1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2020 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 13 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 14 { 15 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 16 u8 *data = skb->data; 17 18 /* Alignment concerns */ 19 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 20 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 21 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 22 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 23 24 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 25 data += sizeof(struct ieee80211_radiotap_he); 26 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 27 data += sizeof(struct ieee80211_radiotap_he_mu); 28 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 29 data += sizeof(struct ieee80211_radiotap_lsig); 30 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 31 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 32 33 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 34 } 35 36 return data; 37 } 38 39 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 40 int queue, struct ieee80211_sta *sta) 41 { 42 struct iwl_mvm_sta *mvmsta; 43 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 44 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 45 struct iwl_mvm_key_pn *ptk_pn; 46 int res; 47 u8 tid, keyidx; 48 u8 pn[IEEE80211_CCMP_PN_LEN]; 49 u8 *extiv; 50 51 /* do PN checking */ 52 53 /* multicast and non-data only arrives on default queue */ 54 if (!ieee80211_is_data(hdr->frame_control) || 55 is_multicast_ether_addr(hdr->addr1)) 56 return 0; 57 58 /* do not check PN for open AP */ 59 if (!(stats->flag & RX_FLAG_DECRYPTED)) 60 return 0; 61 62 /* 63 * avoid checking for default queue - we don't want to replicate 64 * all the logic that's necessary for checking the PN on fragmented 65 * frames, leave that to mac80211 66 */ 67 if (queue == 0) 68 return 0; 69 70 /* if we are here - this for sure is either CCMP or GCMP */ 71 if (IS_ERR_OR_NULL(sta)) { 72 IWL_ERR(mvm, 73 "expected hw-decrypted unicast frame for station\n"); 74 return -1; 75 } 76 77 mvmsta = iwl_mvm_sta_from_mac80211(sta); 78 79 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 80 keyidx = extiv[3] >> 6; 81 82 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 83 if (!ptk_pn) 84 return -1; 85 86 if (ieee80211_is_data_qos(hdr->frame_control)) 87 tid = ieee80211_get_tid(hdr); 88 else 89 tid = 0; 90 91 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 92 if (tid >= IWL_MAX_TID_COUNT) 93 return -1; 94 95 /* load pn */ 96 pn[0] = extiv[7]; 97 pn[1] = extiv[6]; 98 pn[2] = extiv[5]; 99 pn[3] = extiv[4]; 100 pn[4] = extiv[1]; 101 pn[5] = extiv[0]; 102 103 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 104 if (res < 0) 105 return -1; 106 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 107 return -1; 108 109 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 110 stats->flag |= RX_FLAG_PN_VALIDATED; 111 112 return 0; 113 } 114 115 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 116 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 117 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 118 struct iwl_rx_cmd_buffer *rxb) 119 { 120 struct iwl_rx_packet *pkt = rxb_addr(rxb); 121 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 122 unsigned int headlen, fraglen, pad_len = 0; 123 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 124 125 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 126 len -= 2; 127 pad_len = 2; 128 } 129 130 /* If frame is small enough to fit in skb->head, pull it completely. 131 * If not, only pull ieee80211_hdr (including crypto if present, and 132 * an additional 8 bytes for SNAP/ethertype, see below) so that 133 * splice() or TCP coalesce are more efficient. 134 * 135 * Since, in addition, ieee80211_data_to_8023() always pull in at 136 * least 8 bytes (possibly more for mesh) we can do the same here 137 * to save the cost of doing it later. That still doesn't pull in 138 * the actual IP header since the typical case has a SNAP header. 139 * If the latter changes (there are efforts in the standards group 140 * to do so) we should revisit this and ieee80211_data_to_8023(). 141 */ 142 headlen = (len <= skb_tailroom(skb)) ? len : 143 hdrlen + crypt_len + 8; 144 145 /* The firmware may align the packet to DWORD. 146 * The padding is inserted after the IV. 147 * After copying the header + IV skip the padding if 148 * present before copying packet data. 149 */ 150 hdrlen += crypt_len; 151 152 if (WARN_ONCE(headlen < hdrlen, 153 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 154 hdrlen, len, crypt_len)) { 155 /* 156 * We warn and trace because we want to be able to see 157 * it in trace-cmd as well. 158 */ 159 IWL_DEBUG_RX(mvm, 160 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 161 hdrlen, len, crypt_len); 162 return -EINVAL; 163 } 164 165 skb_put_data(skb, hdr, hdrlen); 166 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 167 168 /* 169 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 170 * certain cases and starts the checksum after the SNAP. Check if 171 * this is the case - it's easier to just bail out to CHECKSUM_NONE 172 * in the cases the hardware didn't handle, since it's rare to see 173 * such packets, even though the hardware did calculate the checksum 174 * in this case, just starting after the MAC header instead. 175 */ 176 if (skb->ip_summed == CHECKSUM_COMPLETE) { 177 struct { 178 u8 hdr[6]; 179 __be16 type; 180 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 181 182 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 183 !ether_addr_equal(shdr->hdr, rfc1042_header) || 184 (shdr->type != htons(ETH_P_IP) && 185 shdr->type != htons(ETH_P_ARP) && 186 shdr->type != htons(ETH_P_IPV6) && 187 shdr->type != htons(ETH_P_8021Q) && 188 shdr->type != htons(ETH_P_PAE) && 189 shdr->type != htons(ETH_P_TDLS)))) 190 skb->ip_summed = CHECKSUM_NONE; 191 } 192 193 fraglen = len - headlen; 194 195 if (fraglen) { 196 int offset = (void *)hdr + headlen + pad_len - 197 rxb_addr(rxb) + rxb_offset(rxb); 198 199 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 200 fraglen, rxb->truesize); 201 } 202 203 return 0; 204 } 205 206 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 207 struct sk_buff *skb) 208 { 209 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 210 struct ieee80211_vendor_radiotap *radiotap; 211 const int size = sizeof(*radiotap) + sizeof(__le16); 212 213 if (!mvm->cur_aid) 214 return; 215 216 /* ensure alignment */ 217 BUILD_BUG_ON((size + 2) % 4); 218 219 radiotap = skb_put(skb, size + 2); 220 radiotap->align = 1; 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->subns = 1; 227 radiotap->present = 0x1; 228 radiotap->len = size - sizeof(*radiotap); 229 radiotap->pad = 2; 230 231 /* fill the data now */ 232 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 233 /* and clear the padding */ 234 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 235 236 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 237 } 238 239 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 240 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 241 struct napi_struct *napi, 242 struct sk_buff *skb, int queue, 243 struct ieee80211_sta *sta, 244 bool csi) 245 { 246 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 247 kfree_skb(skb); 248 else 249 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 250 } 251 252 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 253 struct ieee80211_rx_status *rx_status, 254 u32 rate_n_flags, int energy_a, 255 int energy_b) 256 { 257 int max_energy; 258 u32 rate_flags = rate_n_flags; 259 260 energy_a = energy_a ? -energy_a : S8_MIN; 261 energy_b = energy_b ? -energy_b : S8_MIN; 262 max_energy = max(energy_a, energy_b); 263 264 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 265 energy_a, energy_b, max_energy); 266 267 rx_status->signal = max_energy; 268 rx_status->chains = 269 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 270 rx_status->chain_signal[0] = energy_a; 271 rx_status->chain_signal[1] = energy_b; 272 rx_status->chain_signal[2] = S8_MIN; 273 } 274 275 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr, 276 struct ieee80211_rx_status *stats, u16 phy_info, 277 struct iwl_rx_mpdu_desc *desc, 278 u32 pkt_flags, int queue, u8 *crypt_len) 279 { 280 u32 status = le32_to_cpu(desc->status); 281 282 /* 283 * Drop UNKNOWN frames in aggregation, unless in monitor mode 284 * (where we don't have the keys). 285 * We limit this to aggregation because in TKIP this is a valid 286 * scenario, since we may not have the (correct) TTAK (phase 1 287 * key) in the firmware. 