1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 13 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 14 { 15 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 16 u8 *data = skb->data; 17 18 /* Alignment concerns */ 19 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 20 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 21 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 22 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 23 24 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 25 data += sizeof(struct ieee80211_radiotap_he); 26 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 27 data += sizeof(struct ieee80211_radiotap_he_mu); 28 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 29 data += sizeof(struct ieee80211_radiotap_lsig); 30 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 31 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 32 33 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 34 } 35 36 return data; 37 } 38 39 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 40 int queue, struct ieee80211_sta *sta) 41 { 42 struct iwl_mvm_sta *mvmsta; 43 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 44 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 45 struct iwl_mvm_key_pn *ptk_pn; 46 int res; 47 u8 tid, keyidx; 48 u8 pn[IEEE80211_CCMP_PN_LEN]; 49 u8 *extiv; 50 51 /* do PN checking */ 52 53 /* multicast and non-data only arrives on default queue */ 54 if (!ieee80211_is_data(hdr->frame_control) || 55 is_multicast_ether_addr(hdr->addr1)) 56 return 0; 57 58 /* do not check PN for open AP */ 59 if (!(stats->flag & RX_FLAG_DECRYPTED)) 60 return 0; 61 62 /* 63 * avoid checking for default queue - we don't want to replicate 64 * all the logic that's necessary for checking the PN on fragmented 65 * frames, leave that to mac80211 66 */ 67 if (queue == 0) 68 return 0; 69 70 /* if we are here - this for sure is either CCMP or GCMP */ 71 if (IS_ERR_OR_NULL(sta)) { 72 IWL_DEBUG_DROP(mvm, 73 "expected hw-decrypted unicast frame for station\n"); 74 return -1; 75 } 76 77 mvmsta = iwl_mvm_sta_from_mac80211(sta); 78 79 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 80 keyidx = extiv[3] >> 6; 81 82 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 83 if (!ptk_pn) 84 return -1; 85 86 if (ieee80211_is_data_qos(hdr->frame_control)) 87 tid = ieee80211_get_tid(hdr); 88 else 89 tid = 0; 90 91 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 92 if (tid >= IWL_MAX_TID_COUNT) 93 return -1; 94 95 /* load pn */ 96 pn[0] = extiv[7]; 97 pn[1] = extiv[6]; 98 pn[2] = extiv[5]; 99 pn[3] = extiv[4]; 100 pn[4] = extiv[1]; 101 pn[5] = extiv[0]; 102 103 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 104 if (res < 0) 105 return -1; 106 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 107 return -1; 108 109 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 110 stats->flag |= RX_FLAG_PN_VALIDATED; 111 112 return 0; 113 } 114 115 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 116 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 117 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 118 struct iwl_rx_cmd_buffer *rxb) 119 { 120 struct iwl_rx_packet *pkt = rxb_addr(rxb); 121 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 122 unsigned int headlen, fraglen, pad_len = 0; 123 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 124 125 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 126 len -= 2; 127 pad_len = 2; 128 } 129 130 /* If frame is small enough to fit in skb->head, pull it completely. 131 * If not, only pull ieee80211_hdr (including crypto if present, and 132 * an additional 8 bytes for SNAP/ethertype, see below) so that 133 * splice() or TCP coalesce are more efficient. 134 * 135 * Since, in addition, ieee80211_data_to_8023() always pull in at 136 * least 8 bytes (possibly more for mesh) we can do the same here 137 * to save the cost of doing it later. That still doesn't pull in 138 * the actual IP header since the typical case has a SNAP header. 139 * If the latter changes (there are efforts in the standards group 140 * to do so) we should revisit this and ieee80211_data_to_8023(). 141 */ 142 headlen = (len <= skb_tailroom(skb)) ? len : 143 hdrlen + crypt_len + 8; 144 145 /* The firmware may align the packet to DWORD. 146 * The padding is inserted after the IV. 147 * After copying the header + IV skip the padding if 148 * present before copying packet data. 149 */ 150 hdrlen += crypt_len; 151 152 if (WARN_ONCE(headlen < hdrlen, 153 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 154 hdrlen, len, crypt_len)) { 155 /* 156 * We warn and trace because we want to be able to see 157 * it in trace-cmd as well. 158 */ 159 IWL_DEBUG_RX(mvm, 160 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 161 hdrlen, len, crypt_len); 162 return -EINVAL; 163 } 164 165 skb_put_data(skb, hdr, hdrlen); 166 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 167 168 /* 169 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 170 * certain cases and starts the checksum after the SNAP. Check if 171 * this is the case - it's easier to just bail out to CHECKSUM_NONE 172 * in the cases the hardware didn't handle, since it's rare to see 173 * such packets, even though the hardware did calculate the checksum 174 * in this case, just starting after the MAC header instead. 175 */ 176 if (skb->ip_summed == CHECKSUM_COMPLETE) { 177 struct { 178 u8 hdr[6]; 179 __be16 type; 180 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 181 182 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 183 !ether_addr_equal(shdr->hdr, rfc1042_header) || 184 (shdr->type != htons(ETH_P_IP) && 185 shdr->type != htons(ETH_P_ARP) && 186 shdr->type != htons(ETH_P_IPV6) && 187 shdr->type != htons(ETH_P_8021Q) && 188 shdr->type != htons(ETH_P_PAE) && 189 shdr->type != htons(ETH_P_TDLS)))) 190 skb->ip_summed = CHECKSUM_NONE; 191 } 192 193 fraglen = len - headlen; 194 195 if (fraglen) { 196 int offset = (void *)hdr + headlen + pad_len - 197 rxb_addr(rxb) + rxb_offset(rxb); 198 199 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 200 fraglen, rxb->truesize); 201 } 202 203 return 0; 204 } 205 206 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 207 struct sk_buff *skb) 208 { 209 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 210 struct ieee80211_vendor_radiotap *radiotap; 211 const int size = sizeof(*radiotap) + sizeof(__le16); 212 213 if (!mvm->cur_aid) 214 return; 215 216 /* ensure alignment */ 217 BUILD_BUG_ON((size + 2) % 4); 218 219 radiotap = skb_put(skb, size + 2); 220 radiotap->align = 1; 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->subns = 1; 227 radiotap->present = 0x1; 228 radiotap->len = size - sizeof(*radiotap); 229 radiotap->pad = 2; 230 231 /* fill the data now */ 232 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 233 /* and clear the padding */ 234 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 235 236 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 237 } 238 239 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 240 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 241 struct napi_struct *napi, 242 struct sk_buff *skb, int queue, 243 struct ieee80211_sta *sta, 244 bool csi) 245 { 246 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 247 kfree_skb(skb); 248 else 249 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 250 } 251 252 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 253 struct ieee80211_rx_status *rx_status, 254 u32 rate_n_flags, int energy_a, 255 int energy_b) 256 { 257 int max_energy; 258 u32 rate_flags = rate_n_flags; 259 260 energy_a = energy_a ? -energy_a : S8_MIN; 261 energy_b = energy_b ? -energy_b : S8_MIN; 262 max_energy = max(energy_a, energy_b); 263 264 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 265 energy_a, energy_b, max_energy); 266 267 rx_status->signal = max_energy; 268 rx_status->chains = 269 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 270 rx_status->chain_signal[0] = energy_a; 271 rx_status->chain_signal[1] = energy_b; 272 rx_status->chain_signal[2] = S8_MIN; 273 } 274 275 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 276 struct ieee80211_hdr *hdr, 277 struct iwl_rx_mpdu_desc *desc, 278 u32 status) 279 { 280 struct iwl_mvm_sta *mvmsta; 281 struct iwl_mvm_vif *mvmvif; 282 u8 keyid; 283 struct ieee80211_key_conf *key; 284 u32 len = le16_to_cpu(desc->mpdu_len); 285 const u8 *frame = (void *)hdr; 286 287 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 288 return 0; 289 290 /* 291 * For non-beacon, we don't really care. But beacons may 292 * be filtered out, and we thus need the firmware's replay 293 * detection, otherwise beacons the firmware previously 294 * filtered could be replayed, or something like that, and 295 * it can filter a lot - though usually only if nothing has 296 * changed. 