1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 13 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 14 { 15 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 16 u8 *data = skb->data; 17 18 /* Alignment concerns */ 19 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 20 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 21 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 22 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 23 24 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 25 data += sizeof(struct ieee80211_radiotap_he); 26 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 27 data += sizeof(struct ieee80211_radiotap_he_mu); 28 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 29 data += sizeof(struct ieee80211_radiotap_lsig); 30 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 31 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 32 33 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 34 } 35 36 return data; 37 } 38 39 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 40 int queue, struct ieee80211_sta *sta) 41 { 42 struct iwl_mvm_sta *mvmsta; 43 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 44 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 45 struct iwl_mvm_key_pn *ptk_pn; 46 int res; 47 u8 tid, keyidx; 48 u8 pn[IEEE80211_CCMP_PN_LEN]; 49 u8 *extiv; 50 51 /* do PN checking */ 52 53 /* multicast and non-data only arrives on default queue */ 54 if (!ieee80211_is_data(hdr->frame_control) || 55 is_multicast_ether_addr(hdr->addr1)) 56 return 0; 57 58 /* do not check PN for open AP */ 59 if (!(stats->flag & RX_FLAG_DECRYPTED)) 60 return 0; 61 62 /* 63 * avoid checking for default queue - we don't want to replicate 64 * all the logic that's necessary for checking the PN on fragmented 65 * frames, leave that to mac80211 66 */ 67 if (queue == 0) 68 return 0; 69 70 /* if we are here - this for sure is either CCMP or GCMP */ 71 if (IS_ERR_OR_NULL(sta)) { 72 IWL_DEBUG_DROP(mvm, 73 "expected hw-decrypted unicast frame for station\n"); 74 return -1; 75 } 76 77 mvmsta = iwl_mvm_sta_from_mac80211(sta); 78 79 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 80 keyidx = extiv[3] >> 6; 81 82 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 83 if (!ptk_pn) 84 return -1; 85 86 if (ieee80211_is_data_qos(hdr->frame_control)) 87 tid = ieee80211_get_tid(hdr); 88 else 89 tid = 0; 90 91 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 92 if (tid >= IWL_MAX_TID_COUNT) 93 return -1; 94 95 /* load pn */ 96 pn[0] = extiv[7]; 97 pn[1] = extiv[6]; 98 pn[2] = extiv[5]; 99 pn[3] = extiv[4]; 100 pn[4] = extiv[1]; 101 pn[5] = extiv[0]; 102 103 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 104 if (res < 0) 105 return -1; 106 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 107 return -1; 108 109 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 110 stats->flag |= RX_FLAG_PN_VALIDATED; 111 112 return 0; 113 } 114 115 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 116 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 117 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 118 struct iwl_rx_cmd_buffer *rxb) 119 { 120 struct iwl_rx_packet *pkt = rxb_addr(rxb); 121 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 122 unsigned int headlen, fraglen, pad_len = 0; 123 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 124 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 125 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 126 127 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 128 len -= 2; 129 pad_len = 2; 130 } 131 132 /* 133 * For non monitor interface strip the bytes the RADA might not have 134 * removed. As monitor interface cannot exist with other interfaces 135 * this removal is safe. 136 */ 137 if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) { 138 u32 pkt_flags = le32_to_cpu(pkt->len_n_flags); 139 140 /* 141 * If RADA was not enabled then decryption was not performed so 142 * the MIC cannot be removed. 143 */ 144 if (!(pkt_flags & FH_RSCSR_RADA_EN)) { 145 if (WARN_ON(crypt_len > mic_crc_len)) 146 return -EINVAL; 147 148 mic_crc_len -= crypt_len; 149 } 150 151 if (WARN_ON(mic_crc_len > len)) 152 return -EINVAL; 153 154 len -= mic_crc_len; 155 } 156 157 /* If frame is small enough to fit in skb->head, pull it completely. 158 * If not, only pull ieee80211_hdr (including crypto if present, and 159 * an additional 8 bytes for SNAP/ethertype, see below) so that 160 * splice() or TCP coalesce are more efficient. 161 * 162 * Since, in addition, ieee80211_data_to_8023() always pull in at 163 * least 8 bytes (possibly more for mesh) we can do the same here 164 * to save the cost of doing it later. That still doesn't pull in 165 * the actual IP header since the typical case has a SNAP header. 166 * If the latter changes (there are efforts in the standards group 167 * to do so) we should revisit this and ieee80211_data_to_8023(). 168 */ 169 headlen = (len <= skb_tailroom(skb)) ? len : 170 hdrlen + crypt_len + 8; 171 172 /* The firmware may align the packet to DWORD. 173 * The padding is inserted after the IV. 174 * After copying the header + IV skip the padding if 175 * present before copying packet data. 176 */ 177 hdrlen += crypt_len; 178 179 if (unlikely(headlen < hdrlen)) 180 return -EINVAL; 181 182 skb_put_data(skb, hdr, hdrlen); 183 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 184 185 /* 186 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 187 * certain cases and starts the checksum after the SNAP. Check if 188 * this is the case - it's easier to just bail out to CHECKSUM_NONE 189 * in the cases the hardware didn't handle, since it's rare to see 190 * such packets, even though the hardware did calculate the checksum 191 * in this case, just starting after the MAC header instead. 192 * 193 * Starting from Bz hardware, it calculates starting directly after 194 * the MAC header, so that matches mac80211's expectation. 195 */ 196 if (skb->ip_summed == CHECKSUM_COMPLETE && 197 mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) { 198 struct { 199 u8 hdr[6]; 200 __be16 type; 201 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 202 203 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 204 !ether_addr_equal(shdr->hdr, rfc1042_header) || 205 (shdr->type != htons(ETH_P_IP) && 206 shdr->type != htons(ETH_P_ARP) && 207 shdr->type != htons(ETH_P_IPV6) && 208 shdr->type != htons(ETH_P_8021Q) && 209 shdr->type != htons(ETH_P_PAE) && 210 shdr->type != htons(ETH_P_TDLS)))) 211 skb->ip_summed = CHECKSUM_NONE; 212 else 213 /* mac80211 assumes full CSUM including SNAP header */ 214 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 215 } 216 217 fraglen = len - headlen; 218 219 if (fraglen) { 220 int offset = (u8 *)hdr + headlen + pad_len - 221 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 222 223 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 224 fraglen, rxb->truesize); 225 } 226 227 return 0; 228 } 229 230 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 231 struct sk_buff *skb) 232 { 233 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 234 struct ieee80211_vendor_radiotap *radiotap; 235 const int size = sizeof(*radiotap) + sizeof(__le16); 236 237 if (!mvm->cur_aid) 238 return; 239 240 /* ensure alignment */ 241 BUILD_BUG_ON((size + 2) % 4); 242 243 radiotap = skb_put(skb, size + 2); 244 radiotap->align = 1; 245 /* Intel OUI */ 246 radiotap->oui[0] = 0xf6; 247 radiotap->oui[1] = 0x54; 248 radiotap->oui[2] = 0x25; 249 /* radiotap sniffer config sub-namespace */ 250 radiotap->subns = 1; 251 radiotap->present = 0x1; 252 radiotap->len = size - sizeof(*radiotap); 253 radiotap->pad = 2; 254 255 /* fill the data now */ 256 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 257 /* and clear the padding */ 258 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 259 260 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 261 } 262 263 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 264 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 265 struct napi_struct *napi, 266 struct sk_buff *skb, int queue, 267 struct ieee80211_sta *sta) 268 { 269 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 270 kfree_skb(skb); 271 else 272 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 273 } 274 275 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 276 struct ieee80211_rx_status *rx_status, 277 u32 rate_n_flags, int energy_a, 278 int energy_b) 279 { 280 int max_energy; 281 u32 rate_flags = rate_n_flags; 282 283 energy_a = energy_a ? -energy_a : S8_MIN; 284 energy_b = energy_b ? -energy_b : S8_MIN; 285 max_energy = max(energy_a, energy_b); 286 287 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 288 energy_a, energy_b, max_energy); 289 290 rx_status->signal = max_energy; 291 rx_status->chains = 292 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 293 rx_status->chain_signal[0] = energy_a; 294 rx_status->chain_signal[1] = energy_b; 295 } 296 297 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 298 struct ieee80211_hdr *hdr, 299 struct iwl_rx_mpdu_desc *desc, 300 u32 status) 301 { 302 struct iwl_mvm_sta *mvmsta; 303 struct iwl_mvm_vif *mvmvif; 304 u8 keyid; 305 struct ieee80211_key_conf *key; 306 u32 len = le16_to_cpu(desc->mpdu_len); 307 const u8 *frame = (void *)hdr; 308 309 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 310 return 0; 311 312 /* 313 * For non-beacon, we don't really care. But beacons may 314 * be filtered out, and we thus need the firmware's replay 315 * detection, otherwise beacons the firmware previously 316 * filtered could be replayed, or something like that, and 317 * it can filter a lot - though usually only if nothing has 318 * changed. 