1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 #include "time-sync.h" 13 14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 15 int queue, struct ieee80211_sta *sta) 16 { 17 struct iwl_mvm_sta *mvmsta; 18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 20 struct iwl_mvm_key_pn *ptk_pn; 21 int res; 22 u8 tid, keyidx; 23 u8 pn[IEEE80211_CCMP_PN_LEN]; 24 u8 *extiv; 25 26 /* do PN checking */ 27 28 /* multicast and non-data only arrives on default queue */ 29 if (!ieee80211_is_data(hdr->frame_control) || 30 is_multicast_ether_addr(hdr->addr1)) 31 return 0; 32 33 /* do not check PN for open AP */ 34 if (!(stats->flag & RX_FLAG_DECRYPTED)) 35 return 0; 36 37 /* 38 * avoid checking for default queue - we don't want to replicate 39 * all the logic that's necessary for checking the PN on fragmented 40 * frames, leave that to mac80211 41 */ 42 if (queue == 0) 43 return 0; 44 45 /* if we are here - this for sure is either CCMP or GCMP */ 46 if (IS_ERR_OR_NULL(sta)) { 47 IWL_DEBUG_DROP(mvm, 48 "expected hw-decrypted unicast frame for station\n"); 49 return -1; 50 } 51 52 mvmsta = iwl_mvm_sta_from_mac80211(sta); 53 54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 55 keyidx = extiv[3] >> 6; 56 57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 58 if (!ptk_pn) 59 return -1; 60 61 if (ieee80211_is_data_qos(hdr->frame_control)) 62 tid = ieee80211_get_tid(hdr); 63 else 64 tid = 0; 65 66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 67 if (tid >= IWL_MAX_TID_COUNT) 68 return -1; 69 70 /* load pn */ 71 pn[0] = extiv[7]; 72 pn[1] = extiv[6]; 73 pn[2] = extiv[5]; 74 pn[3] = extiv[4]; 75 pn[4] = extiv[1]; 76 pn[5] = extiv[0]; 77 78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 79 if (res < 0) 80 return -1; 81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 82 return -1; 83 84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 85 stats->flag |= RX_FLAG_PN_VALIDATED; 86 87 return 0; 88 } 89 90 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 93 struct iwl_rx_cmd_buffer *rxb) 94 { 95 struct iwl_rx_packet *pkt = rxb_addr(rxb); 96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 97 unsigned int headlen, fraglen, pad_len = 0; 98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 101 102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 103 len -= 2; 104 pad_len = 2; 105 } 106 107 /* 108 * For non monitor interface strip the bytes the RADA might not have 109 * removed. As monitor interface cannot exist with other interfaces 110 * this removal is safe. 111 */ 112 if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) { 113 u32 pkt_flags = le32_to_cpu(pkt->len_n_flags); 114 115 /* 116 * If RADA was not enabled then decryption was not performed so 117 * the MIC cannot be removed. 118 */ 119 if (!(pkt_flags & FH_RSCSR_RADA_EN)) { 120 if (WARN_ON(crypt_len > mic_crc_len)) 121 return -EINVAL; 122 123 mic_crc_len -= crypt_len; 124 } 125 126 if (WARN_ON(mic_crc_len > len)) 127 return -EINVAL; 128 129 len -= mic_crc_len; 130 } 131 132 /* If frame is small enough to fit in skb->head, pull it completely. 133 * If not, only pull ieee80211_hdr (including crypto if present, and 134 * an additional 8 bytes for SNAP/ethertype, see below) so that 135 * splice() or TCP coalesce are more efficient. 136 * 137 * Since, in addition, ieee80211_data_to_8023() always pull in at 138 * least 8 bytes (possibly more for mesh) we can do the same here 139 * to save the cost of doing it later. That still doesn't pull in 140 * the actual IP header since the typical case has a SNAP header. 141 * If the latter changes (there are efforts in the standards group 142 * to do so) we should revisit this and ieee80211_data_to_8023(). 143 */ 144 headlen = (len <= skb_tailroom(skb)) ? len : 145 hdrlen + crypt_len + 8; 146 147 /* The firmware may align the packet to DWORD. 148 * The padding is inserted after the IV. 149 * After copying the header + IV skip the padding if 150 * present before copying packet data. 151 */ 152 hdrlen += crypt_len; 153 154 if (unlikely(headlen < hdrlen)) 155 return -EINVAL; 156 157 /* Since data doesn't move data while putting data on skb and that is 158 * the only way we use, data + len is the next place that hdr would be put 159 */ 160 skb_set_mac_header(skb, skb->len); 161 skb_put_data(skb, hdr, hdrlen); 162 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 163 164 /* 165 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 166 * certain cases and starts the checksum after the SNAP. Check if 167 * this is the case - it's easier to just bail out to CHECKSUM_NONE 168 * in the cases the hardware didn't handle, since it's rare to see 169 * such packets, even though the hardware did calculate the checksum 170 * in this case, just starting after the MAC header instead. 171 * 172 * Starting from Bz hardware, it calculates starting directly after 173 * the MAC header, so that matches mac80211's expectation. 174 */ 175 if (skb->ip_summed == CHECKSUM_COMPLETE && 176 mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) { 177 struct { 178 u8 hdr[6]; 179 __be16 type; 180 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 181 182 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 183 !ether_addr_equal(shdr->hdr, rfc1042_header) || 184 (shdr->type != htons(ETH_P_IP) && 185 shdr->type != htons(ETH_P_ARP) && 186 shdr->type != htons(ETH_P_IPV6) && 187 shdr->type != htons(ETH_P_8021Q) && 188 shdr->type != htons(ETH_P_PAE) && 189 shdr->type != htons(ETH_P_TDLS)))) 190 skb->ip_summed = CHECKSUM_NONE; 191 else 192 /* mac80211 assumes full CSUM including SNAP header */ 193 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 194 } 195 196 fraglen = len - headlen; 197 198 if (fraglen) { 199 int offset = (u8 *)hdr + headlen + pad_len - 200 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 201 202 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 203 fraglen, rxb->truesize); 204 } 205 206 return 0; 207 } 208 209 /* put a TLV on the skb and return data pointer 210 * 211 * Also pad to 4 the len and zero out all data part 212 */ 213 static void * 214 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 215 { 216 struct ieee80211_radiotap_tlv *tlv; 217 218 tlv = skb_put(skb, sizeof(*tlv)); 219 tlv->type = cpu_to_le16(type); 220 tlv->len = cpu_to_le16(len); 221 return skb_put_zero(skb, ALIGN(len, 4)); 222 } 223 224 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 225 struct sk_buff *skb) 226 { 227 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 228 struct ieee80211_radiotap_vendor_content *radiotap; 229 const u16 vendor_data_len = sizeof(mvm->cur_aid); 230 231 if (!mvm->cur_aid) 232 return; 233 234 radiotap = iwl_mvm_radiotap_put_tlv(skb, 235 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 236 sizeof(*radiotap) + vendor_data_len); 237 238 /* Intel OUI */ 239 radiotap->oui[0] = 0xf6; 240 radiotap->oui[1] = 0x54; 241 radiotap->oui[2] = 0x25; 242 /* radiotap sniffer config sub-namespace */ 243 radiotap->oui_subtype = 1; 244 radiotap->vendor_type = 0; 245 246 /* fill the data now */ 247 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 248 249 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 250 } 251 252 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 253 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 254 struct napi_struct *napi, 255 struct sk_buff *skb, int queue, 256 struct ieee80211_sta *sta, 257 struct ieee80211_link_sta *link_sta) 258 { 259 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { 260 kfree_skb(skb); 261 return; 262 } 263 264 if (sta && sta->valid_links && link_sta) { 265 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 266 267 rx_status->link_valid = 1; 268 rx_status->link_id = link_sta->link_id; 269 } 270 271 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 272 } 273 274 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 275 struct ieee80211_rx_status *rx_status, 276 u32 rate_n_flags, int energy_a, 277 int energy_b) 278 { 279 int max_energy; 280 u32 rate_flags = rate_n_flags; 281 282 energy_a = energy_a ? -energy_a : S8_MIN; 283 energy_b = energy_b ? -energy_b : S8_MIN; 284 max_energy = max(energy_a, energy_b); 285 286 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 287 energy_a, energy_b, max_energy); 288 289 rx_status->signal = max_energy; 290 rx_status->chains = 291 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 292 rx_status->chain_signal[0] = energy_a; 293 rx_status->chain_signal[1] = energy_b; 294 } 295 296 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 297 struct ieee80211_hdr *hdr, 298 struct iwl_rx_mpdu_desc *desc, 299 u32 status) 300 { 301 struct iwl_mvm_sta *mvmsta; 302 struct iwl_mvm_vif *mvmvif; 303 u8 keyid; 304 struct ieee80211_key_conf *key; 305 u32 len = le16_to_cpu(desc->mpdu_len); 306 const u8 *frame = (void *)hdr; 307 308 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 309 return 0; 310 311 /* 312 * For non-beacon, we don't really care. But beacons may 313 * be filtered out, and we thus need the firmware's replay 314 * detection, otherwise beacons the firmware previously 315 * filtered could be replayed, or something like that, and 316 * it can filter a lot - though usually only if nothing has 317 * changed. 318 */ 319 if (!ieee80211_is_beacon(hdr->frame_control)) 320 return 0; 321 322 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 323 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 324 return -1; 325 326 /* good cases */ 327 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 328 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) 329 return 0; 330 331 if (!sta) 332 return -1; 333 334 mvmsta = iwl_mvm_sta_from_mac80211(sta); 335 336 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 337 338 /* 339 * both keys will have the same cipher and MIC length, use 340 * whichever one is available 341 */ 342 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 343 if (!key) { 344 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 345 if (!key) 346 return -1; 347 } 348 349 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 350 return -1; 351 352 /* get the real key ID */ 353 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 354 /* and if that's the other key, look it up */ 355 if (keyid != key->keyidx) { 356 /* 357 * shouldn't happen since firmware checked, but be safe 358 * in case the MIC length is wrong too, for example 359 */ 360 if (keyid != 6 && keyid != 7) 361 return -1; 362 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 363 if (!key) 364 return -1; 365 } 366 367 /* Report status to mac80211 */ 368 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 369 ieee80211_key_mic_failure(key); 370 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 371 ieee80211_key_replay(key); 372 373 return -1; 374 } 375 376 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 377 struct ieee80211_hdr *hdr, 378 struct ieee80211_rx_status *stats, u16 phy_info, 379 struct iwl_rx_mpdu_desc *desc, 380 u32 pkt_flags, int queue, u8 *crypt_len) 381 { 382 u32 status = le32_to_cpu(desc->status); 383 384 /* 385 * Drop UNKNOWN frames in aggregation, unless in monitor mode 386 * (where we don't have the keys). 387 * We limit this to aggregation because in TKIP this is a valid 388 * scenario, since we may not have the (correct) TTAK (phase 1 389 * key) in the firmware. 