288 */ 289 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 290 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 291 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 292 return -1; 293 294 if (!ieee80211_has_protected(hdr->frame_control) || 295 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 296 IWL_RX_MPDU_STATUS_SEC_NONE) 297 return 0; 298 299 /* TODO: handle packets encrypted with unknown alg */ 300 301 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 302 case IWL_RX_MPDU_STATUS_SEC_CCM: 303 case IWL_RX_MPDU_STATUS_SEC_GCM: 304 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 305 /* alg is CCM: check MIC only */ 306 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 307 return -1; 308 309 stats->flag |= RX_FLAG_DECRYPTED; 310 if (pkt_flags & FH_RSCSR_RADA_EN) 311 stats->flag |= RX_FLAG_MIC_STRIPPED; 312 *crypt_len = IEEE80211_CCMP_HDR_LEN; 313 return 0; 314 case IWL_RX_MPDU_STATUS_SEC_TKIP: 315 /* Don't drop the frame and decrypt it in SW */ 316 if (!fw_has_api(&mvm->fw->ucode_capa, 317 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 318 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 319 return 0; 320 321 if (mvm->trans->trans_cfg->gen2 && 322 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 323 stats->flag |= RX_FLAG_MMIC_ERROR; 324 325 *crypt_len = IEEE80211_TKIP_IV_LEN; 326 fallthrough; 327 case IWL_RX_MPDU_STATUS_SEC_WEP: 328 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 329 return -1; 330 331 stats->flag |= RX_FLAG_DECRYPTED; 332 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 333 IWL_RX_MPDU_STATUS_SEC_WEP) 334 *crypt_len = IEEE80211_WEP_IV_LEN; 335 336 if (pkt_flags & FH_RSCSR_RADA_EN) { 337 stats->flag |= RX_FLAG_ICV_STRIPPED; 338 if (mvm->trans->trans_cfg->gen2) 339 stats->flag |= RX_FLAG_MMIC_STRIPPED; 340 } 341 342 return 0; 343 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 344 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 345 return -1; 346 stats->flag |= RX_FLAG_DECRYPTED; 347 return 0; 348 default: 349 /* 350 * Sometimes we can get frames that were not decrypted 351 * because the firmware didn't have the keys yet. This can 352 * happen after connection where we can get multicast frames 353 * before the GTK is installed. 354 * Silently drop those frames. 355 * Also drop un-decrypted frames in monitor mode. 356 */ 357 if (!is_multicast_ether_addr(hdr->addr1) && 358 !mvm->monitor_on && net_ratelimit()) 359 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 360 } 361 362 return 0; 363 } 364 365 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 366 struct ieee80211_sta *sta, 367 struct sk_buff *skb, 368 struct iwl_rx_packet *pkt) 369 { 370 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 371 372 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 373 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 374 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 375 376 skb->ip_summed = CHECKSUM_COMPLETE; 377 skb->csum = csum_unfold(~(__force __sum16)hwsum); 378 } 379 } else { 380 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 381 struct iwl_mvm_vif *mvmvif; 382 u16 flags = le16_to_cpu(desc->l3l4_flags); 383 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 384 IWL_RX_L3_PROTO_POS); 385 386 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 387 388 if (mvmvif->features & NETIF_F_RXCSUM && 389 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 390 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 391 l3_prot == IWL_RX_L3_TYPE_IPV6 || 392 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 393 skb->ip_summed = CHECKSUM_UNNECESSARY; 394 } 395 } 396 397 /* 398 * returns true if a packet is a duplicate and should be dropped. 399 * Updates AMSDU PN tracking info 400 */ 401 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 402 struct ieee80211_rx_status *rx_status, 403 struct ieee80211_hdr *hdr, 404 struct iwl_rx_mpdu_desc *desc) 405 { 406 struct iwl_mvm_sta *mvm_sta; 407 struct iwl_mvm_rxq_dup_data *dup_data; 408 u8 tid, sub_frame_idx; 409 410 if (WARN_ON(IS_ERR_OR_NULL(sta))) 411 return false; 412 413 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 414 dup_data = &mvm_sta->dup_data[queue]; 415 416 /* 417 * Drop duplicate 802.11 retransmissions 418 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 419 */ 420 if (ieee80211_is_ctl(hdr->frame_control) || 421 ieee80211_is_qos_nullfunc(hdr->frame_control) || 422 is_multicast_ether_addr(hdr->addr1)) { 423 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 424 return false; 425 } 426 427 if (ieee80211_is_data_qos(hdr->frame_control)) 428 /* frame has qos control */ 429 tid = ieee80211_get_tid(hdr); 430 else 431 tid = IWL_MAX_TID_COUNT; 432 433 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 434 sub_frame_idx = desc->amsdu_info & 435 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 436 437 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 438 dup_data->last_seq[tid] == hdr->seq_ctrl && 439 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 440 return true; 441 442 /* Allow same PN as the first subframe for following sub frames */ 443 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 444 sub_frame_idx > dup_data->last_sub_frame[tid] && 445 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 446 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 447 448 dup_data->last_seq[tid] = hdr->seq_ctrl; 449 dup_data->last_sub_frame[tid] = sub_frame_idx; 450 451 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 452 453 return false; 454 } 455 456 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask, 457 const struct iwl_mvm_internal_rxq_notif *notif, 458 u32 notif_size, bool async) 459 { 460 u8 buf[sizeof(struct iwl_rxq_sync_cmd) + 461 sizeof(struct iwl_mvm_rss_sync_notif)]; 462 struct iwl_rxq_sync_cmd *cmd = (void *)buf; 463 u32 data_size = sizeof(*cmd) + notif_size; 464 int ret; 465 466 /* 467 * size must be a multiple of DWORD 468 * Ensure we don't overflow buf 469 */ 470 if (WARN_ON(notif_size & 3 || 471 notif_size > sizeof(struct iwl_mvm_rss_sync_notif))) 472 return -EINVAL; 473 474 cmd->rxq_mask = cpu_to_le32(rxq_mask); 475 cmd->count = cpu_to_le32(notif_size); 476 cmd->flags = 0; 477 memcpy(cmd->payload, notif, notif_size); 478 479 ret = iwl_mvm_send_cmd_pdu(mvm, 480 WIDE_ID(DATA_PATH_GROUP, 481 TRIGGER_RX_QUEUES_NOTIF_CMD), 482 async ? CMD_ASYNC : 0, data_size, cmd); 483 484 return ret; 485 } 486 487 /* 488 * Returns true if sn2 - buffer_size < sn1 < sn2. 489 * To be used only in order to compare reorder buffer head with NSSN. 490 * We fully trust NSSN unless it is behind us due to reorder timeout. 491 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 492 */ 493 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 494 { 495 return ieee80211_sn_less(sn1, sn2) && 496 !ieee80211_sn_less(sn1, sn2 - buffer_size); 497 } 498 499 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 500 { 501 if (IWL_MVM_USE_NSSN_SYNC) { 502 struct iwl_mvm_rss_sync_notif notif = { 503 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC, 504 .metadata.sync = 0, 505 .nssn_sync.baid = baid, 506 .nssn_sync.nssn = nssn, 507 }; 508 509 iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if, 510 sizeof(notif)); 511 } 512 } 513 514 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 515 516 enum iwl_mvm_release_flags { 517 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 518 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 519 }; 520 521 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 522 struct ieee80211_sta *sta, 523 struct napi_struct *napi, 524 struct iwl_mvm_baid_data *baid_data, 525 struct iwl_mvm_reorder_buffer *reorder_buf, 526 u16 nssn, u32 flags) 527 { 528 struct iwl_mvm_reorder_buf_entry *entries = 529 &baid_data->entries[reorder_buf->queue * 530 baid_data->entries_per_queue]; 531 u16 ssn = reorder_buf->head_sn; 532 533 lockdep_assert_held(&reorder_buf->lock); 534 535 /* 536 * We keep the NSSN not too far behind, if we are sync'ing it and it 537 * is more than 2048 ahead of us, it must be behind us. Discard it. 538 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 539 * behind and this queue already processed packets. The next if 540 * would have caught cases where this queue would have processed less 541 * than 64 packets, but it may have processed more than 64 packets. 542 */ 543 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 544 ieee80211_sn_less(nssn, ssn)) 545 goto set_timer; 546 547 /* ignore nssn smaller than head sn - this can happen due to timeout */ 548 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 549 goto set_timer; 550 551 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 552 int index = ssn % reorder_buf->buf_size; 553 struct sk_buff_head *skb_list = &entries[index].e.frames; 554 struct sk_buff *skb; 555 556 ssn = ieee80211_sn_inc(ssn); 557 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 558 (ssn == 2048 || ssn == 0)) 559 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 560 561 /* 562 * Empty the list. Will have more than one frame for A-MSDU. 563 * Empty list is valid as well since nssn indicates frames were 564 * received. 