319 */ 320 if (!ieee80211_is_beacon(hdr->frame_control)) 321 return 0; 322 323 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 324 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 325 return -1; 326 327 /* good cases */ 328 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 329 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) 330 return 0; 331 332 if (!sta) 333 return -1; 334 335 mvmsta = iwl_mvm_sta_from_mac80211(sta); 336 337 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 338 339 /* 340 * both keys will have the same cipher and MIC length, use 341 * whichever one is available 342 */ 343 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 344 if (!key) { 345 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 346 if (!key) 347 return -1; 348 } 349 350 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 351 return -1; 352 353 /* get the real key ID */ 354 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 355 /* and if that's the other key, look it up */ 356 if (keyid != key->keyidx) { 357 /* 358 * shouldn't happen since firmware checked, but be safe 359 * in case the MIC length is wrong too, for example 360 */ 361 if (keyid != 6 && keyid != 7) 362 return -1; 363 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 364 if (!key) 365 return -1; 366 } 367 368 /* Report status to mac80211 */ 369 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 370 ieee80211_key_mic_failure(key); 371 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 372 ieee80211_key_replay(key); 373 374 return -1; 375 } 376 377 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 378 struct ieee80211_hdr *hdr, 379 struct ieee80211_rx_status *stats, u16 phy_info, 380 struct iwl_rx_mpdu_desc *desc, 381 u32 pkt_flags, int queue, u8 *crypt_len) 382 { 383 u32 status = le32_to_cpu(desc->status); 384 385 /* 386 * Drop UNKNOWN frames in aggregation, unless in monitor mode 387 * (where we don't have the keys). 388 * We limit this to aggregation because in TKIP this is a valid 389 * scenario, since we may not have the (correct) TTAK (phase 1 390 * key) in the firmware. 391 */ 392 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 393 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 394 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 395 return -1; 396 397 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 398 !ieee80211_has_protected(hdr->frame_control))) 399 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status); 400 401 if (!ieee80211_has_protected(hdr->frame_control) || 402 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 403 IWL_RX_MPDU_STATUS_SEC_NONE) 404 return 0; 405 406 /* TODO: handle packets encrypted with unknown alg */ 407 408 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 409 case IWL_RX_MPDU_STATUS_SEC_CCM: 410 case IWL_RX_MPDU_STATUS_SEC_GCM: 411 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 412 /* alg is CCM: check MIC only */ 413 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 414 return -1; 415 416 stats->flag |= RX_FLAG_DECRYPTED; 417 if (pkt_flags & FH_RSCSR_RADA_EN) 418 stats->flag |= RX_FLAG_MIC_STRIPPED; 419 *crypt_len = IEEE80211_CCMP_HDR_LEN; 420 return 0; 421 case IWL_RX_MPDU_STATUS_SEC_TKIP: 422 /* Don't drop the frame and decrypt it in SW */ 423 if (!fw_has_api(&mvm->fw->ucode_capa, 424 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 425 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 426 return 0; 427 428 if (mvm->trans->trans_cfg->gen2 && 429 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 430 stats->flag |= RX_FLAG_MMIC_ERROR; 431 432 *crypt_len = IEEE80211_TKIP_IV_LEN; 433 fallthrough; 434 case IWL_RX_MPDU_STATUS_SEC_WEP: 435 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 436 return -1; 437 438 stats->flag |= RX_FLAG_DECRYPTED; 439 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 440 IWL_RX_MPDU_STATUS_SEC_WEP) 441 *crypt_len = IEEE80211_WEP_IV_LEN; 442 443 if (pkt_flags & FH_RSCSR_RADA_EN) { 444 stats->flag |= RX_FLAG_ICV_STRIPPED; 445 if (mvm->trans->trans_cfg->gen2) 446 stats->flag |= RX_FLAG_MMIC_STRIPPED; 447 } 448 449 return 0; 450 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 451 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 452 return -1; 453 stats->flag |= RX_FLAG_DECRYPTED; 454 return 0; 455 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 456 break; 457 default: 458 /* 459 * Sometimes we can get frames that were not decrypted 460 * because the firmware didn't have the keys yet. This can 461 * happen after connection where we can get multicast frames 462 * before the GTK is installed. 463 * Silently drop those frames. 464 * Also drop un-decrypted frames in monitor mode. 465 */ 466 if (!is_multicast_ether_addr(hdr->addr1) && 467 !mvm->monitor_on && net_ratelimit()) 468 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 469 } 470 471 return 0; 472 } 473 474 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 475 struct ieee80211_sta *sta, 476 struct sk_buff *skb, 477 struct iwl_rx_packet *pkt) 478 { 479 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 480 481 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 482 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 483 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 484 485 skb->ip_summed = CHECKSUM_COMPLETE; 486 skb->csum = csum_unfold(~(__force __sum16)hwsum); 487 } 488 } else { 489 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 490 struct iwl_mvm_vif *mvmvif; 491 u16 flags = le16_to_cpu(desc->l3l4_flags); 492 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 493 IWL_RX_L3_PROTO_POS); 494 495 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 496 497 if (mvmvif->features & NETIF_F_RXCSUM && 498 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 499 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 500 l3_prot == IWL_RX_L3_TYPE_IPV6 || 501 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 502 skb->ip_summed = CHECKSUM_UNNECESSARY; 503 } 504 } 505 506 /* 507 * returns true if a packet is a duplicate and should be dropped. 508 * Updates AMSDU PN tracking info 509 */ 510 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 511 struct ieee80211_rx_status *rx_status, 512 struct ieee80211_hdr *hdr, 513 struct iwl_rx_mpdu_desc *desc) 514 { 515 struct iwl_mvm_sta *mvm_sta; 516 struct iwl_mvm_rxq_dup_data *dup_data; 517 u8 tid, sub_frame_idx; 518 519 if (WARN_ON(IS_ERR_OR_NULL(sta))) 520 return false; 521 522 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 523 dup_data = &mvm_sta->dup_data[queue]; 524 525 /* 526 * Drop duplicate 802.11 retransmissions 527 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 528 */ 529 if (ieee80211_is_ctl(hdr->frame_control) || 530 ieee80211_is_qos_nullfunc(hdr->frame_control) || 531 is_multicast_ether_addr(hdr->addr1)) { 532 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 533 return false; 534 } 535 536 if (ieee80211_is_data_qos(hdr->frame_control)) 537 /* frame has qos control */ 538 tid = ieee80211_get_tid(hdr); 539 else 540 tid = IWL_MAX_TID_COUNT; 541 542 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 543 sub_frame_idx = desc->amsdu_info & 544 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 545 546 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 547 dup_data->last_seq[tid] == hdr->seq_ctrl && 548 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 549 return true; 550 551 /* Allow same PN as the first subframe for following sub frames */ 552 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 553 sub_frame_idx > dup_data->last_sub_frame[tid] && 554 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 555 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 556 557 dup_data->last_seq[tid] = hdr->seq_ctrl; 558 dup_data->last_sub_frame[tid] = sub_frame_idx; 559 560 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 561 562 return false; 563 } 564 565 /* 566 * Returns true if sn2 - buffer_size < sn1 < sn2. 567 * To be used only in order to compare reorder buffer head with NSSN. 568 * We fully trust NSSN unless it is behind us due to reorder timeout. 569 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 570 */ 571 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 572 { 573 return ieee80211_sn_less(sn1, sn2) && 574 !ieee80211_sn_less(sn1, sn2 - buffer_size); 575 } 576 577 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 578 { 579 if (IWL_MVM_USE_NSSN_SYNC) { 580 struct iwl_mvm_nssn_sync_data notif = { 581 .baid = baid, 582 .nssn = nssn, 583 }; 584 585 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 586 ¬if, sizeof(notif)); 587 } 588 } 589 590 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 591 592 enum iwl_mvm_release_flags { 593 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 594 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 595 }; 596 597 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 598 struct ieee80211_sta *sta, 599 struct napi_struct *napi, 600 struct iwl_mvm_baid_data *baid_data, 601 struct iwl_mvm_reorder_buffer *reorder_buf, 602 u16 nssn, u32 flags) 603 { 604 struct iwl_mvm_reorder_buf_entry *entries = 605 &baid_data->entries[reorder_buf->queue * 606 baid_data->entries_per_queue]; 607 u16 ssn = reorder_buf->head_sn; 608 609 lockdep_assert_held(&reorder_buf->lock); 610 611 /* 612 * We keep the NSSN not too far behind, if we are sync'ing it and it 613 * is more than 2048 ahead of us, it must be behind us. Discard it. 614 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 615 * behind and this queue already processed packets. The next if 616 * would have caught cases where this queue would have processed less 617 * than 64 packets, but it may have processed more than 64 packets. 