297 */ 298 if (!ieee80211_is_beacon(hdr->frame_control)) 299 return 0; 300 301 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 302 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 303 return -1; 304 305 /* good cases */ 306 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 307 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) 308 return 0; 309 310 if (!sta) 311 return -1; 312 313 mvmsta = iwl_mvm_sta_from_mac80211(sta); 314 315 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 316 317 /* 318 * both keys will have the same cipher and MIC length, use 319 * whichever one is available 320 */ 321 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 322 if (!key) { 323 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 324 if (!key) 325 return -1; 326 } 327 328 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 329 return -1; 330 331 /* get the real key ID */ 332 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 333 /* and if that's the other key, look it up */ 334 if (keyid != key->keyidx) { 335 /* 336 * shouldn't happen since firmware checked, but be safe 337 * in case the MIC length is wrong too, for example 338 */ 339 if (keyid != 6 && keyid != 7) 340 return -1; 341 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 342 if (!key) 343 return -1; 344 } 345 346 /* Report status to mac80211 */ 347 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 348 ieee80211_key_mic_failure(key); 349 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 350 ieee80211_key_replay(key); 351 352 return -1; 353 } 354 355 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 356 struct ieee80211_hdr *hdr, 357 struct ieee80211_rx_status *stats, u16 phy_info, 358 struct iwl_rx_mpdu_desc *desc, 359 u32 pkt_flags, int queue, u8 *crypt_len) 360 { 361 u32 status = le32_to_cpu(desc->status); 362 363 /* 364 * Drop UNKNOWN frames in aggregation, unless in monitor mode 365 * (where we don't have the keys). 366 * We limit this to aggregation because in TKIP this is a valid 367 * scenario, since we may not have the (correct) TTAK (phase 1 368 * key) in the firmware. 369 */ 370 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 371 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 372 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 373 return -1; 374 375 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 376 !ieee80211_has_protected(hdr->frame_control))) 377 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status); 378 379 if (!ieee80211_has_protected(hdr->frame_control) || 380 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 381 IWL_RX_MPDU_STATUS_SEC_NONE) 382 return 0; 383 384 /* TODO: handle packets encrypted with unknown alg */ 385 386 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 387 case IWL_RX_MPDU_STATUS_SEC_CCM: 388 case IWL_RX_MPDU_STATUS_SEC_GCM: 389 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 390 /* alg is CCM: check MIC only */ 391 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 392 return -1; 393 394 stats->flag |= RX_FLAG_DECRYPTED; 395 if (pkt_flags & FH_RSCSR_RADA_EN) 396 stats->flag |= RX_FLAG_MIC_STRIPPED; 397 *crypt_len = IEEE80211_CCMP_HDR_LEN; 398 return 0; 399 case IWL_RX_MPDU_STATUS_SEC_TKIP: 400 /* Don't drop the frame and decrypt it in SW */ 401 if (!fw_has_api(&mvm->fw->ucode_capa, 402 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 403 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 404 return 0; 405 406 if (mvm->trans->trans_cfg->gen2 && 407 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 408 stats->flag |= RX_FLAG_MMIC_ERROR; 409 410 *crypt_len = IEEE80211_TKIP_IV_LEN; 411 fallthrough; 412 case IWL_RX_MPDU_STATUS_SEC_WEP: 413 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 414 return -1; 415 416 stats->flag |= RX_FLAG_DECRYPTED; 417 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 418 IWL_RX_MPDU_STATUS_SEC_WEP) 419 *crypt_len = IEEE80211_WEP_IV_LEN; 420 421 if (pkt_flags & FH_RSCSR_RADA_EN) { 422 stats->flag |= RX_FLAG_ICV_STRIPPED; 423 if (mvm->trans->trans_cfg->gen2) 424 stats->flag |= RX_FLAG_MMIC_STRIPPED; 425 } 426 427 return 0; 428 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 429 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 430 return -1; 431 stats->flag |= RX_FLAG_DECRYPTED; 432 return 0; 433 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 434 break; 435 default: 436 /* 437 * Sometimes we can get frames that were not decrypted 438 * because the firmware didn't have the keys yet. This can 439 * happen after connection where we can get multicast frames 440 * before the GTK is installed. 441 * Silently drop those frames. 442 * Also drop un-decrypted frames in monitor mode. 443 */ 444 if (!is_multicast_ether_addr(hdr->addr1) && 445 !mvm->monitor_on && net_ratelimit()) 446 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 447 } 448 449 return 0; 450 } 451 452 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 453 struct ieee80211_sta *sta, 454 struct sk_buff *skb, 455 struct iwl_rx_packet *pkt) 456 { 457 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 458 459 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 460 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 461 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 462 463 skb->ip_summed = CHECKSUM_COMPLETE; 464 skb->csum = csum_unfold(~(__force __sum16)hwsum); 465 } 466 } else { 467 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 468 struct iwl_mvm_vif *mvmvif; 469 u16 flags = le16_to_cpu(desc->l3l4_flags); 470 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 471 IWL_RX_L3_PROTO_POS); 472 473 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 474 475 if (mvmvif->features & NETIF_F_RXCSUM && 476 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 477 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 478 l3_prot == IWL_RX_L3_TYPE_IPV6 || 479 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 480 skb->ip_summed = CHECKSUM_UNNECESSARY; 481 } 482 } 483 484 /* 485 * returns true if a packet is a duplicate and should be dropped. 486 * Updates AMSDU PN tracking info 487 */ 488 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 489 struct ieee80211_rx_status *rx_status, 490 struct ieee80211_hdr *hdr, 491 struct iwl_rx_mpdu_desc *desc) 492 { 493 struct iwl_mvm_sta *mvm_sta; 494 struct iwl_mvm_rxq_dup_data *dup_data; 495 u8 tid, sub_frame_idx; 496 497 if (WARN_ON(IS_ERR_OR_NULL(sta))) 498 return false; 499 500 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 501 dup_data = &mvm_sta->dup_data[queue]; 502 503 /* 504 * Drop duplicate 802.11 retransmissions 505 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 506 */ 507 if (ieee80211_is_ctl(hdr->frame_control) || 508 ieee80211_is_qos_nullfunc(hdr->frame_control) || 509 is_multicast_ether_addr(hdr->addr1)) { 510 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 511 return false; 512 } 513 514 if (ieee80211_is_data_qos(hdr->frame_control)) 515 /* frame has qos control */ 516 tid = ieee80211_get_tid(hdr); 517 else 518 tid = IWL_MAX_TID_COUNT; 519 520 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 521 sub_frame_idx = desc->amsdu_info & 522 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 523 524 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 525 dup_data->last_seq[tid] == hdr->seq_ctrl && 526 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 527 return true; 528 529 /* Allow same PN as the first subframe for following sub frames */ 530 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 531 sub_frame_idx > dup_data->last_sub_frame[tid] && 532 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 533 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 534 535 dup_data->last_seq[tid] = hdr->seq_ctrl; 536 dup_data->last_sub_frame[tid] = sub_frame_idx; 537 538 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 539 540 return false; 541 } 542 543 /* 544 * Returns true if sn2 - buffer_size < sn1 < sn2. 545 * To be used only in order to compare reorder buffer head with NSSN. 546 * We fully trust NSSN unless it is behind us due to reorder timeout. 547 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 548 */ 549 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 550 { 551 return ieee80211_sn_less(sn1, sn2) && 552 !ieee80211_sn_less(sn1, sn2 - buffer_size); 553 } 554 555 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 556 { 557 if (IWL_MVM_USE_NSSN_SYNC) { 558 struct iwl_mvm_nssn_sync_data notif = { 559 .baid = baid, 560 .nssn = nssn, 561 }; 562 563 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 564 ¬if, sizeof(notif)); 565 } 566 } 567 568 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 569 570 enum iwl_mvm_release_flags { 571 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 572 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 573 }; 574 575 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 576 struct ieee80211_sta *sta, 577 struct napi_struct *napi, 578 struct iwl_mvm_baid_data *baid_data, 579 struct iwl_mvm_reorder_buffer *reorder_buf, 580 u16 nssn, u32 flags) 581 { 582 struct iwl_mvm_reorder_buf_entry *entries = 583 &baid_data->entries[reorder_buf->queue * 584 baid_data->entries_per_queue]; 585 u16 ssn = reorder_buf->head_sn; 586 587 lockdep_assert_held(&reorder_buf->lock); 588 589 /* 590 * We keep the NSSN not too far behind, if we are sync'ing it and it 591 * is more than 2048 ahead of us, it must be behind us. Discard it. 592 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 593 * behind and this queue already processed packets. The next if 594 * would have caught cases where this queue would have processed less 595 * than 64 packets, but it may have processed more than 64 packets. 