped, false if it should be passed
932  * to upper layer.
933  */
934 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
935 			    struct napi_struct *napi,
936 			    int queue,
937 			    struct ieee80211_sta *sta,
938 			    struct sk_buff *skb,
939 			    struct iwl_rx_mpdu_desc *desc)
940 {
941 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
942 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
943 	struct iwl_mvm_baid_data *baid_data;
944 	struct iwl_mvm_reorder_buffer *buffer;
945 	struct sk_buff *tail;
946 	u32 reorder = le32_to_cpu(desc->reorder_data);
947 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
948 	bool last_subframe =
949 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
950 	u8 tid = ieee80211_get_tid(hdr);
951 	u8 sub_frame_idx = desc->amsdu_info &
952 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
953 	struct iwl_mvm_reorder_buf_entry *entries;
954 	u32 sta_mask;
955 	int index;
956 	u16 nssn, sn;
957 	u8 baid;
958 
959 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
960 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
961 
962 	/*
963 	 * This also covers the case of receiving a Block Ack Request
964 	 * outside a BA session; we'll pass it to mac80211 and that
965 	 * then sends a delBA action frame.
966 	 * This also covers pure monitor mode, in which case we won't
967 	 * have any BA sessions.
968 	 */
969 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
970 		return false;
971 
972 	/* no sta yet */
973 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
974 		      "Got valid BAID without a valid station assigned\n"))
975 		return false;
976 
977 	/* not a data packet or a bar */
978 	if (!ieee80211_is_back_req(hdr->frame_control) &&
979 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
980 	     is_multicast_ether_addr(hdr->addr1)))
981 		return false;
982 
983 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
984 		return false;
985 
986 	baid_data = rcu_dereference(mvm->baid_map[baid]);
987 	if (!baid_data) {
988 		IWL_DEBUG_RX(mvm,
989 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
990 			      baid, reorder);
991 		return false;
992 	}
993 
994 	rcu_read_lock();
995 	sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
996 	rcu_read_unlock();
997 
998 	if (IWL_FW_CHECK(mvm,
999 			 tid != baid_data->tid ||
1000 			 !(sta_mask & baid_data->sta_mask),
1001 			 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
1002 			 baid, baid_data->sta_mask, baid_data->tid,
1003 			 sta_mask, tid))
1004 		return false;
1005 
1006 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
1007 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
1008 		IWL_RX_MPDU_REORDER_SN_SHIFT;
1009 
1010 	buffer = &baid_data->reorder_buf[queue];
1011 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
1012 
1013 	spin_lock_bh(&buffer->lock);
1014 
1015 	if (!buffer->valid) {
1016 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1017 			spin_unlock_bh(&buffer->lock);
1018 			return false;
1019 		}
1020 		buffer->valid = true;
1021 	}
1022 
1023 	if (ieee80211_is_back_req(hdr->frame_control)) {
1024 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1025 				       buffer, nssn, 0);
1026 		goto drop;
1027 	}
1028 
1029 	/*
1030 	 * If there was a significant jump in the nssn - adjust.
1031 	 * If the SN is smaller than the NSSN it might need to first go into
1032 	 * the reorder buffer, in which case we just release up to it and the
1033 	 * rest of the function will take care of storing it and releasing up to
1034 	 * the nssn.
1035 	 * This should not happen. This queue has been lagging and it should
1036 	 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1037 	 * and update the other queues.
1038 	 */
1039 	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1040 				buffer->buf_size) ||
1041 	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1042 		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1043 
1044 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1045 				       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1046 	}
1047 
1048 	iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1049 				 rx_status->device_timestamp, queue);
1050 
1051 	/* drop any oudated packets */
1052 	if (ieee80211_sn_less(sn, buffer->head_sn))
1053 		goto drop;
1054 
1055 	/* release immediately if allowed by nssn and no stored frames */
1056 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1057 		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1058 				       buffer->buf_size) &&
1059 		   (!amsdu || last_subframe)) {
1060 			/*
1061 			 * If we crossed the 2048 or 0 SN, notify all the
1062 			 * queues. This is done in order to avoid having a
1063 			 * head_sn that lags behind for too long. When that
1064 			 * happens, we can get to a situation where the head_sn
1065 			 * is within the interval [nssn - buf_size : nssn]
1066 			 * which will make us think that the nssn is a packet
1067 			 * that we already freed because of the reordering
1068 			 * buffer and we will ignore it. So maintain the
1069 			 * head_sn somewhat updated across all the queues:
1070 			 * when it crosses 0 and 2048.
1071 			 */
1072 			if (sn == 2048 || sn == 0)
1073 				iwl_mvm_sync_nssn(mvm, baid, sn);
1074 			buffer->head_sn = nssn;
1075 		}
1076 		/* No need to update AMSDU last SN - we are moving the head */
1077 		spin_unlock_bh(&buffer->lock);
1078 		return false;
1079 	}
1080 
1081 	/*
1082 	 * release immediately if there are no stored frames, and the sn is
1083 	 * equal to the head.
1084 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
1085 	 * When we released everything, and we got the next frame in the
1086 	 * sequence, according to the NSSN we can't release immediately,
1087 	 * while technically there is no hole and we can move forward.
1088 	 */
1089 	if (!buffer->num_stored && sn == buffer->head_sn) {
1090 		if (!amsdu || last_subframe) {
1091 			if (sn == 2048 || sn == 0)
1092 				iwl_mvm_sync_nssn(mvm, baid, sn);
1093 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1094 		}
1095 		/* No need to update AMSDU last SN - we are moving the head */
1096 		spin_unlock_bh(&buffer->lock);
1097 		return false;
1098 	}
1099 
1100 	index = sn % buffer->buf_size;
1101 
1102 	/*
1103 	 * Check if we already stored this frame
1104 	 * As AMSDU is either received or not as whole, logic is simple:
1105 	 * If we have frames in that position in the buffer and the last frame
1106 	 * originated from AMSDU had a different SN then it is a retransmission.
1107 	 * If it is the same SN then if the subframe index is incrementing it
1108 	 * is the same AMSDU - otherwise it is a retransmission.