618 */ 619 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 620 ieee80211_sn_less(nssn, ssn)) 621 goto set_timer; 622 623 /* ignore nssn smaller than head sn - this can happen due to timeout */ 624 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 625 goto set_timer; 626 627 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 628 int index = ssn % reorder_buf->buf_size; 629 struct sk_buff_head *skb_list = &entries[index].e.frames; 630 struct sk_buff *skb; 631 632 ssn = ieee80211_sn_inc(ssn); 633 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 634 (ssn == 2048 || ssn == 0)) 635 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 636 637 /* 638 * Empty the list. Will have more than one frame for A-MSDU. 639 * Empty list is valid as well since nssn indicates frames were 640 * received. 641 */ 642 while ((skb = __skb_dequeue(skb_list))) { 643 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 644 reorder_buf->queue, 645 sta); 646 reorder_buf->num_stored--; 647 } 648 } 649 reorder_buf->head_sn = nssn; 650 651 set_timer: 652 if (reorder_buf->num_stored && !reorder_buf->removed) { 653 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 654 655 while (skb_queue_empty(&entries[index].e.frames)) 656 index = (index + 1) % reorder_buf->buf_size; 657 /* modify timer to match next frame's expiration time */ 658 mod_timer(&reorder_buf->reorder_timer, 659 entries[index].e.reorder_time + 1 + 660 RX_REORDER_BUF_TIMEOUT_MQ); 661 } else { 662 del_timer(&reorder_buf->reorder_timer); 663 } 664 } 665 666 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 667 { 668 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 669 struct iwl_mvm_baid_data *baid_data = 670 iwl_mvm_baid_data_from_reorder_buf(buf); 671 struct iwl_mvm_reorder_buf_entry *entries = 672 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 673 int i; 674 u16 sn = 0, index = 0; 675 bool expired = false; 676 bool cont = false; 677 678 spin_lock(&buf->lock); 679 680 if (!buf->num_stored || buf->removed) { 681 spin_unlock(&buf->lock); 682 return; 683 } 684 685 for (i = 0; i < buf->buf_size ; i++) { 686 index = (buf->head_sn + i) % buf->buf_size; 687 688 if (skb_queue_empty(&entries[index].e.frames)) { 689 /* 690 * If there is a hole and the next frame didn't expire 691 * we want to break and not advance SN 692 */ 693 cont = false; 694 continue; 695 } 696 if (!cont && 697 !time_after(jiffies, entries[index].e.reorder_time + 698 RX_REORDER_BUF_TIMEOUT_MQ)) 699 break; 700 701 expired = true; 702 /* continue until next hole after this expired frames */ 703 cont = true; 704 sn = ieee80211_sn_add(buf->head_sn, i + 1); 705 } 706 707 if (expired) { 708 struct ieee80211_sta *sta; 709 struct iwl_mvm_sta *mvmsta; 710 u8 sta_id = baid_data->sta_id; 711 712 rcu_read_lock(); 713 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 714 mvmsta = iwl_mvm_sta_from_mac80211(sta); 715 716 /* SN is set to the last expired frame + 1 */ 717 IWL_DEBUG_HT(buf->mvm, 718 "Releasing expired frames for sta %u, sn %d\n", 719 sta_id, sn); 720 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 721 sta, baid_data->tid); 722 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 723 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 724 rcu_read_unlock(); 725 } else { 726 /* 727 * If no frame expired and there are stored frames, index is now 728 * pointing to the first unexpired frame - modify timer 729 * accordingly to this frame. 730 */ 731 mod_timer(&buf->reorder_timer, 732 entries[index].e.reorder_time + 733 1 + RX_REORDER_BUF_TIMEOUT_MQ); 734 } 735 spin_unlock(&buf->lock); 736 } 737 738 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 739 struct iwl_mvm_delba_data *data) 740 { 741 struct iwl_mvm_baid_data *ba_data; 742 struct ieee80211_sta *sta; 743 struct iwl_mvm_reorder_buffer *reorder_buf; 744 u8 baid = data->baid; 745 746 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 747 return; 748 749 rcu_read_lock(); 750 751 ba_data = rcu_dereference(mvm->baid_map[baid]); 752 if (WARN_ON_ONCE(!ba_data)) 753 goto out; 754 755 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 756 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 757 goto out; 758 759 reorder_buf = &ba_data->reorder_buf[queue]; 760 761 /* release all frames that are in the reorder buffer to the stack */ 762 spin_lock_bh(&reorder_buf->lock); 763 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 764 ieee80211_sn_add(reorder_buf->head_sn, 765 reorder_buf->buf_size), 766 0); 767 spin_unlock_bh(&reorder_buf->lock); 768 del_timer_sync(&reorder_buf->reorder_timer); 769 770 out: 771 rcu_read_unlock(); 772 } 773 774 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 775 struct napi_struct *napi, 776 u8 baid, u16 nssn, int queue, 777 u32 flags) 778 { 779 struct ieee80211_sta *sta; 780 struct iwl_mvm_reorder_buffer *reorder_buf; 781 struct iwl_mvm_baid_data *ba_data; 782 783 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 784 baid, nssn); 785 786 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 787 baid >= ARRAY_SIZE(mvm->baid_map))) 788 return; 789 790 rcu_read_lock(); 791 792 ba_data = rcu_dereference(mvm->baid_map[baid]); 793 if (!ba_data) { 794 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC), 795 "BAID %d not found in map\n", baid); 796 goto out; 797 } 798 799 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 800 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 801 goto out; 802 803 reorder_buf = &ba_data->reorder_buf[queue]; 804 805 spin_lock_bh(&reorder_buf->lock); 806 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 807 reorder_buf, nssn, flags); 808 spin_unlock_bh(&reorder_buf->lock); 809 810 out: 811 rcu_read_unlock(); 812 } 813 814 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 815 struct napi_struct *napi, int queue, 816 const struct iwl_mvm_nssn_sync_data *data) 817 { 818 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 819 data->nssn, queue, 820 IWL_MVM_RELEASE_FROM_RSS_SYNC); 821 } 822 823 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 824 struct iwl_rx_cmd_buffer *rxb, int queue) 825 { 826 struct iwl_rx_packet *pkt = rxb_addr(rxb); 827 struct iwl_rxq_sync_notification *notif; 828 struct iwl_mvm_internal_rxq_notif *internal_notif; 829 u32 len = iwl_rx_packet_payload_len(pkt); 830 831 notif = (void *)pkt->data; 832 internal_notif = (void *)notif->payload; 833 834 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 835 "invalid notification size %d (%d)", 836 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 837 return; 838 len -= sizeof(*notif) + sizeof(*internal_notif); 839 840 if (internal_notif->sync && 841 mvm->queue_sync_cookie != internal_notif->cookie) { 842 WARN_ONCE(1, "Received expired RX queue sync message\n"); 843 return; 844 } 845 846 switch (internal_notif->type) { 847 case IWL_MVM_RXQ_EMPTY: 848 WARN_ONCE(len, "invalid empty notification size %d", len); 849 break; 850 case IWL_MVM_RXQ_NOTIF_DEL_BA: 851 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 852 "invalid delba notification size %d (%d)", 853 len, (int)sizeof(struct iwl_mvm_delba_data))) 854 break; 855 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 856 break; 857 case IWL_MVM_RXQ_NSSN_SYNC: 858 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 859 "invalid nssn sync notification size %d (%d)", 860 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 861 break; 862 iwl_mvm_nssn_sync(mvm, napi, queue, 863 (void *)internal_notif->data); 864 break; 865 default: 866 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 867 } 868 869 if (internal_notif->sync) { 870 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 871 "queue sync: queue %d responded a second time!\n", 872 queue); 873 if (READ_ONCE(mvm->queue_sync_state) == 0) 874 wake_up(&mvm->rx_sync_waitq); 875 } 876 } 877 878 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 879 struct ieee80211_sta *sta, int tid, 880 struct iwl_mvm_reorder_buffer *buffer, 881 u32 reorder, u32 gp2, int queue) 882 { 883 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 884 885 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 886 /* we have a new (A-)MPDU ... */ 887 888 /* 889 * reset counter to 0 if we didn't have any oldsn in 890 * the last A-MPDU (as detected by GP2 being identical) 891 */ 892 if (!buffer->consec_oldsn_prev_drop) 893 buffer->consec_oldsn_drops = 0; 894 895 /* either way, update our tracking state */ 896 buffer->consec_oldsn_ampdu_gp2 = gp2; 897 } else if (buffer->consec_oldsn_prev_drop) { 898 /* 899 * tracking state didn't change, and we had an old SN 900 * indication before - do nothing in this case, we 901 * already noted this one down and are waiting for the 902 * next A-MPDU (by GP2) 903 */ 904 return; 905 } 906 907 /* return unless this MPDU has old SN */ 908 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 909 return; 910 911 /* update state */ 912 buffer->consec_oldsn_prev_drop = 1; 913 buffer->consec_oldsn_drops++; 914 915 /* if limit is reached, send del BA and reset state */ 916 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 917 IWL_WARN(mvm, 918 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 919 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 920 sta->addr, queue, tid); 921 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 922 buffer->consec_oldsn_prev_drop = 0; 923 buffer->consec_oldsn_drops = 0; 924 } 925 } 926 927 /* 928 * Returns true if the MPDU was buffered\dropped, false if it should be passed 929 * to upper layer. 