390 */ 391 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 392 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 393 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 394 return -1; 395 396 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 397 !ieee80211_has_protected(hdr->frame_control))) 398 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status); 399 400 if (!ieee80211_has_protected(hdr->frame_control) || 401 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 402 IWL_RX_MPDU_STATUS_SEC_NONE) 403 return 0; 404 405 /* TODO: handle packets encrypted with unknown alg */ 406 407 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 408 case IWL_RX_MPDU_STATUS_SEC_CCM: 409 case IWL_RX_MPDU_STATUS_SEC_GCM: 410 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 411 /* alg is CCM: check MIC only */ 412 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 413 return -1; 414 415 stats->flag |= RX_FLAG_DECRYPTED; 416 if (pkt_flags & FH_RSCSR_RADA_EN) 417 stats->flag |= RX_FLAG_MIC_STRIPPED; 418 *crypt_len = IEEE80211_CCMP_HDR_LEN; 419 return 0; 420 case IWL_RX_MPDU_STATUS_SEC_TKIP: 421 /* Don't drop the frame and decrypt it in SW */ 422 if (!fw_has_api(&mvm->fw->ucode_capa, 423 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 424 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 425 return 0; 426 427 if (mvm->trans->trans_cfg->gen2 && 428 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 429 stats->flag |= RX_FLAG_MMIC_ERROR; 430 431 *crypt_len = IEEE80211_TKIP_IV_LEN; 432 fallthrough; 433 case IWL_RX_MPDU_STATUS_SEC_WEP: 434 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 435 return -1; 436 437 stats->flag |= RX_FLAG_DECRYPTED; 438 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 439 IWL_RX_MPDU_STATUS_SEC_WEP) 440 *crypt_len = IEEE80211_WEP_IV_LEN; 441 442 if (pkt_flags & FH_RSCSR_RADA_EN) { 443 stats->flag |= RX_FLAG_ICV_STRIPPED; 444 if (mvm->trans->trans_cfg->gen2) 445 stats->flag |= RX_FLAG_MMIC_STRIPPED; 446 } 447 448 return 0; 449 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 450 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 451 return -1; 452 stats->flag |= RX_FLAG_DECRYPTED; 453 return 0; 454 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 455 break; 456 default: 457 /* 458 * Sometimes we can get frames that were not decrypted 459 * because the firmware didn't have the keys yet. This can 460 * happen after connection where we can get multicast frames 461 * before the GTK is installed. 462 * Silently drop those frames. 463 * Also drop un-decrypted frames in monitor mode. 464 */ 465 if (!is_multicast_ether_addr(hdr->addr1) && 466 !mvm->monitor_on && net_ratelimit()) 467 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); 468 } 469 470 return 0; 471 } 472 473 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 474 struct ieee80211_sta *sta, 475 struct sk_buff *skb, 476 struct iwl_rx_packet *pkt) 477 { 478 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 479 480 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 481 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 482 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 483 484 skb->ip_summed = CHECKSUM_COMPLETE; 485 skb->csum = csum_unfold(~(__force __sum16)hwsum); 486 } 487 } else { 488 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 489 struct iwl_mvm_vif *mvmvif; 490 u16 flags = le16_to_cpu(desc->l3l4_flags); 491 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 492 IWL_RX_L3_PROTO_POS); 493 494 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 495 496 if (mvmvif->features & NETIF_F_RXCSUM && 497 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 498 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 499 l3_prot == IWL_RX_L3_TYPE_IPV6 || 500 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 501 skb->ip_summed = CHECKSUM_UNNECESSARY; 502 } 503 } 504 505 /* 506 * returns true if a packet is a duplicate and should be dropped. 507 * Updates AMSDU PN tracking info 508 */ 509 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 510 struct ieee80211_rx_status *rx_status, 511 struct ieee80211_hdr *hdr, 512 struct iwl_rx_mpdu_desc *desc) 513 { 514 struct iwl_mvm_sta *mvm_sta; 515 struct iwl_mvm_rxq_dup_data *dup_data; 516 u8 tid, sub_frame_idx; 517 518 if (WARN_ON(IS_ERR_OR_NULL(sta))) 519 return false; 520 521 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 522 dup_data = &mvm_sta->dup_data[queue]; 523 524 /* 525 * Drop duplicate 802.11 retransmissions 526 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 527 */ 528 if (ieee80211_is_ctl(hdr->frame_control) || 529 ieee80211_is_qos_nullfunc(hdr->frame_control) || 530 is_multicast_ether_addr(hdr->addr1)) { 531 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 532 return false; 533 } 534 535 if (ieee80211_is_data_qos(hdr->frame_control)) 536 /* frame has qos control */ 537 tid = ieee80211_get_tid(hdr); 538 else 539 tid = IWL_MAX_TID_COUNT; 540 541 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 542 sub_frame_idx = desc->amsdu_info & 543 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 544 545 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 546 dup_data->last_seq[tid] == hdr->seq_ctrl && 547 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 548 return true; 549 550 /* Allow same PN as the first subframe for following sub frames */ 551 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 552 sub_frame_idx > dup_data->last_sub_frame[tid] && 553 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 554 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 555 556 dup_data->last_seq[tid] = hdr->seq_ctrl; 557 dup_data->last_sub_frame[tid] = sub_frame_idx; 558 559 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 560 561 return false; 562 } 563 564 /* 565 * Returns true if sn2 - buffer_size < sn1 < sn2. 566 * To be used only in order to compare reorder buffer head with NSSN. 567 * We fully trust NSSN unless it is behind us due to reorder timeout. 568 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 569 */ 570 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 571 { 572 return ieee80211_sn_less(sn1, sn2) && 573 !ieee80211_sn_less(sn1, sn2 - buffer_size); 574 } 575 576 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 577 { 578 if (IWL_MVM_USE_NSSN_SYNC) { 579 struct iwl_mvm_nssn_sync_data notif = { 580 .baid = baid, 581 .nssn = nssn, 582 }; 583 584 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 585 ¬if, sizeof(notif)); 586 } 587 } 588 589 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 590 591 enum iwl_mvm_release_flags { 592 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 593 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 594 }; 595 596 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 597 struct ieee80211_sta *sta, 598 struct napi_struct *napi, 599 struct iwl_mvm_baid_data *baid_data, 600 struct iwl_mvm_reorder_buffer *reorder_buf, 601 u16 nssn, u32 flags) 602 { 603 struct iwl_mvm_reorder_buf_entry *entries = 604 &baid_data->entries[reorder_buf->queue * 605 baid_data->entries_per_queue]; 606 u16 ssn = reorder_buf->head_sn; 607 608 lockdep_assert_held(&reorder_buf->lock); 609 610 /* 611 * We keep the NSSN not too far behind, if we are sync'ing it and it 612 * is more than 2048 ahead of us, it must be behind us. Discard it. 613 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 614 * behind and this queue already processed packets. The next if 615 * would have caught cases where this queue would have processed less 616 * than 64 packets, but it may have processed more than 64 packets. 617 */ 618 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 619 ieee80211_sn_less(nssn, ssn)) 620 goto set_timer; 621 622 /* ignore nssn smaller than head sn - this can happen due to timeout */ 623 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 624 goto set_timer; 625 626 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 627 int index = ssn % reorder_buf->buf_size; 628 struct sk_buff_head *skb_list = &entries[index].e.frames; 629 struct sk_buff *skb; 630 631 ssn = ieee80211_sn_inc(ssn); 632 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 633 (ssn == 2048 || ssn == 0)) 634 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 635 636 /* 637 * Empty the list. Will have more than one frame for A-MSDU. 638 * Empty list is valid as well since nssn indicates frames were 639 * received. 640 */ 641 while ((skb = __skb_dequeue(skb_list))) { 642 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 643 reorder_buf->queue, 644 sta, NULL /* FIXME */); 645 reorder_buf->num_stored--; 646 } 647 } 648 reorder_buf->head_sn = nssn; 649 650 set_timer: 651 if (reorder_buf->num_stored && !reorder_buf->removed) { 652 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 653 654 while (skb_queue_empty(&entries[index].e.frames)) 655 index = (index + 1) % reorder_buf->buf_size; 656 /* modify timer to match next frame's expiration time */ 657 mod_timer(&reorder_buf->reorder_timer, 658 entries[index].e.reorder_time + 1 + 659 RX_REORDER_BUF_TIMEOUT_MQ); 660 } else { 661 del_timer(&reorder_buf->reorder_timer); 662 } 663 } 664 665 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 666 { 667 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 668 struct iwl_mvm_baid_data *baid_data = 669 iwl_mvm_baid_data_from_reorder_buf(buf); 670 struct iwl_mvm_reorder_buf_entry *entries = 671 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 672 int i; 673 u16 sn = 0, index = 0; 674 bool expired = false; 675 bool cont = false; 676 677 spin_lock(&buf->lock); 678 679 if (!buf->num_stored || buf->removed) { 680 spin_unlock(&buf->lock); 681 return; 682 } 683 684 for (i = 0; i < buf->buf_size ; i++) { 685 index = (buf->head_sn + i) % buf->buf_size; 686 687 if (skb_queue_empty(&entries[index].e.frames)) { 688 /* 689 * If there is a hole and the next frame didn't expire 690 * we want to break and not advance SN 691 */ 692 cont = false; 693 continue; 694 } 695 if (!cont && 696 !time_after(jiffies, entries[index].e.reorder_time + 697 RX_REORDER_BUF_TIMEOUT_MQ)) 698 break; 699 700 expired = true; 701 /* continue until next hole after this expired frames */ 702 cont = true; 703 sn = ieee80211_sn_add(buf->head_sn, i + 1); 704 } 705 706 if (expired) { 707 struct ieee80211_sta *sta; 708 struct iwl_mvm_sta *mvmsta; 709 u8 sta_id = baid_data->sta_id; 710 711 rcu_read_lock(); 712 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 713 mvmsta = iwl_mvm_sta_from_mac80211(sta); 714 715 /* SN is set to the last expired frame + 1 */ 716 IWL_DEBUG_HT(buf->mvm, 717 "Releasing expired frames for sta %u, sn %d\n", 718 sta_id, sn); 719 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 720 sta, baid_data->tid); 721 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 722 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 723 rcu_read_unlock(); 724 } else { 725 /* 726 * If no frame expired and there are stored frames, index is now 727 * pointing to the first unexpired frame - modify timer 728 * accordingly to this frame. 