1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <ilw@linux.intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *****************************************************************************/
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include "iwl-trans.h"
66 #include "mvm.h"
67 #include "fw-api.h"
68 
69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
70 {
71 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
72 	u8 *data = skb->data;
73 
74 	/* Alignment concerns */
75 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
76 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
77 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
78 	BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
79 
80 	if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
81 		data += sizeof(struct ieee80211_radiotap_he);
82 	if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
83 		data += sizeof(struct ieee80211_radiotap_he_mu);
84 	if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
85 		data += sizeof(struct ieee80211_radiotap_lsig);
86 	if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
87 		struct ieee80211_vendor_radiotap *radiotap = (void *)data;
88 
89 		data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
90 	}
91 
92 	return data;
93 }
94 
95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
96 				   int queue, struct ieee80211_sta *sta)
97 {
98 	struct iwl_mvm_sta *mvmsta;
99 	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
100 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
101 	struct iwl_mvm_key_pn *ptk_pn;
102 	int res;
103 	u8 tid, keyidx;
104 	u8 pn[IEEE80211_CCMP_PN_LEN];
105 	u8 *extiv;
106 
107 	/* do PN checking */
108 
109 	/* multicast and non-data only arrives on default queue */
110 	if (!ieee80211_is_data(hdr->frame_control) ||
111 	    is_multicast_ether_addr(hdr->addr1))
112 		return 0;
113 
114 	/* do not check PN for open AP */
115 	if (!(stats->flag & RX_FLAG_DECRYPTED))
116 		return 0;
117 
118 	/*
119 	 * avoid checking for default queue - we don't want to replicate
120 	 * all the logic that's necessary for checking the PN on fragmented
121 	 * frames, leave that to mac80211
122 	 */
123 	if (queue == 0)
124 		return 0;
125 
126 	/* if we are here - this for sure is either CCMP or GCMP */
127 	if (IS_ERR_OR_NULL(sta)) {
128 		IWL_ERR(mvm,
129 			"expected hw-decrypted unicast frame for station\n");
130 		return -1;
131 	}
132 
133 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
134 
135 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
136 	keyidx = extiv[3] >> 6;
137 
138 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
139 	if (!ptk_pn)
140 		return -1;
141 
142 	if (ieee80211_is_data_qos(hdr->frame_control))
143 		tid = ieee80211_get_tid(hdr);
144 	else
145 		tid = 0;
146 
147 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
148 	if (tid >= IWL_MAX_TID_COUNT)
149 		return -1;
150 
151 	/* load pn */
152 	pn[0] = extiv[7];
153 	pn[1] = extiv[6];
154 	pn[2] = extiv[5];
155 	pn[3] = extiv[4];
156 	pn[4] = extiv[1];
157 	pn[5] = extiv[0];
158 
159 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
160 	if (res < 0)
161 		return -1;
162 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
163 		return -1;
164 
165 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
166 	stats->flag |= RX_FLAG_PN_VALIDATED;
167 
168 	return 0;
169 }
170 
171 /* iwl_mvm_create_skb Adds the rxb to a new skb */
172 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
173 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
174 			      struct iwl_rx_cmd_buffer *rxb)
175 {
176 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
177 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
178 	unsigned int headlen, fraglen, pad_len = 0;
179 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
180 
181 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
182 		len -= 2;
183 		pad_len = 2;
184 	}
185 
186 	/* If frame is small enough to fit in skb->head, pull it completely.
187 	 * If not, only pull ieee80211_hdr (including crypto if present, and
188 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
189 	 * splice() or TCP coalesce are more efficient.
190 	 *
191 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
192 	 * least 8 bytes (possibly more for mesh) we can do the same here
193 	 * to save the cost of doing it later. That still doesn't pull in
194 	 * the actual IP header since the typical case has a SNAP header.
195 	 * If the latter changes (there are efforts in the standards group
196 	 * to do so) we should revisit this and ieee80211_data_to_8023().
197 	 */
198 	headlen = (len <= skb_tailroom(skb)) ? len :
199 					       hdrlen + crypt_len + 8;
200 
201 	/* The firmware may align the packet to DWORD.
202 	 * The padding is inserted after the IV.
203 	 * After copying the header + IV skip the padding if
204 	 * present before copying packet data.
205 	 */
206 	hdrlen += crypt_len;
207 
208 	if (WARN_ONCE(headlen < hdrlen,
209 		      "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
210 		      hdrlen, len, crypt_len)) {
211 		/*
212 		 * We warn and trace because we want to be able to see
213 		 * it in trace-cmd as well.
214 		 */
215 		IWL_DEBUG_RX(mvm,
216 			     "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
217 			     hdrlen, len, crypt_len);
218 		return -EINVAL;
219 	}
220 
221 	skb_put_data(skb, hdr, hdrlen);
222 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
223 
224 	fraglen = len - headlen;
225 
226 	if (fraglen) {
227 		int offset = (void *)hdr + headlen + pad_len -
228 			     rxb_addr(rxb) + rxb_offset(rxb);
229 
230 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
231 				fraglen, rxb->truesize);
232 	}
233 
234 	return 0;
235 }
236 
237 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
238 					    struct sk_buff *skb)
239 {
240 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
241 	struct ieee80211_vendor_radiotap *radiotap;
242 	const int size = sizeof(*radiotap) + sizeof(__le16);
243 
244 	if (!mvm->cur_aid)
245 		return;
246 
247 	/* ensure alignment */
248 	BUILD_BUG_ON((size + 2) % 4);
249 
250 	radiotap = skb_put(skb, size + 2);
251 	radiotap->align = 1;
252 	/* Intel OUI */
253 	radiotap->oui[0] = 0xf6;
254 	radiotap->oui[1] = 0x54;
255 	radiotap->oui[2] = 0x25;
256 	/* radiotap sniffer config sub-namespace */
257 	radiotap->subns = 1;
258 	radiotap->present = 0x1;
259 	radiotap->len = size - sizeof(*radiotap);
260 	radiotap->pad = 2;
261 
262 	/* fill the data now */
263 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
264 	/* and clear the padding */
265 	memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
266 
267 	rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
268 }
269 
270 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
271 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
272 					    struct napi_struct *napi,
273 					    struct sk_buff *skb, int queue,
274 					    struct ieee80211_sta *sta,
275 					    bool csi)
276 {
277 	if (iwl_mvm_check_pn(mvm, skb, queue, sta))
278 		kfree_skb(skb);
279 	else
280 		ieee80211_rx_napi(mvm->hw, sta, skb, napi);
281 }
282 
283 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
284 					struct ieee80211_rx_status *rx_status,
285 					u32 rate_n_flags, int energy_a,
286 					int energy_b)
287 {
288 	int max_energy;
289 	u32 rate_flags = rate_n_flags;
290 
291 	energy_a = energy_a ? -energy_a : S8_MIN;
292 	energy_b = energy_b ? -energy_b : S8_MIN;
293 	max_energy = max(energy_a, energy_b);
294 
295 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
296 			energy_a, energy_b, max_energy);
297 
298 	rx_status->signal = max_energy;
299 	rx_status->chains =
300 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
301 	rx_status->chain_signal[0] = energy_a;
302 	rx_status->chain_signal[1] = energy_b;
303 	rx_status->chain_signal[2] = S8_MIN;
304 }
305 
306 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
307 			     struct ieee80211_rx_status *stats, u16 phy_info,
308 			     struct iwl_rx_mpdu_desc *desc,
309 			     u32 pkt_flags, int queue, u8 *crypt_len)
310 {
311 	u16 status = le16_to_cpu(desc->status);
312 
313 	/*
314 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
315 	 * (where we don't have the keys).