596 */ 597 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 598 ieee80211_sn_less(nssn, ssn)) 599 goto set_timer; 600 601 /* ignore nssn smaller than head sn - this can happen due to timeout */ 602 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 603 goto set_timer; 604 605 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 606 int index = ssn % reorder_buf->buf_size; 607 struct sk_buff_head *skb_list = &entries[index].e.frames; 608 struct sk_buff *skb; 609 610 ssn = ieee80211_sn_inc(ssn); 611 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 612 (ssn == 2048 || ssn == 0)) 613 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 614 615 /* 616 * Empty the list. Will have more than one frame for A-MSDU. 617 * Empty list is valid as well since nssn indicates frames were 618 * received. 619 */ 620 while ((skb = __skb_dequeue(skb_list))) { 621 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 622 reorder_buf->queue, 623 sta, false); 624 reorder_buf->num_stored--; 625 } 626 } 627 reorder_buf->head_sn = nssn; 628 629 set_timer: 630 if (reorder_buf->num_stored && !reorder_buf->removed) { 631 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 632 633 while (skb_queue_empty(&entries[index].e.frames)) 634 index = (index + 1) % reorder_buf->buf_size; 635 /* modify timer to match next frame's expiration time */ 636 mod_timer(&reorder_buf->reorder_timer, 637 entries[index].e.reorder_time + 1 + 638 RX_REORDER_BUF_TIMEOUT_MQ); 639 } else { 640 del_timer(&reorder_buf->reorder_timer); 641 } 642 } 643 644 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 645 { 646 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 647 struct iwl_mvm_baid_data *baid_data = 648 iwl_mvm_baid_data_from_reorder_buf(buf); 649 struct iwl_mvm_reorder_buf_entry *entries = 650 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 651 int i; 652 u16 sn = 0, index = 0; 653 bool expired = false; 654 bool cont = false; 655 656 spin_lock(&buf->lock); 657 658 if (!buf->num_stored || buf->removed) { 659 spin_unlock(&buf->lock); 660 return; 661 } 662 663 for (i = 0; i < buf->buf_size ; i++) { 664 index = (buf->head_sn + i) % buf->buf_size; 665 666 if (skb_queue_empty(&entries[index].e.frames)) { 667 /* 668 * If there is a hole and the next frame didn't expire 669 * we want to break and not advance SN 670 */ 671 cont = false; 672 continue; 673 } 674 if (!cont && 675 !time_after(jiffies, entries[index].e.reorder_time + 676 RX_REORDER_BUF_TIMEOUT_MQ)) 677 break; 678 679 expired = true; 680 /* continue until next hole after this expired frames */ 681 cont = true; 682 sn = ieee80211_sn_add(buf->head_sn, i + 1); 683 } 684 685 if (expired) { 686 struct ieee80211_sta *sta; 687 struct iwl_mvm_sta *mvmsta; 688 u8 sta_id = baid_data->sta_id; 689 690 rcu_read_lock(); 691 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 692 mvmsta = iwl_mvm_sta_from_mac80211(sta); 693 694 /* SN is set to the last expired frame + 1 */ 695 IWL_DEBUG_HT(buf->mvm, 696 "Releasing expired frames for sta %u, sn %d\n", 697 sta_id, sn); 698 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 699 sta, baid_data->tid); 700 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 701 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 702 rcu_read_unlock(); 703 } else { 704 /* 705 * If no frame expired and there are stored frames, index is now 706 * pointing to the first unexpired frame - modify timer 707 * accordingly to this frame. 708 */ 709 mod_timer(&buf->reorder_timer, 710 entries[index].e.reorder_time + 711 1 + RX_REORDER_BUF_TIMEOUT_MQ); 712 } 713 spin_unlock(&buf->lock); 714 } 715 716 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 717 struct iwl_mvm_delba_data *data) 718 { 719 struct iwl_mvm_baid_data *ba_data; 720 struct ieee80211_sta *sta; 721 struct iwl_mvm_reorder_buffer *reorder_buf; 722 u8 baid = data->baid; 723 724 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 725 return; 726 727 rcu_read_lock(); 728 729 ba_data = rcu_dereference(mvm->baid_map[baid]); 730 if (WARN_ON_ONCE(!ba_data)) 731 goto out; 732 733 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 734 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 735 goto out; 736 737 reorder_buf = &ba_data->reorder_buf[queue]; 738 739 /* release all frames that are in the reorder buffer to the stack */ 740 spin_lock_bh(&reorder_buf->lock); 741 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 742 ieee80211_sn_add(reorder_buf->head_sn, 743 reorder_buf->buf_size), 744 0); 745 spin_unlock_bh(&reorder_buf->lock); 746 del_timer_sync(&reorder_buf->reorder_timer); 747 748 out: 749 rcu_read_unlock(); 750 } 751 752 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 753 struct napi_struct *napi, 754 u8 baid, u16 nssn, int queue, 755 u32 flags) 756 { 757 struct ieee80211_sta *sta; 758 struct iwl_mvm_reorder_buffer *reorder_buf; 759 struct iwl_mvm_baid_data *ba_data; 760 761 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 762 baid, nssn); 763 764 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 765 baid >= ARRAY_SIZE(mvm->baid_map))) 766 return; 767 768 rcu_read_lock(); 769 770 ba_data = rcu_dereference(mvm->baid_map[baid]); 771 if (WARN_ON_ONCE(!ba_data)) 772 goto out; 773 774 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 775 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 776 goto out; 777 778 reorder_buf = &ba_data->reorder_buf[queue]; 779 780 spin_lock_bh(&reorder_buf->lock); 781 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 782 reorder_buf, nssn, flags); 783 spin_unlock_bh(&reorder_buf->lock); 784 785 out: 786 rcu_read_unlock(); 787 } 788 789 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 790 struct napi_struct *napi, int queue, 791 const struct iwl_mvm_nssn_sync_data *data) 792 { 793 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 794 data->nssn, queue, 795 IWL_MVM_RELEASE_FROM_RSS_SYNC); 796 } 797 798 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 799 struct iwl_rx_cmd_buffer *rxb, int queue) 800 { 801 struct iwl_rx_packet *pkt = rxb_addr(rxb); 802 struct iwl_rxq_sync_notification *notif; 803 struct iwl_mvm_internal_rxq_notif *internal_notif; 804 u32 len = iwl_rx_packet_payload_len(pkt); 805 806 notif = (void *)pkt->data; 807 internal_notif = (void *)notif->payload; 808 809 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 810 "invalid notification size %d (%d)", 811 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 812 return; 813 len -= sizeof(*notif) + sizeof(*internal_notif); 814 815 if (internal_notif->sync && 816 mvm->queue_sync_cookie != internal_notif->cookie) { 817 WARN_ONCE(1, "Received expired RX queue sync message\n"); 818 return; 819 } 820 821 switch (internal_notif->type) { 822 case IWL_MVM_RXQ_EMPTY: 823 WARN_ONCE(len, "invalid empty notification size %d", len); 824 break; 825 case IWL_MVM_RXQ_NOTIF_DEL_BA: 826 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 827 "invalid delba notification size %d (%d)", 828 len, (int)sizeof(struct iwl_mvm_delba_data))) 829 break; 830 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 831 break; 832 case IWL_MVM_RXQ_NSSN_SYNC: 833 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 834 "invalid nssn sync notification size %d (%d)", 835 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 836 break; 837 iwl_mvm_nssn_sync(mvm, napi, queue, 838 (void *)internal_notif->data); 839 break; 840 default: 841 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 842 } 843 844 if (internal_notif->sync) { 845 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 846 "queue sync: queue %d responded a second time!\n", 847 queue); 848 if (READ_ONCE(mvm->queue_sync_state) == 0) 849 wake_up(&mvm->rx_sync_waitq); 850 } 851 } 852 853 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 854 struct ieee80211_sta *sta, int tid, 855 struct iwl_mvm_reorder_buffer *buffer, 856 u32 reorder, u32 gp2, int queue) 857 { 858 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 859 860 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 861 /* we have a new (A-)MPDU ... */ 862 863 /* 864 * reset counter to 0 if we didn't have any oldsn in 865 * the last A-MPDU (as detected by GP2 being identical) 866 */ 867 if (!buffer->consec_oldsn_prev_drop) 868 buffer->consec_oldsn_drops = 0; 869 870 /* either way, update our tracking state */ 871 buffer->consec_oldsn_ampdu_gp2 = gp2; 872 } else if (buffer->consec_oldsn_prev_drop) { 873 /* 874 * tracking state didn't change, and we had an old SN 875 * indication before - do nothing in this case, we 876 * already noted this one down and are waiting for the 877 * next A-MPDU (by GP2) 878 */ 879 return; 880 } 881 882 /* return unless this MPDU has old SN */ 883 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 884 return; 885 886 /* update state */ 887 buffer->consec_oldsn_prev_drop = 1; 888 buffer->consec_oldsn_drops++; 889 890 /* if limit is reached, send del BA and reset state */ 891 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 892 IWL_WARN(mvm, 893 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 894 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 895 sta->addr, queue, tid); 896 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 897 buffer->consec_oldsn_prev_drop = 0; 898 buffer->consec_oldsn_drops = 0; 899 } 900 } 901 902 /* 903 * Returns true if the MPDU was buffered\dropped, false if it should be passed 904 * to upper layer. 