565 */ 566 while ((skb = __skb_dequeue(skb_list))) { 567 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 568 reorder_buf->queue, 569 sta, false); 570 reorder_buf->num_stored--; 571 } 572 } 573 reorder_buf->head_sn = nssn; 574 575 set_timer: 576 if (reorder_buf->num_stored && !reorder_buf->removed) { 577 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 578 579 while (skb_queue_empty(&entries[index].e.frames)) 580 index = (index + 1) % reorder_buf->buf_size; 581 /* modify timer to match next frame's expiration time */ 582 mod_timer(&reorder_buf->reorder_timer, 583 entries[index].e.reorder_time + 1 + 584 RX_REORDER_BUF_TIMEOUT_MQ); 585 } else { 586 del_timer(&reorder_buf->reorder_timer); 587 } 588 } 589 590 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 591 { 592 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 593 struct iwl_mvm_baid_data *baid_data = 594 iwl_mvm_baid_data_from_reorder_buf(buf); 595 struct iwl_mvm_reorder_buf_entry *entries = 596 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 597 int i; 598 u16 sn = 0, index = 0; 599 bool expired = false; 600 bool cont = false; 601 602 spin_lock(&buf->lock); 603 604 if (!buf->num_stored || buf->removed) { 605 spin_unlock(&buf->lock); 606 return; 607 } 608 609 for (i = 0; i < buf->buf_size ; i++) { 610 index = (buf->head_sn + i) % buf->buf_size; 611 612 if (skb_queue_empty(&entries[index].e.frames)) { 613 /* 614 * If there is a hole and the next frame didn't expire 615 * we want to break and not advance SN 616 */ 617 cont = false; 618 continue; 619 } 620 if (!cont && 621 !time_after(jiffies, entries[index].e.reorder_time + 622 RX_REORDER_BUF_TIMEOUT_MQ)) 623 break; 624 625 expired = true; 626 /* continue until next hole after this expired frames */ 627 cont = true; 628 sn = ieee80211_sn_add(buf->head_sn, i + 1); 629 } 630 631 if (expired) { 632 struct ieee80211_sta *sta; 633 struct iwl_mvm_sta *mvmsta; 634 u8 sta_id = baid_data->sta_id; 635 636 rcu_read_lock(); 637 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 638 mvmsta = iwl_mvm_sta_from_mac80211(sta); 639 640 /* SN is set to the last expired frame + 1 */ 641 IWL_DEBUG_HT(buf->mvm, 642 "Releasing expired frames for sta %u, sn %d\n", 643 sta_id, sn); 644 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 645 sta, baid_data->tid); 646 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 647 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 648 rcu_read_unlock(); 649 } else { 650 /* 651 * If no frame expired and there are stored frames, index is now 652 * pointing to the first unexpired frame - modify timer 653 * accordingly to this frame. 654 */ 655 mod_timer(&buf->reorder_timer, 656 entries[index].e.reorder_time + 657 1 + RX_REORDER_BUF_TIMEOUT_MQ); 658 } 659 spin_unlock(&buf->lock); 660 } 661 662 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 663 struct iwl_mvm_delba_data *data) 664 { 665 struct iwl_mvm_baid_data *ba_data; 666 struct ieee80211_sta *sta; 667 struct iwl_mvm_reorder_buffer *reorder_buf; 668 u8 baid = data->baid; 669 670 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 671 return; 672 673 rcu_read_lock(); 674 675 ba_data = rcu_dereference(mvm->baid_map[baid]); 676 if (WARN_ON_ONCE(!ba_data)) 677 goto out; 678 679 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 680 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 681 goto out; 682 683 reorder_buf = &ba_data->reorder_buf[queue]; 684 685 /* release all frames that are in the reorder buffer to the stack */ 686 spin_lock_bh(&reorder_buf->lock); 687 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 688 ieee80211_sn_add(reorder_buf->head_sn, 689 reorder_buf->buf_size), 690 0); 691 spin_unlock_bh(&reorder_buf->lock); 692 del_timer_sync(&reorder_buf->reorder_timer); 693 694 out: 695 rcu_read_unlock(); 696 } 697 698 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 699 struct napi_struct *napi, 700 u8 baid, u16 nssn, int queue, 701 u32 flags) 702 { 703 struct ieee80211_sta *sta; 704 struct iwl_mvm_reorder_buffer *reorder_buf; 705 struct iwl_mvm_baid_data *ba_data; 706 707 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 708 baid, nssn); 709 710 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 711 baid >= ARRAY_SIZE(mvm->baid_map))) 712 return; 713 714 rcu_read_lock(); 715 716 ba_data = rcu_dereference(mvm->baid_map[baid]); 717 if (WARN_ON_ONCE(!ba_data)) 718 goto out; 719 720 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 721 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 722 goto out; 723 724 reorder_buf = &ba_data->reorder_buf[queue]; 725 726 spin_lock_bh(&reorder_buf->lock); 727 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 728 reorder_buf, nssn, flags); 729 spin_unlock_bh(&reorder_buf->lock); 730 731 out: 732 rcu_read_unlock(); 733 } 734 735 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 736 struct napi_struct *napi, int queue, 737 const struct iwl_mvm_nssn_sync_data *data) 738 { 739 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 740 data->nssn, queue, 741 IWL_MVM_RELEASE_FROM_RSS_SYNC); 742 } 743 744 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 745 struct iwl_rx_cmd_buffer *rxb, int queue) 746 { 747 struct iwl_rx_packet *pkt = rxb_addr(rxb); 748 struct iwl_rxq_sync_notification *notif; 749 struct iwl_mvm_internal_rxq_notif *internal_notif; 750 u32 len = iwl_rx_packet_payload_len(pkt); 751 752 notif = (void *)pkt->data; 753 internal_notif = (void *)notif->payload; 754 755 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 756 "invalid notification size %d (%d)", 757 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 758 return; 759 /* remove only the firmware header, we want all of our payload below */ 760 len -= sizeof(*notif); 761 762 if (internal_notif->sync && 763 mvm->queue_sync_cookie != internal_notif->cookie) { 764 WARN_ONCE(1, "Received expired RX queue sync message\n"); 765 return; 766 } 767 768 switch (internal_notif->type) { 769 case IWL_MVM_RXQ_EMPTY: 770 WARN_ONCE(len != sizeof(*internal_notif), 771 "invalid empty notification size %d (%d)", 772 len, (int)sizeof(*internal_notif)); 773 break; 774 case IWL_MVM_RXQ_NOTIF_DEL_BA: 775 if (WARN_ONCE(len != sizeof(struct iwl_mvm_rss_sync_notif), 776 "invalid delba notification size %d (%d)", 777 len, (int)sizeof(struct iwl_mvm_rss_sync_notif))) 778 break; 779 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 780 break; 781 case IWL_MVM_RXQ_NSSN_SYNC: 782 if (WARN_ONCE(len != sizeof(struct iwl_mvm_rss_sync_notif), 783 "invalid nssn sync notification size %d (%d)", 784 len, (int)sizeof(struct iwl_mvm_rss_sync_notif))) 785 break; 786 iwl_mvm_nssn_sync(mvm, napi, queue, 787 (void *)internal_notif->data); 788 break; 789 default: 790 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 791 } 792 793 if (internal_notif->sync) { 794 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 795 "queue sync: queue %d responded a second time!\n", 796 queue); 797 if (READ_ONCE(mvm->queue_sync_state) == 0) 798 wake_up(&mvm->rx_sync_waitq); 799 } 800 } 801 802 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 803 struct ieee80211_sta *sta, int tid, 804 struct iwl_mvm_reorder_buffer *buffer, 805 u32 reorder, u32 gp2, int queue) 806 { 807 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 808 809 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 810 /* we have a new (A-)MPDU ... */ 811 812 /* 813 * reset counter to 0 if we didn't have any oldsn in 814 * the last A-MPDU (as detected by GP2 being identical) 815 */ 816 if (!buffer->consec_oldsn_prev_drop) 817 buffer->consec_oldsn_drops = 0; 818 819 /* either way, update our tracking state */ 820 buffer->consec_oldsn_ampdu_gp2 = gp2; 821 } else if (buffer->consec_oldsn_prev_drop) { 822 /* 823 * tracking state didn't change, and we had an old SN 824 * indication before - do nothing in this case, we 825 * already noted this one down and are waiting for the 826 * next A-MPDU (by GP2) 827 */ 828 return; 829 } 830 831 /* return unless this MPDU has old SN */ 832 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 833 return; 834 835 /* update state */ 836 buffer->consec_oldsn_prev_drop = 1; 837 buffer->consec_oldsn_drops++; 838 839 /* if limit is reached, send del BA and reset state */ 840 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 841 IWL_WARN(mvm, 842 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 843 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 844 sta->addr, queue, tid); 845 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 846 buffer->consec_oldsn_prev_drop = 0; 847 buffer->consec_oldsn_drops = 0; 848 } 849 } 850 851 /* 852 * Returns true if the MPDU was buffered\dropped, false if it should be passed 853 * to upper layer. 