xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/mvm/rxmq.c (revision 9df839a711aee437390b16ee39cf0b5c1620be6a)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2015-2017 Intel Deutschland GmbH
6  */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 #include "time-sync.h"
13 
14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 				   int queue, struct ieee80211_sta *sta)
16 {
17 	struct iwl_mvm_sta *mvmsta;
18 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 	struct iwl_mvm_key_pn *ptk_pn;
21 	int res;
22 	u8 tid, keyidx;
23 	u8 pn[IEEE80211_CCMP_PN_LEN];
24 	u8 *extiv;
25 
26 	/* do PN checking */
27 
28 	/* multicast and non-data only arrives on default queue */
29 	if (!ieee80211_is_data(hdr->frame_control) ||
30 	    is_multicast_ether_addr(hdr->addr1))
31 		return 0;
32 
33 	/* do not check PN for open AP */
34 	if (!(stats->flag & RX_FLAG_DECRYPTED))
35 		return 0;
36 
37 	/*
38 	 * avoid checking for default queue - we don't want to replicate
39 	 * all the logic that's necessary for checking the PN on fragmented
40 	 * frames, leave that to mac80211
41 	 */
42 	if (queue == 0)
43 		return 0;
44 
45 	/* if we are here - this for sure is either CCMP or GCMP */
46 	if (IS_ERR_OR_NULL(sta)) {
47 		IWL_DEBUG_DROP(mvm,
48 			       "expected hw-decrypted unicast frame for station\n");
49 		return -1;
50 	}
51 
52 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
53 
54 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 	keyidx = extiv[3] >> 6;
56 
57 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 	if (!ptk_pn)
59 		return -1;
60 
61 	if (ieee80211_is_data_qos(hdr->frame_control))
62 		tid = ieee80211_get_tid(hdr);
63 	else
64 		tid = 0;
65 
66 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 	if (tid >= IWL_MAX_TID_COUNT)
68 		return -1;
69 
70 	/* load pn */
71 	pn[0] = extiv[7];
72 	pn[1] = extiv[6];
73 	pn[2] = extiv[5];
74 	pn[3] = extiv[4];
75 	pn[4] = extiv[1];
76 	pn[5] = extiv[0];
77 
78 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 	if (res < 0)
80 		return -1;
81 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 		return -1;
83 
84 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 	stats->flag |= RX_FLAG_PN_VALIDATED;
86 
87 	return 0;
88 }
89 
90 /* iwl_mvm_create_skb Adds the rxb to a new skb */
91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 			      struct iwl_rx_cmd_buffer *rxb)
94 {
95 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 	unsigned int headlen, fraglen, pad_len = 0;
98 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101 
102 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 		len -= 2;
104 		pad_len = 2;
105 	}
106 
107 	/*
108 	 * For non monitor interface strip the bytes the RADA might not have
109 	 * removed. As monitor interface cannot exist with other interfaces
110 	 * this removal is safe.
111 	 */
112 	if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) {
113 		u32 pkt_flags = le32_to_cpu(pkt->len_n_flags);
114 
115 		/*
116 		 * If RADA was not enabled then decryption was not performed so
117 		 * the MIC cannot be removed.
118 		 */
119 		if (!(pkt_flags & FH_RSCSR_RADA_EN)) {
120 			if (WARN_ON(crypt_len > mic_crc_len))
121 				return -EINVAL;
122 
123 			mic_crc_len -= crypt_len;
124 		}
125 
126 		if (WARN_ON(mic_crc_len > len))
127 			return -EINVAL;
128 
129 		len -= mic_crc_len;
130 	}
131 
132 	/* If frame is small enough to fit in skb->head, pull it completely.
133 	 * If not, only pull ieee80211_hdr (including crypto if present, and
134 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
135 	 * splice() or TCP coalesce are more efficient.
136 	 *
137 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
138 	 * least 8 bytes (possibly more for mesh) we can do the same here
139 	 * to save the cost of doing it later. That still doesn't pull in
140 	 * the actual IP header since the typical case has a SNAP header.
141 	 * If the latter changes (there are efforts in the standards group
142 	 * to do so) we should revisit this and ieee80211_data_to_8023().
143 	 */
144 	headlen = (len <= skb_tailroom(skb)) ? len :
145 					       hdrlen + crypt_len + 8;
146 
147 	/* The firmware may align the packet to DWORD.
148 	 * The padding is inserted after the IV.
149 	 * After copying the header + IV skip the padding if
150 	 * present before copying packet data.
151 	 */
152 	hdrlen += crypt_len;
153 
154 	if (unlikely(headlen < hdrlen))
155 		return -EINVAL;
156 
157 	/* Since data doesn't move data while putting data on skb and that is
158 	 * the only way we use, data + len is the next place that hdr would be put
159 	 */
160 	skb_set_mac_header(skb, skb->len);
161 	skb_put_data(skb, hdr, hdrlen);
162 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
163 
164 	/*
165 	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
166 	 * certain cases and starts the checksum after the SNAP. Check if
167 	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
168 	 * in the cases the hardware didn't handle, since it's rare to see
169 	 * such packets, even though the hardware did calculate the checksum
170 	 * in this case, just starting after the MAC header instead.
171 	 *
172 	 * Starting from Bz hardware, it calculates starting directly after
173 	 * the MAC header, so that matches mac80211's expectation.
174 	 */
175 	if (skb->ip_summed == CHECKSUM_COMPLETE &&
176 	    mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) {
177 		struct {
178 			u8 hdr[6];
179 			__be16 type;
180 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
181 
182 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
183 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
184 			     (shdr->type != htons(ETH_P_IP) &&
185 			      shdr->type != htons(ETH_P_ARP) &&
186 			      shdr->type != htons(ETH_P_IPV6) &&
187 			      shdr->type != htons(ETH_P_8021Q) &&
188 			      shdr->type != htons(ETH_P_PAE) &&
189 			      shdr->type != htons(ETH_P_TDLS))))
190 			skb->ip_summed = CHECKSUM_NONE;
191 		else
192 			/* mac80211 assumes full CSUM including SNAP header */
193 			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
194 	}
195 
196 	fraglen = len - headlen;
197 
198 	if (fraglen) {
199 		int offset = (u8 *)hdr + headlen + pad_len -
200 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
201 
202 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
203 				fraglen, rxb->truesize);
204 	}
205 
206 	return 0;
207 }
208 
209 /* put a TLV on the skb and return data pointer
210  *
211  * Also pad to 4 the len and zero out all data part
212  */
213 static void *
214 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
215 {
216 	struct ieee80211_radiotap_tlv *tlv;
217 
218 	tlv = skb_put(skb, sizeof(*tlv));
219 	tlv->type = cpu_to_le16(type);
220 	tlv->len = cpu_to_le16(len);
221 	return skb_put_zero(skb, ALIGN(len, 4));
222 }
223 
224 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
225 					    struct sk_buff *skb)
226 {
227 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
228 	struct ieee80211_radiotap_vendor_content *radiotap;
229 	const u16 vendor_data_len = sizeof(mvm->cur_aid);
230 
231 	if (!mvm->cur_aid)
232 		return;
233 
234 	radiotap = iwl_mvm_radiotap_put_tlv(skb,
235 					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
236 					    sizeof(*radiotap) + vendor_data_len);
237 
238 	/* Intel OUI */
239 	radiotap->oui[0] = 0xf6;
240 	radiotap->oui[1] = 0x54;
241 	radiotap->oui[2] = 0x25;
242 	/* radiotap sniffer config sub-namespace */
243 	radiotap->oui_subtype = 1;
244 	radiotap->vendor_type = 0;
245 
246 	/* fill the data now */
247 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
248 
249 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
250 }
251 
252 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
253 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
254 					    struct napi_struct *napi,
255 					    struct sk_buff *skb, int queue,
256 					    struct ieee80211_sta *sta,
257 					    struct ieee80211_link_sta *link_sta)
258 {
259 	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
260 		kfree_skb(skb);
261 		return;
262 	}
263 
264 	if (sta && sta->valid_links && link_sta) {
265 		struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
266 
267 		rx_status->link_valid = 1;
268 		rx_status->link_id = link_sta->link_id;
269 	}
270 
271 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
272 }
273 
274 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
275 					struct ieee80211_rx_status *rx_status,
276 					u32 rate_n_flags, int energy_a,
277 					int energy_b)
278 {
279 	int max_energy;
280 	u32 rate_flags = rate_n_flags;
281 
282 	energy_a = energy_a ? -energy_a : S8_MIN;
283 	energy_b = energy_b ? -energy_b : S8_MIN;
284 	max_energy = max(energy_a, energy_b);
285 
286 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
287 			energy_a, energy_b, max_energy);
288 
289 	rx_status->signal = max_energy;
290 	rx_status->chains =
291 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
292 	rx_status->chain_signal[0] = energy_a;
293 	rx_status->chain_signal[1] = energy_b;
294 }
295 
296 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
297 				struct ieee80211_hdr *hdr,
298 				struct iwl_rx_mpdu_desc *desc,
299 				u32 status)
300 {
301 	struct iwl_mvm_sta *mvmsta;
302 	struct iwl_mvm_vif *mvmvif;
303 	u8 keyid;
304 	struct ieee80211_key_conf *key;
305 	u32 len = le16_to_cpu(desc->mpdu_len);
306 	const u8 *frame = (void *)hdr;
307 
308 	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
309 		return 0;
310 
311 	/*
312 	 * For non-beacon, we don't really care. But beacons may
313 	 * be filtered out, and we thus need the firmware's replay
314 	 * detection, otherwise beacons the firmware previously
315 	 * filtered could be replayed, or something like that, and
316 	 * it can filter a lot - though usually only if nothing has
317 	 * changed.