905 */ 906 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 907 struct napi_struct *napi, 908 int queue, 909 struct ieee80211_sta *sta, 910 struct sk_buff *skb, 911 struct iwl_rx_mpdu_desc *desc) 912 { 913 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 914 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 915 struct iwl_mvm_sta *mvm_sta; 916 struct iwl_mvm_baid_data *baid_data; 917 struct iwl_mvm_reorder_buffer *buffer; 918 struct sk_buff *tail; 919 u32 reorder = le32_to_cpu(desc->reorder_data); 920 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 921 bool last_subframe = 922 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 923 u8 tid = ieee80211_get_tid(hdr); 924 u8 sub_frame_idx = desc->amsdu_info & 925 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 926 struct iwl_mvm_reorder_buf_entry *entries; 927 int index; 928 u16 nssn, sn; 929 u8 baid; 930 931 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 932 IWL_RX_MPDU_REORDER_BAID_SHIFT; 933 934 /* 935 * This also covers the case of receiving a Block Ack Request 936 * outside a BA session; we'll pass it to mac80211 and that 937 * then sends a delBA action frame. 938 * This also covers pure monitor mode, in which case we won't 939 * have any BA sessions. 940 */ 941 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 942 return false; 943 944 /* no sta yet */ 945 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 946 "Got valid BAID without a valid station assigned\n")) 947 return false; 948 949 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 950 951 /* not a data packet or a bar */ 952 if (!ieee80211_is_back_req(hdr->frame_control) && 953 (!ieee80211_is_data_qos(hdr->frame_control) || 954 is_multicast_ether_addr(hdr->addr1))) 955 return false; 956 957 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 958 return false; 959 960 baid_data = rcu_dereference(mvm->baid_map[baid]); 961 if (!baid_data) { 962 IWL_DEBUG_RX(mvm, 963 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 964 baid, reorder); 965 return false; 966 } 967 968 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 969 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 970 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 971 tid)) 972 return false; 973 974 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 975 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 976 IWL_RX_MPDU_REORDER_SN_SHIFT; 977 978 buffer = &baid_data->reorder_buf[queue]; 979 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 980 981 spin_lock_bh(&buffer->lock); 982 983 if (!buffer->valid) { 984 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 985 spin_unlock_bh(&buffer->lock); 986 return false; 987 } 988 buffer->valid = true; 989 } 990 991 if (ieee80211_is_back_req(hdr->frame_control)) { 992 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 993 buffer, nssn, 0); 994 goto drop; 995 } 996 997 /* 998 * If there was a significant jump in the nssn - adjust. 999 * If the SN is smaller than the NSSN it might need to first go into 1000 * the reorder buffer, in which case we just release up to it and the 1001 * rest of the function will take care of storing it and releasing up to 1002 * the nssn. 1003 * This should not happen. This queue has been lagging and it should 1004 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1005 * and update the other queues. 1006 */ 1007 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1008 buffer->buf_size) || 1009 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1010 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1011 1012 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1013 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1014 } 1015 1016 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1017 rx_status->device_timestamp, queue); 1018 1019 /* drop any oudated packets */ 1020 if (ieee80211_sn_less(sn, buffer->head_sn)) 1021 goto drop; 1022 1023 /* release immediately if allowed by nssn and no stored frames */ 1024 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1025 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1026 buffer->buf_size) && 1027 (!amsdu || last_subframe)) { 1028 /* 1029 * If we crossed the 2048 or 0 SN, notify all the 1030 * queues. This is done in order to avoid having a 1031 * head_sn that lags behind for too long. When that 1032 * happens, we can get to a situation where the head_sn 1033 * is within the interval [nssn - buf_size : nssn] 1034 * which will make us think that the nssn is a packet 1035 * that we already freed because of the reordering 1036 * buffer and we will ignore it. So maintain the 1037 * head_sn somewhat updated across all the queues: 1038 * when it crosses 0 and 2048. 1039 */ 1040 if (sn == 2048 || sn == 0) 1041 iwl_mvm_sync_nssn(mvm, baid, sn); 1042 buffer->head_sn = nssn; 1043 } 1044 /* No need to update AMSDU last SN - we are moving the head */ 1045 spin_unlock_bh(&buffer->lock); 1046 return false; 1047 } 1048 1049 /* 1050 * release immediately if there are no stored frames, and the sn is 1051 * equal to the head. 1052 * This can happen due to reorder timer, where NSSN is behind head_sn. 1053 * When we released everything, and we got the next frame in the 1054 * sequence, according to the NSSN we can't release immediately, 1055 * while technically there is no hole and we can move forward. 1056 */ 1057 if (!buffer->num_stored && sn == buffer->head_sn) { 1058 if (!amsdu || last_subframe) { 1059 if (sn == 2048 || sn == 0) 1060 iwl_mvm_sync_nssn(mvm, baid, sn); 1061 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1062 } 1063 /* No need to update AMSDU last SN - we are moving the head */ 1064 spin_unlock_bh(&buffer->lock); 1065 return false; 1066 } 1067 1068 index = sn % buffer->buf_size; 1069 1070 /* 1071 * Check if we already stored this frame 1072 * As AMSDU is either received or not as whole, logic is simple: 1073 * If we have frames in that position in the buffer and the last frame 1074 * originated from AMSDU had a different SN then it is a retransmission. 1075 * If it is the same SN then if the subframe index is incrementing it 1076 * is the same AMSDU - otherwise it is a retransmission. 1077 */ 1078 tail = skb_peek_tail(&entries[index].e.frames); 1079 if (tail && !amsdu) 1080 goto drop; 1081 else if (tail && (sn != buffer->last_amsdu || 1082 buffer->last_sub_index >= sub_frame_idx)) 1083 goto drop; 1084 1085 /* put in reorder buffer */ 1086 __skb_queue_tail(&entries[index].e.frames, skb); 1087 buffer->num_stored++; 1088 entries[index].e.reorder_time = jiffies; 1089 1090 if (amsdu) { 1091 buffer->last_amsdu = sn; 1092 buffer->last_sub_index = sub_frame_idx; 1093 } 1094 1095 /* 1096 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1097 * The reason is that NSSN advances on the first sub-frame, and may 1098 * cause the reorder buffer to advance before all the sub-frames arrive. 1099 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1100 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1101 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1102 * already ahead and it will be dropped. 1103 * If the last sub-frame is not on this queue - we will get frame 1104 * release notification with up to date NSSN. 1105 */ 1106 if (!amsdu || last_subframe) 1107 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1108 buffer, nssn, 1109 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1110 1111 spin_unlock_bh(&buffer->lock); 1112 return true; 1113 1114 drop: 1115 kfree_skb(skb); 1116 spin_unlock_bh(&buffer->lock); 1117 return true; 1118 } 1119 1120 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1121 u32 reorder_data, u8 baid) 1122 { 1123 unsigned long now = jiffies; 1124 unsigned long timeout; 1125 struct iwl_mvm_baid_data *data; 1126 1127 rcu_read_lock(); 1128 1129 data = rcu_dereference(mvm->baid_map[baid]); 1130 if (!data) { 1131 IWL_DEBUG_RX(mvm, 1132 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1133 baid, reorder_data); 1134 goto out; 1135 } 1136 1137 if (!data->timeout) 1138 goto out; 1139 1140 timeout = data->timeout; 1141 /* 1142 * Do not update last rx all the time to avoid cache bouncing 1143 * between the rx queues. 