854 */ 855 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 856 struct napi_struct *napi, 857 int queue, 858 struct ieee80211_sta *sta, 859 struct sk_buff *skb, 860 struct iwl_rx_mpdu_desc *desc) 861 { 862 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 863 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 864 struct iwl_mvm_sta *mvm_sta; 865 struct iwl_mvm_baid_data *baid_data; 866 struct iwl_mvm_reorder_buffer *buffer; 867 struct sk_buff *tail; 868 u32 reorder = le32_to_cpu(desc->reorder_data); 869 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 870 bool last_subframe = 871 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 872 u8 tid = ieee80211_get_tid(hdr); 873 u8 sub_frame_idx = desc->amsdu_info & 874 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 875 struct iwl_mvm_reorder_buf_entry *entries; 876 int index; 877 u16 nssn, sn; 878 u8 baid; 879 880 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 881 IWL_RX_MPDU_REORDER_BAID_SHIFT; 882 883 /* 884 * This also covers the case of receiving a Block Ack Request 885 * outside a BA session; we'll pass it to mac80211 and that 886 * then sends a delBA action frame. 887 * This also covers pure monitor mode, in which case we won't 888 * have any BA sessions. 889 */ 890 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 891 return false; 892 893 /* no sta yet */ 894 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 895 "Got valid BAID without a valid station assigned\n")) 896 return false; 897 898 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 899 900 /* not a data packet or a bar */ 901 if (!ieee80211_is_back_req(hdr->frame_control) && 902 (!ieee80211_is_data_qos(hdr->frame_control) || 903 is_multicast_ether_addr(hdr->addr1))) 904 return false; 905 906 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 907 return false; 908 909 baid_data = rcu_dereference(mvm->baid_map[baid]); 910 if (!baid_data) { 911 IWL_DEBUG_RX(mvm, 912 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 913 baid, reorder); 914 return false; 915 } 916 917 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 918 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 919 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 920 tid)) 921 return false; 922 923 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 924 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 925 IWL_RX_MPDU_REORDER_SN_SHIFT; 926 927 buffer = &baid_data->reorder_buf[queue]; 928 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 929 930 spin_lock_bh(&buffer->lock); 931 932 if (!buffer->valid) { 933 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 934 spin_unlock_bh(&buffer->lock); 935 return false; 936 } 937 buffer->valid = true; 938 } 939 940 if (ieee80211_is_back_req(hdr->frame_control)) { 941 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 942 buffer, nssn, 0); 943 goto drop; 944 } 945 946 /* 947 * If there was a significant jump in the nssn - adjust. 948 * If the SN is smaller than the NSSN it might need to first go into 949 * the reorder buffer, in which case we just release up to it and the 950 * rest of the function will take care of storing it and releasing up to 951 * the nssn. 952 * This should not happen. This queue has been lagging and it should 953 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 954 * and update the other queues. 955 */ 956 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 957 buffer->buf_size) || 958 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 959 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 960 961 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 962 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 963 } 964 965 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 966 rx_status->device_timestamp, queue); 967 968 /* drop any oudated packets */ 969 if (ieee80211_sn_less(sn, buffer->head_sn)) 970 goto drop; 971 972 /* release immediately if allowed by nssn and no stored frames */ 973 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 974 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 975 buffer->buf_size) && 976 (!amsdu || last_subframe)) { 977 /* 978 * If we crossed the 2048 or 0 SN, notify all the 979 * queues. This is done in order to avoid having a 980 * head_sn that lags behind for too long. When that 981 * happens, we can get to a situation where the head_sn 982 * is within the interval [nssn - buf_size : nssn] 983 * which will make us think that the nssn is a packet 984 * that we already freed because of the reordering 985 * buffer and we will ignore it. So maintain the 986 * head_sn somewhat updated across all the queues: 987 * when it crosses 0 and 2048. 988 */ 989 if (sn == 2048 || sn == 0) 990 iwl_mvm_sync_nssn(mvm, baid, sn); 991 buffer->head_sn = nssn; 992 } 993 /* No need to update AMSDU last SN - we are moving the head */ 994 spin_unlock_bh(&buffer->lock); 995 return false; 996 } 997 998 /* 999 * release immediately if there are no stored frames, and the sn is 1000 * equal to the head. 1001 * This can happen due to reorder timer, where NSSN is behind head_sn. 1002 * When we released everything, and we got the next frame in the 1003 * sequence, according to the NSSN we can't release immediately, 1004 * while technically there is no hole and we can move forward. 1005 */ 1006 if (!buffer->num_stored && sn == buffer->head_sn) { 1007 if (!amsdu || last_subframe) { 1008 if (sn == 2048 || sn == 0) 1009 iwl_mvm_sync_nssn(mvm, baid, sn); 1010 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1011 } 1012 /* No need to update AMSDU last SN - we are moving the head */ 1013 spin_unlock_bh(&buffer->lock); 1014 return false; 1015 } 1016 1017 index = sn % buffer->buf_size; 1018 1019 /* 1020 * Check if we already stored this frame 1021 * As AMSDU is either received or not as whole, logic is simple: 1022 * If we have frames in that position in the buffer and the last frame 1023 * originated from AMSDU had a different SN then it is a retransmission. 1024 * If it is the same SN then if the subframe index is incrementing it 1025 * is the same AMSDU - otherwise it is a retransmission. 1026 */ 1027 tail = skb_peek_tail(&entries[index].e.frames); 1028 if (tail && !amsdu) 1029 goto drop; 1030 else if (tail && (sn != buffer->last_amsdu || 1031 buffer->last_sub_index >= sub_frame_idx)) 1032 goto drop; 1033 1034 /* put in reorder buffer */ 1035 __skb_queue_tail(&entries[index].e.frames, skb); 1036 buffer->num_stored++; 1037 entries[index].e.reorder_time = jiffies; 1038 1039 if (amsdu) { 1040 buffer->last_amsdu = sn; 1041 buffer->last_sub_index = sub_frame_idx; 1042 } 1043 1044 /* 1045 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1046 * The reason is that NSSN advances on the first sub-frame, and may 1047 * cause the reorder buffer to advance before all the sub-frames arrive. 1048 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1049 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1050 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1051 * already ahead and it will be dropped. 1052 * If the last sub-frame is not on this queue - we will get frame 1053 * release notification with up to date NSSN. 1054 */ 1055 if (!amsdu || last_subframe) 1056 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1057 buffer, nssn, 1058 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1059 1060 spin_unlock_bh(&buffer->lock); 1061 return true; 1062 1063 drop: 1064 kfree_skb(skb); 1065 spin_unlock_bh(&buffer->lock); 1066 return true; 1067 } 1068 1069 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1070 u32 reorder_data, u8 baid) 1071 { 1072 unsigned long now = jiffies; 1073 unsigned long timeout; 1074 struct iwl_mvm_baid_data *data; 1075 1076 rcu_read_lock(); 1077 1078 data = rcu_dereference(mvm->baid_map[baid]); 1079 if (!data) { 1080 IWL_DEBUG_RX(mvm, 1081 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1082 baid, reorder_data); 1083 goto out; 1084 } 1085 1086 if (!data->timeout) 1087 goto out; 1088 1089 timeout = data->timeout; 1090 /* 1091 * Do not update last rx all the time to avoid cache bouncing 1092 * between the rx queues. 