729 */ 730 mod_timer(&buf->reorder_timer, 731 entries[index].e.reorder_time + 732 1 + RX_REORDER_BUF_TIMEOUT_MQ); 733 } 734 spin_unlock(&buf->lock); 735 } 736 737 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 738 struct iwl_mvm_delba_data *data) 739 { 740 struct iwl_mvm_baid_data *ba_data; 741 struct ieee80211_sta *sta; 742 struct iwl_mvm_reorder_buffer *reorder_buf; 743 u8 baid = data->baid; 744 745 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 746 return; 747 748 rcu_read_lock(); 749 750 ba_data = rcu_dereference(mvm->baid_map[baid]); 751 if (WARN_ON_ONCE(!ba_data)) 752 goto out; 753 754 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 755 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 756 goto out; 757 758 reorder_buf = &ba_data->reorder_buf[queue]; 759 760 /* release all frames that are in the reorder buffer to the stack */ 761 spin_lock_bh(&reorder_buf->lock); 762 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 763 ieee80211_sn_add(reorder_buf->head_sn, 764 reorder_buf->buf_size), 765 0); 766 spin_unlock_bh(&reorder_buf->lock); 767 del_timer_sync(&reorder_buf->reorder_timer); 768 769 out: 770 rcu_read_unlock(); 771 } 772 773 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 774 struct napi_struct *napi, 775 u8 baid, u16 nssn, int queue, 776 u32 flags) 777 { 778 struct ieee80211_sta *sta; 779 struct iwl_mvm_reorder_buffer *reorder_buf; 780 struct iwl_mvm_baid_data *ba_data; 781 782 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 783 baid, nssn); 784 785 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 786 baid >= ARRAY_SIZE(mvm->baid_map))) 787 return; 788 789 rcu_read_lock(); 790 791 ba_data = rcu_dereference(mvm->baid_map[baid]); 792 if (!ba_data) { 793 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC), 794 "BAID %d not found in map\n", baid); 795 goto out; 796 } 797 798 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 799 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 800 goto out; 801 802 reorder_buf = &ba_data->reorder_buf[queue]; 803 804 spin_lock_bh(&reorder_buf->lock); 805 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 806 reorder_buf, nssn, flags); 807 spin_unlock_bh(&reorder_buf->lock); 808 809 out: 810 rcu_read_unlock(); 811 } 812 813 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 814 struct napi_struct *napi, int queue, 815 const struct iwl_mvm_nssn_sync_data *data) 816 { 817 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 818 data->nssn, queue, 819 IWL_MVM_RELEASE_FROM_RSS_SYNC); 820 } 821 822 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 823 struct iwl_rx_cmd_buffer *rxb, int queue) 824 { 825 struct iwl_rx_packet *pkt = rxb_addr(rxb); 826 struct iwl_rxq_sync_notification *notif; 827 struct iwl_mvm_internal_rxq_notif *internal_notif; 828 u32 len = iwl_rx_packet_payload_len(pkt); 829 830 notif = (void *)pkt->data; 831 internal_notif = (void *)notif->payload; 832 833 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 834 "invalid notification size %d (%d)", 835 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 836 return; 837 len -= sizeof(*notif) + sizeof(*internal_notif); 838 839 if (internal_notif->sync && 840 mvm->queue_sync_cookie != internal_notif->cookie) { 841 WARN_ONCE(1, "Received expired RX queue sync message\n"); 842 return; 843 } 844 845 switch (internal_notif->type) { 846 case IWL_MVM_RXQ_EMPTY: 847 WARN_ONCE(len, "invalid empty notification size %d", len); 848 break; 849 case IWL_MVM_RXQ_NOTIF_DEL_BA: 850 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 851 "invalid delba notification size %d (%d)", 852 len, (int)sizeof(struct iwl_mvm_delba_data))) 853 break; 854 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 855 break; 856 case IWL_MVM_RXQ_NSSN_SYNC: 857 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 858 "invalid nssn sync notification size %d (%d)", 859 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 860 break; 861 iwl_mvm_nssn_sync(mvm, napi, queue, 862 (void *)internal_notif->data); 863 break; 864 default: 865 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 866 } 867 868 if (internal_notif->sync) { 869 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 870 "queue sync: queue %d responded a second time!\n", 871 queue); 872 if (READ_ONCE(mvm->queue_sync_state) == 0) 873 wake_up(&mvm->rx_sync_waitq); 874 } 875 } 876 877 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 878 struct ieee80211_sta *sta, int tid, 879 struct iwl_mvm_reorder_buffer *buffer, 880 u32 reorder, u32 gp2, int queue) 881 { 882 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 883 884 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 885 /* we have a new (A-)MPDU ... */ 886 887 /* 888 * reset counter to 0 if we didn't have any oldsn in 889 * the last A-MPDU (as detected by GP2 being identical) 890 */ 891 if (!buffer->consec_oldsn_prev_drop) 892 buffer->consec_oldsn_drops = 0; 893 894 /* either way, update our tracking state */ 895 buffer->consec_oldsn_ampdu_gp2 = gp2; 896 } else if (buffer->consec_oldsn_prev_drop) { 897 /* 898 * tracking state didn't change, and we had an old SN 899 * indication before - do nothing in this case, we 900 * already noted this one down and are waiting for the 901 * next A-MPDU (by GP2) 902 */ 903 return; 904 } 905 906 /* return unless this MPDU has old SN */ 907 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 908 return; 909 910 /* update state */ 911 buffer->consec_oldsn_prev_drop = 1; 912 buffer->consec_oldsn_drops++; 913 914 /* if limit is reached, send del BA and reset state */ 915 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 916 IWL_WARN(mvm, 917 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 918 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 919 sta->addr, queue, tid); 920 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 921 buffer->consec_oldsn_prev_drop = 0; 922 buffer->consec_oldsn_drops = 0; 923 } 924 } 925 926 /* 927 * Returns true if the MPDU was buffered\dropped, false if it should be passed 928 * to upper layer. 929 */ 930 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 931 struct napi_struct *napi, 932 int queue, 933 struct ieee80211_sta *sta, 934 struct sk_buff *skb, 935 struct iwl_rx_mpdu_desc *desc) 936 { 937 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 938 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 939 struct iwl_mvm_sta *mvm_sta; 940 struct iwl_mvm_baid_data *baid_data; 941 struct iwl_mvm_reorder_buffer *buffer; 942 struct sk_buff *tail; 943 u32 reorder = le32_to_cpu(desc->reorder_data); 944 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 945 bool last_subframe = 946 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 947 u8 tid = ieee80211_get_tid(hdr); 948 u8 sub_frame_idx = desc->amsdu_info & 949 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 950 struct iwl_mvm_reorder_buf_entry *entries; 951 int index; 952 u16 nssn, sn; 953 u8 baid; 954 955 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 956 IWL_RX_MPDU_REORDER_BAID_SHIFT; 957 958 /* 959 * This also covers the case of receiving a Block Ack Request 960 * outside a BA session; we'll pass it to mac80211 and that 961 * then sends a delBA action frame. 962 * This also covers pure monitor mode, in which case we won't 963 * have any BA sessions. 964 */ 965 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 966 return false; 967 968 /* no sta yet */ 969 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 970 "Got valid BAID without a valid station assigned\n")) 971 return false; 972 973 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 974 975 /* not a data packet or a bar */ 976 if (!ieee80211_is_back_req(hdr->frame_control) && 977 (!ieee80211_is_data_qos(hdr->frame_control) || 978 is_multicast_ether_addr(hdr->addr1))) 979 return false; 980 981 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 982 return false; 983 984 baid_data = rcu_dereference(mvm->baid_map[baid]); 985 if (!baid_data) { 986 IWL_DEBUG_RX(mvm, 987 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 988 baid, reorder); 989 return false; 990 } 991 992 if (WARN(tid != baid_data->tid || 993 mvm_sta->deflink.sta_id != baid_data->sta_id, 994 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 995 baid, baid_data->sta_id, baid_data->tid, mvm_sta->deflink.sta_id, 996 tid)) 997 return false; 998 999 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 1000 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 1001 IWL_RX_MPDU_REORDER_SN_SHIFT; 1002 1003 buffer = &baid_data->reorder_buf[queue]; 1004 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 1005 1006 spin_lock_bh(&buffer->lock); 1007 1008 if (!buffer->valid) { 1009 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 1010 spin_unlock_bh(&buffer->lock); 1011 return false; 1012 } 1013 buffer->valid = true; 1014 } 1015 1016 if (ieee80211_is_back_req(hdr->frame_control)) { 1017 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1018 buffer, nssn, 0); 1019 goto drop; 1020 } 1021 1022 /* 1023 * If there was a significant jump in the nssn - adjust. 1024 * If the SN is smaller than the NSSN it might need to first go into 1025 * the reorder buffer, in which case we just release up to it and the 1026 * rest of the function will take care of storing it and releasing up to 1027 * the nssn. 1028 * This should not happen. This queue has been lagging and it should 1029 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1030 * and update the other queues. 1031 */ 1032 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1033 buffer->buf_size) || 1034 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1035 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1036 1037 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1038 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1039 } 1040 1041 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1042 rx_status->device_timestamp, queue); 1043 1044 /* drop any oudated packets */ 1045 if (ieee80211_sn_less(sn, buffer->head_sn)) 1046 goto drop; 1047 1048 /* release immediately if allowed by nssn and no stored frames */ 1049 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1050 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1051 buffer->buf_size) && 1052 (!amsdu || last_subframe)) { 1053 /* 1054 * If we crossed the 2048 or 0 SN, notify all the 1055 * queues. This is done in order to avoid having a 1056 * head_sn that lags behind for too long. When that 1057 * happens, we can get to a situation where the head_sn 1058 * is within the interval [nssn - buf_size : nssn] 1059 * which will make us think that the nssn is a packet 1060 * that we already freed because of the reordering 1061 * buffer and we will ignore it. So maintain the 1062 * head_sn somewhat updated across all the queues: 1063 * when it crosses 0 and 2048. 1064 */ 1065 if (sn == 2048 || sn == 0) 1066 iwl_mvm_sync_nssn(mvm, baid, sn); 1067 buffer->head_sn = nssn; 1068 } 1069 /* No need to update AMSDU last SN - we are moving the head */ 1070 spin_unlock_bh(&buffer->lock); 1071 return false; 1072 } 1073 1074 /* 1075 * release immediately if there are no stored frames, and the sn is 1076 * equal to the head. 1077 * This can happen due to reorder timer, where NSSN is behind head_sn. 1078 * When we released everything, and we got the next frame in the 1079 * sequence, according to the NSSN we can't release immediately, 1080 * while technically there is no hole and we can move forward. 1081 */ 1082 if (!buffer->num_stored && sn == buffer->head_sn) { 1083 if (!amsdu || last_subframe) { 1084 if (sn == 2048 || sn == 0) 1085 iwl_mvm_sync_nssn(mvm, baid, sn); 1086 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1087 } 1088 /* No need to update AMSDU last SN - we are moving the head */ 1089 spin_unlock_bh(&buffer->lock); 1090 return false; 1091 } 1092 1093 index = sn % buffer->buf_size; 1094 1095 /* 1096 * Check if we already stored this frame 1097 * As AMSDU is either received or not as whole, logic is simple: 1098 * If we have frames in that position in the buffer and the last frame 1099 * originated from AMSDU had a different SN then it is a retransmission. 1100 * If it is the same SN then if the subframe index is incrementing it 1101 * is the same AMSDU - otherwise it is a retransmission. 1102 */ 1103 tail = skb_peek_tail(&entries[index].e.frames); 1104 if (tail && !amsdu) 1105 goto drop; 1106 else if (tail && (sn != buffer->last_amsdu || 1107 buffer->last_sub_index >= sub_frame_idx)) 1108 goto drop; 1109 1110 /* put in reorder buffer */ 1111 __skb_queue_tail(&entries[index].e.frames, skb); 1112 buffer->num_stored++; 1113 entries[index].e.reorder_time = jiffies; 1114 1115 if (amsdu) { 1116 buffer->last_amsdu = sn; 1117 buffer->last_sub_index = sub_frame_idx; 1118 } 1119 1120 /* 1121 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1122 * The reason is that NSSN advances on the first sub-frame, and may 1123 * cause the reorder buffer to advance before all the sub-frames arrive. 1124 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1125 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1126 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1127 * already ahead and it will be dropped. 