316 	 * We limit this to aggregation because in TKIP this is a valid
317 	 * scenario, since we may not have the (correct) TTAK (phase 1
318 	 * key) in the firmware.
319 	 */
320 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
321 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
322 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
323 		return -1;
324 
325 	if (!ieee80211_has_protected(hdr->frame_control) ||
326 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
327 	    IWL_RX_MPDU_STATUS_SEC_NONE)
328 		return 0;
329 
330 	/* TODO: handle packets encrypted with unknown alg */
331 
332 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
333 	case IWL_RX_MPDU_STATUS_SEC_CCM:
334 	case IWL_RX_MPDU_STATUS_SEC_GCM:
335 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
336 		/* alg is CCM: check MIC only */
337 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
338 			return -1;
339 
340 		stats->flag |= RX_FLAG_DECRYPTED;
341 		if (pkt_flags & FH_RSCSR_RADA_EN)
342 			stats->flag |= RX_FLAG_MIC_STRIPPED;
343 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
344 		return 0;
345 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
346 		/* Don't drop the frame and decrypt it in SW */
347 		if (!fw_has_api(&mvm->fw->ucode_capa,
348 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
349 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
350 			return 0;
351 
352 		if (mvm->trans->cfg->gen2 &&
353 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
354 			stats->flag |= RX_FLAG_MMIC_ERROR;
355 
356 		*crypt_len = IEEE80211_TKIP_IV_LEN;
357 		/* fall through */
358 	case IWL_RX_MPDU_STATUS_SEC_WEP:
359 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
360 			return -1;
361 
362 		stats->flag |= RX_FLAG_DECRYPTED;
363 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
364 				IWL_RX_MPDU_STATUS_SEC_WEP)
365 			*crypt_len = IEEE80211_WEP_IV_LEN;
366 
367 		if (pkt_flags & FH_RSCSR_RADA_EN) {
368 			stats->flag |= RX_FLAG_ICV_STRIPPED;
369 			if (mvm->trans->cfg->gen2)
370 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
371 		}
372 
373 		return 0;
374 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
375 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
376 			return -1;
377 		stats->flag |= RX_FLAG_DECRYPTED;
378 		return 0;
379 	default:
380 		/* Expected in monitor (not having the keys) */
381 		if (!mvm->monitor_on)
382 			IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
383 	}
384 
385 	return 0;
386 }
387 
388 static void iwl_mvm_rx_csum(struct ieee80211_sta *sta,
389 			    struct sk_buff *skb,
390 			    struct iwl_rx_mpdu_desc *desc)
391 {
392 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
393 	struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
394 	u16 flags = le16_to_cpu(desc->l3l4_flags);
395 	u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
396 			  IWL_RX_L3_PROTO_POS);
397 
398 	if (mvmvif->features & NETIF_F_RXCSUM &&
399 	    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
400 	    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
401 	     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
402 	     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
403 		skb->ip_summed = CHECKSUM_UNNECESSARY;
404 }
405 
406 /*
407  * returns true if a packet is a duplicate and should be dropped.
408  * Updates AMSDU PN tracking info
409  */
410 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
411 			   struct ieee80211_rx_status *rx_status,
412 			   struct ieee80211_hdr *hdr,
413 			   struct iwl_rx_mpdu_desc *desc)
414 {
415 	struct iwl_mvm_sta *mvm_sta;
416 	struct iwl_mvm_rxq_dup_data *dup_data;
417 	u8 tid, sub_frame_idx;
418 
419 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
420 		return false;
421 
422 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
423 	dup_data = &mvm_sta->dup_data[queue];
424 
425 	/*
426 	 * Drop duplicate 802.11 retransmissions
427 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
428 	 */
429 	if (ieee80211_is_ctl(hdr->frame_control) ||
430 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
431 	    is_multicast_ether_addr(hdr->addr1)) {
432 		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
433 		return false;
434 	}
435 
436 	if (ieee80211_is_data_qos(hdr->frame_control))
437 		/* frame has qos control */
438 		tid = ieee80211_get_tid(hdr);
439 	else
440 		tid = IWL_MAX_TID_COUNT;
441 
442 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
443 	sub_frame_idx = desc->amsdu_info &
444 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
445 
446 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
447 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
448 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
449 		return true;
450 
451 	/* Allow same PN as the first subframe for following sub frames */
452 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
453 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
454 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
455 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
456 
457 	dup_data->last_seq[tid] = hdr->seq_ctrl;
458 	dup_data->last_sub_frame[tid] = sub_frame_idx;
459 
460 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
461 
462 	return false;
463 }
464 
465 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
466 			    const u8 *data, u32 count, bool async)
467 {
468 	u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
469 	       sizeof(struct iwl_mvm_rss_sync_notif)];
470 	struct iwl_rxq_sync_cmd *cmd = (void *)buf;
471 	u32 data_size = sizeof(*cmd) + count;
472 	int ret;
473 
474 	/*
475 	 * size must be a multiple of DWORD
476 	 * Ensure we don't overflow buf
477 	 */
478 	if (WARN_ON(count & 3 ||
479 		    count > sizeof(struct iwl_mvm_rss_sync_notif)))
480 		return -EINVAL;
481 
482 	cmd->rxq_mask = cpu_to_le32(rxq_mask);
483 	cmd->count =  cpu_to_le32(count);
484 	cmd->flags = 0;
485 	memcpy(cmd->payload, data, count);
486 
487 	ret = iwl_mvm_send_cmd_pdu(mvm,
488 				   WIDE_ID(DATA_PATH_GROUP,
489 					   TRIGGER_RX_QUEUES_NOTIF_CMD),
490 				   async ? CMD_ASYNC : 0, data_size, cmd);
491 
492 	return ret;
493 }
494 
495 /*
496  * Returns true if sn2 - buffer_size < sn1 < sn2.
497  * To be used only in order to compare reorder buffer head with NSSN.
498  * We fully trust NSSN unless it is behind us due to reorder timeout.