318 	 */
319 	if (!ieee80211_is_beacon(hdr->frame_control))
320 		return 0;
321 
322 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
323 	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
324 		return -1;
325 
326 	/* good cases */
327 	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
328 		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)))
329 		return 0;
330 
331 	if (!sta)
332 		return -1;
333 
334 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
335 
336 	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
337 
338 	/*
339 	 * both keys will have the same cipher and MIC length, use
340 	 * whichever one is available
341 	 */
342 	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
343 	if (!key) {
344 		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
345 		if (!key)
346 			return -1;
347 	}
348 
349 	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
350 		return -1;
351 
352 	/* get the real key ID */
353 	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
354 	/* and if that's the other key, look it up */
355 	if (keyid != key->keyidx) {
356 		/*
357 		 * shouldn't happen since firmware checked, but be safe
358 		 * in case the MIC length is wrong too, for example
359 		 */
360 		if (keyid != 6 && keyid != 7)
361 			return -1;
362 		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
363 		if (!key)
364 			return -1;
365 	}
366 
367 	/* Report status to mac80211 */
368 	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
369 		ieee80211_key_mic_failure(key);
370 	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
371 		ieee80211_key_replay(key);
372 
373 	return -1;
374 }
375 
376 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
377 			     struct ieee80211_hdr *hdr,
378 			     struct ieee80211_rx_status *stats, u16 phy_info,
379 			     struct iwl_rx_mpdu_desc *desc,
380 			     u32 pkt_flags, int queue, u8 *crypt_len)
381 {
382 	u32 status = le32_to_cpu(desc->status);
383 
384 	/*
385 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
386 	 * (where we don't have the keys).
387 	 * We limit this to aggregation because in TKIP this is a valid
388 	 * scenario, since we may not have the (correct) TTAK (phase 1
389 	 * key) in the firmware.
390 	 */
391 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
392 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
393 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
394 		return -1;
395 
396 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
397 		     !ieee80211_has_protected(hdr->frame_control)))
398 		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status);
399 
400 	if (!ieee80211_has_protected(hdr->frame_control) ||
401 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
402 	    IWL_RX_MPDU_STATUS_SEC_NONE)
403 		return 0;
404 
405 	/* TODO: handle packets encrypted with unknown alg */
406 
407 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
408 	case IWL_RX_MPDU_STATUS_SEC_CCM:
409 	case IWL_RX_MPDU_STATUS_SEC_GCM:
410 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
411 		/* alg is CCM: check MIC only */
412 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
413 			return -1;
414 
415 		stats->flag |= RX_FLAG_DECRYPTED;
416 		if (pkt_flags & FH_RSCSR_RADA_EN)
417 			stats->flag |= RX_FLAG_MIC_STRIPPED;
418 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
419 		return 0;
420 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
421 		/* Don't drop the frame and decrypt it in SW */
422 		if (!fw_has_api(&mvm->fw->ucode_capa,
423 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
424 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
425 			return 0;
426 
427 		if (mvm->trans->trans_cfg->gen2 &&
428 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
429 			stats->flag |= RX_FLAG_MMIC_ERROR;
430 
431 		*crypt_len = IEEE80211_TKIP_IV_LEN;
432 		fallthrough;
433 	case IWL_RX_MPDU_STATUS_SEC_WEP:
434 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
435 			return -1;
436 
437 		stats->flag |= RX_FLAG_DECRYPTED;
438 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
439 				IWL_RX_MPDU_STATUS_SEC_WEP)
440 			*crypt_len = IEEE80211_WEP_IV_LEN;
441 
442 		if (pkt_flags & FH_RSCSR_RADA_EN) {
443 			stats->flag |= RX_FLAG_ICV_STRIPPED;
444 			if (mvm->trans->trans_cfg->gen2)
445 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
446 		}
447 
448 		return 0;
449 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
450 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
451 			return -1;
452 		stats->flag |= RX_FLAG_DECRYPTED;
453 		return 0;
454 	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
455 		break;
456 	default:
457 		/*
458 		 * Sometimes we can get frames that were not decrypted
459 		 * because the firmware didn't have the keys yet. This can
460 		 * happen after connection where we can get multicast frames
461 		 * before the GTK is installed.
462 		 * Silently drop those frames.
463 		 * Also drop un-decrypted frames in monitor mode.
464 		 */
465 		if (!is_multicast_ether_addr(hdr->addr1) &&
466 		    !mvm->monitor_on && net_ratelimit())
467 			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
468 	}
469 
470 	return 0;
471 }
472 
473 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
474 			    struct ieee80211_sta *sta,
475 			    struct sk_buff *skb,
476 			    struct iwl_rx_packet *pkt)
477 {
478 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
479 
480 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
481 		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
482 			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
483 
484 			skb->ip_summed = CHECKSUM_COMPLETE;
485 			skb->csum = csum_unfold(~(__force __sum16)hwsum);
486 		}
487 	} else {
488 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
489 		struct iwl_mvm_vif *mvmvif;
490 		u16 flags = le16_to_cpu(desc->l3l4_flags);
491 		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
492 				  IWL_RX_L3_PROTO_POS);
493 
494 		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
495 
496 		if (mvmvif->features & NETIF_F_RXCSUM &&
497 		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
498 		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
499 		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
500 		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
501 			skb->ip_summed = CHECKSUM_UNNECESSARY;
502 	}
503 }
504 
505 /*
506  * returns true if a packet is a duplicate and should be dropped.
507  * Updates AMSDU PN tracking info
508  */
509 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
510 			   struct ieee80211_rx_status *rx_status,
511 			   struct ieee80211_hdr *hdr,
512 			   struct iwl_rx_mpdu_desc *desc)
513 {
514 	struct iwl_mvm_sta *mvm_sta;
515 	struct iwl_mvm_rxq_dup_data *dup_data;
516 	u8 tid, sub_frame_idx;
517 
518 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
519 		return false;
520 
521 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
522 	dup_data = &mvm_sta->dup_data[queue];
523 
524 	/*
525 	 * Drop duplicate 802.11 retransmissions
526 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
527 	 */
528 	if (ieee80211_is_ctl(hdr->frame_control) ||
529 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
530 	    is_multicast_ether_addr(hdr->addr1)) {
531 		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
532 		return false;
533 	}
534 
535 	if (ieee80211_is_data_qos(hdr->frame_control))
536 		/* frame has qos control */
537 		tid = ieee80211_get_tid(hdr);
538 	else
539 		tid = IWL_MAX_TID_COUNT;
540 
541 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
542 	sub_frame_idx = desc->amsdu_info &
543 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
544 
545 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
546 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
547 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
548 		return true;
549 
550 	/* Allow same PN as the first subframe for following sub frames */
551 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
552 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
553 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
554 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
555 
556 	dup_data->last_seq[tid] = hdr->seq_ctrl;
557 	dup_data->last_sub_frame[tid] = sub_frame_idx;
558 
559 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
560 
561 	return false;
562 }
563 
564 /*
565  * Returns true if sn2 - buffer_size < sn1 < sn2.
566  * To be used only in order to compare reorder buffer head with NSSN.
567  * We fully trust NSSN unless it is behind us due to reorder timeout.
568  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
569  */
570 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
571 {
572 	return ieee80211_sn_less(sn1, sn2) &&
573 	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
574 }
575 
576 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
577 {
578 	if (IWL_MVM_USE_NSSN_SYNC) {
579 		struct iwl_mvm_nssn_sync_data notif = {
580 			.baid = baid,
581 			.nssn = nssn,
582 		};
583 
584 		iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
585 						&notif, sizeof(notif));
586 	}
587 }
588 
589 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
590 
591 enum iwl_mvm_release_flags {
592 	IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
593 	IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
594 };
595 
596 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
597 				   struct ieee80211_sta *sta,
598 				   struct napi_struct *napi,
599 				   struct iwl_mvm_baid_data *baid_data,
600 				   struct iwl_mvm_reorder_buffer *reorder_buf,
601 				   u16 nssn, u32 flags)
602 {
603 	struct iwl_mvm_reorder_buf_entry *entries =
604 		&baid_data->entries[reorder_buf->queue *
605 				    baid_data->entries_per_queue];
606 	u16 ssn = reorder_buf->head_sn;
607 
608 	lockdep_assert_held(&reorder_buf->lock);
609 
610 	/*
611 	 * We keep the NSSN not too far behind, if we are sync'ing it and it
612 	 * is more than 2048 ahead of us, it must be behind us. Discard it.
613 	 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
614 	 * behind and this queue already processed packets. The next if
615 	 * would have caught cases where this queue would have processed less
616 	 * than 64 packets, but it may have processed more than 64 packets.
617 	 */
618 	if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
619 	    ieee80211_sn_less(nssn, ssn))
620 		goto set_timer;
621 
622 	/* ignore nssn smaller than head sn - this can happen due to timeout */
623 	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
624 		goto set_timer;
625 
626 	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
627 		int index = ssn % reorder_buf->buf_size;
628 		struct sk_buff_head *skb_list = &entries[index].e.frames;
629 		struct sk_buff *skb;
630 
631 		ssn = ieee80211_sn_inc(ssn);
632 		if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
633 		    (ssn == 2048 || ssn == 0))
634 			iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
635 
636 		/*
637 		 * Empty the list. Will have more than one frame for A-MSDU.
638 		 * Empty list is valid as well since nssn indicates frames were
639 		 * received.