1144 * Update it every timeout. Worst case is the session will 1145 * expire after ~ 2 * timeout, which doesn't matter that much. 1146 */ 1147 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1148 /* Update is atomic */ 1149 data->last_rx = now; 1150 1151 out: 1152 rcu_read_unlock(); 1153 } 1154 1155 static void iwl_mvm_flip_address(u8 *addr) 1156 { 1157 int i; 1158 u8 mac_addr[ETH_ALEN]; 1159 1160 for (i = 0; i < ETH_ALEN; i++) 1161 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1162 ether_addr_copy(addr, mac_addr); 1163 } 1164 1165 struct iwl_mvm_rx_phy_data { 1166 enum iwl_rx_phy_info_type info_type; 1167 __le32 d0, d1, d2, d3; 1168 __le16 d4; 1169 }; 1170 1171 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1172 struct iwl_mvm_rx_phy_data *phy_data, 1173 u32 rate_n_flags, 1174 struct ieee80211_radiotap_he_mu *he_mu) 1175 { 1176 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1177 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1178 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1179 1180 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1181 he_mu->flags1 |= 1182 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1183 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1184 1185 he_mu->flags1 |= 1186 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1187 phy_data4), 1188 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1189 1190 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1191 phy_data2); 1192 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1193 phy_data3); 1194 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1195 phy_data2); 1196 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1197 phy_data3); 1198 } 1199 1200 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1201 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { 1202 he_mu->flags1 |= 1203 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1204 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1205 1206 he_mu->flags2 |= 1207 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1208 phy_data4), 1209 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1210 1211 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1212 phy_data2); 1213 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1214 phy_data3); 1215 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1216 phy_data2); 1217 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1218 phy_data3); 1219 } 1220 } 1221 1222 static void 1223 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1224 u32 rate_n_flags, 1225 struct ieee80211_radiotap_he *he, 1226 struct ieee80211_radiotap_he_mu *he_mu, 1227 struct ieee80211_rx_status *rx_status) 1228 { 1229 /* 1230 * Unfortunately, we have to leave the mac80211 data 1231 * incorrect for the case that we receive an HE-MU 1232 * transmission and *don't* have the HE phy data (due 1233 * to the bits being used for TSF). This shouldn't 1234 * happen though as management frames where we need 1235 * the TSF/timers are not be transmitted in HE-MU. 1236 */ 1237 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1238 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1239 u8 offs = 0; 1240 1241 rx_status->bw = RATE_INFO_BW_HE_RU; 1242 1243 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1244 1245 switch (ru) { 1246 case 0 ... 36: 1247 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1248 offs = ru; 1249 break; 1250 case 37 ... 52: 1251 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1252 offs = ru - 37; 1253 break; 1254 case 53 ... 60: 1255 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1256 offs = ru - 53; 1257 break; 1258 case 61 ... 64: 1259 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1260 offs = ru - 61; 1261 break; 1262 case 65 ... 66: 1263 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1264 offs = ru - 65; 1265 break; 1266 case 67: 1267 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1268 break; 1269 case 68: 1270 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1271 break; 1272 } 1273 he->data2 |= le16_encode_bits(offs, 1274 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1275 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1276 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1277 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1278 he->data2 |= 1279 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1280 1281 #define CHECK_BW(bw) \ 1282 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1283 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1284 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1285 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1286 CHECK_BW(20); 1287 CHECK_BW(40); 1288 CHECK_BW(80); 1289 CHECK_BW(160); 1290 1291 if (he_mu) 1292 he_mu->flags2 |= 1293 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1294 rate_n_flags), 1295 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1296 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 1297 he->data6 |= 1298 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1299 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1300 rate_n_flags), 1301 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1302 } 1303 1304 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1305 struct iwl_mvm_rx_phy_data *phy_data, 1306 struct ieee80211_radiotap_he *he, 1307 struct ieee80211_radiotap_he_mu *he_mu, 1308 struct ieee80211_rx_status *rx_status, 1309 u32 rate_n_flags, int queue) 1310 { 1311 switch (phy_data->info_type) { 1312 case IWL_RX_PHY_INFO_TYPE_NONE: 1313 case IWL_RX_PHY_INFO_TYPE_CCK: 1314 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1315 case IWL_RX_PHY_INFO_TYPE_HT: 1316 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1317 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1318 return; 1319 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1320 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1321 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1322 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1323 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1324 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1325 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1326 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1327 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1328 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1329 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1330 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1331 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1332 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1333 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1334 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1335 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1336 fallthrough; 1337 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1338 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1339 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1340 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1341 /* HE common */ 1342 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1343 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1344 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1345 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1346 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1347 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1348 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1349 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1350 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1351 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1352 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1353 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1354 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1355 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1356 IWL_RX_PHY_DATA0_HE_UPLINK), 1357 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1358 } 1359 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1360 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1361 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1362 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1363 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1364 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1365 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1366 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1367 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1368 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1369 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1370 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1371 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1372 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1373 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1374 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1375 IWL_RX_PHY_DATA0_HE_DOPPLER), 1376 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1377 break; 1378 } 1379 1380 switch (phy_data->info_type) { 1381 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1382 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1383 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1384 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1385 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1386 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1387 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1388 break; 1389 default: 1390 /* nothing here */ 1391 break; 1392 } 1393 1394 switch (phy_data->info_type) { 1395 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1396 he_mu->flags1 |= 1397 le16_encode_bits(le16_get_bits(phy_data->d4, 1398 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1399 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1400 he_mu->flags1 |= 1401 le16_encode_bits(le16_get_bits(phy_data->d4, 1402 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1403 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1404 he_mu->flags2 |= 1405 le16_encode_bits(le16_get_bits(phy_data->d4, 1406 