930 */ 931 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 932 struct napi_struct *napi, 933 int queue, 934 struct ieee80211_sta *sta, 935 struct sk_buff *skb, 936 struct iwl_rx_mpdu_desc *desc) 937 { 938 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 939 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 940 struct iwl_mvm_sta *mvm_sta; 941 struct iwl_mvm_baid_data *baid_data; 942 struct iwl_mvm_reorder_buffer *buffer; 943 struct sk_buff *tail; 944 u32 reorder = le32_to_cpu(desc->reorder_data); 945 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 946 bool last_subframe = 947 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 948 u8 tid = ieee80211_get_tid(hdr); 949 u8 sub_frame_idx = desc->amsdu_info & 950 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 951 struct iwl_mvm_reorder_buf_entry *entries; 952 int index; 953 u16 nssn, sn; 954 u8 baid; 955 956 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 957 IWL_RX_MPDU_REORDER_BAID_SHIFT; 958 959 /* 960 * This also covers the case of receiving a Block Ack Request 961 * outside a BA session; we'll pass it to mac80211 and that 962 * then sends a delBA action frame. 963 * This also covers pure monitor mode, in which case we won't 964 * have any BA sessions. 965 */ 966 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 967 return false; 968 969 /* no sta yet */ 970 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 971 "Got valid BAID without a valid station assigned\n")) 972 return false; 973 974 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 975 976 /* not a data packet or a bar */ 977 if (!ieee80211_is_back_req(hdr->frame_control) && 978 (!ieee80211_is_data_qos(hdr->frame_control) || 979 is_multicast_ether_addr(hdr->addr1))) 980 return false; 981 982 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 983 return false; 984 985 baid_data = rcu_dereference(mvm->baid_map[baid]); 986 if (!baid_data) { 987 IWL_DEBUG_RX(mvm, 988 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 989 baid, reorder); 990 return false; 991 } 992 993 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 994 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 995 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 996 tid)) 997 return false; 998 999 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 1000 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 1001 IWL_RX_MPDU_REORDER_SN_SHIFT; 1002 1003 buffer = &baid_data->reorder_buf[queue]; 1004 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 1005 1006 spin_lock_bh(&buffer->lock); 1007 1008 if (!buffer->valid) { 1009 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 1010 spin_unlock_bh(&buffer->lock); 1011 return false; 1012 } 1013 buffer->valid = true; 1014 } 1015 1016 if (ieee80211_is_back_req(hdr->frame_control)) { 1017 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1018 buffer, nssn, 0); 1019 goto drop; 1020 } 1021 1022 /* 1023 * If there was a significant jump in the nssn - adjust. 1024 * If the SN is smaller than the NSSN it might need to first go into 1025 * the reorder buffer, in which case we just release up to it and the 1026 * rest of the function will take care of storing it and releasing up to 1027 * the nssn. 1028 * This should not happen. This queue has been lagging and it should 1029 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1030 * and update the other queues. 1031 */ 1032 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1033 buffer->buf_size) || 1034 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1035 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1036 1037 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1038 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1039 } 1040 1041 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1042 rx_status->device_timestamp, queue); 1043 1044 /* drop any oudated packets */ 1045 if (ieee80211_sn_less(sn, buffer->head_sn)) 1046 goto drop; 1047 1048 /* release immediately if allowed by nssn and no stored frames */ 1049 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1050 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1051 buffer->buf_size) && 1052 (!amsdu || last_subframe)) { 1053 /* 1054 * If we crossed the 2048 or 0 SN, notify all the 1055 * queues. This is done in order to avoid having a 1056 * head_sn that lags behind for too long. When that 1057 * happens, we can get to a situation where the head_sn 1058 * is within the interval [nssn - buf_size : nssn] 1059 * which will make us think that the nssn is a packet 1060 * that we already freed because of the reordering 1061 * buffer and we will ignore it. So maintain the 1062 * head_sn somewhat updated across all the queues: 1063 * when it crosses 0 and 2048. 1064 */ 1065 if (sn == 2048 || sn == 0) 1066 iwl_mvm_sync_nssn(mvm, baid, sn); 1067 buffer->head_sn = nssn; 1068 } 1069 /* No need to update AMSDU last SN - we are moving the head */ 1070 spin_unlock_bh(&buffer->lock); 1071 return false; 1072 } 1073 1074 /* 1075 * release immediately if there are no stored frames, and the sn is 1076 * equal to the head. 1077 * This can happen due to reorder timer, where NSSN is behind head_sn. 1078 * When we released everything, and we got the next frame in the 1079 * sequence, according to the NSSN we can't release immediately, 1080 * while technically there is no hole and we can move forward. 1081 */ 1082 if (!buffer->num_stored && sn == buffer->head_sn) { 1083 if (!amsdu || last_subframe) { 1084 if (sn == 2048 || sn == 0) 1085 iwl_mvm_sync_nssn(mvm, baid, sn); 1086 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1087 } 1088 /* No need to update AMSDU last SN - we are moving the head */ 1089 spin_unlock_bh(&buffer->lock); 1090 return false; 1091 } 1092 1093 index = sn % buffer->buf_size; 1094 1095 /* 1096 * Check if we already stored this frame 1097 * As AMSDU is either received or not as whole, logic is simple: 1098 * If we have frames in that position in the buffer and the last frame 1099 * originated from AMSDU had a different SN then it is a retransmission. 1100 * If it is the same SN then if the subframe index is incrementing it 1101 * is the same AMSDU - otherwise it is a retransmission. 1102 */ 1103 tail = skb_peek_tail(&entries[index].e.frames); 1104 if (tail && !amsdu) 1105 goto drop; 1106 else if (tail && (sn != buffer->last_amsdu || 1107 buffer->last_sub_index >= sub_frame_idx)) 1108 goto drop; 1109 1110 /* put in reorder buffer */ 1111 __skb_queue_tail(&entries[index].e.frames, skb); 1112 buffer->num_stored++; 1113 entries[index].e.reorder_time = jiffies; 1114 1115 if (amsdu) { 1116 buffer->last_amsdu = sn; 1117 buffer->last_sub_index = sub_frame_idx; 1118 } 1119 1120 /* 1121 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1122 * The reason is that NSSN advances on the first sub-frame, and may 1123 * cause the reorder buffer to advance before all the sub-frames arrive. 1124 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1125 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1126 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1127 * already ahead and it will be dropped. 1128 * If the last sub-frame is not on this queue - we will get frame 1129 * release notification with up to date NSSN. 1130 */ 1131 if (!amsdu || last_subframe) 1132 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1133 buffer, nssn, 1134 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1135 1136 spin_unlock_bh(&buffer->lock); 1137 return true; 1138 1139 drop: 1140 kfree_skb(skb); 1141 spin_unlock_bh(&buffer->lock); 1142 return true; 1143 } 1144 1145 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1146 u32 reorder_data, u8 baid) 1147 { 1148 unsigned long now = jiffies; 1149 unsigned long timeout; 1150 struct iwl_mvm_baid_data *data; 1151 1152 rcu_read_lock(); 1153 1154 data = rcu_dereference(mvm->baid_map[baid]); 1155 if (!data) { 1156 IWL_DEBUG_RX(mvm, 1157 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1158 baid, reorder_data); 1159 goto out; 1160 } 1161 1162 if (!data->timeout) 1163 goto out; 1164 1165 timeout = data->timeout; 1166 /* 1167 * Do not update last rx all the time to avoid cache bouncing 1168 * between the rx queues. 