640 		 */
641 		while ((skb = __skb_dequeue(skb_list))) {
642 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
643 							reorder_buf->queue,
644 							sta, NULL /* FIXME */);
645 			reorder_buf->num_stored--;
646 		}
647 	}
648 	reorder_buf->head_sn = nssn;
649 
650 set_timer:
651 	if (reorder_buf->num_stored && !reorder_buf->removed) {
652 		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
653 
654 		while (skb_queue_empty(&entries[index].e.frames))
655 			index = (index + 1) % reorder_buf->buf_size;
656 		/* modify timer to match next frame's expiration time */
657 		mod_timer(&reorder_buf->reorder_timer,
658 			  entries[index].e.reorder_time + 1 +
659 			  RX_REORDER_BUF_TIMEOUT_MQ);
660 	} else {
661 		del_timer(&reorder_buf->reorder_timer);
662 	}
663 }
664 
665 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
666 {
667 	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
668 	struct iwl_mvm_baid_data *baid_data =
669 		iwl_mvm_baid_data_from_reorder_buf(buf);
670 	struct iwl_mvm_reorder_buf_entry *entries =
671 		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
672 	int i;
673 	u16 sn = 0, index = 0;
674 	bool expired = false;
675 	bool cont = false;
676 
677 	spin_lock(&buf->lock);
678 
679 	if (!buf->num_stored || buf->removed) {
680 		spin_unlock(&buf->lock);
681 		return;
682 	}
683 
684 	for (i = 0; i < buf->buf_size ; i++) {
685 		index = (buf->head_sn + i) % buf->buf_size;
686 
687 		if (skb_queue_empty(&entries[index].e.frames)) {
688 			/*
689 			 * If there is a hole and the next frame didn't expire
690 			 * we want to break and not advance SN
691 			 */
692 			cont = false;
693 			continue;
694 		}
695 		if (!cont &&
696 		    !time_after(jiffies, entries[index].e.reorder_time +
697 					 RX_REORDER_BUF_TIMEOUT_MQ))
698 			break;
699 
700 		expired = true;
701 		/* continue until next hole after this expired frames */
702 		cont = true;
703 		sn = ieee80211_sn_add(buf->head_sn, i + 1);
704 	}
705 
706 	if (expired) {
707 		struct ieee80211_sta *sta;
708 		struct iwl_mvm_sta *mvmsta;
709 		u8 sta_id = baid_data->sta_id;
710 
711 		rcu_read_lock();
712 		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
713 		mvmsta = iwl_mvm_sta_from_mac80211(sta);
714 
715 		/* SN is set to the last expired frame + 1 */
716 		IWL_DEBUG_HT(buf->mvm,
717 			     "Releasing expired frames for sta %u, sn %d\n",
718 			     sta_id, sn);
719 		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
720 						     sta, baid_data->tid);
721 		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
722 				       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
723 		rcu_read_unlock();
724 	} else {
725 		/*
726 		 * If no frame expired and there are stored frames, index is now
727 		 * pointing to the first unexpired frame - modify timer
728 		 * accordingly to this frame.
729 		 */
730 		mod_timer(&buf->reorder_timer,
731 			  entries[index].e.reorder_time +
732 			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
733 	}
734 	spin_unlock(&buf->lock);
735 }
736 
737 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
738 			   struct iwl_mvm_delba_data *data)
739 {
740 	struct iwl_mvm_baid_data *ba_data;
741 	struct ieee80211_sta *sta;
742 	struct iwl_mvm_reorder_buffer *reorder_buf;
743 	u8 baid = data->baid;
744 
745 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
746 		return;
747 
748 	rcu_read_lock();
749 
750 	ba_data = rcu_dereference(mvm->baid_map[baid]);
751 	if (WARN_ON_ONCE(!ba_data))
752 		goto out;
753 
754 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
755 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
756 		goto out;
757 
758 	reorder_buf = &ba_data->reorder_buf[queue];
759 
760 	/* release all frames that are in the reorder buffer to the stack */
761 	spin_lock_bh(&reorder_buf->lock);
762 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
763 			       ieee80211_sn_add(reorder_buf->head_sn,
764 						reorder_buf->buf_size),
765 			       0);
766 	spin_unlock_bh(&reorder_buf->lock);
767 	del_timer_sync(&reorder_buf->reorder_timer);
768 
769 out:
770 	rcu_read_unlock();
771 }
772 
773 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
774 					      struct napi_struct *napi,
775 					      u8 baid, u16 nssn, int queue,
776 					      u32 flags)
777 {
778 	struct ieee80211_sta *sta;
779 	struct iwl_mvm_reorder_buffer *reorder_buf;
780 	struct iwl_mvm_baid_data *ba_data;
781 
782 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
783 		     baid, nssn);
784 
785 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
786 			 baid >= ARRAY_SIZE(mvm->baid_map)))
787 		return;
788 
789 	rcu_read_lock();
790 
791 	ba_data = rcu_dereference(mvm->baid_map[baid]);
792 	if (!ba_data) {
793 		WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
794 		     "BAID %d not found in map\n", baid);
795 		goto out;
796 	}
797 
798 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
799 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
800 		goto out;
801 
802 	reorder_buf = &ba_data->reorder_buf[queue];
803 
804 	spin_lock_bh(&reorder_buf->lock);
805 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
806 			       reorder_buf, nssn, flags);
807 	spin_unlock_bh(&reorder_buf->lock);
808 
809 out:
810 	rcu_read_unlock();
811 }
812 
813 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
814 			      struct napi_struct *napi, int queue,
815 			      const struct iwl_mvm_nssn_sync_data *data)
816 {
817 	iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
818 					  data->nssn, queue,
819 					  IWL_MVM_RELEASE_FROM_RSS_SYNC);
820 }
821 
822 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
823 			    struct iwl_rx_cmd_buffer *rxb, int queue)
824 {
825 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
826 	struct iwl_rxq_sync_notification *notif;
827 	struct iwl_mvm_internal_rxq_notif *internal_notif;
828 	u32 len = iwl_rx_packet_payload_len(pkt);
829 
830 	notif = (void *)pkt->data;
831 	internal_notif = (void *)notif->payload;
832 
833 	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
834 		      "invalid notification size %d (%d)",
835 		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
836 		return;
837 	len -= sizeof(*notif) + sizeof(*internal_notif);
838 
839 	if (internal_notif->sync &&
840 	    mvm->queue_sync_cookie != internal_notif->cookie) {
841 		WARN_ONCE(1, "Received expired RX queue sync message\n");
842 		return;
843 	}
844 
845 	switch (internal_notif->type) {
846 	case IWL_MVM_RXQ_EMPTY:
847 		WARN_ONCE(len, "invalid empty notification size %d", len);
848 		break;
849 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
850 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
851 			      "invalid delba notification size %d (%d)",
852 			      len, (int)sizeof(struct iwl_mvm_delba_data)))
853 			break;
854 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
855 		break;
856 	case IWL_MVM_RXQ_NSSN_SYNC:
857 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
858 			      "invalid nssn sync notification size %d (%d)",
859 			      len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
860 			break;
861 		iwl_mvm_nssn_sync(mvm, napi, queue,
862 				  (void *)internal_notif->data);
863 		break;
864 	default:
865 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
866 	}
867 
868 	if (internal_notif->sync) {
869 		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
870 			  "queue sync: queue %d responded a second time!\n",
871 			  queue);
872 		if (READ_ONCE(mvm->queue_sync_state) == 0)
873 			wake_up(&mvm->rx_sync_waitq);
874 	}
875 }
876 
877 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
878 				     struct ieee80211_sta *sta, int tid,
879 				     struct iwl_mvm_reorder_buffer *buffer,
880 				     u32 reorder, u32 gp2, int queue)
881 {
882 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
883 
884 	if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
885 		/* we have a new (A-)MPDU ... */
886 
887 		/*
888 		 * reset counter to 0 if we didn't have any oldsn in
889 		 * the last A-MPDU (as detected by GP2 being identical)
890 		 */
891 		if (!buffer->consec_oldsn_prev_drop)
892 			buffer->consec_oldsn_drops = 0;
893 
894 		/* either way, update our tracking state */
895 		buffer->consec_oldsn_ampdu_gp2 = gp2;
896 	} else if (buffer->consec_oldsn_prev_drop) {
897 		/*
898 		 * tracking state didn't change, and we had an old SN
899 		 * indication before - do nothing in this case, we
900 		 * already noted this one down and are waiting for the
901 		 * next A-MPDU (by GP2)
902 		 */
903 		return;
904 	}
905 
906 	/* return unless this MPDU has old SN */
907 	if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
908 		return;
909 
910 	/* update state */
911 	buffer->consec_oldsn_prev_drop = 1;
912 	buffer->consec_oldsn_drops++;
913 
914 	/* if limit is reached, send del BA and reset state */
915 	if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
916 		IWL_WARN(mvm,
917 			 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
918 			 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
919 			 sta->addr, queue, tid);
920 		ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
921 		buffer->consec_oldsn_prev_drop = 0;
922 		buffer->consec_oldsn_drops = 0;
923 	}
924 }
925 
926 /*
927  * Returns true if the MPDU was buffered\dropped, false if it should be passed
928  * to upper layer.
929  */
930 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
931 			    struct napi_struct *napi,
932 			    int queue,
933 			    struct ieee80211_sta *sta,
934 			    struct sk_buff *skb,
935 			    struct iwl_rx_mpdu_desc *desc)
936 {
937 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
938 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
939 	struct iwl_mvm_sta *mvm_sta;
940 	struct iwl_mvm_baid_data *baid_data;
941 	struct iwl_mvm_reorder_buffer *buffer;
942 	struct sk_buff *tail;
943 	u32 reorder = le32_to_cpu(desc->reorder_data);
944 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
945 	bool last_subframe =
946 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
947 	u8 tid = ieee80211_get_tid(hdr);
948 	u8 sub_frame_idx = desc->amsdu_info &
949 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
950 	struct iwl_mvm_reorder_buf_entry *entries;
951 	int index;
952 	u16 nssn, sn;
953 	u8 baid;
954 
955 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
956 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
957 
958 	/*
959 	 * This also covers the case of receiving a Block Ack Request
960 	 * outside a BA session; we'll pass it to mac80211 and that
961 	 * then sends a delBA action frame.