499  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
500  */
501 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
502 {
503 	return ieee80211_sn_less(sn1, sn2) &&
504 	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
505 }
506 
507 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
508 {
509 	struct iwl_mvm_rss_sync_notif notif = {
510 		.metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
511 		.metadata.sync = 0,
512 		.nssn_sync.baid = baid,
513 		.nssn_sync.nssn = nssn,
514 	};
515 
516 	iwl_mvm_sync_rx_queues_internal(mvm, (void *)&notif, sizeof(notif));
517 }
518 
519 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
520 
521 enum iwl_mvm_release_flags {
522 	IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
523 	IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
524 };
525 
526 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
527 				   struct ieee80211_sta *sta,
528 				   struct napi_struct *napi,
529 				   struct iwl_mvm_baid_data *baid_data,
530 				   struct iwl_mvm_reorder_buffer *reorder_buf,
531 				   u16 nssn, u32 flags)
532 {
533 	struct iwl_mvm_reorder_buf_entry *entries =
534 		&baid_data->entries[reorder_buf->queue *
535 				    baid_data->entries_per_queue];
536 	u16 ssn = reorder_buf->head_sn;
537 
538 	lockdep_assert_held(&reorder_buf->lock);
539 
540 	/*
541 	 * We keep the NSSN not too far behind, if we are sync'ing it and it
542 	 * is more than 2048 ahead of us, it must be behind us. Discard it.
543 	 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
544 	 * behind and this queue already processed packets. The next if
545 	 * would have caught cases where this queue would have processed less
546 	 * than 64 packets, but it may have processed more than 64 packets.
547 	 */
548 	if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
549 	    ieee80211_sn_less(nssn, ssn))
550 		goto set_timer;
551 
552 	/* ignore nssn smaller than head sn - this can happen due to timeout */
553 	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
554 		goto set_timer;
555 
556 	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
557 		int index = ssn % reorder_buf->buf_size;
558 		struct sk_buff_head *skb_list = &entries[index].e.frames;
559 		struct sk_buff *skb;
560 
561 		ssn = ieee80211_sn_inc(ssn);
562 		if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
563 		    (ssn == 2048 || ssn == 0))
564 			iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
565 
566 		/*
567 		 * Empty the list. Will have more than one frame for A-MSDU.
568 		 * Empty list is valid as well since nssn indicates frames were
569 		 * received.
570 		 */
571 		while ((skb = __skb_dequeue(skb_list))) {
572 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
573 							reorder_buf->queue,
574 							sta, false);
575 			reorder_buf->num_stored--;
576 		}
577 	}
578 	reorder_buf->head_sn = nssn;
579 
580 set_timer:
581 	if (reorder_buf->num_stored && !reorder_buf->removed) {
582 		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
583 
584 		while (skb_queue_empty(&entries[index].e.frames))
585 			index = (index + 1) % reorder_buf->buf_size;
586 		/* modify timer to match next frame's expiration time */
587 		mod_timer(&reorder_buf->reorder_timer,
588 			  entries[index].e.reorder_time + 1 +
589 			  RX_REORDER_BUF_TIMEOUT_MQ);
590 	} else {
591 		del_timer(&reorder_buf->reorder_timer);
592 	}
593 }
594 
595 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
596 {
597 	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
598 	struct iwl_mvm_baid_data *baid_data =
599 		iwl_mvm_baid_data_from_reorder_buf(buf);
600 	struct iwl_mvm_reorder_buf_entry *entries =
601 		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
602 	int i;
603 	u16 sn = 0, index = 0;
604 	bool expired = false;
605 	bool cont = false;
606 
607 	spin_lock(&buf->lock);
608 
609 	if (!buf->num_stored || buf->removed) {
610 		spin_unlock(&buf->lock);
611 		return;
612 	}
613 
614 	for (i = 0; i < buf->buf_size ; i++) {
615 		index = (buf->head_sn + i) % buf->buf_size;
616 
617 		if (skb_queue_empty(&entries[index].e.frames)) {
618 			/*
619 			 * If there is a hole and the next frame didn't expire
620 			 * we want to break and not advance SN
621 			 */
622 			cont = false;
623 			continue;
624 		}
625 		if (!cont &&
626 		    !time_after(jiffies, entries[index].e.reorder_time +
627 					 RX_REORDER_BUF_TIMEOUT_MQ))
628 			break;
629 
630 		expired = true;
631 		/* continue until next hole after this expired frames */
632 		cont = true;
633 		sn = ieee80211_sn_add(buf->head_sn, i + 1);
634 	}
635 
636 	if (expired) {
637 		struct ieee80211_sta *sta;
638 		struct iwl_mvm_sta *mvmsta;
639 		u8 sta_id = baid_data->sta_id;
640 
641 		rcu_read_lock();
642 		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
643 		mvmsta = iwl_mvm_sta_from_mac80211(sta);
644 
645 		/* SN is set to the last expired frame + 1 */
646 		IWL_DEBUG_HT(buf->mvm,
647 			     "Releasing expired frames for sta %u, sn %d\n",
648 			     sta_id, sn);
649 		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
650 						     sta, baid_data->tid);
651 		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
652 				       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
653 		rcu_read_unlock();
654 	} else {
655 		/*
656 		 * If no frame expired and there are stored frames, index is now
657 		 * pointing to the first unexpired frame - modify timer
658 		 * accordingly to this frame.
659 		 */
660 		mod_timer(&buf->reorder_timer,
661 			  entries[index].e.reorder_time +
662 			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
663 	}
664 	spin_unlock(&buf->lock);
665 }
666 
667 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
668 			   struct iwl_mvm_delba_data *data)
669 {
670 	struct iwl_mvm_baid_data *ba_data;
671 	struct ieee80211_sta *sta;
672 	struct iwl_mvm_reorder_buffer *reorder_buf;
673 	u8 baid = data->baid;
674 
675 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
676 		return;
677 
678 	rcu_read_lock();
679 
680 	ba_data = rcu_dereference(mvm->baid_map[baid]);
681 	if (WARN_ON_ONCE(!ba_data))
682 		goto out;
683 
684 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
685 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
686 		goto out;
687 
688 	reorder_buf = &ba_data->reorder_buf[queue];
689 
690 	/* release all frames that are in the reorder buffer to the stack */
691 	spin_lock_bh(&reorder_buf->lock);
692 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
693 			       ieee80211_sn_add(reorder_buf->head_sn,
694 						reorder_buf->buf_size),
695 			       0);
696 	spin_unlock_bh(&reorder_buf->lock);
697 	del_timer_sync(&reorder_buf->reorder_timer);
698 
699 out:
700 	rcu_read_unlock();
701 }
702 
703 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
704 					      struct napi_struct *napi,
705 					      u8 baid, u16 nssn, int queue,
706 					      u32 flags)
707 {
708 	struct ieee80211_sta *sta;
709 	struct iwl_mvm_reorder_buffer *reorder_buf;
710 	struct iwl_mvm_baid_data *ba_data;
711 
712 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
713 		     baid, nssn);
714 
715 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
716 			 baid >= ARRAY_SIZE(mvm->baid_map)))
717 		return;
718 
719 	rcu_read_lock();
720 
721 	ba_data = rcu_dereference(mvm->baid_map[baid]);
722 	if (WARN_ON_ONCE(!ba_data))
723 		goto out;
724 
725 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
726 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
727 		goto out;
728 
729 	reorder_buf = &ba_data->reorder_buf[queue];
730 
731 	spin_lock_bh(&reorder_buf->lock);
732 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
733 			       reorder_buf, nssn, flags);
734 	spin_unlock_bh(&reorder_buf->lock);
735 
736 out:
737 	rcu_read_unlock();
738 }
739 
740 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
741 			      struct napi_struct *napi, int queue,
742 			      const struct iwl_mvm_nssn_sync_data *data)
743 {
744 	iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
745 					  data->nssn, queue,
746 					  IWL_MVM_RELEASE_FROM_RSS_SYNC);
747 }
748 
749 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
750 			    struct iwl_rx_cmd_buffer *rxb, int queue)
751 {
752 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
753 	struct iwl_rxq_sync_notification *notif;
754 	struct iwl_mvm_internal_rxq_notif *internal_notif;
755 
756 	notif = (void *)pkt->data;
757 	internal_notif = (void *)notif->payload;
758 
759 	if (internal_notif->sync &&
760 	    mvm->queue_sync_cookie != internal_notif->cookie) {
761 		WARN_ONCE(1, "Received expired RX queue sync message\n");
762 		return;
763 	}
764 
765 	switch (internal_notif->type) {
766 	case IWL_MVM_RXQ_EMPTY:
767 		break;
768 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
769 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
770 		break;
771 	case IWL_MVM_RXQ_NSSN_SYNC:
772 		iwl_mvm_nssn_sync(mvm, napi, queue,
773 				  (void *)internal_notif->data);
774 		break;
775 	default:
776 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
777 	}
778 
779 	if (internal_notif->sync &&
780 	    !atomic_dec_return(&mvm->queue_sync_counter))
781 		wake_up(&mvm->rx_sync_waitq);
782 }
783 
784 /*
785  * Returns true if the MPDU was buffered\dropped, false if it should be passed
786  * to upper layer.