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1407 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1408 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1409 fallthrough; 1410 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1411 he_mu->flags2 |= 1412 le16_encode_bits(le32_get_bits(phy_data->d1, 1413 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1414 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1415 he_mu->flags2 |= 1416 le16_encode_bits(le32_get_bits(phy_data->d1, 1417 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1418 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1419 fallthrough; 1420 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1421 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1422 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1423 he, he_mu, rx_status); 1424 break; 1425 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1426 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1427 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1428 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1429 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1430 break; 1431 default: 1432 /* nothing */ 1433 break; 1434 } 1435 } 1436 1437 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1438 struct iwl_mvm_rx_phy_data *phy_data, 1439 u32 rate_n_flags, u16 phy_info, int queue) 1440 { 1441 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1442 struct ieee80211_radiotap_he *he = NULL; 1443 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1444 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1445 u8 stbc, ltf; 1446 static const struct ieee80211_radiotap_he known = { 1447 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1448 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1449 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1450 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1451 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1452 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1453 }; 1454 static const struct ieee80211_radiotap_he_mu mu_known = { 1455 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1456 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1457 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1458 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1459 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1460 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1461 }; 1462 1463 he = skb_put_data(skb, &known, sizeof(known)); 1464 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1465 1466 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1467 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1468 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1469 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1470 } 1471 1472 /* report the AMPDU-EOF bit on single frames */ 1473 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1474 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1475 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1476 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1477 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1478 } 1479 1480 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1481 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1482 rate_n_flags, queue); 1483 1484 /* update aggregation data for monitor sake on default queue */ 1485 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1486 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1487 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1488 1489 /* toggle is switched whenever new aggregation starts */ 1490 if (toggle_bit != mvm->ampdu_toggle) { 1491 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1492 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1493 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1494 } 1495 } 1496 1497 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1498 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1499 rx_status->bw = RATE_INFO_BW_HE_RU; 1500 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1501 } 1502 1503 /* actually data is filled in mac80211 */ 1504 if (he_type == RATE_MCS_HE_TYPE_SU || 1505 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1506 he->data1 |= 1507 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1508 1509 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1510 rx_status->nss = 1511 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1512 RATE_VHT_MCS_NSS_POS) + 1; 1513 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1514 rx_status->encoding = RX_ENC_HE; 1515 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1516 if (rate_n_flags & RATE_MCS_BF_MSK) 1517 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1518 1519 rx_status->he_dcm = 1520 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1521 1522 #define CHECK_TYPE(F) \ 1523 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1524 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1525 1526 CHECK_TYPE(SU); 1527 CHECK_TYPE(EXT_SU); 1528 CHECK_TYPE(MU); 1529 CHECK_TYPE(TRIG); 1530 1531 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1532 1533 if (rate_n_flags & RATE_MCS_BF_MSK) 1534 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1535 1536 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1537 RATE_MCS_HE_GI_LTF_POS) { 1538 case 0: 1539 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1540 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1541 else 1542 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1543 if (he_type == RATE_MCS_HE_TYPE_MU) 1544 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1545 else 1546 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1547 break; 1548 case 1: 1549 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1550 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1551 else 1552 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1553 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1554 break; 1555 case 2: 1556 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1557 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1558 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1559 } else { 1560 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1561 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1562 } 1563 break; 1564 case 3: 1565 if ((he_type == RATE_MCS_HE_TYPE_SU || 1566 he_type == RATE_MCS_HE_TYPE_EXT_SU) && 1567 rate_n_flags & RATE_MCS_SGI_MSK) 1568 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1569 else 1570 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1571 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1572 break; 1573 } 1574 1575 he->data5 |= le16_encode_bits(ltf, 1576 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1577 } 1578 1579 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1580 struct iwl_mvm_rx_phy_data *phy_data) 1581 { 1582 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1583 struct ieee80211_radiotap_lsig *lsig; 1584 1585 switch (phy_data->info_type) { 1586 case IWL_RX_PHY_INFO_TYPE_HT: 1587 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1588 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1589 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1590 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1591 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1592 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1593 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1594 lsig = skb_put(skb, sizeof(*lsig)); 1595 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1596 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1597 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1598 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1599 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1600 break; 1601 default: 1602 break; 1603 } 1604 } 1605 1606 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1607 { 1608 switch (phy_band) { 1609 case PHY_BAND_24: 1610 return NL80211_BAND_2GHZ; 1611 case PHY_BAND_5: 1612 return NL80211_BAND_5GHZ; 1613 case PHY_BAND_6: 1614 return NL80211_BAND_6GHZ; 1615 default: 1616 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1617 return NL80211_BAND_5GHZ; 1618 } 1619 } 1620 1621 struct iwl_rx_sta_csa { 1622 bool all_sta_unblocked; 1623 struct ieee80211_vif *vif; 1624 }; 1625 1626 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1627 { 1628 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1629 struct iwl_rx_sta_csa *rx_sta_csa = data; 1630 1631 if (mvmsta->vif != rx_sta_csa->vif) 1632 return; 1633 1634 if (mvmsta->disable_tx) 1635 rx_sta_csa->all_sta_unblocked = false; 1636 } 1637 1638 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1639 struct iwl_rx_cmd_buffer *rxb, int queue) 1640 { 1641 struct ieee80211_rx_status *rx_status; 1642 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1643 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1644 struct ieee80211_hdr *hdr; 1645 u32 len; 1646 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 1647 u32 rate_n_flags, gp2_on_air_rise; 1648 u16 phy_info; 1649 struct ieee80211_sta *sta = NULL; 1650 struct sk_buff *skb; 1651 u8 crypt_len = 0, channel, energy_a, energy_b; 1652 size_t desc_size; 1653 struct iwl_mvm_rx_phy_data