1093 * Update it every timeout. Worst case is the session will 1094 * expire after ~ 2 * timeout, which doesn't matter that much. 1095 */ 1096 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1097 /* Update is atomic */ 1098 data->last_rx = now; 1099 1100 out: 1101 rcu_read_unlock(); 1102 } 1103 1104 static void iwl_mvm_flip_address(u8 *addr) 1105 { 1106 int i; 1107 u8 mac_addr[ETH_ALEN]; 1108 1109 for (i = 0; i < ETH_ALEN; i++) 1110 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1111 ether_addr_copy(addr, mac_addr); 1112 } 1113 1114 struct iwl_mvm_rx_phy_data { 1115 enum iwl_rx_phy_info_type info_type; 1116 __le32 d0, d1, d2, d3; 1117 __le16 d4; 1118 }; 1119 1120 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1121 struct iwl_mvm_rx_phy_data *phy_data, 1122 u32 rate_n_flags, 1123 struct ieee80211_radiotap_he_mu *he_mu) 1124 { 1125 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1126 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1127 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1128 1129 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1130 he_mu->flags1 |= 1131 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1132 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1133 1134 he_mu->flags1 |= 1135 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1136 phy_data4), 1137 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1138 1139 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1140 phy_data2); 1141 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1142 phy_data3); 1143 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1144 phy_data2); 1145 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1146 phy_data3); 1147 } 1148 1149 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1150 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { 1151 he_mu->flags1 |= 1152 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1153 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1154 1155 he_mu->flags2 |= 1156 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1157 phy_data4), 1158 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1159 1160 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1161 phy_data2); 1162 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1163 phy_data3); 1164 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1165 phy_data2); 1166 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1167 phy_data3); 1168 } 1169 } 1170 1171 static void 1172 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1173 u32 rate_n_flags, 1174 struct ieee80211_radiotap_he *he, 1175 struct ieee80211_radiotap_he_mu *he_mu, 1176 struct ieee80211_rx_status *rx_status) 1177 { 1178 /* 1179 * Unfortunately, we have to leave the mac80211 data 1180 * incorrect for the case that we receive an HE-MU 1181 * transmission and *don't* have the HE phy data (due 1182 * to the bits being used for TSF). This shouldn't 1183 * happen though as management frames where we need 1184 * the TSF/timers are not be transmitted in HE-MU. 1185 */ 1186 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1187 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1188 u8 offs = 0; 1189 1190 rx_status->bw = RATE_INFO_BW_HE_RU; 1191 1192 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1193 1194 switch (ru) { 1195 case 0 ... 36: 1196 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1197 offs = ru; 1198 break; 1199 case 37 ... 52: 1200 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1201 offs = ru - 37; 1202 break; 1203 case 53 ... 60: 1204 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1205 offs = ru - 53; 1206 break; 1207 case 61 ... 64: 1208 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1209 offs = ru - 61; 1210 break; 1211 case 65 ... 66: 1212 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1213 offs = ru - 65; 1214 break; 1215 case 67: 1216 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1217 break; 1218 case 68: 1219 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1220 break; 1221 } 1222 he->data2 |= le16_encode_bits(offs, 1223 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1224 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1225 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1226 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1227 he->data2 |= 1228 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1229 1230 #define CHECK_BW(bw) \ 1231 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1232 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1233 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1234 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1235 CHECK_BW(20); 1236 CHECK_BW(40); 1237 CHECK_BW(80); 1238 CHECK_BW(160); 1239 1240 if (he_mu) 1241 he_mu->flags2 |= 1242 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1243 rate_n_flags), 1244 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1245 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 1246 he->data6 |= 1247 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1248 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1249 rate_n_flags), 1250 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1251 } 1252 1253 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1254 struct iwl_mvm_rx_phy_data *phy_data, 1255 struct ieee80211_radiotap_he *he, 1256 struct ieee80211_radiotap_he_mu *he_mu, 1257 struct ieee80211_rx_status *rx_status, 1258 u32 rate_n_flags, int queue) 1259 { 1260 switch (phy_data->info_type) { 1261 case IWL_RX_PHY_INFO_TYPE_NONE: 1262 case IWL_RX_PHY_INFO_TYPE_CCK: 1263 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1264 case IWL_RX_PHY_INFO_TYPE_HT: 1265 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1266 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1267 return; 1268 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1269 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1270 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1271 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1272 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1273 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1274 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1275 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1276 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1277 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1278 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1279 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1280 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1281 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1282 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1283 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1284 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1285 fallthrough; 1286 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1287 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1288 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1289 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1290 /* HE common */ 1291 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1292 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1293 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1294 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1295 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1296 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1297 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1298 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1299 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1300 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1301 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1302 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1303 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1304 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1305 IWL_RX_PHY_DATA0_HE_UPLINK), 1306 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1307 } 1308 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1309 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1310 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1311 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1312 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1313 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1314 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1315 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1316 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1317 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1318 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1319 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1320 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1321 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1322 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1323 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1324 IWL_RX_PHY_DATA0_HE_DOPPLER), 1325 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1326 break; 1327 } 1328 1329 switch (phy_data->info_type) { 1330 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1331 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1332 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1333 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1334 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1335 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1336 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1337 break; 1338 default: 1339 /* nothing here */ 1340 break; 1341 } 1342 1343 switch (phy_data->info_type) { 1344 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1345 he_mu->flags1 |= 1346 le16_encode_bits(le16_get_bits(phy_data->d4, 1347 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1348 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1349 he_mu->flags1 |= 1350 le16_encode_bits(le16_get_bits(phy_data->d4, 1351 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1352 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1353 