962 	 * This also covers pure monitor mode, in which case we won't
963 	 * have any BA sessions.
964 	 */
965 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
966 		return false;
967 
968 	/* no sta yet */
969 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
970 		      "Got valid BAID without a valid station assigned\n"))
971 		return false;
972 
973 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
974 
975 	/* not a data packet or a bar */
976 	if (!ieee80211_is_back_req(hdr->frame_control) &&
977 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
978 	     is_multicast_ether_addr(hdr->addr1)))
979 		return false;
980 
981 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
982 		return false;
983 
984 	baid_data = rcu_dereference(mvm->baid_map[baid]);
985 	if (!baid_data) {
986 		IWL_DEBUG_RX(mvm,
987 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
988 			      baid, reorder);
989 		return false;
990 	}
991 
992 	if (WARN(tid != baid_data->tid ||
993 		 mvm_sta->deflink.sta_id != baid_data->sta_id,
994 		 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
995 		 baid, baid_data->sta_id, baid_data->tid, mvm_sta->deflink.sta_id,
996 		 tid))
997 		return false;
998 
999 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
1000 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
1001 		IWL_RX_MPDU_REORDER_SN_SHIFT;
1002 
1003 	buffer = &baid_data->reorder_buf[queue];
1004 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
1005 
1006 	spin_lock_bh(&buffer->lock);
1007 
1008 	if (!buffer->valid) {
1009 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1010 			spin_unlock_bh(&buffer->lock);
1011 			return false;
1012 		}
1013 		buffer->valid = true;
1014 	}
1015 
1016 	if (ieee80211_is_back_req(hdr->frame_control)) {
1017 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1018 				       buffer, nssn, 0);
1019 		goto drop;
1020 	}
1021 
1022 	/*
1023 	 * If there was a significant jump in the nssn - adjust.
1024 	 * If the SN is smaller than the NSSN it might need to first go into
1025 	 * the reorder buffer, in which case we just release up to it and the
1026 	 * rest of the function will take care of storing it and releasing up to
1027 	 * the nssn.
1028 	 * This should not happen. This queue has been lagging and it should
1029 	 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1030 	 * and update the other queues.
1031 	 */
1032 	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1033 				buffer->buf_size) ||
1034 	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1035 		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1036 
1037 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1038 				       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1039 	}
1040 
1041 	iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1042 				 rx_status->device_timestamp, queue);
1043 
1044 	/* drop any oudated packets */
1045 	if (ieee80211_sn_less(sn, buffer->head_sn))
1046 		goto drop;
1047 
1048 	/* release immediately if allowed by nssn and no stored frames */
1049 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1050 		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1051 				       buffer->buf_size) &&
1052 		   (!amsdu || last_subframe)) {
1053 			/*
1054 			 * If we crossed the 2048 or 0 SN, notify all the
1055 			 * queues. This is done in order to avoid having a
1056 			 * head_sn that lags behind for too long. When that
1057 			 * happens, we can get to a situation where the head_sn
1058 			 * is within the interval [nssn - buf_size : nssn]
1059 			 * which will make us think that the nssn is a packet
1060 			 * that we already freed because of the reordering
1061 			 * buffer and we will ignore it. So maintain the
1062 			 * head_sn somewhat updated across all the queues:
1063 			 * when it crosses 0 and 2048.
1064 			 */
1065 			if (sn == 2048 || sn == 0)
1066 				iwl_mvm_sync_nssn(mvm, baid, sn);
1067 			buffer->head_sn = nssn;
1068 		}
1069 		/* No need to update AMSDU last SN - we are moving the head */
1070 		spin_unlock_bh(&buffer->lock);
1071 		return false;
1072 	}
1073 
1074 	/*
1075 	 * release immediately if there are no stored frames, and the sn is
1076 	 * equal to the head.
1077 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
1078 	 * When we released everything, and we got the next frame in the
1079 	 * sequence, according to the NSSN we can't release immediately,
1080 	 * while technically there is no hole and we can move forward.
1081 	 */
1082 	if (!buffer->num_stored && sn == buffer->head_sn) {
1083 		if (!amsdu || last_subframe) {
1084 			if (sn == 2048 || sn == 0)
1085 				iwl_mvm_sync_nssn(mvm, baid, sn);
1086 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1087 		}
1088 		/* No need to update AMSDU last SN - we are moving the head */
1089 		spin_unlock_bh(&buffer->lock);
1090 		return false;
1091 	}
1092 
1093 	index = sn % buffer->buf_size;
1094 
1095 	/*
1096 	 * Check if we already stored this frame
1097 	 * As AMSDU is either received or not as whole, logic is simple:
1098 	 * If we have frames in that position in the buffer and the last frame
1099 	 * originated from AMSDU had a different SN then it is a retransmission.
1100 	 * If it is the same SN then if the subframe index is incrementing it
1101 	 * is the same AMSDU - otherwise it is a retransmission.
1102 	 */
1103 	tail = skb_peek_tail(&entries[index].e.frames);
1104 	if (tail && !amsdu)
1105 		goto drop;
1106 	else if (tail && (sn != buffer->last_amsdu ||
1107 			  buffer->last_sub_index >= sub_frame_idx))
1108 		goto drop;
1109 
1110 	/* put in reorder buffer */
1111 	__skb_queue_tail(&entries[index].e.frames, skb);
1112 	buffer->num_stored++;
1113 	entries[index].e.reorder_time = jiffies;
1114 
1115 	if (amsdu) {
1116 		buffer->last_amsdu = sn;
1117 		buffer->last_sub_index = sub_frame_idx;
1118 	}
1119 
1120 	/*
1121 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1122 	 * The reason is that NSSN advances on the first sub-frame, and may
1123 	 * cause the reorder buffer to advance before all the sub-frames arrive.
1124 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1125 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1126 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1127 	 * already ahead and it will be dropped.
1128 	 * If the last sub-frame is not on this queue - we will get frame
1129 	 * release notification with up to date NSSN.
1130 	 */
1131 	if (!amsdu || last_subframe)
1132 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1133 				       buffer, nssn,
1134 				       IWL_MVM_RELEASE_SEND_RSS_SYNC);
1135 
1136 	spin_unlock_bh(&buffer->lock);
1137 	return true;
1138 
1139 drop:
1140 	kfree_skb(skb);
1141 	spin_unlock_bh(&buffer->lock);
1142 	return true;
1143 }
1144 
1145 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1146 				    u32 reorder_data, u8 baid)
1147 {
1148 	unsigned long now = jiffies;
1149 	unsigned long timeout;
1150 	struct iwl_mvm_baid_data *data;
1151 
1152 	rcu_read_lock();
1153 
1154 	data = rcu_dereference(mvm->baid_map[baid]);
1155 	if (!data) {
1156 		IWL_DEBUG_RX(mvm,
1157 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1158 			      baid, reorder_data);
1159 		goto out;
1160 	}
1161 
1162 	if (!data->timeout)
1163 		goto out;
1164 
1165 	timeout = data->timeout;
1166 	/*
1167 	 * Do not update last rx all the time to avoid cache bouncing
1168 	 * between the rx queues.
1169 	 * Update it every timeout. Worst case is the session will
1170 	 * expire after ~ 2 * timeout, which doesn't matter that much.
1171 	 */
1172 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1173 		/* Update is atomic */
1174 		data->last_rx = now;
1175 
1176 out:
1177 	rcu_read_unlock();
1178 }
1179 
1180 static void iwl_mvm_flip_address(u8 *addr)
1181 {
1182 	int i;
1183 	u8 mac_addr[ETH_ALEN];
1184 
1185 	for (i = 0; i < ETH_ALEN; i++)
1186 		mac_addr[i] = addr[ETH_ALEN - i - 1];
1187 	ether_addr_copy(addr, mac_addr);
1188 }
1189 
1190 struct iwl_mvm_rx_phy_data {
1191 	enum iwl_rx_phy_info_type info_type;
1192 	__le32 d0, d1, d2, d3, eht_d4, d5;
1193 	__le16 d4;
1194 	bool with_data;
1195 	bool first_subframe;
1196 	__le32 rx_vec[4];
1197 
1198 	u32 rate_n_flags;
1199 	u32 gp2_on_air_rise;
1200 	u16 phy_info;
1201 	u8 energy_a, energy_b;
1202 	u8 channel;
1203 };
1204 
1205 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1206 				     struct iwl_mvm_rx_phy_data *phy_data,
1207 				     struct ieee80211_radiotap_he_mu *he_mu)
1208 {
1209 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
1210 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
1211 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
1212 	u32 rate_n_flags = phy_data->rate_n_flags;
1213 
1214 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1215 		he_mu->flags1 |=
1216 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1217 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1218 
1219 		he_mu->flags1 |=
1220 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1221 						   phy_data4),
1222 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1223 
1224 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1225 					     phy_data2);
1226 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1227 					     phy_data3);
1228 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1229 					     phy_data2);
1230 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1231 					     phy_data3);
1232 	}
1233 
1234 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1235 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1236 		he_mu->flags1 |=
1237 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1238 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1239 
1240 		he_mu->flags2 |=
1241 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1242 						   phy_data4),
1243 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1244 
1245 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1246 					     phy_data2);
1247 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1248 					     phy_data3);
1249 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1250 					     phy_data2);
1251 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1252 					     phy_data3);
1253 	}
1254 }
1255 
1256 static void
1257 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1258 			       struct ieee80211_radiotap_he *he,
1259 			       struct ieee80211_radiotap_he_mu *he_mu,
1260 			       struct ieee80211_rx_status *rx_status)
1261 {
1262 	/*
1263 	 * Unfortunately, we have to leave the mac80211 data
1264 	 * incorrect for the case that we receive an HE-MU
1265 	 * transmission and *don't* have the HE phy data (due
1266 	 * to the bits being used for TSF). This shouldn't
1267 	 * happen though as management frames where we need
1268 	 * the TSF/timers are not be transmitted in HE-MU.