1109 	 */
1110 	tail = skb_peek_tail(&entries[index].e.frames);
1111 	if (tail && !amsdu)
1112 		goto drop;
1113 	else if (tail && (sn != buffer->last_amsdu ||
1114 			  buffer->last_sub_index >= sub_frame_idx))
1115 		goto drop;
1116 
1117 	/* put in reorder buffer */
1118 	__skb_queue_tail(&entries[index].e.frames, skb);
1119 	buffer->num_stored++;
1120 	entries[index].e.reorder_time = jiffies;
1121 
1122 	if (amsdu) {
1123 		buffer->last_amsdu = sn;
1124 		buffer->last_sub_index = sub_frame_idx;
1125 	}
1126 
1127 	/*
1128 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1129 	 * The reason is that NSSN advances on the first sub-frame, and may
1130 	 * cause the reorder buffer to advance before all the sub-frames arrive.
1131 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1132 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1133 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1134 	 * already ahead and it will be dropped.
1135 	 * If the last sub-frame is not on this queue - we will get frame
1136 	 * release notification with up to date NSSN.
1137 	 */
1138 	if (!amsdu || last_subframe)
1139 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1140 				       buffer, nssn,
1141 				       IWL_MVM_RELEASE_SEND_RSS_SYNC);
1142 
1143 	spin_unlock_bh(&buffer->lock);
1144 	return true;
1145 
1146 drop:
1147 	kfree_skb(skb);
1148 	spin_unlock_bh(&buffer->lock);
1149 	return true;
1150 }
1151 
1152 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1153 				    u32 reorder_data, u8 baid)
1154 {
1155 	unsigned long now = jiffies;
1156 	unsigned long timeout;
1157 	struct iwl_mvm_baid_data *data;
1158 
1159 	rcu_read_lock();
1160 
1161 	data = rcu_dereference(mvm->baid_map[baid]);
1162 	if (!data) {
1163 		IWL_DEBUG_RX(mvm,
1164 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1165 			      baid, reorder_data);
1166 		goto out;
1167 	}
1168 
1169 	if (!data->timeout)
1170 		goto out;
1171 
1172 	timeout = data->timeout;
1173 	/*
1174 	 * Do not update last rx all the time to avoid cache bouncing
1175 	 * between the rx queues.
1176 	 * Update it every timeout. Worst case is the session will
1177 	 * expire after ~ 2 * timeout, which doesn't matter that much.
1178 	 */
1179 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1180 		/* Update is atomic */
1181 		data->last_rx = now;
1182 
1183 out:
1184 	rcu_read_unlock();
1185 }
1186 
1187 static void iwl_mvm_flip_address(u8 *addr)
1188 {
1189 	int i;
1190 	u8 mac_addr[ETH_ALEN];
1191 
1192 	for (i = 0; i < ETH_ALEN; i++)
1193 		mac_addr[i] = addr[ETH_ALEN - i - 1];
1194 	ether_addr_copy(addr, mac_addr);
1195 }
1196 
1197 struct iwl_mvm_rx_phy_data {
1198 	enum iwl_rx_phy_info_type info_type;
1199 	__le32 d0, d1, d2, d3, eht_d4, d5;
1200 	__le16 d4;
1201 	bool with_data;
1202 	bool first_subframe;
1203 	__le32 rx_vec[4];
1204 
1205 	u32 rate_n_flags;
1206 	u32 gp2_on_air_rise;
1207 	u16 phy_info;
1208 	u8 energy_a, energy_b;
1209 	u8 channel;
1210 };
1211 
1212 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1213 				     struct iwl_mvm_rx_phy_data *phy_data,
1214 				     struct ieee80211_radiotap_he_mu *he_mu)
1215 {
1216 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
1217 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
1218 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
1219 	u32 rate_n_flags = phy_data->rate_n_flags;
1220 
1221 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1222 		he_mu->flags1 |=
1223 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1224 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1225 
1226 		he_mu->flags1 |=
1227 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1228 						   phy_data4),
1229 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1230 
1231 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1232 					     phy_data2);
1233 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1234 					     phy_data3);
1235 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1236 					     phy_data2);
1237 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1238 					     phy_data3);
1239 	}
1240 
1241 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1242 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1243 		he_mu->flags1 |=
1244 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1245 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1246 
1247 		he_mu->flags2 |=
1248 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1249 						   phy_data4),
1250 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1251 
1252 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1253 					     phy_data2);
1254 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1255 					     phy_data3);
1256 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1257 					     phy_data2);
1258 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1259 					     phy_data3);
1260 	}
1261 }
1262 
1263 static void
1264 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1265 			       struct ieee80211_radiotap_he *he,
1266 			       struct ieee80211_radiotap_he_mu *he_mu,
1267 			       struct ieee80211_rx_status *rx_status)
1268 {
1269 	/*
1270 	 * Unfortunately, we have to leave the mac80211 data
1271 	 * incorrect for the case that we receive an HE-MU
1272 	 * transmission and *don't* have the HE phy data (due
1273 	 * to the bits being used for TSF). This shouldn't
1274 	 * happen though as management frames where we need
1275 	 * the TSF/timers are not be transmitted in HE-MU.