he_mu->flags2 |= 1354 le16_encode_bits(le16_get_bits(phy_data->d4, 1355 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1356 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1357 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1358 fallthrough; 1359 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1360 he_mu->flags2 |= 1361 le16_encode_bits(le32_get_bits(phy_data->d1, 1362 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1363 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1364 he_mu->flags2 |= 1365 le16_encode_bits(le32_get_bits(phy_data->d1, 1366 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1367 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1368 fallthrough; 1369 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1370 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1371 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1372 he, he_mu, rx_status); 1373 break; 1374 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1375 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1376 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1377 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1378 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1379 break; 1380 default: 1381 /* nothing */ 1382 break; 1383 } 1384 } 1385 1386 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1387 struct iwl_mvm_rx_phy_data *phy_data, 1388 u32 rate_n_flags, u16 phy_info, int queue) 1389 { 1390 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1391 struct ieee80211_radiotap_he *he = NULL; 1392 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1393 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1394 u8 stbc, ltf; 1395 static const struct ieee80211_radiotap_he known = { 1396 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1397 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1398 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1399 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1400 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1401 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1402 }; 1403 static const struct ieee80211_radiotap_he_mu mu_known = { 1404 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1405 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1406 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1407 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1408 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1409 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1410 }; 1411 1412 he = skb_put_data(skb, &known, sizeof(known)); 1413 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1414 1415 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1416 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1417 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1418 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1419 } 1420 1421 /* report the AMPDU-EOF bit on single frames */ 1422 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1423 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1424 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1425 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1426 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1427 } 1428 1429 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1430 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1431 rate_n_flags, queue); 1432 1433 /* update aggregation data for monitor sake on default queue */ 1434 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1435 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1436 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1437 1438 /* toggle is switched whenever new aggregation starts */ 1439 if (toggle_bit != mvm->ampdu_toggle) { 1440 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1441 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1442 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1443 } 1444 } 1445 1446 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1447 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1448 rx_status->bw = RATE_INFO_BW_HE_RU; 1449 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1450 } 1451 1452 /* actually data is filled in mac80211 */ 1453 if (he_type == RATE_MCS_HE_TYPE_SU || 1454 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1455 he->data1 |= 1456 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1457 1458 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1459 rx_status->nss = 1460 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1461 RATE_VHT_MCS_NSS_POS) + 1; 1462 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1463 rx_status->encoding = RX_ENC_HE; 1464 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1465 if (rate_n_flags & RATE_MCS_BF_MSK) 1466 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1467 1468 rx_status->he_dcm = 1469 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1470 1471 #define CHECK_TYPE(F) \ 1472 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1473 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1474 1475 CHECK_TYPE(SU); 1476 CHECK_TYPE(EXT_SU); 1477 CHECK_TYPE(MU); 1478 CHECK_TYPE(TRIG); 1479 1480 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1481 1482 if (rate_n_flags & RATE_MCS_BF_MSK) 1483 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1484 1485 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1486 RATE_MCS_HE_GI_LTF_POS) { 1487 case 0: 1488 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1489 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1490 else 1491 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1492 if (he_type == RATE_MCS_HE_TYPE_MU) 1493 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1494 else 1495 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1496 break; 1497 case 1: 1498 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1499 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1500 else 1501 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1502 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1503 break; 1504 case 2: 1505 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1506 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1507 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1508 } else { 1509 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1510 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1511 } 1512 break; 1513 case 3: 1514 if ((he_type == RATE_MCS_HE_TYPE_SU || 1515 he_type == RATE_MCS_HE_TYPE_EXT_SU) && 1516 rate_n_flags & RATE_MCS_SGI_MSK) 1517 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1518 else 1519 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1520 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1521 break; 1522 } 1523 1524 he->data5 |= le16_encode_bits(ltf, 1525 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1526 } 1527 1528 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1529 struct iwl_mvm_rx_phy_data *phy_data) 1530 { 1531 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1532 struct ieee80211_radiotap_lsig *lsig; 1533 1534 switch (phy_data->info_type) { 1535 case IWL_RX_PHY_INFO_TYPE_HT: 1536 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1537 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1538 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1539 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1540 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1541 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1542 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1543 lsig = skb_put(skb, sizeof(*lsig)); 1544 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1545 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1546 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1547 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1548 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1549 break; 1550 default: 1551 break; 1552 } 1553 } 1554 1555 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1556 { 1557 switch (phy_band) { 1558 case PHY_BAND_24: 1559 return NL80211_BAND_2GHZ; 1560 case PHY_BAND_5: 1561 return NL80211_BAND_5GHZ; 1562 case PHY_BAND_6: 1563 return NL80211_BAND_6GHZ; 1564 default: 1565 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1566 return NL80211_BAND_5GHZ; 1567 } 1568 } 1569 1570 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1571 struct iwl_rx_cmd_buffer *rxb, int queue) 1572 { 1573 struct ieee80211_rx_status *rx_status; 1574 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1575 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1576 struct ieee80211_hdr *hdr; 1577 u32 len; 1578 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 1579 u32 rate_n_flags, gp2_on_air_rise; 1580 u16 phy_info; 1581 struct ieee80211_sta *sta = NULL; 1582 struct sk_buff *skb; 1583 u8 crypt_len = 0, channel, energy_a, energy_b; 1584 size_t desc_size; 1585 struct iwl_mvm_rx_phy_data phy_data = { 1586 