phy_data = { 1654 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1655 }; 1656 bool csi = false; 1657 1658 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1659 return; 1660 1661 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1662 desc_size = sizeof(*desc); 1663 else 1664 desc_size = IWL_RX_DESC_SIZE_V1; 1665 1666 if (unlikely(pkt_len < desc_size)) { 1667 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 1668 return; 1669 } 1670 1671 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1672 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1673 channel = desc->v3.channel; 1674 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1675 energy_a = desc->v3.energy_a; 1676 energy_b = desc->v3.energy_b; 1677 1678 phy_data.d0 = desc->v3.phy_data0; 1679 phy_data.d1 = desc->v3.phy_data1; 1680 phy_data.d2 = desc->v3.phy_data2; 1681 phy_data.d3 = desc->v3.phy_data3; 1682 } else { 1683 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1684 channel = desc->v1.channel; 1685 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1686 energy_a = desc->v1.energy_a; 1687 energy_b = desc->v1.energy_b; 1688 1689 phy_data.d0 = desc->v1.phy_data0; 1690 phy_data.d1 = desc->v1.phy_data1; 1691 phy_data.d2 = desc->v1.phy_data2; 1692 phy_data.d3 = desc->v1.phy_data3; 1693 } 1694 1695 len = le16_to_cpu(desc->mpdu_len); 1696 1697 if (unlikely(len + desc_size > pkt_len)) { 1698 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 1699 return; 1700 } 1701 1702 phy_info = le16_to_cpu(desc->phy_info); 1703 phy_data.d4 = desc->phy_data4; 1704 1705 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1706 phy_data.info_type = 1707 le32_get_bits(phy_data.d1, 1708 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1709 1710 hdr = (void *)(pkt->data + desc_size); 1711 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1712 * ieee80211_hdr pulled. 1713 */ 1714 skb = alloc_skb(128, GFP_ATOMIC); 1715 if (!skb) { 1716 IWL_ERR(mvm, "alloc_skb failed\n"); 1717 return; 1718 } 1719 1720 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1721 /* 1722 * If the device inserted padding it means that (it thought) 1723 * the 802.11 header wasn't a multiple of 4 bytes long. In 1724 * this case, reserve two bytes at the start of the SKB to 1725 * align the payload properly in case we end up copying it. 1726 */ 1727 skb_reserve(skb, 2); 1728 } 1729 1730 rx_status = IEEE80211_SKB_RXCB(skb); 1731 1732 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1733 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1734 case RATE_MCS_CHAN_WIDTH_20: 1735 break; 1736 case RATE_MCS_CHAN_WIDTH_40: 1737 rx_status->bw = RATE_INFO_BW_40; 1738 break; 1739 case RATE_MCS_CHAN_WIDTH_80: 1740 rx_status->bw = RATE_INFO_BW_80; 1741 break; 1742 case RATE_MCS_CHAN_WIDTH_160: 1743 rx_status->bw = RATE_INFO_BW_160; 1744 break; 1745 } 1746 1747 if (rate_n_flags & RATE_MCS_HE_MSK) 1748 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1749 phy_info, queue); 1750 1751 iwl_mvm_decode_lsig(skb, &phy_data); 1752 1753 /* 1754 * Keep packets with CRC errors (and with overrun) for monitor mode 1755 * (otherwise the firmware discards them) but mark them as bad. 1756 */ 1757 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1758 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1759 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1760 le32_to_cpu(desc->status)); 1761 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1762 } 1763 /* set the preamble flag if appropriate */ 1764 if (rate_n_flags & RATE_MCS_CCK_MSK && 1765 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1766 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1767 1768 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1769 u64 tsf_on_air_rise; 1770 1771 if (mvm->trans->trans_cfg->device_family >= 1772 IWL_DEVICE_FAMILY_AX210) 1773 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1774 else 1775 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1776 1777 rx_status->mactime = tsf_on_air_rise; 1778 /* TSF as indicated by the firmware is at INA time */ 1779 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1780 } 1781 1782 rx_status->device_timestamp = gp2_on_air_rise; 1783 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1784 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1785 1786 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1787 } else { 1788 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1789 NL80211_BAND_2GHZ; 1790 } 1791 rx_status->freq = ieee80211_channel_to_frequency(channel, 1792 rx_status->band); 1793 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1794 energy_b); 1795 1796 /* update aggregation data for monitor sake on default queue */ 1797 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1798 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1799 1800 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1801 /* 1802 * Toggle is switched whenever new aggregation starts. Make 1803 * sure ampdu_reference is never 0 so we can later use it to 1804 * see if the frame was really part of an A-MPDU or not. 1805 */ 1806 if (toggle_bit != mvm->ampdu_toggle) { 1807 mvm->ampdu_ref++; 1808 if (mvm->ampdu_ref == 0) 1809 mvm->ampdu_ref++; 1810 mvm->ampdu_toggle = toggle_bit; 1811 } 1812 rx_status->ampdu_reference = mvm->ampdu_ref; 1813 } 1814 1815 if (unlikely(mvm->monitor_on)) 1816 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1817 1818 rcu_read_lock(); 1819 1820 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1821 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 1822 1823 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 1824 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1825 if (IS_ERR(sta)) 1826 sta = NULL; 1827 } 1828 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1829 /* 1830 * This is fine since we prevent two stations with the same 1831 * address from being added. 1832 */ 1833 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1834 } 1835 1836 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc, 1837 le32_to_cpu(pkt->len_n_flags), queue, 1838 &crypt_len)) { 1839 kfree_skb(skb); 1840 goto out; 1841 } 1842 1843 if (sta) { 1844 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1845 struct ieee80211_vif *tx_blocked_vif = 1846 rcu_dereference(mvm->csa_tx_blocked_vif); 1847 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1848 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1849 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1850 struct iwl_fw_dbg_trigger_tlv *trig; 1851 struct ieee80211_vif *vif = mvmsta->vif; 1852 1853 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1854 !is_multicast_ether_addr(hdr->addr1) && 1855 ieee80211_is_data(hdr->frame_control) && 1856 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1857 schedule_delayed_work(&mvm->tcm.work, 0); 1858 1859 /* 1860 * We have tx blocked stations (with CS bit). If we heard 1861 * frames from a blocked station on a new channel we can 1862 * TX to it again. 1863 */ 1864 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1865 struct iwl_mvm_vif *mvmvif = 1866 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1867 struct iwl_rx_sta_csa rx_sta_csa = { 1868 .all_sta_unblocked = true, 1869 .vif = tx_blocked_vif, 1870 }; 1871 1872 if (mvmvif->csa_target_freq == rx_status->freq) 1873 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1874 false); 1875 ieee80211_iterate_stations_atomic(mvm->hw, 1876 iwl_mvm_rx_get_sta_block_tx, 1877 &rx_sta_csa); 1878 1879 if (rx_sta_csa.all_sta_unblocked) { 1880 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 1881 /* Unblock BCAST / MCAST station */ 1882 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 1883 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork); 1884 } 1885 } 1886 1887 rs_update_last_rssi(mvm, mvmsta, rx_status); 1888 1889 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1890 ieee80211_vif_to_wdev(vif), 1891 FW_DBG_TRIGGER_RSSI); 1892 1893 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1894 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1895 s32 rssi; 1896 1897 rssi_trig = (void *)trig->data; 1898 rssi = le32_to_cpu(rssi_trig->rssi); 1899 1900 if (rx_status->signal < rssi) 1901 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1902 NULL); 1903 } 1904 1905 if (ieee80211_is_data(hdr->frame_control)) 1906 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 1907 1908 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1909 kfree_skb(skb); 1910 goto out; 1911 } 1912 1913 /* 1914 * Our hardware de-aggregates AMSDUs but copies the mac header 1915 * as it to the de-aggregated MPDUs. We need to turn off the 1916 * AMSDU bit in the QoS control ourselves. 