1276 	 */
1277 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1278 	u32 rate_n_flags = phy_data->rate_n_flags;
1279 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1280 	u8 offs = 0;
1281 
1282 	rx_status->bw = RATE_INFO_BW_HE_RU;
1283 
1284 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1285 
1286 	switch (ru) {
1287 	case 0 ... 36:
1288 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1289 		offs = ru;
1290 		break;
1291 	case 37 ... 52:
1292 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1293 		offs = ru - 37;
1294 		break;
1295 	case 53 ... 60:
1296 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1297 		offs = ru - 53;
1298 		break;
1299 	case 61 ... 64:
1300 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1301 		offs = ru - 61;
1302 		break;
1303 	case 65 ... 66:
1304 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1305 		offs = ru - 65;
1306 		break;
1307 	case 67:
1308 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1309 		break;
1310 	case 68:
1311 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1312 		break;
1313 	}
1314 	he->data2 |= le16_encode_bits(offs,
1315 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1316 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1317 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1318 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1319 		he->data2 |=
1320 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1321 
1322 #define CHECK_BW(bw) \
1323 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1324 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1325 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1326 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1327 	CHECK_BW(20);
1328 	CHECK_BW(40);
1329 	CHECK_BW(80);
1330 	CHECK_BW(160);
1331 
1332 	if (he_mu)
1333 		he_mu->flags2 |=
1334 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1335 						   rate_n_flags),
1336 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1337 	else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1338 		he->data6 |=
1339 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1340 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1341 						   rate_n_flags),
1342 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1343 }
1344 
1345 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1346 				       struct iwl_mvm_rx_phy_data *phy_data,
1347 				       struct ieee80211_radiotap_he *he,
1348 				       struct ieee80211_radiotap_he_mu *he_mu,
1349 				       struct ieee80211_rx_status *rx_status,
1350 				       int queue)
1351 {
1352 	switch (phy_data->info_type) {
1353 	case IWL_RX_PHY_INFO_TYPE_NONE:
1354 	case IWL_RX_PHY_INFO_TYPE_CCK:
1355 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1356 	case IWL_RX_PHY_INFO_TYPE_HT:
1357 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1358 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1359 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1360 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1361 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1362 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1363 		return;
1364 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1365 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1366 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1367 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1368 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1369 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1370 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1371 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1372 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1373 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1374 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1375 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1376 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1377 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1378 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1379 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1380 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1381 		fallthrough;
1382 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1383 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1384 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1385 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1386 		/* HE common */
1387 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1388 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1389 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1390 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1391 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1392 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1393 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1394 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1395 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1396 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1397 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1398 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1399 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1400 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1401 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1402 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1403 		}
1404 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1405 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1406 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1407 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1408 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1409 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1410 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1411 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1412 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1413 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1414 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1415 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1416 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1417 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1418 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1419 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1420 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1421 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1422 		break;
1423 	}
1424 
1425 	switch (phy_data->info_type) {
1426 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1427 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1428 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1429 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1430 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1431 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1432 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1433 		break;
1434 	default:
1435 		/* nothing here */
1436 		break;
1437 	}
1438 
1439 	switch (phy_data->info_type) {
1440 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1441 		he_mu->flags1 |=
1442 			le16_encode_bits(le16_get_bits(phy_data->d4,
1443 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1444 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1445 		he_mu->flags1 |=
1446 			le16_encode_bits(le16_get_bits(phy_data->d4,
1447 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1448 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1449 		he_mu->flags2 |=
1450 			le16_encode_bits(le16_get_bits(phy_data->d4,
1451 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1452 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1453 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1454 		fallthrough;
1455 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1456 		he_mu->flags2 |=
1457 			le16_encode_bits(le32_get_bits(phy_data->d1,
1458 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1459 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1460 		he_mu->flags2 |=
1461 			le16_encode_bits(le32_get_bits(phy_data->d1,
1462 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1463 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1464 		fallthrough;
1465 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1466 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1467 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1468 		break;
1469 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1470 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1471 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1472 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1473 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1474 		break;
1475 	default:
1476 		/* nothing */
1477 		break;
1478 	}
1479 }
1480 
1481 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1482 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1483 
1484 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1485 	typeof(enc_bits) _enc_bits = enc_bits; \
1486 	typeof(usig) _usig = usig; \
1487 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1488 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1489 } while (0)
1490 
1491 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1492 	eht->data[(rt_data)] |= \
1493 		(cpu_to_le32 \
1494 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1495 		 LE32_DEC_ENC(data ## fw_data, \
1496 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1497 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1498 
1499 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1500 	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1501 
1502 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1503 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1504 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1505 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1506 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1507 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1508 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1509 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1510 
1511 #define IWL_RX_RU_DATA_A1			2
1512 #define IWL_RX_RU_DATA_A2			2
1513 #define IWL_RX_RU_DATA_B1			2
1514 #define IWL_RX_RU_DATA_B2			3
1515 #define IWL_RX_RU_DATA_C1			3
1516 #define IWL_RX_RU_DATA_C2			3
1517 #define IWL_RX_RU_DATA_D1			4
1518 #define IWL_RX_RU_DATA_D2			4
1519 
1520 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1521 	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1522 			    rt_ru,					\
1523 			    IWL_RX_RU_DATA_ ## fw_ru,			\
1524 			    fw_ru)
1525 
1526 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1527 				      struct iwl_mvm_rx_phy_data *phy_data,
1528 				      struct ieee80211_rx_status *rx_status,
1529 				      struct ieee80211_radiotap_eht *eht,
1530 				      struct ieee80211_radiotap_eht_usig *usig)
1531 {
1532 	if (phy_data->with_data) {
1533 		__le32 data1 = phy_data->d1;
1534 		__le32 data2 = phy_data->d2;
1535 		__le32 data3 = phy_data->d3;
1536 		__le32 data4 = phy_data->eht_d4;
1537 		__le32 data5 = phy_data->d5;
1538 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1539 
1540 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1541 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1542 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1543 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1544 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1545 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1546 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1547 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1548 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1549 		IWL_MVM_ENC_USIG_VALUE_MASK
1550 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1551 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1552 
1553 		eht->user_info[0] |=
1554 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1555 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1556 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1557 
1558 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1559 		eht->data[7] |= LE32_DEC_ENC
1560 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1561 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1562 
1563 		/*
1564 		 * Hardware labels the content channels/RU allocation values
1565 		 * as follows:
1566 		 *           Content Channel 1		Content Channel 2
1567 		 *   20 MHz: A1
1568 		 *   40 MHz: A1				B1
1569 		 *   80 MHz: A1 C1			B1 D1
1570 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1571 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1572 		 *
1573 		 * However firmware can only give us A1-D2, so the higher
1574 		 * frequencies are missing.