787  */
788 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
789 			    struct napi_struct *napi,
790 			    int queue,
791 			    struct ieee80211_sta *sta,
792 			    struct sk_buff *skb,
793 			    struct iwl_rx_mpdu_desc *desc)
794 {
795 	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
796 	struct iwl_mvm_sta *mvm_sta;
797 	struct iwl_mvm_baid_data *baid_data;
798 	struct iwl_mvm_reorder_buffer *buffer;
799 	struct sk_buff *tail;
800 	u32 reorder = le32_to_cpu(desc->reorder_data);
801 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
802 	bool last_subframe =
803 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
804 	u8 tid = ieee80211_get_tid(hdr);
805 	u8 sub_frame_idx = desc->amsdu_info &
806 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
807 	struct iwl_mvm_reorder_buf_entry *entries;
808 	int index;
809 	u16 nssn, sn;
810 	u8 baid;
811 
812 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
813 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
814 
815 	/*
816 	 * This also covers the case of receiving a Block Ack Request
817 	 * outside a BA session; we'll pass it to mac80211 and that
818 	 * then sends a delBA action frame.
819 	 * This also covers pure monitor mode, in which case we won't
820 	 * have any BA sessions.
821 	 */
822 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
823 		return false;
824 
825 	/* no sta yet */
826 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
827 		      "Got valid BAID without a valid station assigned\n"))
828 		return false;
829 
830 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
831 
832 	/* not a data packet or a bar */
833 	if (!ieee80211_is_back_req(hdr->frame_control) &&
834 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
835 	     is_multicast_ether_addr(hdr->addr1)))
836 		return false;
837 
838 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
839 		return false;
840 
841 	baid_data = rcu_dereference(mvm->baid_map[baid]);
842 	if (!baid_data) {
843 		IWL_DEBUG_RX(mvm,
844 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
845 			      baid, reorder);
846 		return false;
847 	}
848 
849 	if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
850 		 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
851 		 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
852 		 tid))
853 		return false;
854 
855 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
856 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
857 		IWL_RX_MPDU_REORDER_SN_SHIFT;
858 
859 	buffer = &baid_data->reorder_buf[queue];
860 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
861 
862 	spin_lock_bh(&buffer->lock);
863 
864 	if (!buffer->valid) {
865 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
866 			spin_unlock_bh(&buffer->lock);
867 			return false;
868 		}
869 		buffer->valid = true;
870 	}
871 
872 	if (ieee80211_is_back_req(hdr->frame_control)) {
873 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
874 				       buffer, nssn, 0);
875 		goto drop;
876 	}
877 
878 	/*
879 	 * If there was a significant jump in the nssn - adjust.
880 	 * If the SN is smaller than the NSSN it might need to first go into
881 	 * the reorder buffer, in which case we just release up to it and the
882 	 * rest of the function will take care of storing it and releasing up to
883 	 * the nssn.
884 	 * This should not happen. This queue has been lagging and it should
885 	 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
886 	 * and update the other queues.
887 	 */
888 	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
889 				buffer->buf_size) ||
890 	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
891 		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
892 
893 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
894 				       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
895 	}
896 
897 	/* drop any oudated packets */
898 	if (ieee80211_sn_less(sn, buffer->head_sn))
899 		goto drop;
900 
901 	/* release immediately if allowed by nssn and no stored frames */
902 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
903 		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
904 				       buffer->buf_size) &&
905 		   (!amsdu || last_subframe)) {
906 			/*
907 			 * If we crossed the 2048 or 0 SN, notify all the
908 			 * queues. This is done in order to avoid having a
909 			 * head_sn that lags behind for too long. When that
910 			 * happens, we can get to a situation where the head_sn
911 			 * is within the interval [nssn - buf_size : nssn]
912 			 * which will make us think that the nssn is a packet
913 			 * that we already freed because of the reordering
914 			 * buffer and we will ignore it. So maintain the
915 			 * head_sn somewhat updated across all the queues:
916 			 * when it crosses 0 and 2048.
917 			 */
918 			if (sn == 2048 || sn == 0)
919 				iwl_mvm_sync_nssn(mvm, baid, sn);
920 			buffer->head_sn = nssn;
921 		}
922 		/* No need to update AMSDU last SN - we are moving the head */
923 		spin_unlock_bh(&buffer->lock);
924 		return false;
925 	}
926 
927 	/*
928 	 * release immediately if there are no stored frames, and the sn is
929 	 * equal to the head.
930 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
931 	 * When we released everything, and we got the next frame in the
932 	 * sequence, according to the NSSN we can't release immediately,
933 	 * while technically there is no hole and we can move forward.
934 	 */
935 	if (!buffer->num_stored && sn == buffer->head_sn) {
936 		if (!amsdu || last_subframe) {
937 			if (sn == 2048 || sn == 0)
938 				iwl_mvm_sync_nssn(mvm, baid, sn);
939 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
940 		}
941 		/* No need to update AMSDU last SN - we are moving the head */
942 		spin_unlock_bh(&buffer->lock);
943 		return false;
944 	}
945 
946 	index = sn % buffer->buf_size;
947 
948 	/*
949 	 * Check if we already stored this frame
950 	 * As AMSDU is either received or not as whole, logic is simple:
951 	 * If we have frames in that position in the buffer and the last frame
952 	 * originated from AMSDU had a different SN then it is a retransmission.
953 	 * If it is the same SN then if the subframe index is incrementing it
954 	 * is the same AMSDU - otherwise it is a retransmission.