1128 * If the last sub-frame is not on this queue - we will get frame 1129 * release notification with up to date NSSN. 1130 */ 1131 if (!amsdu || last_subframe) 1132 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1133 buffer, nssn, 1134 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1135 1136 spin_unlock_bh(&buffer->lock); 1137 return true; 1138 1139 drop: 1140 kfree_skb(skb); 1141 spin_unlock_bh(&buffer->lock); 1142 return true; 1143 } 1144 1145 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1146 u32 reorder_data, u8 baid) 1147 { 1148 unsigned long now = jiffies; 1149 unsigned long timeout; 1150 struct iwl_mvm_baid_data *data; 1151 1152 rcu_read_lock(); 1153 1154 data = rcu_dereference(mvm->baid_map[baid]); 1155 if (!data) { 1156 IWL_DEBUG_RX(mvm, 1157 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1158 baid, reorder_data); 1159 goto out; 1160 } 1161 1162 if (!data->timeout) 1163 goto out; 1164 1165 timeout = data->timeout; 1166 /* 1167 * Do not update last rx all the time to avoid cache bouncing 1168 * between the rx queues. 1169 * Update it every timeout. Worst case is the session will 1170 * expire after ~ 2 * timeout, which doesn't matter that much. 1171 */ 1172 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1173 /* Update is atomic */ 1174 data->last_rx = now; 1175 1176 out: 1177 rcu_read_unlock(); 1178 } 1179 1180 static void iwl_mvm_flip_address(u8 *addr) 1181 { 1182 int i; 1183 u8 mac_addr[ETH_ALEN]; 1184 1185 for (i = 0; i < ETH_ALEN; i++) 1186 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1187 ether_addr_copy(addr, mac_addr); 1188 } 1189 1190 struct iwl_mvm_rx_phy_data { 1191 enum iwl_rx_phy_info_type info_type; 1192 __le32 d0, d1, d2, d3, eht_d4, d5; 1193 __le16 d4; 1194 bool with_data; 1195 bool first_subframe; 1196 __le32 rx_vec[4]; 1197 1198 u32 rate_n_flags; 1199 u32 gp2_on_air_rise; 1200 u16 phy_info; 1201 u8 energy_a, energy_b; 1202 u8 channel; 1203 }; 1204 1205 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1206 struct iwl_mvm_rx_phy_data *phy_data, 1207 struct ieee80211_radiotap_he_mu *he_mu) 1208 { 1209 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1210 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1211 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1212 u32 rate_n_flags = phy_data->rate_n_flags; 1213 1214 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1215 he_mu->flags1 |= 1216 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1217 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1218 1219 he_mu->flags1 |= 1220 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1221 phy_data4), 1222 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1223 1224 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1225 phy_data2); 1226 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1227 phy_data3); 1228 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1229 phy_data2); 1230 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1231 phy_data3); 1232 } 1233 1234 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1235 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1236 he_mu->flags1 |= 1237 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1238 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1239 1240 he_mu->flags2 |= 1241 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1242 phy_data4), 1243 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1244 1245 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1246 phy_data2); 1247 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1248 phy_data3); 1249 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1250 phy_data2); 1251 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1252 phy_data3); 1253 } 1254 } 1255 1256 static void 1257 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1258 struct ieee80211_radiotap_he *he, 1259 struct ieee80211_radiotap_he_mu *he_mu, 1260 struct ieee80211_rx_status *rx_status) 1261 { 1262 /* 1263 * Unfortunately, we have to leave the mac80211 data 1264 * incorrect for the case that we receive an HE-MU 1265 * transmission and *don't* have the HE phy data (due 1266 * to the bits being used for TSF). This shouldn't 1267 * happen though as management frames where we need 1268 * the TSF/timers are not be transmitted in HE-MU. 1269 */ 1270 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1271 u32 rate_n_flags = phy_data->rate_n_flags; 1272 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1273 u8 offs = 0; 1274 1275 rx_status->bw = RATE_INFO_BW_HE_RU; 1276 1277 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1278 1279 switch (ru) { 1280 case 0 ... 36: 1281 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1282 offs = ru; 1283 break; 1284 case 37 ... 52: 1285 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1286 offs = ru - 37; 1287 break; 1288 case 53 ... 60: 1289 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1290 offs = ru - 53; 1291 break; 1292 case 61 ... 64: 1293 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1294 offs = ru - 61; 1295 break; 1296 case 65 ... 66: 1297 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1298 offs = ru - 65; 1299 break; 1300 case 67: 1301 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1302 break; 1303 case 68: 1304 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1305 break; 1306 } 1307 he->data2 |= le16_encode_bits(offs, 1308 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1309 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1310 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1311 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1312 he->data2 |= 1313 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1314 1315 #define CHECK_BW(bw) \ 1316 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1317 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1318 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1319 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1320 CHECK_BW(20); 1321 CHECK_BW(40); 1322 CHECK_BW(80); 1323 CHECK_BW(160); 1324 1325 if (he_mu) 1326 he_mu->flags2 |= 1327 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1328 rate_n_flags), 1329 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1330 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1331 he->data6 |= 1332 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1333 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1334 rate_n_flags), 1335 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1336 } 1337 1338 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1339 struct iwl_mvm_rx_phy_data *phy_data, 1340 struct ieee80211_radiotap_he *he, 1341 struct ieee80211_radiotap_he_mu *he_mu, 1342 struct ieee80211_rx_status *rx_status, 1343 int queue) 1344 { 1345 switch (phy_data->info_type) { 1346 case IWL_RX_PHY_INFO_TYPE_NONE: 1347 case IWL_RX_PHY_INFO_TYPE_CCK: 1348 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1349 case IWL_RX_PHY_INFO_TYPE_HT: 1350 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1351 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1352 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1353 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1354 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1355 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1356 return; 1357 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1358 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1359 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1360 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1361 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1362 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1363 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1364 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1365 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1366 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1367 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1368 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1369 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1370 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1371 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1372 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1373 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1374 fallthrough; 1375 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1376 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1377 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1378 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1379 /* HE common */ 1380 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1381 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1382 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1383 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1384 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1385 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1386 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1387 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1388 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1389 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1390 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1391 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1392 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1393 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1394 IWL_RX_PHY_DATA0_HE_UPLINK), 1395 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1396 } 1397 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1398 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1399 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1400 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1401 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1402 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1403 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1404 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1405 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1406 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1407 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1408 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1409 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1410 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1411 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1412 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1413 IWL_RX_PHY_DATA0_HE_DOPPLER), 1414 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1415 break; 1416 } 1417 1418 switch (phy_data->info_type) { 1419 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1420 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1421 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1422 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1423 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1424 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1425 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1426 break; 1427 default: 1428 /* nothing here */ 1429 break; 1430 } 1431 1432 switch (phy_data->info_type) { 1433 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1434 he_mu->flags1 |= 1435 le16_encode_bits(le16_get_bits(phy_data->d4, 1436 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1437 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1438 he_mu->flags1 |= 1439 le16_encode_bits(le16_get_bits(phy_data->d4, 1440 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1441 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1442 he_mu->flags2 |= 1443 le16_encode_bits(le16_get_bits(phy_data->d4, 1444 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1445 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1446 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1447 fallthrough; 1448 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1449 he_mu->flags2 |= 1450 le16_encode_bits(le32_get_bits(phy_data->d1, 