1575 		 */
1576 
1577 		switch (phy_bw) {
1578 		case RATE_MCS_CHAN_WIDTH_320:
1579 			/* additional values are missing in RX metadata */
1580 		case RATE_MCS_CHAN_WIDTH_160:
1581 			/* content channel 1 */
1582 			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1583 			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1584 			/* content channel 2 */
1585 			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1586 			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1587 			fallthrough;
1588 		case RATE_MCS_CHAN_WIDTH_80:
1589 			/* content channel 1 */
1590 			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1591 			/* content channel 2 */
1592 			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1593 			fallthrough;
1594 		case RATE_MCS_CHAN_WIDTH_40:
1595 			/* content channel 2 */
1596 			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1597 			fallthrough;
1598 		case RATE_MCS_CHAN_WIDTH_20:
1599 			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1600 			break;
1601 		}
1602 	} else {
1603 		__le32 usig_a1 = phy_data->rx_vec[0];
1604 		__le32 usig_a2 = phy_data->rx_vec[1];
1605 
1606 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1607 					    IWL_RX_USIG_A1_DISREGARD,
1608 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1609 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1610 					    IWL_RX_USIG_A1_VALIDATE,
1611 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1612 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1613 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1614 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1615 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1616 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1617 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1618 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1619 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1620 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1621 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1622 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1623 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1624 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1625 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1626 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1627 		IWL_MVM_ENC_USIG_VALUE_MASK
1628 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1629 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1630 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1631 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1632 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1633 	}
1634 }
1635 
1636 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1637 				      struct iwl_mvm_rx_phy_data *phy_data,
1638 				      struct ieee80211_rx_status *rx_status,
1639 				      struct ieee80211_radiotap_eht *eht,
1640 				      struct ieee80211_radiotap_eht_usig *usig)
1641 {
1642 	if (phy_data->with_data) {
1643 		__le32 data5 = phy_data->d5;
1644 
1645 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1646 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1647 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1648 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1649 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1650 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1651 
1652 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1653 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1654 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1655 	} else {
1656 		__le32 usig_a1 = phy_data->rx_vec[0];
1657 		__le32 usig_a2 = phy_data->rx_vec[1];
1658 
1659 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1660 					    IWL_RX_USIG_A1_DISREGARD,
1661 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1662 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1663 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1664 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1665 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1666 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1667 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1668 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1669 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1670 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1671 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1672 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1673 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1674 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1675 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1676 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1677 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1678 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1679 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1680 	}
1681 }
1682 
1683 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1684 				  struct ieee80211_rx_status *rx_status,
1685 				  struct ieee80211_radiotap_eht *eht)
1686 {
1687 	u32 ru = le32_get_bits(eht->data[8],
1688 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1689 	enum nl80211_eht_ru_alloc nl_ru;
1690 
1691 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1692 	 * in an EHT variant User Info field
1693 	 */
1694 
1695 	switch (ru) {
1696 	case 0 ... 36:
1697 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1698 		break;
1699 	case 37 ... 52:
1700 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1701 		break;
1702 	case 53 ... 60:
1703 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1704 		break;
1705 	case 61 ... 64:
1706 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1707 		break;
1708 	case 65 ... 66:
1709 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1710 		break;
1711 	case 67:
1712 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1713 		break;
1714 	case 68:
1715 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1716 		break;
1717 	case 69:
1718 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1719 		break;
1720 	case 70 ... 81:
1721 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1722 		break;
1723 	case 82 ... 89:
1724 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1725 		break;
1726 	case 90 ... 93:
1727 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1728 		break;
1729 	case 94 ... 95:
1730 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1731 		break;
1732 	case 96 ... 99:
1733 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1734 		break;
1735 	case 100 ... 103:
1736 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1737 		break;
1738 	case 104:
1739 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1740 		break;
1741 	case 105 ... 106:
1742 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1743 		break;
1744 	default:
1745 		return;
1746 	}
1747 
1748 	rx_status->bw = RATE_INFO_BW_EHT_RU;
1749 	rx_status->eht.ru = nl_ru;
1750 }
1751 
1752 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1753 					struct iwl_mvm_rx_phy_data *phy_data,
1754 					struct ieee80211_rx_status *rx_status,
1755 					struct ieee80211_radiotap_eht *eht,
1756 					struct ieee80211_radiotap_eht_usig *usig)
1757 
1758 {
1759 	__le32 data0 = phy_data->d0;
1760 	__le32 data1 = phy_data->d1;
1761 	__le32 usig_a1 = phy_data->rx_vec[0];
1762 	u8 info_type = phy_data->info_type;
1763 
1764 	/* Not in EHT range */
1765 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1766 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1767 		return;
1768 
1769 	usig->common |= cpu_to_le32
1770 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1771 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1772 	if (phy_data->with_data) {
1773 		usig->common |= LE32_DEC_ENC(data0,
1774 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1775 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1776 		usig->common |= LE32_DEC_ENC(data0,
1777 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1778 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1779 	} else {
1780 		usig->common |= LE32_DEC_ENC(usig_a1,
1781 					     IWL_RX_USIG_A1_UL_FLAG,
1782 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1783 		usig->common |= LE32_DEC_ENC(usig_a1,
1784 					     IWL_RX_USIG_A1_BSS_COLOR,
1785 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1786 	}
1787 
1788 	if (fw_has_capa(&mvm->fw->ucode_capa,
1789 			IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1790 		usig->common |=
1791 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1792 		usig->common |=
1793 			LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1794 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1795 	}
1796 
1797 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1798 	eht->data[0] |= LE32_DEC_ENC(data0,
1799 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1800 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1801 
1802 	/* All RU allocating size/index is in TB format */
1803 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1804 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1805 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1806 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1807 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1808 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1809 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1810 
1811 	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1812 
1813 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1814 	 * which is on only in case of monitor mode so no need to check monitor
1815 	 * mode
1816 	 */
1817 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1818 	eht->data[1] |=
1819 		le32_encode_bits(mvm->monitor_p80,
1820 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1821 
1822 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1823 	if (phy_data->with_data)
1824 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1825 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1826 	else
1827 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1828 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1829 
1830 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1831 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1832 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1833 