955 	 */
956 	tail = skb_peek_tail(&entries[index].e.frames);
957 	if (tail && !amsdu)
958 		goto drop;
959 	else if (tail && (sn != buffer->last_amsdu ||
960 			  buffer->last_sub_index >= sub_frame_idx))
961 		goto drop;
962 
963 	/* put in reorder buffer */
964 	__skb_queue_tail(&entries[index].e.frames, skb);
965 	buffer->num_stored++;
966 	entries[index].e.reorder_time = jiffies;
967 
968 	if (amsdu) {
969 		buffer->last_amsdu = sn;
970 		buffer->last_sub_index = sub_frame_idx;
971 	}
972 
973 	/*
974 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
975 	 * The reason is that NSSN advances on the first sub-frame, and may
976 	 * cause the reorder buffer to advance before all the sub-frames arrive.
977 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
978 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
979 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
980 	 * already ahead and it will be dropped.
981 	 * If the last sub-frame is not on this queue - we will get frame
982 	 * release notification with up to date NSSN.
983 	 */
984 	if (!amsdu || last_subframe)
985 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
986 				       buffer, nssn,
987 				       IWL_MVM_RELEASE_SEND_RSS_SYNC);
988 
989 	spin_unlock_bh(&buffer->lock);
990 	return true;
991 
992 drop:
993 	kfree_skb(skb);
994 	spin_unlock_bh(&buffer->lock);
995 	return true;
996 }
997 
998 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
999 				    u32 reorder_data, u8 baid)
1000 {
1001 	unsigned long now = jiffies;
1002 	unsigned long timeout;
1003 	struct iwl_mvm_baid_data *data;
1004 
1005 	rcu_read_lock();
1006 
1007 	data = rcu_dereference(mvm->baid_map[baid]);
1008 	if (!data) {
1009 		IWL_DEBUG_RX(mvm,
1010 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1011 			      baid, reorder_data);
1012 		goto out;
1013 	}
1014 
1015 	if (!data->timeout)
1016 		goto out;
1017 
1018 	timeout = data->timeout;
1019 	/*
1020 	 * Do not update last rx all the time to avoid cache bouncing
1021 	 * between the rx queues.
1022 	 * Update it every timeout. Worst case is the session will
1023 	 * expire after ~ 2 * timeout, which doesn't matter that much.
1024 	 */
1025 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1026 		/* Update is atomic */
1027 		data->last_rx = now;
1028 
1029 out:
1030 	rcu_read_unlock();
1031 }
1032 
1033 static void iwl_mvm_flip_address(u8 *addr)
1034 {
1035 	int i;
1036 	u8 mac_addr[ETH_ALEN];
1037 
1038 	for (i = 0; i < ETH_ALEN; i++)
1039 		mac_addr[i] = addr[ETH_ALEN - i - 1];
1040 	ether_addr_copy(addr, mac_addr);
1041 }
1042 
1043 struct iwl_mvm_rx_phy_data {
1044 	enum iwl_rx_phy_info_type info_type;
1045 	__le32 d0, d1, d2, d3;
1046 	__le16 d4;
1047 };
1048 
1049 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1050 				     struct iwl_mvm_rx_phy_data *phy_data,
1051 				     u32 rate_n_flags,
1052 				     struct ieee80211_radiotap_he_mu *he_mu)
1053 {
1054 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
1055 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
1056 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
1057 
1058 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1059 		he_mu->flags1 |=
1060 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1061 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1062 
1063 		he_mu->flags1 |=
1064 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1065 						   phy_data4),
1066 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1067 
1068 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1069 					     phy_data2);
1070 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1071 					     phy_data3);
1072 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1073 					     phy_data2);
1074 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1075 					     phy_data3);
1076 	}
1077 
1078 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1079 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1080 		he_mu->flags1 |=
1081 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1082 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1083 
1084 		he_mu->flags2 |=
1085 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1086 						   phy_data4),
1087 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1088 
1089 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1090 					     phy_data2);
1091 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1092 					     phy_data3);
1093 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1094 					     phy_data2);
1095 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1096 					     phy_data3);
1097 	}
1098 }
1099 
1100 static void
1101 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1102 			       u32 rate_n_flags,
1103 			       struct ieee80211_radiotap_he *he,
1104 			       struct ieee80211_radiotap_he_mu *he_mu,
1105 			       struct ieee80211_rx_status *rx_status)
1106 {
1107 	/*
1108 	 * Unfortunately, we have to leave the mac80211 data
1109 	 * incorrect for the case that we receive an HE-MU
1110 	 * transmission and *don't* have the HE phy data (due
1111 	 * to the bits being used for TSF). This shouldn't
1112 	 * happen though as management frames where we need
1113 	 * the TSF/timers are not be transmitted in HE-MU.
1114 	 */
1115 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1116 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1117 	u8 offs = 0;
1118 
1119 	rx_status->bw = RATE_INFO_BW_HE_RU;
1120 
1121 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1122 
1123 	switch (ru) {
1124 	case 0 ... 36:
1125 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1126 		offs = ru;
1127 		break;
1128 	case 37 ... 52:
1129 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1130 		offs = ru - 37;
1131 		break;
1132 	case 53 ... 60:
1133 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1134 		offs = ru - 53;
1135 		break;
1136 	case 61 ... 64:
1137 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1138 		offs = ru - 61;
1139 		break;
1140 	case 65 ... 66:
1141 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1142 		offs = ru - 65;
1143 		break;
1144 	case 67:
1145 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1146 		break;
1147 	case 68:
1148 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1149 		break;
1150 	}
1151 	he->data2 |= le16_encode_bits(offs,
1152 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1153 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1154 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1155 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1156 		he->data2 |=
1157 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1158 
1159 #define CHECK_BW(bw) \
1160 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1161 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1162 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1163 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1164 	CHECK_BW(20);
1165 	CHECK_BW(40);
1166 	CHECK_BW(80);
1167 	CHECK_BW(160);
1168 
1169 	if (he_mu)
1170 		he_mu->flags2 |=
1171 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1172 						   rate_n_flags),
1173 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1174 	else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1175 		he->data6 |=
1176 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1177 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1178 						   rate_n_flags),
1179 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1180 }
1181 
1182 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1183 				       struct iwl_mvm_rx_phy_data *phy_data,
1184 				       struct ieee80211_radiotap_he *he,
1185 				       struct ieee80211_radiotap_he_mu *he_mu,
1186 				       struct ieee80211_rx_status *rx_status,
1187 				       u32 rate_n_flags, int queue)
1188 {
1189 	switch (phy_data->info_type) {
1190 	case IWL_RX_PHY_INFO_TYPE_NONE:
1191 	case IWL_RX_PHY_INFO_TYPE_CCK:
1192 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1193 	case IWL_RX_PHY_INFO_TYPE_HT:
1194 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1195 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1196 		return;
1197 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1198 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1199 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1200 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1201 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1202 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1203 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1204 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1205 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1206 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1207 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1208 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1209 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1210 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1211 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1212 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1213 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1214 		/* fall through */
1215 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1216 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1217 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1218 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1219 		/* HE common */
1220 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1221 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1222 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1223 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1224 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1225 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1226 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1227 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1228 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1229 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1230 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1231 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1232 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1233 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1234 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1235 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1236 		}
1237 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1238 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1239 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1240 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1241 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1242 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1243 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1244 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1245 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1246 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1247 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1248 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1249 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1250 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1251 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1252 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1253 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1254 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1255 		break;