1269 	 */
1270 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1271 	u32 rate_n_flags = phy_data->rate_n_flags;
1272 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1273 	u8 offs = 0;
1274 
1275 	rx_status->bw = RATE_INFO_BW_HE_RU;
1276 
1277 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1278 
1279 	switch (ru) {
1280 	case 0 ... 36:
1281 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1282 		offs = ru;
1283 		break;
1284 	case 37 ... 52:
1285 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1286 		offs = ru - 37;
1287 		break;
1288 	case 53 ... 60:
1289 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1290 		offs = ru - 53;
1291 		break;
1292 	case 61 ... 64:
1293 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1294 		offs = ru - 61;
1295 		break;
1296 	case 65 ... 66:
1297 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1298 		offs = ru - 65;
1299 		break;
1300 	case 67:
1301 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1302 		break;
1303 	case 68:
1304 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1305 		break;
1306 	}
1307 	he->data2 |= le16_encode_bits(offs,
1308 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1309 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1310 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1311 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1312 		he->data2 |=
1313 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1314 
1315 #define CHECK_BW(bw) \
1316 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1317 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1318 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1319 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1320 	CHECK_BW(20);
1321 	CHECK_BW(40);
1322 	CHECK_BW(80);
1323 	CHECK_BW(160);
1324 
1325 	if (he_mu)
1326 		he_mu->flags2 |=
1327 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1328 						   rate_n_flags),
1329 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1330 	else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1331 		he->data6 |=
1332 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1333 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1334 						   rate_n_flags),
1335 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1336 }
1337 
1338 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1339 				       struct iwl_mvm_rx_phy_data *phy_data,
1340 				       struct ieee80211_radiotap_he *he,
1341 				       struct ieee80211_radiotap_he_mu *he_mu,
1342 				       struct ieee80211_rx_status *rx_status,
1343 				       int queue)
1344 {
1345 	switch (phy_data->info_type) {
1346 	case IWL_RX_PHY_INFO_TYPE_NONE:
1347 	case IWL_RX_PHY_INFO_TYPE_CCK:
1348 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1349 	case IWL_RX_PHY_INFO_TYPE_HT:
1350 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1351 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1352 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1353 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1354 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1355 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1356 		return;
1357 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1358 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1359 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1360 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1361 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1362 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1363 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1364 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1365 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1366 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1367 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1368 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1369 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1370 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1371 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1372 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1373 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1374 		fallthrough;
1375 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1376 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1377 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1378 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1379 		/* HE common */
1380 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1381 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1382 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1383 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1384 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1385 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1386 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1387 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1388 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1389 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1390 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1391 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1392 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1393 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1394 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1395 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1396 		}
1397 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1398 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1399 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1400 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1401 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1402 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1403 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1404 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1405 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1406 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1407 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1408 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1409 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1410 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1411 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1412 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1413 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1414 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1415 		break;
1416 	}
1417 
1418 	switch (phy_data->info_type) {
1419 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1420 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1421 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1422 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1423 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1424 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1425 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1426 		break;
1427 	default:
1428 		/* nothing here */
1429 		break;
1430 	}
1431 
1432 	switch (phy_data->info_type) {
1433 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1434 		he_mu->flags1 |=
1435 			le16_encode_bits(le16_get_bits(phy_data->d4,
1436 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1437 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1438 		he_mu->flags1 |=
1439 			le16_encode_bits(le16_get_bits(phy_data->d4,
1440 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1441 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1442 		he_mu->flags2 |=
1443 			le16_encode_bits(le16_get_bits(phy_data->d4,
1444 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1445 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1446 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1447 		fallthrough;
1448 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1449 		he_mu->flags2 |=
1450 			le16_encode_bits(le32_get_bits(phy_data->d1,
1451 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1452 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1453 		he_mu->flags2 |=
1454 			le16_encode_bits(le32_get_bits(phy_data->d1,
1455 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1456 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1457 		fallthrough;
1458 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1459 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1460 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1461 		break;
1462 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1463 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1464 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1465 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1466 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1467 		break;
1468 	default:
1469 		/* nothing */
1470 		break;
1471 	}
1472 }
1473 
1474 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1475 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1476 
1477 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1478 	typeof(enc_bits) _enc_bits = enc_bits; \
1479 	typeof(usig) _usig = usig; \
1480 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1481 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1482 } while (0)
1483 
1484 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1485 	eht->data[(rt_data)] |= \
1486 		(cpu_to_le32 \
1487 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1488 		 LE32_DEC_ENC(data ## fw_data, \
1489 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1490 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1491 
1492 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1493 	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1494 
1495 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1496 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1497 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1498 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1499 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1500 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1501 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1502 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1503 
1504 #define IWL_RX_RU_DATA_A1			2
1505 #define IWL_RX_RU_DATA_A2			2
1506 #define IWL_RX_RU_DATA_B1			2
1507 #define IWL_RX_RU_DATA_B2			3
1508 #define IWL_RX_RU_DATA_C1			3
1509 #define IWL_RX_RU_DATA_C2			3
1510 #define IWL_RX_RU_DATA_D1			4
1511 #define IWL_RX_RU_DATA_D2			4
1512 
1513 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1514 	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1515 			    rt_ru,					\
1516 			    IWL_RX_RU_DATA_ ## fw_ru,			\
1517 			    fw_ru)
1518 
1519 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1520 				      struct iwl_mvm_rx_phy_data *phy_data,
1521 				      struct ieee80211_rx_status *rx_status,
1522 				      struct ieee80211_radiotap_eht *eht,
1523 				      struct ieee80211_radiotap_eht_usig *usig)
1524 {
1525 	if (phy_data->with_data) {
1526 		__le32 data1 = phy_data->d1;
1527 		__le32 data2 = phy_data->d2;
1528 		__le32 data3 = phy_data->d3;
1529 		__le32 data4 = phy_data->eht_d4;
1530 		__le32 data5 = phy_data->d5;
1531 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1532 
1533 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1534 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1535 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1536 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1537 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1538 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1539 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1540 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1541 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1542 		IWL_MVM_ENC_USIG_VALUE_MASK
1543 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1544 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1545 
1546 		eht->user_info[0] |=
1547 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1548 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1549 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1550 
1551 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1552 		eht->data[7] |= LE32_DEC_ENC
1553 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1554 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1555 
1556 		/*
1557 		 * Hardware labels the content channels/RU allocation values
1558 		 * as follows:
1559 		 *           Content Channel 1		Content Channel 2
1560 		 *   20 MHz: A1
1561 		 *   40 MHz: A1				B1
1562 		 *   80 MHz: A1 C1			B1 D1
1563 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1564 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1565 		 *
1566 		 * However firmware can only give us A1-D2, so the higher
1567 		 * frequencies are missing.