1169 * Update it every timeout. Worst case is the session will 1170 * expire after ~ 2 * timeout, which doesn't matter that much. 1171 */ 1172 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1173 /* Update is atomic */ 1174 data->last_rx = now; 1175 1176 out: 1177 rcu_read_unlock(); 1178 } 1179 1180 static void iwl_mvm_flip_address(u8 *addr) 1181 { 1182 int i; 1183 u8 mac_addr[ETH_ALEN]; 1184 1185 for (i = 0; i < ETH_ALEN; i++) 1186 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1187 ether_addr_copy(addr, mac_addr); 1188 } 1189 1190 struct iwl_mvm_rx_phy_data { 1191 enum iwl_rx_phy_info_type info_type; 1192 __le32 d0, d1, d2, d3; 1193 __le16 d4; 1194 }; 1195 1196 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1197 struct iwl_mvm_rx_phy_data *phy_data, 1198 u32 rate_n_flags, 1199 struct ieee80211_radiotap_he_mu *he_mu) 1200 { 1201 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1202 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1203 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1204 1205 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1206 he_mu->flags1 |= 1207 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1208 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1209 1210 he_mu->flags1 |= 1211 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1212 phy_data4), 1213 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1214 1215 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1216 phy_data2); 1217 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1218 phy_data3); 1219 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1220 phy_data2); 1221 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1222 phy_data3); 1223 } 1224 1225 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1226 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1227 he_mu->flags1 |= 1228 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1229 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1230 1231 he_mu->flags2 |= 1232 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1233 phy_data4), 1234 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1235 1236 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1237 phy_data2); 1238 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1239 phy_data3); 1240 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1241 phy_data2); 1242 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1243 phy_data3); 1244 } 1245 } 1246 1247 static void 1248 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1249 u32 rate_n_flags, 1250 struct ieee80211_radiotap_he *he, 1251 struct ieee80211_radiotap_he_mu *he_mu, 1252 struct ieee80211_rx_status *rx_status) 1253 { 1254 /* 1255 * Unfortunately, we have to leave the mac80211 data 1256 * incorrect for the case that we receive an HE-MU 1257 * transmission and *don't* have the HE phy data (due 1258 * to the bits being used for TSF). This shouldn't 1259 * happen though as management frames where we need 1260 * the TSF/timers are not be transmitted in HE-MU. 1261 */ 1262 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1263 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1264 u8 offs = 0; 1265 1266 rx_status->bw = RATE_INFO_BW_HE_RU; 1267 1268 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1269 1270 switch (ru) { 1271 case 0 ... 36: 1272 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1273 offs = ru; 1274 break; 1275 case 37 ... 52: 1276 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1277 offs = ru - 37; 1278 break; 1279 case 53 ... 60: 1280 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1281 offs = ru - 53; 1282 break; 1283 case 61 ... 64: 1284 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1285 offs = ru - 61; 1286 break; 1287 case 65 ... 66: 1288 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1289 offs = ru - 65; 1290 break; 1291 case 67: 1292 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1293 break; 1294 case 68: 1295 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1296 break; 1297 } 1298 he->data2 |= le16_encode_bits(offs, 1299 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1300 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1301 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1302 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1303 he->data2 |= 1304 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1305 1306 #define CHECK_BW(bw) \ 1307 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1308 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1309 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1310 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1311 CHECK_BW(20); 1312 CHECK_BW(40); 1313 CHECK_BW(80); 1314 CHECK_BW(160); 1315 1316 if (he_mu) 1317 he_mu->flags2 |= 1318 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1319 rate_n_flags), 1320 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1321 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1322 he->data6 |= 1323 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1324 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1325 rate_n_flags), 1326 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1327 } 1328 1329 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1330 struct iwl_mvm_rx_phy_data *phy_data, 1331 struct ieee80211_radiotap_he *he, 1332 struct ieee80211_radiotap_he_mu *he_mu, 1333 struct ieee80211_rx_status *rx_status, 1334 u32 rate_n_flags, int queue) 1335 { 1336 switch (phy_data->info_type) { 1337 case IWL_RX_PHY_INFO_TYPE_NONE: 1338 case IWL_RX_PHY_INFO_TYPE_CCK: 1339 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1340 case IWL_RX_PHY_INFO_TYPE_HT: 1341 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1342 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1343 return; 1344 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1345 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1346 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1347 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1348 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1349 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1350 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1351 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1352 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1353 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1354 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1355 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1356 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1357 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1358 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1359 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1360 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1361 fallthrough; 1362 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1363 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1364 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1365 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1366 /* HE common */ 1367 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1368 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1369 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1370 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1371 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1372 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1373 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1374 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1375 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1376 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1377 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1378 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1379 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1380 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1381 IWL_RX_PHY_DATA0_HE_UPLINK), 1382 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1383 } 1384 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1385 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1386 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1387 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1388 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1389 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1390 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1391 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1392 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1393 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1394 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1395 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1396 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1397 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1398 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1399 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1400 IWL_RX_PHY_DATA0_HE_DOPPLER), 1401 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1402 break; 1403 } 1404 1405 switch (phy_data->info_type) { 1406 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1407 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1408 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1409 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1410 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1411 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1412 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1413 break; 1414 default: 1415 /* nothing here */ 1416 break; 1417 } 1418 1419 switch (phy_data->info_type) { 1420 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1421 he_mu->flags1 |= 1422 le16_encode_bits(le16_get_bits(phy_data->d4, 1423 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1424 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1425 he_mu->flags1 |= 1426 le16_encode_bits(le16_get_bits(phy_data->d4, 1427 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1428 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1429 he_mu->flags2 |= 1430 le16_encode_bits(le16_get_bits(phy_data->d4, 