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1587 }; 1588 bool csi = false; 1589 1590 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1591 return; 1592 1593 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1594 desc_size = sizeof(*desc); 1595 else 1596 desc_size = IWL_RX_DESC_SIZE_V1; 1597 1598 if (unlikely(pkt_len < desc_size)) { 1599 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 1600 return; 1601 } 1602 1603 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1604 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1605 channel = desc->v3.channel; 1606 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1607 energy_a = desc->v3.energy_a; 1608 energy_b = desc->v3.energy_b; 1609 1610 phy_data.d0 = desc->v3.phy_data0; 1611 phy_data.d1 = desc->v3.phy_data1; 1612 phy_data.d2 = desc->v3.phy_data2; 1613 phy_data.d3 = desc->v3.phy_data3; 1614 } else { 1615 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1616 channel = desc->v1.channel; 1617 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1618 energy_a = desc->v1.energy_a; 1619 energy_b = desc->v1.energy_b; 1620 1621 phy_data.d0 = desc->v1.phy_data0; 1622 phy_data.d1 = desc->v1.phy_data1; 1623 phy_data.d2 = desc->v1.phy_data2; 1624 phy_data.d3 = desc->v1.phy_data3; 1625 } 1626 1627 len = le16_to_cpu(desc->mpdu_len); 1628 1629 if (unlikely(len + desc_size > pkt_len)) { 1630 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 1631 return; 1632 } 1633 1634 phy_info = le16_to_cpu(desc->phy_info); 1635 phy_data.d4 = desc->phy_data4; 1636 1637 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1638 phy_data.info_type = 1639 le32_get_bits(phy_data.d1, 1640 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1641 1642 hdr = (void *)(pkt->data + desc_size); 1643 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1644 * ieee80211_hdr pulled. 1645 */ 1646 skb = alloc_skb(128, GFP_ATOMIC); 1647 if (!skb) { 1648 IWL_ERR(mvm, "alloc_skb failed\n"); 1649 return; 1650 } 1651 1652 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1653 /* 1654 * If the device inserted padding it means that (it thought) 1655 * the 802.11 header wasn't a multiple of 4 bytes long. In 1656 * this case, reserve two bytes at the start of the SKB to 1657 * align the payload properly in case we end up copying it. 1658 */ 1659 skb_reserve(skb, 2); 1660 } 1661 1662 rx_status = IEEE80211_SKB_RXCB(skb); 1663 1664 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1665 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1666 case RATE_MCS_CHAN_WIDTH_20: 1667 break; 1668 case RATE_MCS_CHAN_WIDTH_40: 1669 rx_status->bw = RATE_INFO_BW_40; 1670 break; 1671 case RATE_MCS_CHAN_WIDTH_80: 1672 rx_status->bw = RATE_INFO_BW_80; 1673 break; 1674 case RATE_MCS_CHAN_WIDTH_160: 1675 rx_status->bw = RATE_INFO_BW_160; 1676 break; 1677 } 1678 1679 if (rate_n_flags & RATE_MCS_HE_MSK) 1680 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1681 phy_info, queue); 1682 1683 iwl_mvm_decode_lsig(skb, &phy_data); 1684 1685 rx_status = IEEE80211_SKB_RXCB(skb); 1686 1687 if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc, 1688 le32_to_cpu(pkt->len_n_flags), queue, 1689 &crypt_len)) { 1690 kfree_skb(skb); 1691 return; 1692 } 1693 1694 /* 1695 * Keep packets with CRC errors (and with overrun) for monitor mode 1696 * (otherwise the firmware discards them) but mark them as bad. 1697 */ 1698 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1699 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1700 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1701 le32_to_cpu(desc->status)); 1702 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1703 } 1704 /* set the preamble flag if appropriate */ 1705 if (rate_n_flags & RATE_MCS_CCK_MSK && 1706 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1707 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1708 1709 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1710 u64 tsf_on_air_rise; 1711 1712 if (mvm->trans->trans_cfg->device_family >= 1713 IWL_DEVICE_FAMILY_AX210) 1714 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1715 else 1716 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1717 1718 rx_status->mactime = tsf_on_air_rise; 1719 /* TSF as indicated by the firmware is at INA time */ 1720 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1721 } 1722 1723 rx_status->device_timestamp = gp2_on_air_rise; 1724 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1725 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1726 1727 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1728 } else { 1729 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1730 NL80211_BAND_2GHZ; 1731 } 1732 rx_status->freq = ieee80211_channel_to_frequency(channel, 1733 rx_status->band); 1734 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1735 energy_b); 1736 1737 /* update aggregation data for monitor sake on default queue */ 1738 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1739 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1740 1741 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1742 /* 1743 * Toggle is switched whenever new aggregation starts. Make 1744 * sure ampdu_reference is never 0 so we can later use it to 1745 * see if the frame was really part of an A-MPDU or not. 1746 */ 1747 if (toggle_bit != mvm->ampdu_toggle) { 1748 mvm->ampdu_ref++; 1749 if (mvm->ampdu_ref == 0) 1750 mvm->ampdu_ref++; 1751 mvm->ampdu_toggle = toggle_bit; 1752 } 1753 rx_status->ampdu_reference = mvm->ampdu_ref; 1754 } 1755 1756 if (unlikely(mvm->monitor_on)) 1757 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1758 1759 rcu_read_lock(); 1760 1761 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1762 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 1763 1764 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 1765 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1766 if (IS_ERR(sta)) 1767 sta = NULL; 1768 } 1769 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1770 /* 1771 * This is fine since we prevent two stations with the same 1772 * address from being added. 1773 */ 1774 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1775 } 1776 1777 if (sta) { 1778 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1779 struct ieee80211_vif *tx_blocked_vif = 1780 rcu_dereference(mvm->csa_tx_blocked_vif); 1781 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1782 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1783 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1784 struct iwl_fw_dbg_trigger_tlv *trig; 1785 struct ieee80211_vif *vif = mvmsta->vif; 1786 1787 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1788 !is_multicast_ether_addr(hdr->addr1) && 1789 ieee80211_is_data(hdr->frame_control) && 1790 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1791 schedule_delayed_work(&mvm->tcm.work, 0); 1792 1793 /* 1794 * We have tx blocked stations (with CS bit). If we heard 1795 * frames from a blocked station on a new channel we can 1796 * TX to it again. 1797 */ 1798 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1799 struct iwl_mvm_vif *mvmvif = 1800 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1801 1802 if (mvmvif->csa_target_freq == rx_status->freq) 1803 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1804 false); 1805 } 1806 1807 rs_update_last_rssi(mvm, mvmsta, rx_status); 1808 1809 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1810 ieee80211_vif_to_wdev(vif), 1811 FW_DBG_TRIGGER_RSSI); 1812 1813 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1814 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1815 s32 rssi; 1816 1817 rssi_trig = (void *)trig->data; 1818 rssi = le32_to_cpu(rssi_trig->rssi); 1819 1820 if (rx_status->signal < rssi) 1821 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1822 NULL); 1823 } 1824 1825 if (ieee80211_is_data(hdr->frame_control)) 1826 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 1827 1828 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1829 kfree_skb(skb); 1830 goto out; 1831 } 1832 1833 /* 1834 * Our hardware de-aggregates AMSDUs but copies the mac header 1835 * as it to the de-aggregated MPDUs. We need to turn off the 1836 * AMSDU bit in the QoS control ourselves. 