1917 * In addition, HW reverses addr3 and addr4 - reverse it back. 1918 */ 1919 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1920 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1921 u8 *qc = ieee80211_get_qos_ctl(hdr); 1922 1923 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1924 1925 if (mvm->trans->trans_cfg->device_family == 1926 IWL_DEVICE_FAMILY_9000) { 1927 iwl_mvm_flip_address(hdr->addr3); 1928 1929 if (ieee80211_has_a4(hdr->frame_control)) 1930 iwl_mvm_flip_address(hdr->addr4); 1931 } 1932 } 1933 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1934 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1935 1936 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1937 } 1938 } 1939 1940 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1941 rate_n_flags & RATE_MCS_SGI_MSK) 1942 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1943 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1944 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1945 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1946 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1947 if (rate_n_flags & RATE_MCS_HT_MSK) { 1948 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1949 RATE_MCS_STBC_POS; 1950 rx_status->encoding = RX_ENC_HT; 1951 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1952 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1953 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 1954 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1955 RATE_MCS_STBC_POS; 1956 rx_status->nss = 1957 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1958 RATE_VHT_MCS_NSS_POS) + 1; 1959 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1960 rx_status->encoding = RX_ENC_VHT; 1961 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1962 if (rate_n_flags & RATE_MCS_BF_MSK) 1963 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1964 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) { 1965 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 1966 rx_status->band); 1967 1968 if (WARN(rate < 0 || rate > 0xFF, 1969 "Invalid rate flags 0x%x, band %d,\n", 1970 rate_n_flags, rx_status->band)) { 1971 kfree_skb(skb); 1972 goto out; 1973 } 1974 rx_status->rate_idx = rate; 1975 } 1976 1977 /* management stuff on default queue */ 1978 if (!queue) { 1979 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 1980 ieee80211_is_probe_resp(hdr->frame_control)) && 1981 mvm->sched_scan_pass_all == 1982 SCHED_SCAN_PASS_ALL_ENABLED)) 1983 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 1984 1985 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 1986 ieee80211_is_probe_resp(hdr->frame_control))) 1987 rx_status->boottime_ns = ktime_get_boottime_ns(); 1988 } 1989 1990 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 1991 kfree_skb(skb); 1992 goto out; 1993 } 1994 1995 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 1996 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 1997 sta, csi); 1998 out: 1999 rcu_read_unlock(); 2000 } 2001 2002 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2003 struct iwl_rx_cmd_buffer *rxb, int queue) 2004 { 2005 struct ieee80211_rx_status *rx_status; 2006 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2007 struct iwl_rx_no_data *desc = (void *)pkt->data; 2008 u32 rate_n_flags = le32_to_cpu(desc->rate); 2009 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2010 u32 rssi = le32_to_cpu(desc->rssi); 2011 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2012 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2013 struct ieee80211_sta *sta = NULL; 2014 struct sk_buff *skb; 2015 u8 channel, energy_a, energy_b; 2016 struct iwl_mvm_rx_phy_data phy_data = { 2017 .info_type = le32_get_bits(desc->phy_info[1], 2018 IWL_RX_PHY_DATA1_INFO_TYPE_MASK), 2019 .d0 = desc->phy_info[0], 2020 .d1 = desc->phy_info[1], 2021 }; 2022 2023 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc))) 2024 return; 2025 2026 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2027 return; 2028 2029 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 2030 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 2031 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 2032 2033 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2034 * ieee80211_hdr pulled. 2035 */ 2036 skb = alloc_skb(128, GFP_ATOMIC); 2037 if (!skb) { 2038 IWL_ERR(mvm, "alloc_skb failed\n"); 2039 return; 2040 } 2041 2042 rx_status = IEEE80211_SKB_RXCB(skb); 2043 2044 /* 0-length PSDU */ 2045 rx_status->flag |= RX_FLAG_NO_PSDU; 2046 2047 switch (info_type) { 2048 case RX_NO_DATA_INFO_TYPE_NDP: 2049 rx_status->zero_length_psdu_type = 2050 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2051 break; 2052 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2053 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 2054 rx_status->zero_length_psdu_type = 2055 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2056 break; 2057 default: 2058 rx_status->zero_length_psdu_type = 2059 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2060 break; 2061 } 2062 2063 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2064 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2065 case RATE_MCS_CHAN_WIDTH_20: 2066 break; 2067 case RATE_MCS_CHAN_WIDTH_40: 2068 rx_status->bw = RATE_INFO_BW_40; 2069 break; 2070 case RATE_MCS_CHAN_WIDTH_80: 2071 rx_status->bw = RATE_INFO_BW_80; 2072 break; 2073 case RATE_MCS_CHAN_WIDTH_160: 2074 rx_status->bw = RATE_INFO_BW_160; 2075 break; 2076 } 2077 2078 if (rate_n_flags & RATE_MCS_HE_MSK) 2079 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 2080 phy_info, queue); 2081 2082 iwl_mvm_decode_lsig(skb, &phy_data); 2083 2084 rx_status->device_timestamp = gp2_on_air_rise; 2085 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 2086 NL80211_BAND_2GHZ; 2087 rx_status->freq = ieee80211_channel_to_frequency(channel, 2088 rx_status->band); 2089 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 2090 energy_b); 2091 2092 rcu_read_lock(); 2093 2094 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 2095 rate_n_flags & RATE_MCS_SGI_MSK) 2096 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2097 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 2098 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 2099 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2100 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2101 if (rate_n_flags & RATE_MCS_HT_MSK) { 2102 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2103 RATE_MCS_STBC_POS; 2104 rx_status->encoding = RX_ENC_HT; 2105 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 2106 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2107 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 2108 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2109 RATE_MCS_STBC_POS; 2110 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 2111 rx_status->encoding = RX_ENC_VHT; 2112 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2113 if (rate_n_flags & RATE_MCS_BF_MSK) 2114 rx_status->enc_flags |= RX_ENC_FLAG_BF; 2115 /* 2116 * take the nss from the rx_vec since the rate_n_flags has 2117 * only 2 bits for the nss which gives a max of 4 ss but 2118 * there may be up to 8 spatial streams 2119 */ 2120 rx_status->nss = 2121 le32_get_bits(desc->rx_vec[0], 2122 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2123 } else if (rate_n_flags & RATE_MCS_HE_MSK) { 2124 rx_status->nss = 2125 le32_get_bits(desc->rx_vec[0], 2126 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2127 } else { 2128 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 2129 rx_status->band); 2130 2131 if (WARN(rate < 0 || rate > 0xFF, 2132 "Invalid rate flags 0x%x, band %d,\n", 2133 rate_n_flags, rx_status->band)) { 2134 kfree_skb(skb); 2135 goto out; 2136 } 2137 rx_status->rate_idx = rate; 2138 } 2139 2140 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2141 out: 2142 rcu_read_unlock(); 2143 } 2144 2145 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2146 struct iwl_rx_cmd_buffer *rxb, int queue) 2147 { 2148 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2149 struct iwl_frame_release *release = (void *)pkt->data; 2150 2151 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2152 return; 2153 2154 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2155 le16_to_cpu(release->nssn), 2156 queue, 0); 2157 } 2158 2159 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2160 struct iwl_rx_cmd_buffer *rxb, int queue) 2161 { 2162 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2163 struct iwl_bar_frame_release *release = (void *)pkt->data; 2164 unsigned int baid = le32_get_bits(release->ba_info, 2165 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2166 unsigned int nssn = le32_get_bits(release->ba_info, 2167 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2168 unsigned int sta_id = le32_get_bits(release->sta_tid, 2169 IWL_BAR_FRAME_RELEASE_STA_MASK); 2170 unsigned int tid = le32_get_bits(release->sta_tid, 2171 IWL_BAR_FRAME_RELEASE_TID_MASK); 2172 struct iwl_mvm_baid_data *baid_data; 2173 2174 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2175 return; 2176 2177 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2178 baid >= ARRAY_SIZE(mvm->baid_map))) 2179 return; 2180 2181 rcu_read_lock(); 2182 baid_data = rcu_dereference(mvm->baid_map[baid]); 2183 if (!baid_data) { 2184 IWL_DEBUG_RX(mvm, 2185 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2186 baid); 2187 goto out; 2188 } 2189 2190 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2191 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2192 baid, baid_data->sta_id, baid_data->tid, sta_id, 2193 tid)) 2194 goto out; 2195 2196 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2197 out: 2198 rcu_read_unlock(); 2199 } 2200