1451 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1452 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1453 he_mu->flags2 |= 1454 le16_encode_bits(le32_get_bits(phy_data->d1, 1455 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1456 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1457 fallthrough; 1458 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1459 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1460 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1461 break; 1462 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1463 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1464 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1465 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1466 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1467 break; 1468 default: 1469 /* nothing */ 1470 break; 1471 } 1472 } 1473 1474 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 1475 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 1476 1477 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 1478 typeof(enc_bits) _enc_bits = enc_bits; \ 1479 typeof(usig) _usig = usig; \ 1480 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 1481 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 1482 } while (0) 1483 1484 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1485 eht->data[(rt_data)] |= \ 1486 (cpu_to_le32 \ 1487 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 1488 LE32_DEC_ENC(data ## fw_data, \ 1489 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 1490 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 1491 1492 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1493 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 1494 1495 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 1496 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 1497 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 1498 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 1499 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 1500 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 1501 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 1502 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 1503 1504 #define IWL_RX_RU_DATA_A1 2 1505 #define IWL_RX_RU_DATA_A2 2 1506 #define IWL_RX_RU_DATA_B1 2 1507 #define IWL_RX_RU_DATA_B2 3 1508 #define IWL_RX_RU_DATA_C1 3 1509 #define IWL_RX_RU_DATA_C2 3 1510 #define IWL_RX_RU_DATA_D1 4 1511 #define IWL_RX_RU_DATA_D2 4 1512 1513 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ 1514 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 1515 rt_ru, \ 1516 IWL_RX_RU_DATA_ ## fw_ru, \ 1517 fw_ru) 1518 1519 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, 1520 struct iwl_mvm_rx_phy_data *phy_data, 1521 struct ieee80211_rx_status *rx_status, 1522 struct ieee80211_radiotap_eht *eht, 1523 struct ieee80211_radiotap_eht_usig *usig) 1524 { 1525 if (phy_data->with_data) { 1526 __le32 data1 = phy_data->d1; 1527 __le32 data2 = phy_data->d2; 1528 __le32 data3 = phy_data->d3; 1529 __le32 data4 = phy_data->eht_d4; 1530 __le32 data5 = phy_data->d5; 1531 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 1532 1533 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1534 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1535 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1536 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1537 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 1538 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1539 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, 1540 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 1541 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1542 IWL_MVM_ENC_USIG_VALUE_MASK 1543 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 1544 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1545 1546 eht->user_info[0] |= 1547 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 1548 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 1549 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 1550 1551 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 1552 eht->data[7] |= LE32_DEC_ENC 1553 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 1554 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 1555 1556 /* 1557 * Hardware labels the content channels/RU allocation values 1558 * as follows: 1559 * Content Channel 1 Content Channel 2 1560 * 20 MHz: A1 1561 * 40 MHz: A1 B1 1562 * 80 MHz: A1 C1 B1 D1 1563 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 1564 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 1565 * 1566 * However firmware can only give us A1-D2, so the higher 1567 * frequencies are missing. 1568 */ 1569 1570 switch (phy_bw) { 1571 case RATE_MCS_CHAN_WIDTH_320: 1572 /* additional values are missing in RX metadata */ 1573 case RATE_MCS_CHAN_WIDTH_160: 1574 /* content channel 1 */ 1575 IWL_MVM_ENC_EHT_RU(1_2_1, A2); 1576 IWL_MVM_ENC_EHT_RU(1_2_2, C2); 1577 /* content channel 2 */ 1578 IWL_MVM_ENC_EHT_RU(2_2_1, B2); 1579 IWL_MVM_ENC_EHT_RU(2_2_2, D2); 1580 fallthrough; 1581 case RATE_MCS_CHAN_WIDTH_80: 1582 /* content channel 1 */ 1583 IWL_MVM_ENC_EHT_RU(1_1_2, C1); 1584 /* content channel 2 */ 1585 IWL_MVM_ENC_EHT_RU(2_1_2, D1); 1586 fallthrough; 1587 case RATE_MCS_CHAN_WIDTH_40: 1588 /* content channel 2 */ 1589 IWL_MVM_ENC_EHT_RU(2_1_1, B1); 1590 fallthrough; 1591 case RATE_MCS_CHAN_WIDTH_20: 1592 IWL_MVM_ENC_EHT_RU(1_1_1, A1); 1593 break; 1594 } 1595 } else { 1596 __le32 usig_a1 = phy_data->rx_vec[0]; 1597 __le32 usig_a2 = phy_data->rx_vec[1]; 1598 1599 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1600 IWL_RX_USIG_A1_DISREGARD, 1601 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 1602 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1603 IWL_RX_USIG_A1_VALIDATE, 1604 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 1605 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1606 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1607 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1608 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1609 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1610 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 1611 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1612 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 1613 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1614 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1615 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 1616 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 1617 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1618 IWL_RX_USIG_A2_EHT_SIG_MCS, 1619 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1620 IWL_MVM_ENC_USIG_VALUE_MASK 1621 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 1622 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1623 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1624 IWL_RX_USIG_A2_EHT_CRC_OK, 1625 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 1626 } 1627 } 1628 1629 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, 1630 struct iwl_mvm_rx_phy_data *phy_data, 1631 struct ieee80211_rx_status *rx_status, 1632 struct ieee80211_radiotap_eht *eht, 1633 struct ieee80211_radiotap_eht_usig *usig) 1634 { 1635 if (phy_data->with_data) { 1636 __le32 data5 = phy_data->d5; 1637 1638 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1639 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1640 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1641 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1642 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 1643 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1644 1645 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1646 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 1647 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1648 } else { 1649 __le32 usig_a1 = phy_data->rx_vec[0]; 1650 __le32 usig_a2 = phy_data->rx_vec[1]; 1651 1652 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1653 IWL_RX_USIG_A1_DISREGARD, 1654 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 1655 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1656 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1657 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1658 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1659 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1660 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 1661 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1662 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 1663 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1664 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1665 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 1666 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1667 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1668 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 1669 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 1670 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1671 IWL_RX_USIG_A2_EHT_CRC_OK, 1672 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 1673 } 1674 } 1675 1676 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, 1677 struct ieee80211_rx_status *rx_status, 1678 struct ieee80211_radiotap_eht *eht) 1679 { 1680 u32 ru = le32_get_bits(eht->data[8], 1681 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1682 enum nl80211_eht_ru_alloc nl_ru; 1683 1684 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 1685 * in an EHT variant User Info field 1686 */ 1687 1688 switch (ru) { 1689 case 0 ... 36: 1690 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 1691 break; 1692 case 37 ... 52: 1693 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 1694 break; 1695 case 53 ... 60: 1696 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 1697 break; 1698 case 61 ... 64: 1699 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 1700 break; 1701 case 65 ... 66: 1702 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 1703 break; 1704 case 67: 1705 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 1706 break; 1707 case 68: 1708 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 1709 break; 1710 case 69: 1711 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 1712 break; 1713 case 70 ... 81: 1714 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 1715 break; 1716 case 82 ... 89: 1717 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 1718 break; 1719 case 90 ... 93: 1720 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 1721 break; 1722 case 94 ... 95: 1723 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 1724 break; 1725 case 96 ... 99: 1726 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 1727 break; 1728 case 100 ... 103: 1729 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 1730 break; 1731 case 104: 1732 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 1733 break; 1734 case 105 ... 