1837 * In addition, HW reverses addr3 and addr4 - reverse it back. 1838 */ 1839 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1840 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1841 u8 *qc = ieee80211_get_qos_ctl(hdr); 1842 1843 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1844 1845 if (mvm->trans->trans_cfg->device_family == 1846 IWL_DEVICE_FAMILY_9000) { 1847 iwl_mvm_flip_address(hdr->addr3); 1848 1849 if (ieee80211_has_a4(hdr->frame_control)) 1850 iwl_mvm_flip_address(hdr->addr4); 1851 } 1852 } 1853 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1854 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1855 1856 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1857 } 1858 } 1859 1860 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1861 rate_n_flags & RATE_MCS_SGI_MSK) 1862 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1863 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1864 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1865 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1866 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1867 if (rate_n_flags & RATE_MCS_HT_MSK) { 1868 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1869 RATE_MCS_STBC_POS; 1870 rx_status->encoding = RX_ENC_HT; 1871 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1872 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1873 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 1874 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1875 RATE_MCS_STBC_POS; 1876 rx_status->nss = 1877 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1878 RATE_VHT_MCS_NSS_POS) + 1; 1879 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1880 rx_status->encoding = RX_ENC_VHT; 1881 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1882 if (rate_n_flags & RATE_MCS_BF_MSK) 1883 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1884 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) { 1885 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 1886 rx_status->band); 1887 1888 if (WARN(rate < 0 || rate > 0xFF, 1889 "Invalid rate flags 0x%x, band %d,\n", 1890 rate_n_flags, rx_status->band)) { 1891 kfree_skb(skb); 1892 goto out; 1893 } 1894 rx_status->rate_idx = rate; 1895 } 1896 1897 /* management stuff on default queue */ 1898 if (!queue) { 1899 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 1900 ieee80211_is_probe_resp(hdr->frame_control)) && 1901 mvm->sched_scan_pass_all == 1902 SCHED_SCAN_PASS_ALL_ENABLED)) 1903 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 1904 1905 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 1906 ieee80211_is_probe_resp(hdr->frame_control))) 1907 rx_status->boottime_ns = ktime_get_boottime_ns(); 1908 } 1909 1910 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 1911 kfree_skb(skb); 1912 goto out; 1913 } 1914 1915 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 1916 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 1917 sta, csi); 1918 out: 1919 rcu_read_unlock(); 1920 } 1921 1922 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 1923 struct iwl_rx_cmd_buffer *rxb, int queue) 1924 { 1925 struct ieee80211_rx_status *rx_status; 1926 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1927 struct iwl_rx_no_data *desc = (void *)pkt->data; 1928 u32 rate_n_flags = le32_to_cpu(desc->rate); 1929 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 1930 u32 rssi = le32_to_cpu(desc->rssi); 1931 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 1932 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 1933 struct ieee80211_sta *sta = NULL; 1934 struct sk_buff *skb; 1935 u8 channel, energy_a, energy_b; 1936 struct iwl_mvm_rx_phy_data phy_data = { 1937 .d0 = desc->phy_info[0], 1938 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1939 }; 1940 1941 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1942 return; 1943 1944 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 1945 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 1946 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 1947 1948 phy_data.info_type = 1949 le32_get_bits(desc->phy_info[1], 1950 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1951 1952 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1953 * ieee80211_hdr pulled. 1954 */ 1955 skb = alloc_skb(128, GFP_ATOMIC); 1956 if (!skb) { 1957 IWL_ERR(mvm, "alloc_skb failed\n"); 1958 return; 1959 } 1960 1961 rx_status = IEEE80211_SKB_RXCB(skb); 1962 1963 /* 0-length PSDU */ 1964 rx_status->flag |= RX_FLAG_NO_PSDU; 1965 1966 switch (info_type) { 1967 case RX_NO_DATA_INFO_TYPE_NDP: 1968 rx_status->zero_length_psdu_type = 1969 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 1970 break; 1971 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 1972 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 1973 rx_status->zero_length_psdu_type = 1974 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 1975 break; 1976 default: 1977 rx_status->zero_length_psdu_type = 1978 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 1979 break; 1980 } 1981 1982 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1983 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1984 case RATE_MCS_CHAN_WIDTH_20: 1985 break; 1986 case RATE_MCS_CHAN_WIDTH_40: 1987 rx_status->bw = RATE_INFO_BW_40; 1988 break; 1989 case RATE_MCS_CHAN_WIDTH_80: 1990 rx_status->bw = RATE_INFO_BW_80; 1991 break; 1992 case RATE_MCS_CHAN_WIDTH_160: 1993 rx_status->bw = RATE_INFO_BW_160; 1994 break; 1995 } 1996 1997 if (rate_n_flags & RATE_MCS_HE_MSK) 1998 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1999 phy_info, queue); 2000 2001 iwl_mvm_decode_lsig(skb, &phy_data); 2002 2003 rx_status->device_timestamp = gp2_on_air_rise; 2004 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 2005 NL80211_BAND_2GHZ; 2006 rx_status->freq = ieee80211_channel_to_frequency(channel, 2007 rx_status->band); 2008 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 2009 energy_b); 2010 2011 rcu_read_lock(); 2012 2013 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 2014 rate_n_flags & RATE_MCS_SGI_MSK) 2015 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2016 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 2017 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 2018 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2019 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2020 if (rate_n_flags & RATE_MCS_HT_MSK) { 2021 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2022 RATE_MCS_STBC_POS; 2023 rx_status->encoding = RX_ENC_HT; 2024 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 2025 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2026 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 2027 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2028 RATE_MCS_STBC_POS; 2029 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 2030 rx_status->encoding = RX_ENC_VHT; 2031 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2032 if (rate_n_flags & RATE_MCS_BF_MSK) 2033 rx_status->enc_flags |= RX_ENC_FLAG_BF; 2034 /* 2035 * take the nss from the rx_vec since the rate_n_flags has 2036 * only 2 bits for the nss which gives a max of 4 ss but 2037 * there may be up to 8 spatial streams 2038 */ 2039 rx_status->nss = 2040 le32_get_bits(desc->rx_vec[0], 2041 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2042 } else if (rate_n_flags & RATE_MCS_HE_MSK) { 2043 rx_status->nss = 2044 le32_get_bits(desc->rx_vec[0], 2045 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2046 } else { 2047 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 2048 rx_status->band); 2049 2050 if (WARN(rate < 0 || rate > 0xFF, 2051 "Invalid rate flags 0x%x, band %d,\n", 2052 rate_n_flags, rx_status->band)) { 2053 kfree_skb(skb); 2054 goto out; 2055 } 2056 rx_status->rate_idx = rate; 2057 } 2058 2059 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2060 out: 2061 rcu_read_unlock(); 2062 } 2063 2064 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2065 struct iwl_rx_cmd_buffer *rxb, int queue) 2066 { 2067 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2068 struct iwl_frame_release *release = (void *)pkt->data; 2069 2070 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2071 le16_to_cpu(release->nssn), 2072 queue, 0); 2073 } 2074 2075 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2076 struct iwl_rx_cmd_buffer *rxb, int queue) 2077 { 2078 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2079 struct iwl_bar_frame_release *release = (void *)pkt->data; 2080 unsigned int baid = le32_get_bits(release->ba_info, 2081 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2082 unsigned int nssn = le32_get_bits(release->ba_info, 2083 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2084 unsigned int sta_id = le32_get_bits(release->sta_tid, 2085 IWL_BAR_FRAME_RELEASE_STA_MASK); 2086 unsigned int tid = le32_get_bits(release->sta_tid, 2087 IWL_BAR_FRAME_RELEASE_TID_MASK); 2088 struct iwl_mvm_baid_data *baid_data; 2089 2090 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2091 baid >= ARRAY_SIZE(mvm->baid_map))) 2092 return; 2093 2094 rcu_read_lock(); 2095 baid_data = rcu_dereference(mvm->baid_map[baid]); 2096 if (!baid_data) { 2097 IWL_DEBUG_RX(mvm, 2098 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2099 baid); 2100 goto out; 2101 } 2102 2103 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2104 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2105 baid, baid_data->sta_id, baid_data->tid, sta_id, 2106 tid)) 2107 goto out; 2108 2109 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2110 out: 2111 rcu_read_unlock(); 2112 } 2113