1834 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1835 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1836 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1837 
1838 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1839 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1840 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1841 
1842 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1843 
1844 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1845 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1846 
1847 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1848 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1849 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1850 
1851 	/*
1852 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1853 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1854 	 */
1855 
1856 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1857 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1858 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1859 
1860 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1861 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1862 		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1863 
1864 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1865 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1866 		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1867 }
1868 
1869 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1870 			   struct iwl_mvm_rx_phy_data *phy_data,
1871 			   int queue)
1872 {
1873 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1874 
1875 	struct ieee80211_radiotap_eht *eht;
1876 	struct ieee80211_radiotap_eht_usig *usig;
1877 	size_t eht_len = sizeof(*eht);
1878 
1879 	u32 rate_n_flags = phy_data->rate_n_flags;
1880 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1881 	/* EHT and HE have the same valus for LTF */
1882 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1883 	u16 phy_info = phy_data->phy_info;
1884 	u32 bw;
1885 
1886 	/* u32 for 1 user_info */
1887 	if (phy_data->with_data)
1888 		eht_len += sizeof(u32);
1889 
1890 	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1891 
1892 	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1893 					sizeof(*usig));
1894 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1895 	usig->common |=
1896 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1897 
1898 	/* specific handling for 320MHz */
1899 	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1900 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1901 		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1902 				le32_to_cpu(phy_data->d0));
1903 
1904 	usig->common |= cpu_to_le32
1905 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1906 
1907 	/* report the AMPDU-EOF bit on single frames */
1908 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1909 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1910 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1911 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1912 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1913 	}
1914 
1915 	/* update aggregation data for monitor sake on default queue */
1916 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1917 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1918 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1919 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1920 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1921 	}
1922 
1923 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1924 		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1925 
1926 #define CHECK_TYPE(F)							\
1927 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1928 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1929 
1930 	CHECK_TYPE(SU);
1931 	CHECK_TYPE(EXT_SU);
1932 	CHECK_TYPE(MU);
1933 	CHECK_TYPE(TRIG);
1934 
1935 	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1936 	case 0:
1937 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1938 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1939 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1940 		} else {
1941 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1942 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1943 		}
1944 		break;
1945 	case 1:
1946 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1947 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1948 		break;
1949 	case 2:
1950 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1951 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1952 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1953 		else
1954 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1955 		break;
1956 	case 3:
1957 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1958 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1959 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1960 		}
1961 		break;
1962 	default:
1963 		/* nothing here */
1964 		break;
1965 	}
1966 
1967 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1968 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1969 		eht->data[0] |= cpu_to_le32
1970 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1971 				    ltf) |
1972 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1973 				    rx_status->eht.gi));
1974 	}
1975 
1976 
1977 	if (!phy_data->with_data) {
1978 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1979 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1980 		eht->data[7] |=
1981 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1982 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1983 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1984 		if (rate_n_flags & RATE_MCS_BF_MSK)
1985 			eht->data[7] |=
1986 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1987 	} else {
1988 		eht->user_info[0] |=
1989 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1990 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1991 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1992 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1993 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1994 
1995 		if (rate_n_flags & RATE_MCS_BF_MSK)
1996 			eht->user_info[0] |=
1997 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1998 
1999 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
2000 			eht->user_info[0] |=
2001 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
2002 
2003 		eht->user_info[0] |= cpu_to_le32
2004 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
2005 				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
2006 					      rate_n_flags)) |
2007 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
2008 				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
2009 	}
2010 }
2011 
2012 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
2013 			  struct iwl_mvm_rx_phy_data *phy_data,
2014 			  int queue)
2015 {
2016 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2017 	struct ieee80211_radiotap_he *he = NULL;
2018 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
2019 	u32 rate_n_flags = phy_data->rate_n_flags;
2020 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
2021 	u8 ltf;
2022 	static const struct ieee80211_radiotap_he known = {
2023 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
2024 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
2025 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
2026 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
2027 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
2028 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
2029 	};
2030 	static const struct ieee80211_radiotap_he_mu mu_known = {
2031 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
2032 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
2033 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
2034 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
2035 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
2036 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
2037 	};
2038 	u16 phy_info = phy_data->phy_info;
2039 
2040 	he = skb_put_data(skb, &known, sizeof(known));
2041 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
2042 
2043 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
2044 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
2045 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
2046 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
2047 	}
2048 
2049 	/* report the AMPDU-EOF bit on single frames */
2050 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2051 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2052 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2053 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
2054 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2055 	}
2056 
2057 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2058 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
2059 					   queue);
2060 
2061 	/* update aggregation data for monitor sake on default queue */
2062 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
2063 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
2064 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2065 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
2066 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2067 	}
2068 
2069 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
2070 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
2071 		rx_status->bw = RATE_INFO_BW_HE_RU;
2072 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
2073 	}
2074 
2075 	/* actually data is filled in mac80211 */
2076 	if (he_type == RATE_MCS_HE_TYPE_SU ||
2077 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
2078 		he->data1 |=
2079 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
2080 
2081 #define CHECK_TYPE(F)							\
2082 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
2083 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
2084 
2085 	CHECK_TYPE(SU);
2086 	CHECK_TYPE(EXT_SU);
2087 	CHECK_TYPE(MU);
2088 	CHECK_TYPE(TRIG);
2089 
2090 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
2091 
2092 	if (rate_n_flags & RATE_MCS_BF_MSK)
2093 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
2094 
2095 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