1568 		 */
1569 
1570 		switch (phy_bw) {
1571 		case RATE_MCS_CHAN_WIDTH_320:
1572 			/* additional values are missing in RX metadata */
1573 		case RATE_MCS_CHAN_WIDTH_160:
1574 			/* content channel 1 */
1575 			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1576 			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1577 			/* content channel 2 */
1578 			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1579 			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1580 			fallthrough;
1581 		case RATE_MCS_CHAN_WIDTH_80:
1582 			/* content channel 1 */
1583 			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1584 			/* content channel 2 */
1585 			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1586 			fallthrough;
1587 		case RATE_MCS_CHAN_WIDTH_40:
1588 			/* content channel 2 */
1589 			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1590 			fallthrough;
1591 		case RATE_MCS_CHAN_WIDTH_20:
1592 			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1593 			break;
1594 		}
1595 	} else {
1596 		__le32 usig_a1 = phy_data->rx_vec[0];
1597 		__le32 usig_a2 = phy_data->rx_vec[1];
1598 
1599 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1600 					    IWL_RX_USIG_A1_DISREGARD,
1601 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1602 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1603 					    IWL_RX_USIG_A1_VALIDATE,
1604 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1605 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1606 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1607 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1608 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1609 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1610 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1611 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1612 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1613 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1614 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1615 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1616 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1617 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1618 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1619 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1620 		IWL_MVM_ENC_USIG_VALUE_MASK
1621 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1622 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1623 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1624 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1625 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1626 	}
1627 }
1628 
1629 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1630 				      struct iwl_mvm_rx_phy_data *phy_data,
1631 				      struct ieee80211_rx_status *rx_status,
1632 				      struct ieee80211_radiotap_eht *eht,
1633 				      struct ieee80211_radiotap_eht_usig *usig)
1634 {
1635 	if (phy_data->with_data) {
1636 		__le32 data5 = phy_data->d5;
1637 
1638 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1639 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1640 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1641 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1642 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1643 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1644 
1645 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1646 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1647 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1648 	} else {
1649 		__le32 usig_a1 = phy_data->rx_vec[0];
1650 		__le32 usig_a2 = phy_data->rx_vec[1];
1651 
1652 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1653 					    IWL_RX_USIG_A1_DISREGARD,
1654 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1655 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1656 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1657 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1658 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1659 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1660 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1661 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1662 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1663 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1664 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1665 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1666 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1667 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1668 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1669 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1670 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1671 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1672 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1673 	}
1674 }
1675 
1676 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1677 				  struct ieee80211_rx_status *rx_status,
1678 				  struct ieee80211_radiotap_eht *eht)
1679 {
1680 	u32 ru = le32_get_bits(eht->data[8],
1681 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1682 	enum nl80211_eht_ru_alloc nl_ru;
1683 
1684 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1685 	 * in an EHT variant User Info field
1686 	 */
1687 
1688 	switch (ru) {
1689 	case 0 ... 36:
1690 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1691 		break;
1692 	case 37 ... 52:
1693 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1694 		break;
1695 	case 53 ... 60:
1696 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1697 		break;
1698 	case 61 ... 64:
1699 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1700 		break;
1701 	case 65 ... 66:
1702 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1703 		break;
1704 	case 67:
1705 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1706 		break;
1707 	case 68:
1708 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1709 		break;
1710 	case 69:
1711 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1712 		break;
1713 	case 70 ... 81:
1714 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1715 		break;
1716 	case 82 ... 89:
1717 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1718 		break;
1719 	case 90 ... 93:
1720 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1721 		break;
1722 	case 94 ... 95:
1723 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1724 		break;
1725 	case 96 ... 99:
1726 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1727 		break;
1728 	case 100 ... 103:
1729 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1730 		break;
1731 	case 104:
1732 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1733 		break;
1734 	case 105 ... 106:
1735 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1736 		break;
1737 	default:
1738 		return;
1739 	}
1740 
1741 	rx_status->bw = RATE_INFO_BW_EHT_RU;
1742 	rx_status->eht.ru = nl_ru;
1743 }
1744 
1745 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1746 					struct iwl_mvm_rx_phy_data *phy_data,
1747 					struct ieee80211_rx_status *rx_status,
1748 					struct ieee80211_radiotap_eht *eht,
1749 					struct ieee80211_radiotap_eht_usig *usig)
1750 
1751 {
1752 	__le32 data0 = phy_data->d0;
1753 	__le32 data1 = phy_data->d1;
1754 	__le32 usig_a1 = phy_data->rx_vec[0];
1755 	u8 info_type = phy_data->info_type;
1756 
1757 	/* Not in EHT range */
1758 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1759 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1760 		return;
1761 
1762 	usig->common |= cpu_to_le32
1763 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1764 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1765 	if (phy_data->with_data) {
1766 		usig->common |= LE32_DEC_ENC(data0,
1767 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1768 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1769 		usig->common |= LE32_DEC_ENC(data0,
1770 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1771 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1772 	} else {
1773 		usig->common |= LE32_DEC_ENC(usig_a1,
1774 					     IWL_RX_USIG_A1_UL_FLAG,
1775 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1776 		usig->common |= LE32_DEC_ENC(usig_a1,
1777 					     IWL_RX_USIG_A1_BSS_COLOR,
1778 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1779 	}
1780 
1781 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1782 	eht->data[0] |= LE32_DEC_ENC(data0,
1783 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1784 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1785 
1786 	/* All RU allocating size/index is in TB format */
1787 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1788 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1789 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1790 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_B0,
1791 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1792 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_B1_B7_ALLOC,
1793 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1794 
1795 	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1796 
1797 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1798 	 * which is on only in case of monitor mode so no need to check monitor
1799 	 * mode
1800 	 */
1801 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1802 	eht->data[1] |=
1803 		le32_encode_bits(mvm->monitor_p80,
1804 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1805 
1806 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1807 	if (phy_data->with_data)
1808 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1809 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1810 	else
1811 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1812 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1813 
1814 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1815 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1816 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1817 
1818 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1819 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1820 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1821 
1822 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1823 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1824 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1825 
1826 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1827 
1828 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1829 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1830 
1831 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1832 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1833 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1834 
1835 	/*
1836 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1837 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1838 	 */
1839 
1840 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1841 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1842 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1843 
1844 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1845 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1846 		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1847 
1848 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1849 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1850 		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1851 }
1852 
1853 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1854 			   struct iwl_mvm_rx_phy_data *phy_data,
1855 			   int queue)
1856 {
1857 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1858 
1859 	struct ieee80211_radiotap_eht *eht;
1860 	struct ieee80211_radiotap_eht_usig *usig;
1861 	size_t eht_len = sizeof(*eht);
1862 
1863 	u32 rate_n_flags = phy_data->rate_n_flags;
1864 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1865 	/* EHT and HE have the same valus for LTF */
1866 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1867 	u16 phy_info = phy_data->phy_info;
1868 	u32 bw;
1869 
1870 	/* u32 for 1 user_info */
1871 	if (phy_data->with_data)
1872 		eht_len += sizeof(u32);
1873 
1874 	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1875 
1876 	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1877 					sizeof(*usig));
1878 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1879 	usig->common |=
1880 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1881 
1882 	/* specific handling for 320MHz */
1883 	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1884 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1885 		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1886 				le32_to_cpu(phy_data->d0));
1887 
1888 	usig->common |= cpu_to_le32
1889 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1890 
1891 	/* report the AMPDU-EOF bit on single frames */
1892 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1893 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1894 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1895 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1896 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1897 	}
1898 
1899 	/* update aggregation data for monitor sake on default queue */
1900 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1901 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1902 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1903 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1904 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1905 	}
1906 
1907 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1908 		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1909 
1910 #define CHECK_TYPE(F)							\
1911 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1912 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1913 
1914 	CHECK_TYPE(SU);
1915 	CHECK_TYPE(EXT_SU);
1916 	CHECK_TYPE(MU);
1917 	CHECK_TYPE(TRIG);
1918 
1919 	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1920 	case 0:
1921 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1922 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1923 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1924 		} else {
1925 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1926 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1927 		}
1928 		break;
1929 	case 1:
1930 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1931 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1932 		break;
1933 	case 2:
1934 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1935 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1936 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1937 		else
1938 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1939 		break;
1940 	case 3:
1941 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1942 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1943 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1944 		}
1945 		break;
1946 	default:
1947 		/* nothing here */
1948 		break;
1949 	}
1950 
1951 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1952 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1953 		eht->data[0] |= cpu_to_le32
1954 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1955 				    ltf) |
1956 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1957 				    rx_status->eht.gi));
1958 	}
1959 
1960 
1961 	if (!phy_data->with_data) {
1962 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1963 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1964 		eht->data[7] |=
1965 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1966 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1967 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1968 		if (rate_n_flags & RATE_MCS_BF_MSK)
1969 			eht->data[7] |=
1970 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1971 	} else {
1972 		eht->user_info[0] |=
1973 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1974 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1975 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1976 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1977 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1978 
1979 		if (rate_n_flags & RATE_MCS_BF_MSK)
1980 			eht->user_info[0] |=
1981 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1982 
1983 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1984 			eht->user_info[0] |=
1985 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1986 
1987 		eht->user_info[0] |= cpu_to_le32