106: 1735 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 1736 break; 1737 default: 1738 return; 1739 } 1740 1741 rx_status->bw = RATE_INFO_BW_EHT_RU; 1742 rx_status->eht.ru = nl_ru; 1743 } 1744 1745 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, 1746 struct iwl_mvm_rx_phy_data *phy_data, 1747 struct ieee80211_rx_status *rx_status, 1748 struct ieee80211_radiotap_eht *eht, 1749 struct ieee80211_radiotap_eht_usig *usig) 1750 1751 { 1752 __le32 data0 = phy_data->d0; 1753 __le32 data1 = phy_data->d1; 1754 __le32 usig_a1 = phy_data->rx_vec[0]; 1755 u8 info_type = phy_data->info_type; 1756 1757 /* Not in EHT range */ 1758 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 1759 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 1760 return; 1761 1762 usig->common |= cpu_to_le32 1763 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 1764 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 1765 if (phy_data->with_data) { 1766 usig->common |= LE32_DEC_ENC(data0, 1767 IWL_RX_PHY_DATA0_EHT_UPLINK, 1768 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1769 usig->common |= LE32_DEC_ENC(data0, 1770 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 1771 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1772 } else { 1773 usig->common |= LE32_DEC_ENC(usig_a1, 1774 IWL_RX_USIG_A1_UL_FLAG, 1775 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1776 usig->common |= LE32_DEC_ENC(usig_a1, 1777 IWL_RX_USIG_A1_BSS_COLOR, 1778 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1779 } 1780 1781 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 1782 eht->data[0] |= LE32_DEC_ENC(data0, 1783 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 1784 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 1785 1786 /* All RU allocating size/index is in TB format */ 1787 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 1788 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 1789 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 1790 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_B0, 1791 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 1792 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_B1_B7_ALLOC, 1793 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1794 1795 iwl_mvm_decode_eht_ru(mvm, rx_status, eht); 1796 1797 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 1798 * which is on only in case of monitor mode so no need to check monitor 1799 * mode 1800 */ 1801 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 1802 eht->data[1] |= 1803 le32_encode_bits(mvm->monitor_p80, 1804 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 1805 1806 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 1807 if (phy_data->with_data) 1808 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 1809 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1810 else 1811 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 1812 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1813 1814 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 1815 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 1816 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 1817 1818 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 1819 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 1820 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 1821 1822 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 1823 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 1824 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 1825 1826 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 1827 1828 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 1829 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 1830 1831 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 1832 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 1833 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 1834 1835 /* 1836 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 1837 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 1838 */ 1839 1840 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 1841 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 1842 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 1843 1844 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 1845 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 1846 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); 1847 1848 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 1849 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 1850 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); 1851 } 1852 1853 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, 1854 struct iwl_mvm_rx_phy_data *phy_data, 1855 int queue) 1856 { 1857 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1858 1859 struct ieee80211_radiotap_eht *eht; 1860 struct ieee80211_radiotap_eht_usig *usig; 1861 size_t eht_len = sizeof(*eht); 1862 1863 u32 rate_n_flags = phy_data->rate_n_flags; 1864 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1865 /* EHT and HE have the same valus for LTF */ 1866 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1867 u16 phy_info = phy_data->phy_info; 1868 u32 bw; 1869 1870 /* u32 for 1 user_info */ 1871 if (phy_data->with_data) 1872 eht_len += sizeof(u32); 1873 1874 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1875 1876 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1877 sizeof(*usig)); 1878 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1879 usig->common |= 1880 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1881 1882 /* specific handling for 320MHz */ 1883 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); 1884 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1885 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, 1886 le32_to_cpu(phy_data->d0)); 1887 1888 usig->common |= cpu_to_le32 1889 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1890 1891 /* report the AMPDU-EOF bit on single frames */ 1892 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1893 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1894 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1895 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1896 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1897 } 1898 1899 /* update aggregation data for monitor sake on default queue */ 1900 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1901 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1902 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1903 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1904 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1905 } 1906 1907 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1908 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); 1909 1910 #define CHECK_TYPE(F) \ 1911 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1912 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1913 1914 CHECK_TYPE(SU); 1915 CHECK_TYPE(EXT_SU); 1916 CHECK_TYPE(MU); 1917 CHECK_TYPE(TRIG); 1918 1919 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { 1920 case 0: 1921 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1922 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1923 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1924 } else { 1925 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1926 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1927 } 1928 break; 1929 case 1: 1930 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1931 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1932 break; 1933 case 2: 1934 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1935 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1936 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1937 else 1938 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1939 break; 1940 case 3: 1941 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1942 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1943 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1944 } 1945 break; 1946 default: 1947 /* nothing here */ 1948 break; 1949 } 1950 1951 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1952 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1953 eht->data[0] |= cpu_to_le32 1954 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1955 ltf) | 1956 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1957 rx_status->eht.gi)); 1958 } 1959 1960 1961 if (!phy_data->with_data) { 1962 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1963 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 1964 eht->data[7] |= 1965 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 1966 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 1967 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 1968 if (rate_n_flags & RATE_MCS_BF_MSK) 1969 eht->data[7] |= 1970 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 1971 } else { 1972 eht->user_info[0] |= 1973 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 1974 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 1975 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 1976 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 1977 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 1978 1979 if (rate_n_flags & RATE_MCS_BF_MSK) 1980 eht->user_info[0] |= 1981 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 1982 1983 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1984 eht->user_info[0] |= 1985 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 1986 1987 eht->user_info[0] |= cpu_to_le32 1988 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 1989 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, 1990 rate_n_flags)) | 1991 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 1992 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); 1993 } 1994 } 1995 1996 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1997 struct iwl_mvm_rx_phy_data *phy_data, 1998 int queue) 1999 { 2000 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2001 struct ieee80211_radiotap_he *he = NULL; 2002 struct ieee80211_radiotap_he_mu *he_mu = NULL; 2003 u32 rate_n_flags = phy_data->rate_n_flags; 2004 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 2005 u8 ltf; 2006 static const struct ieee80211_radiotap_he known = { 2007 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 2008 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 2009 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 2010 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 2011 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 2012 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 2013 }; 2014 static const struct ieee80211_radiotap_he_mu mu_known = { 2015 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 2016 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 2017 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 2018 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 2019 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 2020 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 2021 }; 2022 u16 phy_info = phy_data->phy_info; 2023 2024 he = skb_put_data(skb, &known, sizeof(known)); 2025 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 2026 2027 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 2028 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 2029 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 2030 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 2031 } 2032 2033 /* report the AMPDU-EOF bit on single frames */ 2034 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2035 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2036 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2037 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 2038 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2039 } 2040 2041 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2042 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 2043 queue); 2044 2045 /* update aggregation data for monitor sake on default queue */ 2046 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 2047 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 2048 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2049 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 2050 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2051 } 2052 2053 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 2054 rate_n_flags & RATE_MCS_HE_106T_MSK) { 2055 rx_status->bw = RATE_INFO_BW_HE_RU; 2056 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 2057 } 2058 2059 /* actually data is filled in mac80211 */ 2060 if (he_type == RATE_MCS_HE_TYPE_SU || 2061 he_type == RATE_MCS_HE_TYPE_EXT_SU) 2062 he->data1 |= 2063 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 2064 2065 #define CHECK_TYPE(F) \ 2066 