2096 		RATE_MCS_HE_GI_LTF_POS) {
2097 	case 0:
2098 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2099 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2100 		else
2101 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2102 		if (he_type == RATE_MCS_HE_TYPE_MU)
2103 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2104 		else
2105 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
2106 		break;
2107 	case 1:
2108 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2109 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2110 		else
2111 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2112 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2113 		break;
2114 	case 2:
2115 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
2116 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2117 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2118 		} else {
2119 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2120 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2121 		}
2122 		break;
2123 	case 3:
2124 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2125 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2126 		break;
2127 	case 4:
2128 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2129 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2130 		break;
2131 	default:
2132 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
2133 	}
2134 
2135 	he->data5 |= le16_encode_bits(ltf,
2136 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
2137 }
2138 
2139 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
2140 				struct iwl_mvm_rx_phy_data *phy_data)
2141 {
2142 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2143 	struct ieee80211_radiotap_lsig *lsig;
2144 
2145 	switch (phy_data->info_type) {
2146 	case IWL_RX_PHY_INFO_TYPE_HT:
2147 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
2148 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
2149 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
2150 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
2151 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
2152 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
2153 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
2154 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
2155 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
2156 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
2157 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
2158 		lsig = skb_put(skb, sizeof(*lsig));
2159 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
2160 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
2161 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
2162 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
2163 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
2164 		break;
2165 	default:
2166 		break;
2167 	}
2168 }
2169 
2170 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
2171 {
2172 	switch (phy_band) {
2173 	case PHY_BAND_24:
2174 		return NL80211_BAND_2GHZ;
2175 	case PHY_BAND_5:
2176 		return NL80211_BAND_5GHZ;
2177 	case PHY_BAND_6:
2178 		return NL80211_BAND_6GHZ;
2179 	default:
2180 		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
2181 		return NL80211_BAND_5GHZ;
2182 	}
2183 }
2184 
2185 struct iwl_rx_sta_csa {
2186 	bool all_sta_unblocked;
2187 	struct ieee80211_vif *vif;
2188 };
2189 
2190 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
2191 {
2192 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2193 	struct iwl_rx_sta_csa *rx_sta_csa = data;
2194 
2195 	if (mvmsta->vif != rx_sta_csa->vif)
2196 		return;
2197 
2198 	if (mvmsta->disable_tx)
2199 		rx_sta_csa->all_sta_unblocked = false;
2200 }
2201 
2202 /*
2203  * Note: requires also rx_status->band to be prefilled, as well
2204  * as phy_data (apart from phy_data->info_type)
2205  */
2206 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
2207 				   struct sk_buff *skb,
2208 				   struct iwl_mvm_rx_phy_data *phy_data,
2209 				   int queue)
2210 {
2211 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2212 	u32 rate_n_flags = phy_data->rate_n_flags;
2213 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
2214 	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2215 	bool is_sgi;
2216 
2217 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
2218 
2219 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2220 		phy_data->info_type =
2221 			le32_get_bits(phy_data->d1,
2222 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
2223 
2224 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2225 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2226 	case RATE_MCS_CHAN_WIDTH_20:
2227 		break;
2228 	case RATE_MCS_CHAN_WIDTH_40:
2229 		rx_status->bw = RATE_INFO_BW_40;
2230 		break;
2231 	case RATE_MCS_CHAN_WIDTH_80:
2232 		rx_status->bw = RATE_INFO_BW_80;
2233 		break;
2234 	case RATE_MCS_CHAN_WIDTH_160:
2235 		rx_status->bw = RATE_INFO_BW_160;
2236 		break;
2237 	case RATE_MCS_CHAN_WIDTH_320:
2238 		rx_status->bw = RATE_INFO_BW_320;
2239 		break;
2240 	}
2241 
2242 	/* must be before L-SIG data */
2243 	if (format == RATE_MCS_HE_MSK)
2244 		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
2245 
2246 	iwl_mvm_decode_lsig(skb, phy_data);
2247 
2248 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
2249 	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
2250 							 rx_status->band);
2251 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
2252 				    phy_data->energy_a, phy_data->energy_b);
2253 
2254 	/* using TLV format and must be after all fixed len fields */
2255 	if (format == RATE_MCS_EHT_MSK)
2256 		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
2257 
2258 	if (unlikely(mvm->monitor_on))
2259 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
2260 
2261 	is_sgi = format == RATE_MCS_HE_MSK ?
2262 		iwl_he_is_sgi(rate_n_flags) :
2263 		rate_n_flags & RATE_MCS_SGI_MSK;
2264 
2265 	if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
2266 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2267 
2268 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
2269 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2270 
2271 	switch (format) {
2272 	case RATE_MCS_VHT_MSK:
2273 		rx_status->encoding = RX_ENC_VHT;
2274 		break;
2275 	case RATE_MCS_HE_MSK:
2276 		rx_status->encoding = RX_ENC_HE;
2277 		rx_status->he_dcm =
2278 			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2279 		break;
2280 	case RATE_MCS_EHT_MSK:
2281 		rx_status->encoding = RX_ENC_EHT;
2282 		break;
2283 	}
2284 
2285 	switch (format) {
2286 	case RATE_MCS_HT_MSK:
2287 		rx_status->encoding = RX_ENC_HT;
2288 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2289 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2290 		break;
2291 	case RATE_MCS_VHT_MSK:
2292 	case RATE_MCS_HE_MSK:
2293 	case RATE_MCS_EHT_MSK:
2294 		rx_status->nss =
2295 			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2296 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2297 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2298 		break;
2299 	default: {
2300 		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2301 								 rx_status->band);
2302 
2303 		rx_status->rate_idx = rate;
2304 
2305 		if ((rate < 0 || rate > 0xFF)) {
2306 			rx_status->rate_idx = 0;
2307 			if (net_ratelimit())
2308 				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2309 					rate_n_flags, rx_status->band);
2310 		}
2311 
2312 		break;
2313 		}
2314 	}
2315 }
2316 
2317 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2318 			struct iwl_rx_cmd_buffer *rxb, int queue)
2319 {
2320 	struct ieee80211_rx_status *rx_status;
2321 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2322 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2323 	struct ieee80211_hdr *hdr;
2324 	u32 len;
2325 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2326 	struct ieee80211_sta *sta = NULL;
2327 	struct ieee80211_link_sta *link_sta = NULL;
2328 	struct sk_buff *skb;
2329 	u8 crypt_len = 0;
2330 	size_t desc_size;
2331 	struct iwl_mvm_rx_phy_data phy_data = {};
2332 	u32 format;
2333 
2334 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2335 		return;
2336 
2337 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2338 		desc_size = sizeof(*desc);
2339 	else
2340 		desc_size = IWL_RX_DESC_SIZE_V1;
2341 
2342 	if (unlikely(pkt_len < desc_size)) {
2343 		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2344 		return;
2345 	}
2346 
2347 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2348 		phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2349 		phy_data.channel = desc->v3.channel;
2350 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2351 		phy_data.energy_a = desc->v3.energy_a;
2352 		phy_data.energy_b = desc->v3.energy_b;
2353 
2354 		phy_data.d0 = desc->v3.phy_data0;
2355 		phy_data.d1 = desc->v3.phy_data1;
2356 		phy_data.d2 = desc->v3.phy_data2;
2357 		phy_data.d3 = desc->v3.phy_data3;
2358 		phy_data.eht_d4 = desc->phy_eht_data4;
2359 		phy_data.d5 = desc->v3.phy_data5;
2360 	} else {
2361 		phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2362 		phy_data.channel = desc->v1.channel;
2363 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2364 		phy_data.energy_a = desc->v1.energy_a;
2365 		phy_data.energy_b = desc->v1.energy_b;
2366 
2367 		phy_data.d0 = desc->v1.phy_data0;
2368 		phy_data.d1 = desc->v1.phy_data1;
2369 		phy_data.d2 = desc->v1.phy_data2;
2370 		phy_data.d3 = desc->v1.phy_data3;
2371 	}
2372 
2373 	if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2374 				    REPLY_RX_MPDU_CMD, 0) < 4) {
2375 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2376 		IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2377 			       phy_data.rate_n_flags);
2378 	}
2379 
2380 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2381 
2382 	len = le16_to_cpu(desc->mpdu_len);
2383 
2384 	if (unlikely(len + desc_size > pkt_len)) {
2385 		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2386 		return;
2387 	}
2388 
2389 	phy_data.with_data = true;
2390 	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2391 	phy_data.d4 = desc->phy_data4;
2392 
2393 	hdr = (void *)(pkt->data + desc_size);
2394 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2395 	 * ieee80211_hdr pulled.