1256 	}
1257 
1258 	switch (phy_data->info_type) {
1259 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1260 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1261 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1262 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1263 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1264 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1265 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1266 		break;
1267 	default:
1268 		/* nothing here */
1269 		break;
1270 	}
1271 
1272 	switch (phy_data->info_type) {
1273 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1274 		he_mu->flags1 |=
1275 			le16_encode_bits(le16_get_bits(phy_data->d4,
1276 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1277 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1278 		he_mu->flags1 |=
1279 			le16_encode_bits(le16_get_bits(phy_data->d4,
1280 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1281 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1282 		he_mu->flags2 |=
1283 			le16_encode_bits(le16_get_bits(phy_data->d4,
1284 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1285 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1286 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1287 		/* fall through */
1288 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1289 		he_mu->flags2 |=
1290 			le16_encode_bits(le32_get_bits(phy_data->d1,
1291 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1292 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1293 		he_mu->flags2 |=
1294 			le16_encode_bits(le32_get_bits(phy_data->d1,
1295 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1296 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1297 		/* fall through */
1298 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1299 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1300 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1301 					       he, he_mu, rx_status);
1302 		break;
1303 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1304 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1305 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1306 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1307 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1308 		break;
1309 	default:
1310 		/* nothing */
1311 		break;
1312 	}
1313 }
1314 
1315 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1316 			  struct iwl_mvm_rx_phy_data *phy_data,
1317 			  u32 rate_n_flags, u16 phy_info, int queue)
1318 {
1319 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1320 	struct ieee80211_radiotap_he *he = NULL;
1321 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1322 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1323 	u8 stbc, ltf;
1324 	static const struct ieee80211_radiotap_he known = {
1325 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1326 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1327 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1328 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1329 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1330 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1331 	};
1332 	static const struct ieee80211_radiotap_he_mu mu_known = {
1333 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1334 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1335 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1336 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1337 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1338 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1339 	};
1340 
1341 	he = skb_put_data(skb, &known, sizeof(known));
1342 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1343 
1344 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1345 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1346 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1347 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1348 	}
1349 
1350 	/* report the AMPDU-EOF bit on single frames */
1351 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1352 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1353 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1354 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1355 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1356 	}
1357 
1358 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1359 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1360 					   rate_n_flags, queue);
1361 
1362 	/* update aggregation data for monitor sake on default queue */
1363 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1364 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1365 		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1366 
1367 		/* toggle is switched whenever new aggregation starts */
1368 		if (toggle_bit != mvm->ampdu_toggle) {
1369 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1370 			if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1371 				rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1372 		}
1373 	}
1374 
1375 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1376 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1377 		rx_status->bw = RATE_INFO_BW_HE_RU;
1378 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1379 	}
1380 
1381 	/* actually data is filled in mac80211 */
1382 	if (he_type == RATE_MCS_HE_TYPE_SU ||
1383 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1384 		he->data1 |=
1385 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1386 
1387 	stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1388 	rx_status->nss =
1389 		((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1390 					RATE_VHT_MCS_NSS_POS) + 1;
1391 	rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1392 	rx_status->encoding = RX_ENC_HE;
1393 	rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1394 	if (rate_n_flags & RATE_MCS_BF_MSK)
1395 		rx_status->enc_flags |= RX_ENC_FLAG_BF;
1396 
1397 	rx_status->he_dcm =
1398 		!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1399 
1400 #define CHECK_TYPE(F)							\
1401 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1402 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1403 
1404 	CHECK_TYPE(SU);
1405 	CHECK_TYPE(EXT_SU);
1406 	CHECK_TYPE(MU);
1407 	CHECK_TYPE(TRIG);
1408 
1409 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1410 
1411 	if (rate_n_flags & RATE_MCS_BF_MSK)
1412 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1413 
1414 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1415 		RATE_MCS_HE_GI_LTF_POS) {
1416 	case 0:
1417 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1418 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1419 		else
1420 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1421 		if (he_type == RATE_MCS_HE_TYPE_MU)
1422 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1423 		else
1424 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1425 		break;
1426 	case 1:
1427 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1428 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1429 		else
1430 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1431 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1432 		break;
1433 	case 2:
1434 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1435 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1436 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1437 		} else {
1438 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1439 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1440 		}
1441 		break;
1442 	case 3:
1443 		if ((he_type == RATE_MCS_HE_TYPE_SU ||
1444 		     he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1445 		    rate_n_flags & RATE_MCS_SGI_MSK)
1446 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1447 		else
1448 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1449 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1450 		break;
1451 	}
1452 
1453 	he->data5 |= le16_encode_bits(ltf,
1454 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1455 }
1456 
1457 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1458 				struct iwl_mvm_rx_phy_data *phy_data)
1459 {
1460 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1461 	struct ieee80211_radiotap_lsig *lsig;
1462 
1463 	switch (phy_data->info_type) {
1464 	case IWL_RX_PHY_INFO_TYPE_HT:
1465 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1466 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1467 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1468 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1469 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1470 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1471 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1472 		lsig = skb_put(skb, sizeof(*lsig));
1473 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1474 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1475 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1476 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1477 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1478 		break;
1479 	default:
1480 		break;
1481 	}
1482 }
1483 
1484 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1485 			struct iwl_rx_cmd_buffer *rxb, int queue)
1486 {
1487 	struct ieee80211_rx_status *rx_status;
1488 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1489 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1490 	struct ieee80211_hdr *hdr;
1491 	u32 len = le16_to_cpu(desc->mpdu_len);
1492 	u32 rate_n_flags, gp2_on_air_rise;
1493 	u16 phy_info = le16_to_cpu(desc->phy_info);
1494 	struct ieee80211_sta *sta = NULL;
1495 	struct sk_buff *skb;
1496 	u8 crypt_len = 0, channel, energy_a, energy_b;
1497 	size_t desc_size;
1498 	struct iwl_mvm_rx_phy_data phy_data = {
1499 		.d4 = desc->phy_data4,
1500 		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1501 	};
1502 	bool csi = false;
1503 
1504 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1505 		return;
1506 
1507 	if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
1508 		rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1509 		channel = desc->v3.channel;
1510 		gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1511 		energy_a = desc->v3.energy_a;
1512 		energy_b = desc->v3.energy_b;
1513 		desc_size = sizeof(*desc);
1514 
1515 		phy_data.d0 = desc->v3.phy_data0;
1516 		phy_data.d1 = desc->v3.phy_data1;
1517 		phy_data.d2 = desc->v3.phy_data2;
1518 		phy_data.d3 = desc->v3.phy_data3;
1519 	} else {
1520 		rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1521 		channel = desc->v1.channel;
1522 		gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1523 		energy_a = desc->v1.energy_a;
1524 		energy_b = desc->v1.energy_b;
1525 		desc_size = IWL_RX_DESC_SIZE_V1;
1526 
1527 		phy_data.d0 = desc->v1.phy_data0;
1528 		phy_data.d1 = desc->v1.phy_data1;
1529 		phy_data.d2 = desc->v1.phy_data2;
1530 		phy_data.d3 = desc->v1.phy_data3;
1531 	}
1532 
1533 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1534 		phy_data.info_type =
1535 			le32_get_bits(phy_data.d1,
1536 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1537 
1538 	hdr = (void *)(pkt->data + desc_size);
1539 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1540 	 * ieee80211_hdr pulled.