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 2067 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 2068 2069 CHECK_TYPE(SU); 2070 CHECK_TYPE(EXT_SU); 2071 CHECK_TYPE(MU); 2072 CHECK_TYPE(TRIG); 2073 2074 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 2075 2076 if (rate_n_flags & RATE_MCS_BF_MSK) 2077 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 2078 2079 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 2080 RATE_MCS_HE_GI_LTF_POS) { 2081 case 0: 2082 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2083 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2084 else 2085 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2086 if (he_type == RATE_MCS_HE_TYPE_MU) 2087 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2088 else 2089 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 2090 break; 2091 case 1: 2092 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2093 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2094 else 2095 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2096 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2097 break; 2098 case 2: 2099 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 2100 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2101 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2102 } else { 2103 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2104 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2105 } 2106 break; 2107 case 3: 2108 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2109 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2110 break; 2111 case 4: 2112 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2113 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2114 break; 2115 default: 2116 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 2117 } 2118 2119 he->data5 |= le16_encode_bits(ltf, 2120 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 2121 } 2122 2123 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 2124 struct iwl_mvm_rx_phy_data *phy_data) 2125 { 2126 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2127 struct ieee80211_radiotap_lsig *lsig; 2128 2129 switch (phy_data->info_type) { 2130 case IWL_RX_PHY_INFO_TYPE_HT: 2131 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 2132 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 2133 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 2134 case IWL_RX_PHY_INFO_TYPE_HE_SU: 2135 case IWL_RX_PHY_INFO_TYPE_HE_MU: 2136 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 2137 case IWL_RX_PHY_INFO_TYPE_HE_TB: 2138 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 2139 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 2140 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 2141 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 2142 lsig = skb_put(skb, sizeof(*lsig)); 2143 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 2144 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 2145 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 2146 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 2147 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 2148 break; 2149 default: 2150 break; 2151 } 2152 } 2153 2154 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 2155 { 2156 switch (phy_band) { 2157 case PHY_BAND_24: 2158 return NL80211_BAND_2GHZ; 2159 case PHY_BAND_5: 2160 return NL80211_BAND_5GHZ; 2161 case PHY_BAND_6: 2162 return NL80211_BAND_6GHZ; 2163 default: 2164 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 2165 return NL80211_BAND_5GHZ; 2166 } 2167 } 2168 2169 struct iwl_rx_sta_csa { 2170 bool all_sta_unblocked; 2171 struct ieee80211_vif *vif; 2172 }; 2173 2174 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 2175 { 2176 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2177 struct iwl_rx_sta_csa *rx_sta_csa = data; 2178 2179 if (mvmsta->vif != rx_sta_csa->vif) 2180 return; 2181 2182 if (mvmsta->disable_tx) 2183 rx_sta_csa->all_sta_unblocked = false; 2184 } 2185 2186 /* 2187 * Note: requires also rx_status->band to be prefilled, as well 2188 * as phy_data (apart from phy_data->info_type) 2189 */ 2190 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 2191 struct sk_buff *skb, 2192 struct iwl_mvm_rx_phy_data *phy_data, 2193 int queue) 2194 { 2195 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2196 u32 rate_n_flags = phy_data->rate_n_flags; 2197 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 2198 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2199 bool is_sgi; 2200 2201 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 2202 2203 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2204 phy_data->info_type = 2205 le32_get_bits(phy_data->d1, 2206 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 2207 2208 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2209 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2210 case RATE_MCS_CHAN_WIDTH_20: 2211 break; 2212 case RATE_MCS_CHAN_WIDTH_40: 2213 rx_status->bw = RATE_INFO_BW_40; 2214 break; 2215 case RATE_MCS_CHAN_WIDTH_80: 2216 rx_status->bw = RATE_INFO_BW_80; 2217 break; 2218 case RATE_MCS_CHAN_WIDTH_160: 2219 rx_status->bw = RATE_INFO_BW_160; 2220 break; 2221 case RATE_MCS_CHAN_WIDTH_320: 2222 rx_status->bw = RATE_INFO_BW_320; 2223 break; 2224 } 2225 2226 /* must be before L-SIG data */ 2227 if (format == RATE_MCS_HE_MSK) 2228 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 2229 2230 iwl_mvm_decode_lsig(skb, phy_data); 2231 2232 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 2233 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 2234 rx_status->band); 2235 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, 2236 phy_data->energy_a, phy_data->energy_b); 2237 2238 /* using TLV format and must be after all fixed len fields */ 2239 if (format == RATE_MCS_EHT_MSK) 2240 iwl_mvm_rx_eht(mvm, skb, phy_data, queue); 2241 2242 if (unlikely(mvm->monitor_on)) 2243 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 2244 2245 is_sgi = format == RATE_MCS_HE_MSK ? 2246 iwl_he_is_sgi(rate_n_flags) : 2247 rate_n_flags & RATE_MCS_SGI_MSK; 2248 2249 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 2250 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2251 2252 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2253 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2254 2255 switch (format) { 2256 case RATE_MCS_VHT_MSK: 2257 rx_status->encoding = RX_ENC_VHT; 2258 break; 2259 case RATE_MCS_HE_MSK: 2260 rx_status->encoding = RX_ENC_HE; 2261 rx_status->he_dcm = 2262 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 2263 break; 2264 case RATE_MCS_EHT_MSK: 2265 rx_status->encoding = RX_ENC_EHT; 2266 break; 2267 } 2268 2269 switch (format) { 2270 case RATE_MCS_HT_MSK: 2271 rx_status->encoding = RX_ENC_HT; 2272 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2273 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2274 break; 2275 case RATE_MCS_VHT_MSK: 2276 case RATE_MCS_HE_MSK: 2277 case RATE_MCS_EHT_MSK: 2278 rx_status->nss = 2279 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 2280 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2281 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2282 break; 2283 default: { 2284 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2285 rx_status->band); 2286 2287 rx_status->rate_idx = rate; 2288 2289 if ((rate < 0 || rate > 0xFF)) { 2290 rx_status->rate_idx = 0; 2291 if (net_ratelimit()) 2292 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 2293 rate_n_flags, rx_status->band); 2294 } 2295 2296 break; 2297 } 2298 } 2299 } 2300 2301 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 2302 struct iwl_rx_cmd_buffer *rxb, int queue) 2303 { 2304 struct ieee80211_rx_status *rx_status; 2305 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2306 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 2307 struct ieee80211_hdr *hdr; 2308 u32 len; 2309 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2310 struct ieee80211_sta *sta = NULL; 2311 struct ieee80211_link_sta *link_sta = NULL; 2312 struct sk_buff *skb; 2313 u8 crypt_len = 0; 2314 size_t desc_size; 2315 struct iwl_mvm_rx_phy_data phy_data = {}; 2316 u32 format; 2317 2318 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2319 return; 2320 2321 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 2322 desc_size = sizeof(*desc); 2323 else 2324 desc_size = IWL_RX_DESC_SIZE_V1; 2325 2326 if (unlikely(pkt_len < desc_size)) { 2327 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 2328 return; 2329 } 2330 2331 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 2332 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 2333 phy_data.channel = desc->v3.channel; 2334 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 2335 phy_data.energy_a = desc->v3.energy_a; 2336 phy_data.energy_b = desc->v3.energy_b; 2337 2338 phy_data.d0 = desc->v3.phy_data0; 2339 phy_data.d1 = desc->v3.phy_data1; 2340 phy_data.d2 = desc->v3.phy_data2; 2341 phy_data.d3 = desc->v3.phy_data3; 2342 phy_data.eht_d4 = desc->phy_eht_data4; 2343 phy_data.d5 = desc->v3.phy_data5; 2344 } else { 2345 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 2346 phy_data.channel = desc->v1.channel; 2347 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 2348 phy_data.energy_a = desc->v1.energy_a; 2349 phy_data.energy_b = desc->v1.energy_b; 2350 2351 phy_data.d0 = desc->v1.phy_data0; 2352 phy_data.d1 = desc->v1.phy_data1; 2353 phy_data.d2 = desc->v1.phy_data2; 2354 phy_data.d3 = desc->v1.phy_data3; 2355 } 2356 2357 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 2358 REPLY_RX_MPDU_CMD, 0) < 4) { 2359 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2360 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 2361 phy_data.rate_n_flags); 2362 } 2363 2364 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2365 2366 len = le16_to_cpu(desc->mpdu_len); 2367 2368 if (unlikely(len + desc_size > pkt_len)) { 2369 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 2370 return; 2371 } 2372 2373 phy_data.with_data = true; 2374 phy_data.phy_info = le16_to_cpu(desc->phy_info); 2375 phy_data.d4 = desc->phy_data4; 2376 2377 hdr = (void *)(pkt->data + desc_size); 2378 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2379 * ieee80211_hdr pulled. 