1431 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1432 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1433 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1434 fallthrough; 1435 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1436 he_mu->flags2 |= 1437 le16_encode_bits(le32_get_bits(phy_data->d1, 1438 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1439 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1440 he_mu->flags2 |= 1441 le16_encode_bits(le32_get_bits(phy_data->d1, 1442 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1443 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1444 fallthrough; 1445 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1446 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1447 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1448 he, he_mu, rx_status); 1449 break; 1450 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1451 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1452 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1453 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1454 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1455 break; 1456 default: 1457 /* nothing */ 1458 break; 1459 } 1460 } 1461 1462 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1463 struct iwl_mvm_rx_phy_data *phy_data, 1464 u32 rate_n_flags, u16 phy_info, int queue) 1465 { 1466 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1467 struct ieee80211_radiotap_he *he = NULL; 1468 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1469 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1470 u8 stbc, ltf; 1471 static const struct ieee80211_radiotap_he known = { 1472 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1473 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1474 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1475 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1476 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1477 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1478 }; 1479 static const struct ieee80211_radiotap_he_mu mu_known = { 1480 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1481 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1482 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1483 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1484 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1485 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1486 }; 1487 1488 he = skb_put_data(skb, &known, sizeof(known)); 1489 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1490 1491 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1492 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1493 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1494 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1495 } 1496 1497 /* report the AMPDU-EOF bit on single frames */ 1498 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1499 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1500 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1501 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1502 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1503 } 1504 1505 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1506 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1507 rate_n_flags, queue); 1508 1509 /* update aggregation data for monitor sake on default queue */ 1510 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1511 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1512 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1513 1514 /* toggle is switched whenever new aggregation starts */ 1515 if (toggle_bit != mvm->ampdu_toggle) { 1516 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1517 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1518 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1519 } 1520 } 1521 1522 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1523 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1524 rx_status->bw = RATE_INFO_BW_HE_RU; 1525 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1526 } 1527 1528 /* actually data is filled in mac80211 */ 1529 if (he_type == RATE_MCS_HE_TYPE_SU || 1530 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1531 he->data1 |= 1532 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1533 1534 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1535 rx_status->nss = 1536 ((rate_n_flags & RATE_MCS_NSS_MSK) >> 1537 RATE_MCS_NSS_POS) + 1; 1538 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 1539 rx_status->encoding = RX_ENC_HE; 1540 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1541 if (rate_n_flags & RATE_MCS_BF_MSK) 1542 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1543 1544 rx_status->he_dcm = 1545 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1546 1547 #define CHECK_TYPE(F) \ 1548 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1549 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1550 1551 CHECK_TYPE(SU); 1552 CHECK_TYPE(EXT_SU); 1553 CHECK_TYPE(MU); 1554 CHECK_TYPE(TRIG); 1555 1556 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1557 1558 if (rate_n_flags & RATE_MCS_BF_MSK) 1559 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1560 1561 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1562 RATE_MCS_HE_GI_LTF_POS) { 1563 case 0: 1564 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1565 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1566 else 1567 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1568 if (he_type == RATE_MCS_HE_TYPE_MU) 1569 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1570 else 1571 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1572 break; 1573 case 1: 1574 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1575 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1576 else 1577 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1578 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1579 break; 1580 case 2: 1581 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1582 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1583 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1584 } else { 1585 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1586 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1587 } 1588 break; 1589 case 3: 1590 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1591 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1592 break; 1593 case 4: 1594 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1595 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1596 break; 1597 default: 1598 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1599 } 1600 1601 he->data5 |= le16_encode_bits(ltf, 1602 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1603 } 1604 1605 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1606 struct iwl_mvm_rx_phy_data *phy_data) 1607 { 1608 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1609 struct ieee80211_radiotap_lsig *lsig; 1610 1611 switch (phy_data->info_type) { 1612 case IWL_RX_PHY_INFO_TYPE_HT: 1613 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1614 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1615 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1616 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1617 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1618 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1619 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1620 lsig = skb_put(skb, sizeof(*lsig)); 1621 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1622 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1623 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1624 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1625 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1626 break; 1627 default: 1628 break; 1629 } 1630 } 1631 1632 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1633 { 1634 switch (phy_band) { 1635 case PHY_BAND_24: 1636 return NL80211_BAND_2GHZ; 1637 case PHY_BAND_5: 1638 return NL80211_BAND_5GHZ; 1639 case PHY_BAND_6: 1640 return NL80211_BAND_6GHZ; 1641 default: 1642 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1643 return NL80211_BAND_5GHZ; 1644 } 1645 } 1646 1647 struct iwl_rx_sta_csa { 1648 bool all_sta_unblocked; 1649 struct ieee80211_vif *vif; 1650 }; 1651 1652 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1653 { 1654 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1655 struct iwl_rx_sta_csa *rx_sta_csa = data; 1656 1657 if (mvmsta->vif != rx_sta_csa->vif) 1658 return; 1659 1660 if (mvmsta->disable_tx) 1661 rx_sta_csa->all_sta_unblocked = false; 1662 } 1663 1664 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1665 struct iwl_rx_cmd_buffer *rxb, int queue) 1666 { 1667 struct ieee80211_rx_status *rx_status; 1668 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1669 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1670 struct ieee80211_hdr *hdr; 1671 u32 len; 1672 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 1673 u32 rate_n_flags, gp2_on_air_rise; 1674 u16 phy_info; 1675 struct ieee80211_sta *sta = NULL; 1676 struct sk_buff *skb; 1677 u8 crypt_len = 0, channel, energy_a, energy_b; 1678 size_t desc_size; 1679 struct iwl_mvm_rx_phy_data phy_data = { 1680 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1681 }; 1682 u32 format; 1683 bool is_sgi; 1684 1685 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1686 