1541 	 */
1542 	skb = alloc_skb(128, GFP_ATOMIC);
1543 	if (!skb) {
1544 		IWL_ERR(mvm, "alloc_skb failed\n");
1545 		return;
1546 	}
1547 
1548 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1549 		/*
1550 		 * If the device inserted padding it means that (it thought)
1551 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
1552 		 * this case, reserve two bytes at the start of the SKB to
1553 		 * align the payload properly in case we end up copying it.
1554 		 */
1555 		skb_reserve(skb, 2);
1556 	}
1557 
1558 	rx_status = IEEE80211_SKB_RXCB(skb);
1559 
1560 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1561 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1562 	case RATE_MCS_CHAN_WIDTH_20:
1563 		break;
1564 	case RATE_MCS_CHAN_WIDTH_40:
1565 		rx_status->bw = RATE_INFO_BW_40;
1566 		break;
1567 	case RATE_MCS_CHAN_WIDTH_80:
1568 		rx_status->bw = RATE_INFO_BW_80;
1569 		break;
1570 	case RATE_MCS_CHAN_WIDTH_160:
1571 		rx_status->bw = RATE_INFO_BW_160;
1572 		break;
1573 	}
1574 
1575 	if (rate_n_flags & RATE_MCS_HE_MSK)
1576 		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1577 			      phy_info, queue);
1578 
1579 	iwl_mvm_decode_lsig(skb, &phy_data);
1580 
1581 	rx_status = IEEE80211_SKB_RXCB(skb);
1582 
1583 	if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1584 			      le32_to_cpu(pkt->len_n_flags), queue,
1585 			      &crypt_len)) {
1586 		kfree_skb(skb);
1587 		return;
1588 	}
1589 
1590 	/*
1591 	 * Keep packets with CRC errors (and with overrun) for monitor mode
1592 	 * (otherwise the firmware discards them) but mark them as bad.
1593 	 */
1594 	if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1595 	    !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1596 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1597 			     le16_to_cpu(desc->status));
1598 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1599 	}
1600 	/* set the preamble flag if appropriate */
1601 	if (rate_n_flags & RATE_MCS_CCK_MSK &&
1602 	    phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1603 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1604 
1605 	if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1606 		u64 tsf_on_air_rise;
1607 
1608 		if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1609 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1610 		else
1611 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1612 
1613 		rx_status->mactime = tsf_on_air_rise;
1614 		/* TSF as indicated by the firmware is at INA time */
1615 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1616 	}
1617 
1618 	rx_status->device_timestamp = gp2_on_air_rise;
1619 	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1620 		NL80211_BAND_2GHZ;
1621 	rx_status->freq = ieee80211_channel_to_frequency(channel,
1622 							 rx_status->band);
1623 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1624 				    energy_b);
1625 
1626 	/* update aggregation data for monitor sake on default queue */
1627 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1628 		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1629 
1630 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1631 		/*
1632 		 * Toggle is switched whenever new aggregation starts. Make
1633 		 * sure ampdu_reference is never 0 so we can later use it to
1634 		 * see if the frame was really part of an A-MPDU or not.
1635 		 */
1636 		if (toggle_bit != mvm->ampdu_toggle) {
1637 			mvm->ampdu_ref++;
1638 			if (mvm->ampdu_ref == 0)
1639 				mvm->ampdu_ref++;
1640 			mvm->ampdu_toggle = toggle_bit;
1641 		}
1642 		rx_status->ampdu_reference = mvm->ampdu_ref;
1643 	}
1644 
1645 	if (unlikely(mvm->monitor_on))
1646 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1647 
1648 	rcu_read_lock();
1649 
1650 	if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1651 		u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
1652 
1653 		if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
1654 			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1655 			if (IS_ERR(sta))
1656 				sta = NULL;
1657 		}
1658 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
1659 		/*
1660 		 * This is fine since we prevent two stations with the same
1661 		 * address from being added.
1662 		 */
1663 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1664 	}
1665 
1666 	if (sta) {
1667 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1668 		struct ieee80211_vif *tx_blocked_vif =
1669 			rcu_dereference(mvm->csa_tx_blocked_vif);
1670 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1671 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
1672 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
1673 		struct iwl_fw_dbg_trigger_tlv *trig;
1674 		struct ieee80211_vif *vif = mvmsta->vif;
1675 
1676 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1677 		    !is_multicast_ether_addr(hdr->addr1) &&
1678 		    ieee80211_is_data(hdr->frame_control) &&
1679 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1680 			schedule_delayed_work(&mvm->tcm.work, 0);
1681 
1682 		/*
1683 		 * We have tx blocked stations (with CS bit). If we heard
1684 		 * frames from a blocked station on a new channel we can
1685 		 * TX to it again.
1686 		 */
1687 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1688 			struct iwl_mvm_vif *mvmvif =
1689 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1690 
1691 			if (mvmvif->csa_target_freq == rx_status->freq)
1692 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1693 								 false);
1694 		}
1695 
1696 		rs_update_last_rssi(mvm, mvmsta, rx_status);
1697 
1698 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1699 					     ieee80211_vif_to_wdev(vif),
1700 					     FW_DBG_TRIGGER_RSSI);
1701 
1702 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1703 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1704 			s32 rssi;
1705 
1706 			rssi_trig = (void *)trig->data;
1707 			rssi = le32_to_cpu(rssi_trig->rssi);
1708 
1709 			if (rx_status->signal < rssi)
1710 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1711 							NULL);
1712 		}
1713 
1714 		if (ieee80211_is_data(hdr->frame_control))
1715 			iwl_mvm_rx_csum(sta, skb, desc);
1716 
1717 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1718 			kfree_skb(skb);
1719 			goto out;
1720 		}
1721 
1722 		/*
1723 		 * Our hardware de-aggregates AMSDUs but copies the mac header
1724 		 * as it to the de-aggregated MPDUs. We need to turn off the
1725 		 * AMSDU bit in the QoS control ourselves.