2396 	 */
2397 	skb = alloc_skb(128, GFP_ATOMIC);
2398 	if (!skb) {
2399 		IWL_ERR(mvm, "alloc_skb failed\n");
2400 		return;
2401 	}
2402 
2403 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2404 		/*
2405 		 * If the device inserted padding it means that (it thought)
2406 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2407 		 * this case, reserve two bytes at the start of the SKB to
2408 		 * align the payload properly in case we end up copying it.
2409 		 */
2410 		skb_reserve(skb, 2);
2411 	}
2412 
2413 	rx_status = IEEE80211_SKB_RXCB(skb);
2414 
2415 	/*
2416 	 * Keep packets with CRC errors (and with overrun) for monitor mode
2417 	 * (otherwise the firmware discards them) but mark them as bad.
2418 	 */
2419 	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2420 	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2421 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2422 			     le32_to_cpu(desc->status));
2423 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2424 	}
2425 
2426 	/* set the preamble flag if appropriate */
2427 	if (format == RATE_MCS_CCK_MSK &&
2428 	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2429 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2430 
2431 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2432 		u64 tsf_on_air_rise;
2433 
2434 		if (mvm->trans->trans_cfg->device_family >=
2435 		    IWL_DEVICE_FAMILY_AX210)
2436 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2437 		else
2438 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2439 
2440 		rx_status->mactime = tsf_on_air_rise;
2441 		/* TSF as indicated by the firmware is at INA time */
2442 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2443 	}
2444 
2445 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2446 		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2447 
2448 		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2449 	} else {
2450 		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2451 			NL80211_BAND_2GHZ;
2452 	}
2453 
2454 	/* update aggregation data for monitor sake on default queue */
2455 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2456 		bool toggle_bit;
2457 
2458 		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2459 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2460 		/*
2461 		 * Toggle is switched whenever new aggregation starts. Make
2462 		 * sure ampdu_reference is never 0 so we can later use it to
2463 		 * see if the frame was really part of an A-MPDU or not.
2464 		 */
2465 		if (toggle_bit != mvm->ampdu_toggle) {
2466 			mvm->ampdu_ref++;
2467 			if (mvm->ampdu_ref == 0)
2468 				mvm->ampdu_ref++;
2469 			mvm->ampdu_toggle = toggle_bit;
2470 			phy_data.first_subframe = true;
2471 		}
2472 		rx_status->ampdu_reference = mvm->ampdu_ref;
2473 	}
2474 
2475 	rcu_read_lock();
2476 
2477 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2478 		u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2479 
2480 		if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2481 			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2482 			if (IS_ERR(sta))
2483 				sta = NULL;
2484 			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2485 		}
2486 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2487 		/*
2488 		 * This is fine since we prevent two stations with the same
2489 		 * address from being added.
2490 		 */
2491 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2492 	}
2493 
2494 	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2495 			      le32_to_cpu(pkt->len_n_flags), queue,
2496 			      &crypt_len)) {
2497 		kfree_skb(skb);
2498 		goto out;
2499 	}
2500 
2501 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2502 
2503 	if (sta) {
2504 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2505 		struct ieee80211_vif *tx_blocked_vif =
2506 			rcu_dereference(mvm->csa_tx_blocked_vif);
2507 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2508 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2509 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2510 		struct iwl_fw_dbg_trigger_tlv *trig;
2511 		struct ieee80211_vif *vif = mvmsta->vif;
2512 
2513 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2514 		    !is_multicast_ether_addr(hdr->addr1) &&
2515 		    ieee80211_is_data(hdr->frame_control) &&
2516 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2517 			schedule_delayed_work(&mvm->tcm.work, 0);
2518 
2519 		/*
2520 		 * We have tx blocked stations (with CS bit). If we heard
2521 		 * frames from a blocked station on a new channel we can
2522 		 * TX to it again.
2523 		 */
2524 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2525 			struct iwl_mvm_vif *mvmvif =
2526 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2527 			struct iwl_rx_sta_csa rx_sta_csa = {
2528 				.all_sta_unblocked = true,
2529 				.vif = tx_blocked_vif,
2530 			};
2531 
2532 			if (mvmvif->csa_target_freq == rx_status->freq)
2533 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2534 								 false);
2535 			ieee80211_iterate_stations_atomic(mvm->hw,
2536 							  iwl_mvm_rx_get_sta_block_tx,
2537 							  &rx_sta_csa);
2538 
2539 			if (rx_sta_csa.all_sta_unblocked) {
2540 				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2541 				/* Unblock BCAST / MCAST station */
2542 				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2543 				cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2544 			}
2545 		}
2546 
2547 		rs_update_last_rssi(mvm, mvmsta, rx_status);
2548 
2549 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2550 					     ieee80211_vif_to_wdev(vif),
2551 					     FW_DBG_TRIGGER_RSSI);
2552 
2553 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2554 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2555 			s32 rssi;
2556 
2557 			rssi_trig = (void *)trig->data;
2558 			rssi = le32_to_cpu(rssi_trig->rssi);
2559 
2560 			if (rx_status->signal < rssi)
2561 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2562 							NULL);
2563 		}
2564 
2565 		if (ieee80211_is_data(hdr->frame_control))
2566 			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2567 
2568 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2569 			kfree_skb(skb);
2570 			goto out;
2571 		}
2572 
2573 		/*
2574 		 * Our hardware de-aggregates AMSDUs but copies the mac header
2575 		 * as it to the de-aggregated MPDUs. We need to turn off the
2576 		 * AMSDU bit in the QoS control ourselves.