1988 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1989 				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1990 					      rate_n_flags)) |
1991 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1992 				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1993 	}
1994 }
1995 
1996 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1997 			  struct iwl_mvm_rx_phy_data *phy_data,
1998 			  int queue)
1999 {
2000 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2001 	struct ieee80211_radiotap_he *he = NULL;
2002 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
2003 	u32 rate_n_flags = phy_data->rate_n_flags;
2004 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
2005 	u8 ltf;
2006 	static const struct ieee80211_radiotap_he known = {
2007 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
2008 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
2009 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
2010 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
2011 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
2012 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
2013 	};
2014 	static const struct ieee80211_radiotap_he_mu mu_known = {
2015 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
2016 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
2017 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
2018 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
2019 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
2020 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
2021 	};
2022 	u16 phy_info = phy_data->phy_info;
2023 
2024 	he = skb_put_data(skb, &known, sizeof(known));
2025 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
2026 
2027 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
2028 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
2029 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
2030 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
2031 	}
2032 
2033 	/* report the AMPDU-EOF bit on single frames */
2034 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2035 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2036 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2037 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
2038 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2039 	}
2040 
2041 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2042 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
2043 					   queue);
2044 
2045 	/* update aggregation data for monitor sake on default queue */
2046 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
2047 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
2048 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2049 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
2050 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2051 	}
2052 
2053 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
2054 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
2055 		rx_status->bw = RATE_INFO_BW_HE_RU;
2056 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
2057 	}
2058 
2059 	/* actually data is filled in mac80211 */
2060 	if (he_type == RATE_MCS_HE_TYPE_SU ||
2061 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
2062 		he->data1 |=
2063 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
2064 
2065 #define CHECK_TYPE(F)							\
2066 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
2067 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
2068 
2069 	CHECK_TYPE(SU);
2070 	CHECK_TYPE(EXT_SU);
2071 	CHECK_TYPE(MU);
2072 	CHECK_TYPE(TRIG);
2073 
2074 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
2075 
2076 	if (rate_n_flags & RATE_MCS_BF_MSK)
2077 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
2078 
2079 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
2080 		RATE_MCS_HE_GI_LTF_POS) {
2081 	case 0:
2082 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2083 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2084 		else
2085 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2086 		if (he_type == RATE_MCS_HE_TYPE_MU)
2087 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2088 		else
2089 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
2090 		break;
2091 	case 1:
2092 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2093 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2094 		else
2095 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2096 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2097 		break;
2098 	case 2:
2099 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
2100 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2101 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2102 		} else {
2103 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2104 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2105 		}
2106 		break;
2107 	case 3:
2108 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2109 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2110 		break;
2111 	case 4:
2112 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2113 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2114 		break;
2115 	default:
2116 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
2117 	}
2118 
2119 	he->data5 |= le16_encode_bits(ltf,
2120 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
2121 }
2122 
2123 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
2124 				struct iwl_mvm_rx_phy_data *phy_data)
2125 {
2126 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2127 	struct ieee80211_radiotap_lsig *lsig;
2128 
2129 	switch (phy_data->info_type) {
2130 	case IWL_RX_PHY_INFO_TYPE_HT:
2131 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
2132 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
2133 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
2134 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
2135 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
2136 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
2137 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
2138 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
2139 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
2140 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
2141 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
2142 		lsig = skb_put(skb, sizeof(*lsig));
2143 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
2144 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
2145 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
2146 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
2147 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
2148 		break;
2149 	default:
2150 		break;
2151 	}
2152 }
2153 
2154 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
2155 {
2156 	switch (phy_band) {
2157 	case PHY_BAND_24:
2158 		return NL80211_BAND_2GHZ;
2159 	case PHY_BAND_5:
2160 		return NL80211_BAND_5GHZ;
2161 	case PHY_BAND_6:
2162 		return NL80211_BAND_6GHZ;
2163 	default:
2164 		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
2165 		return NL80211_BAND_5GHZ;
2166 	}
2167 }
2168 
2169 struct iwl_rx_sta_csa {
2170 	bool all_sta_unblocked;
2171 	struct ieee80211_vif *vif;
2172 };
2173 
2174 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
2175 {
2176 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2177 	struct iwl_rx_sta_csa *rx_sta_csa = data;
2178 
2179 	if (mvmsta->vif != rx_sta_csa->vif)
2180 		return;
2181 
2182 	if (mvmsta->disable_tx)
2183 		rx_sta_csa->all_sta_unblocked = false;
2184 }
2185 
2186 /*
2187  * Note: requires also rx_status->band to be prefilled, as well
2188  * as phy_data (apart from phy_data->info_type)
2189  */
2190 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
2191 				   struct sk_buff *skb,
2192 				   struct iwl_mvm_rx_phy_data *phy_data,
2193 				   int queue)
2194 {
2195 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2196 	u32 rate_n_flags = phy_data->rate_n_flags;
2197 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
2198 	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2199 	bool is_sgi;
2200 
2201 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
2202 
2203 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2204 		phy_data->info_type =
2205 			le32_get_bits(phy_data->d1,
2206 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
2207 
2208 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2209 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2210 	case RATE_MCS_CHAN_WIDTH_20:
2211 		break;
2212 	case RATE_MCS_CHAN_WIDTH_40:
2213 		rx_status->bw = RATE_INFO_BW_40;
2214 		break;
2215 	case RATE_MCS_CHAN_WIDTH_80:
2216 		rx_status->bw = RATE_INFO_BW_80;
2217 		break;
2218 	case RATE_MCS_CHAN_WIDTH_160:
2219 		rx_status->bw = RATE_INFO_BW_160;
2220 		break;
2221 	case RATE_MCS_CHAN_WIDTH_320:
2222 		rx_status->bw = RATE_INFO_BW_320;
2223 		break;
2224 	}
2225 
2226 	/* must be before L-SIG data */
2227 	if (format == RATE_MCS_HE_MSK)
2228 		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
2229 
2230 	iwl_mvm_decode_lsig(skb, phy_data);
2231 
2232 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
2233 	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
2234 							 rx_status->band);
2235 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
2236 				    phy_data->energy_a, phy_data->energy_b);
2237 
2238 	/* using TLV format and must be after all fixed len fields */
2239 	if (format == RATE_MCS_EHT_MSK)
2240 		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
2241 
2242 	if (unlikely(mvm->monitor_on))
2243 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
2244 
2245 	is_sgi = format == RATE_MCS_HE_MSK ?
2246 		iwl_he_is_sgi(rate_n_flags) :
2247 		rate_n_flags & RATE_MCS_SGI_MSK;
2248 
2249 	if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
2250 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2251 
2252 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
2253 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2254 
2255 	switch (format) {
2256 	case RATE_MCS_VHT_MSK:
2257 		rx_status->encoding = RX_ENC_VHT;
2258 		break;
2259 	case RATE_MCS_HE_MSK:
2260 		rx_status->encoding = RX_ENC_HE;
2261 		rx_status->he_dcm =
2262 			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2263 		break;
2264 	case RATE_MCS_EHT_MSK:
2265 		rx_status->encoding = RX_ENC_EHT;
2266 		break;
2267 	}
2268 
2269 	switch (format) {
2270 	case RATE_MCS_HT_MSK:
2271 		rx_status->encoding = RX_ENC_HT;
2272 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2273 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2274 		break;
2275 	case RATE_MCS_VHT_MSK:
2276 	case RATE_MCS_HE_MSK:
2277 	case RATE_MCS_EHT_MSK:
2278 		rx_status->nss =
2279 			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2280 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2281 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2282 		break;
2283 	default: {
2284 		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2285 								 rx_status->band);
2286 
2287 		rx_status->rate_idx = rate;
2288 
2289 		if ((rate < 0 || rate > 0xFF)) {
2290 			rx_status->rate_idx = 0;
2291 			if (net_ratelimit())
2292 				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2293 					rate_n_flags, rx_status->band);
2294 		}
2295 
2296 		break;
2297 		}
2298 	}
2299 }
2300 
2301 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2302 			struct iwl_rx_cmd_buffer *rxb, int queue)
2303 {
2304 	struct ieee80211_rx_status *rx_status;
2305 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2306 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2307 	struct ieee80211_hdr *hdr;
2308 	u32 len;
2309 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2310 	struct ieee80211_sta *sta = NULL;
2311 	struct ieee80211_link_sta *link_sta = NULL;
2312 	struct sk_buff *skb;
2313 	u8 crypt_len = 0;
2314 	size_t desc_size;
2315 	struct iwl_mvm_rx_phy_data phy_data = {};
2316 	u32 format;
2317 
2318 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2319 		return;
2320 
2321 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2322 		desc_size = sizeof(*desc);
2323 	else
2324 		desc_size = IWL_RX_DESC_SIZE_V1;
2325 
2326 	if (unlikely(pkt_len < desc_size)) {
2327 		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2328 		return;
2329 	}
2330 
2331 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2332 		phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2333 		phy_data.channel = desc->v3.channel;
2334 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2335 		phy_data.energy_a = desc->v3.energy_a;
2336 		phy_data.energy_b = desc->v3.energy_b;
2337 
2338 		phy_data.d0 = desc->v3.phy_data0;
2339 		phy_data.d1 = desc->v3.phy_data1;
2340 		phy_data.d2 = desc->v3.phy_data2;
2341 		phy_data.d3 = desc->v3.phy_data3;
2342 		phy_data.eht_d4 = desc->phy_eht_data4;
2343 		phy_data.d5 = desc->v3.phy_data5;
2344 	} else {
2345 		phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2346 		phy_data.channel = desc->v1.channel;
2347 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2348 		phy_data.energy_a = desc->v1.energy_a;
2349 		phy_data.energy_b = desc->v1.energy_b;
2350 
2351 		phy_data.d0 = desc->v1.phy_data0;
2352 		phy_data.d1 = desc->v1.phy_data1;
2353 		phy_data.d2 = desc->v1.phy_data2;
2354 		phy_data.d3 = desc->v1.phy_data3;
2355 	}
2356 
2357 	if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2358 				    REPLY_RX_MPDU_CMD, 0) < 4) {
2359 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2360 		IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2361 			       phy_data.rate_n_flags);
2362 	}
2363 
2364 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2365 
2366 	len = le16_to_cpu(desc->mpdu_len);
2367 
2368 	if (unlikely(len + desc_size > pkt_len)) {
2369 		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2370 		return;
2371 	}
2372 
2373 	phy_data.with_data = true;
2374 	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2375 	phy_data.d4 = desc->phy_data4;
2376 
2377 	hdr = (void *)(pkt->data + desc_size);
2378 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2379 	 * ieee80211_hdr pulled.
2380 	 */
2381 	skb = alloc_skb(128, GFP_ATOMIC);
2382 	if (!skb) {
2383 		IWL_ERR(mvm, "alloc_skb failed\n");
2384 		return;
2385 	}
2386 
2387 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2388 		/*
2389 		 * If the device inserted padding it means that (it thought)
2390 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2391 		 * this case, reserve two bytes at the start of the SKB to
2392 		 * align the payload properly in case we end up copying it.
2393 		 */
2394 		skb_reserve(skb, 2);
2395 	}
2396 
2397 	rx_status = IEEE80211_SKB_RXCB(skb);
2398 
2399 	/*
2400 	 * Keep packets with CRC errors (and with overrun) for monitor mode
2401 	 * (otherwise the firmware discards them) but mark them as bad.
2402 	 */
2403 	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2404 	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2405 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2406 			     le32_to_cpu(desc->status));
2407 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2408 	}
2409 
2410 	/* set the preamble flag if appropriate */
2411 	if (format == RATE_MCS_CCK_MSK &&
2412 	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2413 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2414 
2415 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2416 		u64 tsf_on_air_rise;
2417 
2418 		if (mvm->trans->trans_cfg->device_family >=
2419 		    IWL_DEVICE_FAMILY_AX210)
2420 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2421 		else
2422 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2423 
2424 		rx_status->mactime = tsf_on_air_rise;
2425 		/* TSF as indicated by the firmware is at INA time */
2426 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2427 	}
2428 
2429 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2430 		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2431 
2432 		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2433 	} else {
2434 		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2435 			NL80211_BAND_2GHZ;
2436 	}
2437 
2438 	/* update aggregation data for monitor sake on default queue */
2439 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2440 		bool toggle_bit;
2441 
2442 		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2443 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2444 		/*
2445 		 * Toggle is switched whenever new aggregation starts. Make
2446 		 * sure ampdu_reference is never 0 so we can later use it to
2447 		 * see if the frame was really part of an A-MPDU or not.