1726 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
1727 		 */
1728 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1729 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1730 			u8 *qc = ieee80211_get_qos_ctl(hdr);
1731 
1732 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1733 
1734 			if (mvm->trans->cfg->device_family ==
1735 			    IWL_DEVICE_FAMILY_9000) {
1736 				iwl_mvm_flip_address(hdr->addr3);
1737 
1738 				if (ieee80211_has_a4(hdr->frame_control))
1739 					iwl_mvm_flip_address(hdr->addr4);
1740 			}
1741 		}
1742 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1743 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
1744 
1745 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1746 		}
1747 	}
1748 
1749 	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1750 	    rate_n_flags & RATE_MCS_SGI_MSK)
1751 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1752 	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1753 		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1754 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1755 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1756 	if (rate_n_flags & RATE_MCS_HT_MSK) {
1757 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1758 				RATE_MCS_STBC_POS;
1759 		rx_status->encoding = RX_ENC_HT;
1760 		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1761 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1762 	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1763 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1764 				RATE_MCS_STBC_POS;
1765 		rx_status->nss =
1766 			((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1767 						RATE_VHT_MCS_NSS_POS) + 1;
1768 		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1769 		rx_status->encoding = RX_ENC_VHT;
1770 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1771 		if (rate_n_flags & RATE_MCS_BF_MSK)
1772 			rx_status->enc_flags |= RX_ENC_FLAG_BF;
1773 	} else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1774 		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1775 							       rx_status->band);
1776 
1777 		if (WARN(rate < 0 || rate > 0xFF,
1778 			 "Invalid rate flags 0x%x, band %d,\n",
1779 			 rate_n_flags, rx_status->band)) {
1780 			kfree_skb(skb);
1781 			goto out;
1782 		}
1783 		rx_status->rate_idx = rate;
1784 	}
1785 
1786 	/* management stuff on default queue */
1787 	if (!queue) {
1788 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1789 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
1790 			     mvm->sched_scan_pass_all ==
1791 			     SCHED_SCAN_PASS_ALL_ENABLED))
1792 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1793 
1794 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1795 			     ieee80211_is_probe_resp(hdr->frame_control)))
1796 			rx_status->boottime_ns = ktime_get_boottime_ns();
1797 	}
1798 
1799 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1800 		kfree_skb(skb);
1801 		goto out;
1802 	}
1803 
1804 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1805 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1806 						sta, csi);
1807 out:
1808 	rcu_read_unlock();
1809 }
1810 
1811 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1812 				struct iwl_rx_cmd_buffer *rxb, int queue)
1813 {
1814 	struct ieee80211_rx_status *rx_status;
1815 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1816 	struct iwl_rx_no_data *desc = (void *)pkt->data;
1817 	u32 rate_n_flags = le32_to_cpu(desc->rate);
1818 	u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1819 	u32 rssi = le32_to_cpu(desc->rssi);
1820 	u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1821 	u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1822 	struct ieee80211_sta *sta = NULL;
1823 	struct sk_buff *skb;
1824 	u8 channel, energy_a, energy_b;
1825 	struct iwl_mvm_rx_phy_data phy_data = {
1826 		.d0 = desc->phy_info[0],
1827 		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1828 	};
1829 
1830 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1831 		return;
1832 
1833 	energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1834 	energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1835 	channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1836 
1837 	phy_data.info_type =
1838 		le32_get_bits(desc->phy_info[1],
1839 			      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1840 
1841 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1842 	 * ieee80211_hdr pulled.
1843 	 */
1844 	skb = alloc_skb(128, GFP_ATOMIC);
1845 	if (!skb) {
1846 		IWL_ERR(mvm, "alloc_skb failed\n");
1847 		return;
1848 	}
1849 
1850 	rx_status = IEEE80211_SKB_RXCB(skb);
1851 
1852 	/* 0-length PSDU */
1853 	rx_status->flag |= RX_FLAG_NO_PSDU;
1854 
1855 	switch (info_type) {
1856 	case RX_NO_DATA_INFO_TYPE_NDP:
1857 		rx_status->zero_length_psdu_type =
1858 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
1859 		break;
1860 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
1861 	case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
1862 		rx_status->zero_length_psdu_type =
1863 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
1864 		break;
1865 	default:
1866 		rx_status->zero_length_psdu_type =
1867 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
1868 		break;
1869 	}
1870 
1871 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1872 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1873 	case RATE_MCS_CHAN_WIDTH_20:
1874 		break;
1875 	case RATE_MCS_CHAN_WIDTH_40:
1876 		rx_status->bw = RATE_INFO_BW_40;
1877 		break;
1878 	case RATE_MCS_CHAN_WIDTH_80:
1879 		rx_status->bw = RATE_INFO_BW_80;
1880 		break;
1881 	case RATE_MCS_CHAN_WIDTH_160:
1882 		rx_status->bw = RATE_INFO_BW_160;
1883 		break;
1884 	}
1885 
1886 	if (rate_n_flags & RATE_MCS_HE_MSK)
1887 		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1888 			      phy_info, queue);
1889 
1890 	iwl_mvm_decode_lsig(skb, &phy_data);
1891 
1892 	rx_status->device_timestamp = gp2_on_air_rise;
1893 	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1894 		NL80211_BAND_2GHZ;
1895 	rx_status->freq = ieee80211_channel_to_frequency(channel,
1896 							 rx_status->band);
1897 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1898 				    energy_b);
1899 
1900 	rcu_read_lock();
1901 
1902 	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1903 	    rate_n_flags & RATE_MCS_SGI_MSK)
1904 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1905 	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1906 		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1907 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1908 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1909 	if (rate_n_flags & RATE_MCS_HT_MSK) {
1910 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1911 				RATE_MCS_STBC_POS;
1912 		rx_status->encoding = RX_ENC_HT;
1913 		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1914 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1915 	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1916 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1917 				RATE_MCS_STBC_POS;
1918 		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1919 		rx_status->encoding = RX_ENC_VHT;
1920 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1921 		if (rate_n_flags & RATE_MCS_BF_MSK)
1922 			rx_status->enc_flags |= RX_ENC_FLAG_BF;
1923 		/*
1924 		 * take the nss from the rx_vec since the rate_n_flags has
1925 		 * only 2 bits for the nss which gives a max of 4 ss but
1926 		 * there may be up to 8 spatial streams
1927 		 */
1928 		rx_status->nss =
1929 			le32_get_bits(desc->rx_vec[0],
1930 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
1931 	} else if (rate_n_flags & RATE_MCS_HE_MSK) {
1932 		rx_status->nss =
1933 			le32_get_bits(desc->rx_vec[0],
1934 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
1935 	} else {
1936 		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1937 							       rx_status->band);
1938 
1939 		if (WARN(rate < 0 || rate > 0xFF,
1940 			 "Invalid rate flags 0x%x, band %d,\n",
1941 			 rate_n_flags, rx_status->band)) {
1942 			kfree_skb(skb);
1943 			goto out;
1944 		}
1945 		rx_status->rate_idx = rate;
1946 	}
1947 
1948 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
1949 out:
1950 	rcu_read_unlock();
1951 }
1952 
1953 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
1954 			      struct iwl_rx_cmd_buffer *rxb, int queue)
1955 {
1956 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1957 	struct iwl_frame_release *release = (void *)pkt->data;
1958 
1959 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
1960 					  le16_to_cpu(release->nssn),
1961 					  queue, 0);
1962 }
1963