2577 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2578 		 */
2579 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2580 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2581 			u8 *qc = ieee80211_get_qos_ctl(hdr);
2582 
2583 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2584 
2585 			if (mvm->trans->trans_cfg->device_family ==
2586 			    IWL_DEVICE_FAMILY_9000) {
2587 				iwl_mvm_flip_address(hdr->addr3);
2588 
2589 				if (ieee80211_has_a4(hdr->frame_control))
2590 					iwl_mvm_flip_address(hdr->addr4);
2591 			}
2592 		}
2593 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2594 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2595 
2596 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2597 		}
2598 	}
2599 
2600 	/* management stuff on default queue */
2601 	if (!queue) {
2602 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2603 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2604 			     mvm->sched_scan_pass_all ==
2605 			     SCHED_SCAN_PASS_ALL_ENABLED))
2606 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2607 
2608 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2609 			     ieee80211_is_probe_resp(hdr->frame_control)))
2610 			rx_status->boottime_ns = ktime_get_boottime_ns();
2611 	}
2612 
2613 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2614 		kfree_skb(skb);
2615 		goto out;
2616 	}
2617 
2618 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2619 	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2620 	    likely(!iwl_mvm_mei_filter_scan(mvm, skb)))
2621 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2622 						link_sta);
2623 out:
2624 	rcu_read_unlock();
2625 }
2626 
2627 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2628 				struct iwl_rx_cmd_buffer *rxb, int queue)
2629 {
2630 	struct ieee80211_rx_status *rx_status;
2631 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2632 	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2633 	u32 rssi;
2634 	u32 info_type;
2635 	struct ieee80211_sta *sta = NULL;
2636 	struct sk_buff *skb;
2637 	struct iwl_mvm_rx_phy_data phy_data;
2638 	u32 format;
2639 
2640 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2641 		return;
2642 
2643 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2644 		return;
2645 
2646 	rssi = le32_to_cpu(desc->rssi);
2647 	info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2648 	phy_data.d0 = desc->phy_info[0];
2649 	phy_data.d1 = desc->phy_info[1];
2650 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2651 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2652 	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2653 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2654 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2655 	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2656 	phy_data.with_data = false;
2657 	phy_data.rx_vec[0] = desc->rx_vec[0];
2658 	phy_data.rx_vec[1] = desc->rx_vec[1];
2659 
2660 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2661 				    RX_NO_DATA_NOTIF, 0) < 2) {
2662 		IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2663 			       phy_data.rate_n_flags);
2664 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2665 		IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2666 			       phy_data.rate_n_flags);
2667 	}
2668 
2669 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2670 
2671 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2672 				    RX_NO_DATA_NOTIF, 0) >= 3) {
2673 		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2674 		    sizeof(struct iwl_rx_no_data_ver_3)))
2675 		/* invalid len for ver 3 */
2676 			return;
2677 		phy_data.rx_vec[2] = desc->rx_vec[2];
2678 		phy_data.rx_vec[3] = desc->rx_vec[3];
2679 	} else {
2680 		if (format == RATE_MCS_EHT_MSK)
2681 			/* no support for EHT before version 3 API */
2682 			return;
2683 	}
2684 
2685 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2686 	 * ieee80211_hdr pulled.
2687 	 */
2688 	skb = alloc_skb(128, GFP_ATOMIC);
2689 	if (!skb) {
2690 		IWL_ERR(mvm, "alloc_skb failed\n");
2691 		return;
2692 	}
2693 
2694 	rx_status = IEEE80211_SKB_RXCB(skb);
2695 
2696 	/* 0-length PSDU */
2697 	rx_status->flag |= RX_FLAG_NO_PSDU;
2698 
2699 	switch (info_type) {
2700 	case RX_NO_DATA_INFO_TYPE_NDP:
2701 		rx_status->zero_length_psdu_type =
2702 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2703 		break;
2704 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2705 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2706 		rx_status->zero_length_psdu_type =
2707 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2708 		break;
2709 	default:
2710 		rx_status->zero_length_psdu_type =
2711 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2712 		break;
2713 	}
2714 
2715 	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2716 		NL80211_BAND_2GHZ;
2717 
2718 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2719 
2720 	/* no more radio tap info should be put after this point.
2721 	 *
2722 	 * We mark it as mac header, for upper layers to know where
2723 	 * all radio tap header ends.
2724 	 */
2725 	skb_reset_mac_header(skb);
2726 
2727 	/*
2728 	 * Override the nss from the rx_vec since the rate_n_flags has
2729 	 * only 2 bits for the nss which gives a max of 4 ss but there
2730 	 * may be up to 8 spatial streams.
2731 	 */
2732 	switch (format) {
2733 	case RATE_MCS_VHT_MSK:
2734 		rx_status->nss =
2735 			le32_get_bits(desc->rx_vec[0],
2736 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2737 		break;
2738 	case RATE_MCS_HE_MSK:
2739 		rx_status->nss =
2740 			le32_get_bits(desc->rx_vec[0],
2741 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2742 		break;
2743 	case RATE_MCS_EHT_MSK:
2744 		rx_status->nss =
2745 			le32_get_bits(desc->rx_vec[2],
2746 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2747 	}
2748 
2749 	rcu_read_lock();
2750 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2751 	rcu_read_unlock();
2752 }
2753 
2754 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2755 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2756 {
2757 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2758 	struct iwl_frame_release *release = (void *)pkt->data;
2759 
2760 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2761 		return;
2762 
2763 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2764 					  le16_to_cpu(release->nssn),
2765 					  queue, 0);
2766 }
2767 
2768 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2769 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2770 {
2771 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2772 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2773 	unsigned int baid = le32_get_bits(release->ba_info,
2774 					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2775 	unsigned int nssn = le32_get_bits(release->ba_info,
2776 					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2777 	unsigned int sta_id = le32_get_bits(release->sta_tid,
2778 					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2779 	unsigned int tid = le32_get_bits(release->sta_tid,
2780 					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2781 	struct iwl_mvm_baid_data *baid_data;
2782 
2783 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2784 		return;
2785 
2786 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2787 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2788 		return;
2789 
2790 	rcu_read_lock();
2791 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2792 	if (!baid_data) {
2793 		IWL_DEBUG_RX(mvm,
2794 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2795 			      baid);
2796 		goto out;
2797 	}
2798 
2799 	if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2800 		 !(baid_data->sta_mask & BIT(sta_id)),
2801 		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2802 		 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2803 		 tid))
2804 		goto out;
2805 
2806 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2807 out:
2808 	rcu_read_unlock();
2809 }
2810