2380 */ 2381 skb = alloc_skb(128, GFP_ATOMIC); 2382 if (!skb) { 2383 IWL_ERR(mvm, "alloc_skb failed\n"); 2384 return; 2385 } 2386 2387 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 2388 /* 2389 * If the device inserted padding it means that (it thought) 2390 * the 802.11 header wasn't a multiple of 4 bytes long. In 2391 * this case, reserve two bytes at the start of the SKB to 2392 * align the payload properly in case we end up copying it. 2393 */ 2394 skb_reserve(skb, 2); 2395 } 2396 2397 rx_status = IEEE80211_SKB_RXCB(skb); 2398 2399 /* 2400 * Keep packets with CRC errors (and with overrun) for monitor mode 2401 * (otherwise the firmware discards them) but mark them as bad. 2402 */ 2403 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 2404 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 2405 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 2406 le32_to_cpu(desc->status)); 2407 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2408 } 2409 2410 /* set the preamble flag if appropriate */ 2411 if (format == RATE_MCS_CCK_MSK && 2412 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 2413 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 2414 2415 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 2416 u64 tsf_on_air_rise; 2417 2418 if (mvm->trans->trans_cfg->device_family >= 2419 IWL_DEVICE_FAMILY_AX210) 2420 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 2421 else 2422 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 2423 2424 rx_status->mactime = tsf_on_air_rise; 2425 /* TSF as indicated by the firmware is at INA time */ 2426 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 2427 } 2428 2429 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 2430 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 2431 2432 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 2433 } else { 2434 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2435 NL80211_BAND_2GHZ; 2436 } 2437 2438 /* update aggregation data for monitor sake on default queue */ 2439 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2440 bool toggle_bit; 2441 2442 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 2443 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2444 /* 2445 * Toggle is switched whenever new aggregation starts. Make 2446 * sure ampdu_reference is never 0 so we can later use it to 2447 * see if the frame was really part of an A-MPDU or not. 2448 */ 2449 if (toggle_bit != mvm->ampdu_toggle) { 2450 mvm->ampdu_ref++; 2451 if (mvm->ampdu_ref == 0) 2452 mvm->ampdu_ref++; 2453 mvm->ampdu_toggle = toggle_bit; 2454 phy_data.first_subframe = true; 2455 } 2456 rx_status->ampdu_reference = mvm->ampdu_ref; 2457 } 2458 2459 rcu_read_lock(); 2460 2461 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 2462 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 2463 2464 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 2465 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 2466 if (IS_ERR(sta)) 2467 sta = NULL; 2468 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]); 2469 } 2470 } else if (!is_multicast_ether_addr(hdr->addr2)) { 2471 /* 2472 * This is fine since we prevent two stations with the same 2473 * address from being added. 2474 */ 2475 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 2476 } 2477 2478 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 2479 le32_to_cpu(pkt->len_n_flags), queue, 2480 &crypt_len)) { 2481 kfree_skb(skb); 2482 goto out; 2483 } 2484 2485 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2486 2487 if (sta) { 2488 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2489 struct ieee80211_vif *tx_blocked_vif = 2490 rcu_dereference(mvm->csa_tx_blocked_vif); 2491 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 2492 IWL_RX_MPDU_REORDER_BAID_MASK) >> 2493 IWL_RX_MPDU_REORDER_BAID_SHIFT); 2494 struct iwl_fw_dbg_trigger_tlv *trig; 2495 struct ieee80211_vif *vif = mvmsta->vif; 2496 2497 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 2498 !is_multicast_ether_addr(hdr->addr1) && 2499 ieee80211_is_data(hdr->frame_control) && 2500 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 2501 schedule_delayed_work(&mvm->tcm.work, 0); 2502 2503 /* 2504 * We have tx blocked stations (with CS bit). If we heard 2505 * frames from a blocked station on a new channel we can 2506 * TX to it again. 2507 */ 2508 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 2509 struct iwl_mvm_vif *mvmvif = 2510 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 2511 struct iwl_rx_sta_csa rx_sta_csa = { 2512 .all_sta_unblocked = true, 2513 .vif = tx_blocked_vif, 2514 }; 2515 2516 if (mvmvif->csa_target_freq == rx_status->freq) 2517 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 2518 false); 2519 ieee80211_iterate_stations_atomic(mvm->hw, 2520 iwl_mvm_rx_get_sta_block_tx, 2521 &rx_sta_csa); 2522 2523 if (rx_sta_csa.all_sta_unblocked) { 2524 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 2525 /* Unblock BCAST / MCAST station */ 2526 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 2527 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork); 2528 } 2529 } 2530 2531 rs_update_last_rssi(mvm, mvmsta, rx_status); 2532 2533 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 2534 ieee80211_vif_to_wdev(vif), 2535 FW_DBG_TRIGGER_RSSI); 2536 2537 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 2538 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 2539 s32 rssi; 2540 2541 rssi_trig = (void *)trig->data; 2542 rssi = le32_to_cpu(rssi_trig->rssi); 2543 2544 if (rx_status->signal < rssi) 2545 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 2546 NULL); 2547 } 2548 2549 if (ieee80211_is_data(hdr->frame_control)) 2550 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 2551 2552 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 2553 kfree_skb(skb); 2554 goto out; 2555 } 2556 2557 /* 2558 * Our hardware de-aggregates AMSDUs but copies the mac header 2559 * as it to the de-aggregated MPDUs. We need to turn off the 2560 * AMSDU bit in the QoS control ourselves. 2561 * In addition, HW reverses addr3 and addr4 - reverse it back. 2562 */ 2563 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2564 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2565 u8 *qc = ieee80211_get_qos_ctl(hdr); 2566 2567 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2568 2569 if (mvm->trans->trans_cfg->device_family == 2570 IWL_DEVICE_FAMILY_9000) { 2571 iwl_mvm_flip_address(hdr->addr3); 2572 2573 if (ieee80211_has_a4(hdr->frame_control)) 2574 iwl_mvm_flip_address(hdr->addr4); 2575 } 2576 } 2577 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2578 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2579 2580 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2581 } 2582 } 2583 2584 /* management stuff on default queue */ 2585 if (!queue) { 2586 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2587 ieee80211_is_probe_resp(hdr->frame_control)) && 2588 mvm->sched_scan_pass_all == 2589 SCHED_SCAN_PASS_ALL_ENABLED)) 2590 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2591 2592 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2593 ieee80211_is_probe_resp(hdr->frame_control))) 2594 rx_status->boottime_ns = ktime_get_boottime_ns(); 2595 } 2596 2597 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2598 kfree_skb(skb); 2599 goto out; 2600 } 2601 2602 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && 2603 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2))) 2604 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta, 2605 link_sta); 2606 2607 out: 2608 rcu_read_unlock(); 2609 } 2610 2611 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2612 struct iwl_rx_cmd_buffer *rxb, int queue) 2613 { 2614 struct ieee80211_rx_status *rx_status; 2615 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2616 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2617 u32 rssi; 2618 u32 info_type; 2619 struct ieee80211_sta *sta = NULL; 2620 struct sk_buff *skb; 2621 struct iwl_mvm_rx_phy_data phy_data; 2622 u32 format; 2623 2624 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2625 return; 2626 2627 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2628 return; 2629 2630 rssi = le32_to_cpu(desc->rssi); 2631 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2632 phy_data.d0 = desc->phy_info[0]; 2633 phy_data.d1 = desc->phy_info[1]; 2634 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2635 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2636 phy_data.rate_n_flags = le32_to_cpu(desc->rate); 2637 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2638 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2639 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2640 phy_data.with_data = false; 2641 2642 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2643 RX_NO_DATA_NOTIF, 0) < 2) { 2644 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2645 phy_data.rate_n_flags); 2646 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2647 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2648 phy_data.rate_n_flags); 2649 } 2650 2651 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2652 2653 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2654 RX_NO_DATA_NOTIF, 0) >= 3) { 2655 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2656 sizeof(struct iwl_rx_no_data_ver_3))) 2657 /* invalid len for ver 3 */ 2658 return; 2659 memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec)); 2660 } else { 2661 if (format == RATE_MCS_EHT_MSK) 2662 /* no support for EHT before version 3 API */ 2663 return; 2664 } 2665 2666 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2667 * ieee80211_hdr pulled. 2668 */ 2669 skb = alloc_skb(128, GFP_ATOMIC); 2670 if (!skb) { 2671 IWL_ERR(mvm, "alloc_skb failed\n"); 2672 return; 2673 } 2674 2675 rx_status = IEEE80211_SKB_RXCB(skb); 2676 2677 /* 0-length PSDU */ 2678 rx_status->flag |= RX_FLAG_NO_PSDU; 2679 2680 switch (info_type) { 2681 case RX_NO_DATA_INFO_TYPE_NDP: 2682 rx_status->zero_length_psdu_type = 2683 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2684 break; 2685 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2686 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2687 rx_status->zero_length_psdu_type = 2688 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2689 break; 2690 default: 2691 rx_status->zero_length_psdu_type = 2692 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2693 break; 2694 } 2695 2696 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2697 NL80211_BAND_2GHZ; 2698 2699 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2700 2701 /* no more radio tap info should be put after this point. 2702 * 2703 * We mark it as mac header, for upper layers to know where 2704 * all radio tap header ends. 2705 */ 2706 skb_reset_mac_header(skb); 2707 2708 /* 2709 * Override the nss from the rx_vec since the rate_n_flags has 2710 * only 2 bits for the nss which gives a max of 4 ss but there 2711 * may be up to 8 spatial streams. 2712 */ 2713 switch (format) { 2714 case RATE_MCS_VHT_MSK: 2715 rx_status->nss = 2716 le32_get_bits(desc->rx_vec[0], 2717 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2718 break; 2719 case RATE_MCS_HE_MSK: 2720 rx_status->nss = 2721 le32_get_bits(desc->rx_vec[0], 2722 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2723 break; 2724 case RATE_MCS_EHT_MSK: 2725 rx_status->nss = 2726 le32_get_bits(desc->rx_vec[2], 2727 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2728 } 2729 2730 rcu_read_lock(); 2731 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2732 rcu_read_unlock(); 2733 } 2734 2735 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2736 struct iwl_rx_cmd_buffer *rxb, int queue) 2737 { 2738 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2739 struct iwl_frame_release *release = (void *)pkt->data; 2740 2741 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2742 return; 2743 2744 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2745 le16_to_cpu(release->nssn), 2746 queue, 0); 2747 } 2748 2749 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2750 struct iwl_rx_cmd_buffer *rxb, int queue) 2751 { 2752 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2753 struct iwl_bar_frame_release *release = (void *)pkt->data; 2754 unsigned int baid = le32_get_bits(release->ba_info, 2755 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2756 unsigned int nssn = le32_get_bits(release->ba_info, 2757 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2758 unsigned int sta_id = le32_get_bits(release->sta_tid, 2759 IWL_BAR_FRAME_RELEASE_STA_MASK); 2760 unsigned int tid = le32_get_bits(release->sta_tid, 2761 IWL_BAR_FRAME_RELEASE_TID_MASK); 2762 struct iwl_mvm_baid_data *baid_data; 2763 2764 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2765 return; 2766 2767 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2768 baid >= ARRAY_SIZE(mvm->baid_map))) 2769 return; 2770 2771 rcu_read_lock(); 2772 baid_data = rcu_dereference(mvm->baid_map[baid]); 2773 if (!baid_data) { 2774 IWL_DEBUG_RX(mvm, 2775 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2776 baid); 2777 goto out; 2778 } 2779 2780 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2781 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2782 baid, baid_data->sta_id, baid_data->tid, sta_id, 2783 tid)) 2784 goto out; 2785 2786 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2787 out: 2788 rcu_read_unlock(); 2789 } 2790