return; 1687 1688 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1689 desc_size = sizeof(*desc); 1690 else 1691 desc_size = IWL_RX_DESC_SIZE_V1; 1692 1693 if (unlikely(pkt_len < desc_size)) { 1694 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 1695 return; 1696 } 1697 1698 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1699 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1700 channel = desc->v3.channel; 1701 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1702 energy_a = desc->v3.energy_a; 1703 energy_b = desc->v3.energy_b; 1704 1705 phy_data.d0 = desc->v3.phy_data0; 1706 phy_data.d1 = desc->v3.phy_data1; 1707 phy_data.d2 = desc->v3.phy_data2; 1708 phy_data.d3 = desc->v3.phy_data3; 1709 } else { 1710 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1711 channel = desc->v1.channel; 1712 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1713 energy_a = desc->v1.energy_a; 1714 energy_b = desc->v1.energy_b; 1715 1716 phy_data.d0 = desc->v1.phy_data0; 1717 phy_data.d1 = desc->v1.phy_data1; 1718 phy_data.d2 = desc->v1.phy_data2; 1719 phy_data.d3 = desc->v1.phy_data3; 1720 } 1721 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 1722 REPLY_RX_MPDU_CMD, 0) < 4) { 1723 rate_n_flags = iwl_new_rate_from_v1(rate_n_flags); 1724 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 1725 rate_n_flags); 1726 } 1727 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1728 1729 len = le16_to_cpu(desc->mpdu_len); 1730 1731 if (unlikely(len + desc_size > pkt_len)) { 1732 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 1733 return; 1734 } 1735 1736 phy_info = le16_to_cpu(desc->phy_info); 1737 phy_data.d4 = desc->phy_data4; 1738 1739 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1740 phy_data.info_type = 1741 le32_get_bits(phy_data.d1, 1742 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1743 1744 hdr = (void *)(pkt->data + desc_size); 1745 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1746 * ieee80211_hdr pulled. 1747 */ 1748 skb = alloc_skb(128, GFP_ATOMIC); 1749 if (!skb) { 1750 IWL_ERR(mvm, "alloc_skb failed\n"); 1751 return; 1752 } 1753 1754 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1755 /* 1756 * If the device inserted padding it means that (it thought) 1757 * the 802.11 header wasn't a multiple of 4 bytes long. In 1758 * this case, reserve two bytes at the start of the SKB to 1759 * align the payload properly in case we end up copying it. 1760 */ 1761 skb_reserve(skb, 2); 1762 } 1763 1764 rx_status = IEEE80211_SKB_RXCB(skb); 1765 1766 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1767 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1768 case RATE_MCS_CHAN_WIDTH_20: 1769 break; 1770 case RATE_MCS_CHAN_WIDTH_40: 1771 rx_status->bw = RATE_INFO_BW_40; 1772 break; 1773 case RATE_MCS_CHAN_WIDTH_80: 1774 rx_status->bw = RATE_INFO_BW_80; 1775 break; 1776 case RATE_MCS_CHAN_WIDTH_160: 1777 rx_status->bw = RATE_INFO_BW_160; 1778 break; 1779 } 1780 1781 if (format == RATE_MCS_HE_MSK) 1782 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1783 phy_info, queue); 1784 1785 iwl_mvm_decode_lsig(skb, &phy_data); 1786 1787 /* 1788 * Keep packets with CRC errors (and with overrun) for monitor mode 1789 * (otherwise the firmware discards them) but mark them as bad. 1790 */ 1791 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1792 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1793 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1794 le32_to_cpu(desc->status)); 1795 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1796 } 1797 /* set the preamble flag if appropriate */ 1798 if (format == RATE_MCS_CCK_MSK && 1799 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1800 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1801 1802 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1803 u64 tsf_on_air_rise; 1804 1805 if (mvm->trans->trans_cfg->device_family >= 1806 IWL_DEVICE_FAMILY_AX210) 1807 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1808 else 1809 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1810 1811 rx_status->mactime = tsf_on_air_rise; 1812 /* TSF as indicated by the firmware is at INA time */ 1813 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1814 } 1815 1816 rx_status->device_timestamp = gp2_on_air_rise; 1817 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1818 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1819 1820 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1821 } else { 1822 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1823 NL80211_BAND_2GHZ; 1824 } 1825 rx_status->freq = ieee80211_channel_to_frequency(channel, 1826 rx_status->band); 1827 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1828 energy_b); 1829 1830 /* update aggregation data for monitor sake on default queue */ 1831 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1832 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1833 1834 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1835 /* 1836 * Toggle is switched whenever new aggregation starts. Make 1837 * sure ampdu_reference is never 0 so we can later use it to 1838 * see if the frame was really part of an A-MPDU or not. 1839 */ 1840 if (toggle_bit != mvm->ampdu_toggle) { 1841 mvm->ampdu_ref++; 1842 if (mvm->ampdu_ref == 0) 1843 mvm->ampdu_ref++; 1844 mvm->ampdu_toggle = toggle_bit; 1845 } 1846 rx_status->ampdu_reference = mvm->ampdu_ref; 1847 } 1848 1849 if (unlikely(mvm->monitor_on)) 1850 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1851 1852 rcu_read_lock(); 1853 1854 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1855 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 1856 1857 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 1858 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1859 if (IS_ERR(sta)) 1860 sta = NULL; 1861 } 1862 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1863 /* 1864 * This is fine since we prevent two stations with the same 1865 * address from being added. 1866 */ 1867 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1868 } 1869 1870 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc, 1871 le32_to_cpu(pkt->len_n_flags), queue, 1872 &crypt_len)) { 1873 kfree_skb(skb); 1874 goto out; 1875 } 1876 1877 if (sta) { 1878 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1879 struct ieee80211_vif *tx_blocked_vif = 1880 rcu_dereference(mvm->csa_tx_blocked_vif); 1881 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1882 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1883 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1884 struct iwl_fw_dbg_trigger_tlv *trig; 1885 struct ieee80211_vif *vif = mvmsta->vif; 1886 1887 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1888 !is_multicast_ether_addr(hdr->addr1) && 1889 ieee80211_is_data(hdr->frame_control) && 1890 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1891 schedule_delayed_work(&mvm->tcm.work, 0); 1892 1893 /* 1894 * We have tx blocked stations (with CS bit). If we heard 1895 * frames from a blocked station on a new channel we can 1896 * TX to it again. 1897 */ 1898 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1899 struct iwl_mvm_vif *mvmvif = 1900 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1901 struct iwl_rx_sta_csa rx_sta_csa = { 1902 .all_sta_unblocked = true, 1903 .vif = tx_blocked_vif, 1904 }; 1905 1906 if (mvmvif->csa_target_freq == rx_status->freq) 1907 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1908 false); 1909 ieee80211_iterate_stations_atomic(mvm->hw, 1910 iwl_mvm_rx_get_sta_block_tx, 1911 &rx_sta_csa); 1912 1913 if (rx_sta_csa.all_sta_unblocked) { 1914 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 1915 /* Unblock BCAST / MCAST station */ 1916 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 1917 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork); 1918 } 1919 } 1920 1921 rs_update_last_rssi(mvm, mvmsta, rx_status); 1922 1923 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1924 ieee80211_vif_to_wdev(vif), 1925 FW_DBG_TRIGGER_RSSI); 1926 1927 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1928 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1929 s32 rssi; 1930 1931 rssi_trig = (void *)trig->data; 1932 rssi = le32_to_cpu(rssi_trig->rssi); 1933 1934 if (rx_status->signal < rssi) 1935 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1936 NULL); 1937 } 1938 1939 if (ieee80211_is_data(hdr->frame_control)) 1940 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 1941 1942 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1943 kfree_skb(skb); 1944 goto out; 1945 } 1946 1947 /* 1948 * Our hardware de-aggregates AMSDUs but copies the mac header 1949 * as it to the de-aggregated MPDUs. We need to turn off the 1950 * AMSDU bit in the QoS control ourselves. 1951 * In addition, HW reverses addr3 and addr4 - reverse it back. 1952 */ 1953 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1954 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1955 u8 *qc = ieee80211_get_qos_ctl(hdr); 1956 1957 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1958 1959 if (mvm->trans->trans_cfg->device_family == 1960 IWL_DEVICE_FAMILY_9000) { 1961 iwl_mvm_flip_address(hdr->addr3); 1962 1963 if (ieee80211_has_a4(hdr->frame_control)) 1964 iwl_mvm_flip_address(hdr->addr4); 1965 } 1966 } 1967 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1968 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1969 1970 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1971 } 1972 } 1973 1974 is_sgi = format == RATE_MCS_HE_MSK ? 