2448 		 */
2449 		if (toggle_bit != mvm->ampdu_toggle) {
2450 			mvm->ampdu_ref++;
2451 			if (mvm->ampdu_ref == 0)
2452 				mvm->ampdu_ref++;
2453 			mvm->ampdu_toggle = toggle_bit;
2454 			phy_data.first_subframe = true;
2455 		}
2456 		rx_status->ampdu_reference = mvm->ampdu_ref;
2457 	}
2458 
2459 	rcu_read_lock();
2460 
2461 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2462 		u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2463 
2464 		if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2465 			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2466 			if (IS_ERR(sta))
2467 				sta = NULL;
2468 			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2469 		}
2470 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2471 		/*
2472 		 * This is fine since we prevent two stations with the same
2473 		 * address from being added.
2474 		 */
2475 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2476 	}
2477 
2478 	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2479 			      le32_to_cpu(pkt->len_n_flags), queue,
2480 			      &crypt_len)) {
2481 		kfree_skb(skb);
2482 		goto out;
2483 	}
2484 
2485 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2486 
2487 	if (sta) {
2488 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2489 		struct ieee80211_vif *tx_blocked_vif =
2490 			rcu_dereference(mvm->csa_tx_blocked_vif);
2491 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2492 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2493 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2494 		struct iwl_fw_dbg_trigger_tlv *trig;
2495 		struct ieee80211_vif *vif = mvmsta->vif;
2496 
2497 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2498 		    !is_multicast_ether_addr(hdr->addr1) &&
2499 		    ieee80211_is_data(hdr->frame_control) &&
2500 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2501 			schedule_delayed_work(&mvm->tcm.work, 0);
2502 
2503 		/*
2504 		 * We have tx blocked stations (with CS bit). If we heard
2505 		 * frames from a blocked station on a new channel we can
2506 		 * TX to it again.
2507 		 */
2508 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2509 			struct iwl_mvm_vif *mvmvif =
2510 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2511 			struct iwl_rx_sta_csa rx_sta_csa = {
2512 				.all_sta_unblocked = true,
2513 				.vif = tx_blocked_vif,
2514 			};
2515 
2516 			if (mvmvif->csa_target_freq == rx_status->freq)
2517 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2518 								 false);
2519 			ieee80211_iterate_stations_atomic(mvm->hw,
2520 							  iwl_mvm_rx_get_sta_block_tx,
2521 							  &rx_sta_csa);
2522 
2523 			if (rx_sta_csa.all_sta_unblocked) {
2524 				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2525 				/* Unblock BCAST / MCAST station */
2526 				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2527 				cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork);
2528 			}
2529 		}
2530 
2531 		rs_update_last_rssi(mvm, mvmsta, rx_status);
2532 
2533 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2534 					     ieee80211_vif_to_wdev(vif),
2535 					     FW_DBG_TRIGGER_RSSI);
2536 
2537 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2538 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2539 			s32 rssi;
2540 
2541 			rssi_trig = (void *)trig->data;
2542 			rssi = le32_to_cpu(rssi_trig->rssi);
2543 
2544 			if (rx_status->signal < rssi)
2545 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2546 							NULL);
2547 		}
2548 
2549 		if (ieee80211_is_data(hdr->frame_control))
2550 			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2551 
2552 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2553 			kfree_skb(skb);
2554 			goto out;
2555 		}
2556 
2557 		/*
2558 		 * Our hardware de-aggregates AMSDUs but copies the mac header
2559 		 * as it to the de-aggregated MPDUs. We need to turn off the
2560 		 * AMSDU bit in the QoS control ourselves.
2561 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2562 		 */
2563 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2564 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2565 			u8 *qc = ieee80211_get_qos_ctl(hdr);
2566 
2567 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2568 
2569 			if (mvm->trans->trans_cfg->device_family ==
2570 			    IWL_DEVICE_FAMILY_9000) {
2571 				iwl_mvm_flip_address(hdr->addr3);
2572 
2573 				if (ieee80211_has_a4(hdr->frame_control))
2574 					iwl_mvm_flip_address(hdr->addr4);
2575 			}
2576 		}
2577 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2578 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2579 
2580 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2581 		}
2582 	}
2583 
2584 	/* management stuff on default queue */
2585 	if (!queue) {
2586 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2587 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2588 			     mvm->sched_scan_pass_all ==
2589 			     SCHED_SCAN_PASS_ALL_ENABLED))
2590 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2591 
2592 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2593 			     ieee80211_is_probe_resp(hdr->frame_control)))
2594 			rx_status->boottime_ns = ktime_get_boottime_ns();
2595 	}
2596 
2597 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2598 		kfree_skb(skb);
2599 		goto out;
2600 	}
2601 
2602 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2603 	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)))
2604 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2605 						link_sta);
2606 
2607 out:
2608 	rcu_read_unlock();
2609 }
2610 
2611 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2612 				struct iwl_rx_cmd_buffer *rxb, int queue)
2613 {
2614 	struct ieee80211_rx_status *rx_status;
2615 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2616 	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2617 	u32 rssi;
2618 	u32 info_type;
2619 	struct ieee80211_sta *sta = NULL;
2620 	struct sk_buff *skb;
2621 	struct iwl_mvm_rx_phy_data phy_data;
2622 	u32 format;
2623 
2624 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2625 		return;
2626 
2627 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2628 		return;
2629 
2630 	rssi = le32_to_cpu(desc->rssi);
2631 	info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2632 	phy_data.d0 = desc->phy_info[0];
2633 	phy_data.d1 = desc->phy_info[1];
2634 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2635 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2636 	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2637 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2638 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2639 	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2640 	phy_data.with_data = false;
2641 
2642 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2643 				    RX_NO_DATA_NOTIF, 0) < 2) {
2644 		IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2645 			       phy_data.rate_n_flags);
2646 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2647 		IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2648 			       phy_data.rate_n_flags);
2649 	}
2650 
2651 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2652 
2653 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2654 				    RX_NO_DATA_NOTIF, 0) >= 3) {
2655 		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2656 		    sizeof(struct iwl_rx_no_data_ver_3)))
2657 		/* invalid len for ver 3 */
2658 			return;
2659 		memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec));
2660 	} else {
2661 		if (format == RATE_MCS_EHT_MSK)
2662 			/* no support for EHT before version 3 API */
2663 			return;
2664 	}
2665 
2666 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2667 	 * ieee80211_hdr pulled.
2668 	 */
2669 	skb = alloc_skb(128, GFP_ATOMIC);
2670 	if (!skb) {
2671 		IWL_ERR(mvm, "alloc_skb failed\n");
2672 		return;
2673 	}
2674 
2675 	rx_status = IEEE80211_SKB_RXCB(skb);
2676 
2677 	/* 0-length PSDU */
2678 	rx_status->flag |= RX_FLAG_NO_PSDU;
2679 
2680 	switch (info_type) {
2681 	case RX_NO_DATA_INFO_TYPE_NDP:
2682 		rx_status->zero_length_psdu_type =
2683 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2684 		break;
2685 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2686 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2687 		rx_status->zero_length_psdu_type =
2688 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2689 		break;
2690 	default:
2691 		rx_status->zero_length_psdu_type =
2692 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2693 		break;
2694 	}
2695 
2696 	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2697 		NL80211_BAND_2GHZ;
2698 
2699 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2700 
2701 	/* no more radio tap info should be put after this point.
2702 	 *
2703 	 * We mark it as mac header, for upper layers to know where
2704 	 * all radio tap header ends.
2705 	 */
2706 	skb_reset_mac_header(skb);
2707 
2708 	/*
2709 	 * Override the nss from the rx_vec since the rate_n_flags has
2710 	 * only 2 bits for the nss which gives a max of 4 ss but there
2711 	 * may be up to 8 spatial streams.
2712 	 */
2713 	switch (format) {
2714 	case RATE_MCS_VHT_MSK:
2715 		rx_status->nss =
2716 			le32_get_bits(desc->rx_vec[0],
2717 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2718 		break;
2719 	case RATE_MCS_HE_MSK:
2720 		rx_status->nss =
2721 			le32_get_bits(desc->rx_vec[0],
2722 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2723 		break;
2724 	case RATE_MCS_EHT_MSK:
2725 		rx_status->nss =
2726 			le32_get_bits(desc->rx_vec[2],
2727 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2728 	}
2729 
2730 	rcu_read_lock();
2731 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2732 	rcu_read_unlock();
2733 }
2734 
2735 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2736 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2737 {
2738 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2739 	struct iwl_frame_release *release = (void *)pkt->data;
2740 
2741 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2742 		return;
2743 
2744 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2745 					  le16_to_cpu(release->nssn),
2746 					  queue, 0);
2747 }
2748 
2749 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2750 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2751 {
2752 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2753 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2754 	unsigned int baid = le32_get_bits(release->ba_info,
2755 					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2756 	unsigned int nssn = le32_get_bits(release->ba_info,
2757 					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2758 	unsigned int sta_id = le32_get_bits(release->sta_tid,
2759 					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2760 	unsigned int tid = le32_get_bits(release->sta_tid,
2761 					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2762 	struct iwl_mvm_baid_data *baid_data;
2763 
2764 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2765 		return;
2766 
2767 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2768 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2769 		return;
2770 
2771 	rcu_read_lock();
2772 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2773 	if (!baid_data) {
2774 		IWL_DEBUG_RX(mvm,
2775 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2776 			      baid);
2777 		goto out;
2778 	}
2779 
2780 	if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2781 		 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2782 		 baid, baid_data->sta_id, baid_data->tid, sta_id,
2783 		 tid))
2784 		goto out;
2785 
2786 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2787 out:
2788 	rcu_read_unlock();
2789 }
2790