1975 iwl_he_is_sgi(rate_n_flags) : 1976 rate_n_flags & RATE_MCS_SGI_MSK; 1977 1978 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 1979 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1980 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1981 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1982 if (format == RATE_MCS_HT_MSK) { 1983 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1984 RATE_MCS_STBC_POS; 1985 rx_status->encoding = RX_ENC_HT; 1986 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 1987 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1988 } else if (format == RATE_MCS_VHT_MSK) { 1989 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1990 RATE_MCS_STBC_POS; 1991 rx_status->nss = ((rate_n_flags & RATE_MCS_NSS_MSK) >> 1992 RATE_MCS_NSS_POS) + 1; 1993 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 1994 rx_status->encoding = RX_ENC_VHT; 1995 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1996 if (rate_n_flags & RATE_MCS_BF_MSK) 1997 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1998 } else if (!(format == RATE_MCS_HE_MSK)) { 1999 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2000 rx_status->band); 2001 2002 if (WARN(rate < 0 || rate > 0xFF, 2003 "Invalid rate flags 0x%x, band %d,\n", 2004 rate_n_flags, rx_status->band)) { 2005 kfree_skb(skb); 2006 goto out; 2007 } 2008 rx_status->rate_idx = rate; 2009 } 2010 2011 /* management stuff on default queue */ 2012 if (!queue) { 2013 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2014 ieee80211_is_probe_resp(hdr->frame_control)) && 2015 mvm->sched_scan_pass_all == 2016 SCHED_SCAN_PASS_ALL_ENABLED)) 2017 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2018 2019 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2020 ieee80211_is_probe_resp(hdr->frame_control))) 2021 rx_status->boottime_ns = ktime_get_boottime_ns(); 2022 } 2023 2024 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2025 kfree_skb(skb); 2026 goto out; 2027 } 2028 2029 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 2030 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 2031 sta); 2032 out: 2033 rcu_read_unlock(); 2034 } 2035 2036 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2037 struct iwl_rx_cmd_buffer *rxb, int queue) 2038 { 2039 struct ieee80211_rx_status *rx_status; 2040 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2041 struct iwl_rx_no_data *desc = (void *)pkt->data; 2042 u32 rate_n_flags = le32_to_cpu(desc->rate); 2043 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2044 u32 rssi = le32_to_cpu(desc->rssi); 2045 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2046 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2047 struct ieee80211_sta *sta = NULL; 2048 struct sk_buff *skb; 2049 u8 channel, energy_a, energy_b; 2050 u32 format; 2051 struct iwl_mvm_rx_phy_data phy_data = { 2052 .info_type = le32_get_bits(desc->phy_info[1], 2053 IWL_RX_PHY_DATA1_INFO_TYPE_MASK), 2054 .d0 = desc->phy_info[0], 2055 .d1 = desc->phy_info[1], 2056 }; 2057 bool is_sgi; 2058 2059 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2060 RX_NO_DATA_NOTIF, 0) < 2) { 2061 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2062 rate_n_flags); 2063 rate_n_flags = iwl_new_rate_from_v1(rate_n_flags); 2064 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2065 rate_n_flags); 2066 } 2067 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2068 2069 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc))) 2070 return; 2071 2072 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2073 return; 2074 2075 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 2076 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 2077 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 2078 2079 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2080 * ieee80211_hdr pulled. 2081 */ 2082 skb = alloc_skb(128, GFP_ATOMIC); 2083 if (!skb) { 2084 IWL_ERR(mvm, "alloc_skb failed\n"); 2085 return; 2086 } 2087 2088 rx_status = IEEE80211_SKB_RXCB(skb); 2089 2090 /* 0-length PSDU */ 2091 rx_status->flag |= RX_FLAG_NO_PSDU; 2092 2093 switch (info_type) { 2094 case RX_NO_DATA_INFO_TYPE_NDP: 2095 rx_status->zero_length_psdu_type = 2096 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2097 break; 2098 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2099 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 2100 rx_status->zero_length_psdu_type = 2101 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2102 break; 2103 default: 2104 rx_status->zero_length_psdu_type = 2105 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2106 break; 2107 } 2108 2109 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2110 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2111 case RATE_MCS_CHAN_WIDTH_20: 2112 break; 2113 case RATE_MCS_CHAN_WIDTH_40: 2114 rx_status->bw = RATE_INFO_BW_40; 2115 break; 2116 case RATE_MCS_CHAN_WIDTH_80: 2117 rx_status->bw = RATE_INFO_BW_80; 2118 break; 2119 case RATE_MCS_CHAN_WIDTH_160: 2120 rx_status->bw = RATE_INFO_BW_160; 2121 break; 2122 } 2123 2124 if (format == RATE_MCS_HE_MSK) 2125 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 2126 phy_info, queue); 2127 2128 iwl_mvm_decode_lsig(skb, &phy_data); 2129 2130 rx_status->device_timestamp = gp2_on_air_rise; 2131 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 2132 NL80211_BAND_2GHZ; 2133 rx_status->freq = ieee80211_channel_to_frequency(channel, 2134 rx_status->band); 2135 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 2136 energy_b); 2137 2138 rcu_read_lock(); 2139 2140 is_sgi = format == RATE_MCS_HE_MSK ? 2141 iwl_he_is_sgi(rate_n_flags) : 2142 rate_n_flags & RATE_MCS_SGI_MSK; 2143 2144 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 2145 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2146 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2147 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2148 if (format == RATE_MCS_HT_MSK) { 2149 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2150 RATE_MCS_STBC_POS; 2151 rx_status->encoding = RX_ENC_HT; 2152 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2153 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2154 } else if (format == RATE_MCS_VHT_MSK) { 2155 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2156 RATE_MCS_STBC_POS; 2157 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2158 rx_status->encoding = RX_ENC_VHT; 2159 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2160 if (rate_n_flags & RATE_MCS_BF_MSK) 2161 rx_status->enc_flags |= RX_ENC_FLAG_BF; 2162 /* 2163 * take the nss from the rx_vec since the rate_n_flags has 2164 * only 2 bits for the nss which gives a max of 4 ss but 2165 * there may be up to 8 spatial streams 2166 */ 2167 rx_status->nss = 2168 le32_get_bits(desc->rx_vec[0], 2169 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2170 } else if (format == RATE_MCS_HE_MSK) { 2171 rx_status->nss = 2172 le32_get_bits(desc->rx_vec[0], 2173 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2174 } else { 2175 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2176 rx_status->band); 2177 2178 if (WARN(rate < 0 || rate > 0xFF, 2179 "Invalid rate flags 0x%x, band %d,\n", 2180 rate_n_flags, rx_status->band)) { 2181 kfree_skb(skb); 2182 goto out; 2183 } 2184 rx_status->rate_idx = rate; 2185 } 2186 2187 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2188 out: 2189 rcu_read_unlock(); 2190 } 2191 2192 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2193 struct iwl_rx_cmd_buffer *rxb, int queue) 2194 { 2195 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2196 struct iwl_frame_release *release = (void *)pkt->data; 2197 2198 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2199 return; 2200 2201 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2202 le16_to_cpu(release->nssn), 2203 queue, 0); 2204 } 2205 2206 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2207 struct iwl_rx_cmd_buffer *rxb, int queue) 2208 { 2209 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2210 struct iwl_bar_frame_release *release = (void *)pkt->data; 2211 unsigned int baid = le32_get_bits(release->ba_info, 2212 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2213 unsigned int nssn = le32_get_bits(release->ba_info, 2214 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2215 unsigned int sta_id = le32_get_bits(release->sta_tid, 2216 IWL_BAR_FRAME_RELEASE_STA_MASK); 2217 unsigned int tid = le32_get_bits(release->sta_tid, 2218 IWL_BAR_FRAME_RELEASE_TID_MASK); 2219 struct iwl_mvm_baid_data *baid_data; 2220 2221 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2222 return; 2223 2224 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2225 baid >= ARRAY_SIZE(mvm->baid_map))) 2226 return; 2227 2228 rcu_read_lock(); 2229 baid_data = rcu_dereference(mvm->baid_map[baid]); 2230 if (!baid_data) { 2231 IWL_DEBUG_RX(mvm, 2232 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2233 baid); 2234 goto out; 2235 } 2236 2237 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2238 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2239 baid, baid_data->sta_id, baid_data->tid, sta_id, 2240 tid)) 2241 goto out; 2242 2243 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2244 out: 2245 rcu_read_unlock(); 2246 } 2247