1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 13 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 14 { 15 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 16 u8 *data = skb->data; 17 18 /* Alignment concerns */ 19 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 20 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 21 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 22 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 23 24 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 25 data += sizeof(struct ieee80211_radiotap_he); 26 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 27 data += sizeof(struct ieee80211_radiotap_he_mu); 28 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 29 data += sizeof(struct ieee80211_radiotap_lsig); 30 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 31 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 32 33 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 34 } 35 36 return data; 37 } 38 39 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 40 int queue, struct ieee80211_sta *sta) 41 { 42 struct iwl_mvm_sta *mvmsta; 43 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 44 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 45 struct iwl_mvm_key_pn *ptk_pn; 46 int res; 47 u8 tid, keyidx; 48 u8 pn[IEEE80211_CCMP_PN_LEN]; 49 u8 *extiv; 50 51 /* do PN checking */ 52 53 /* multicast and non-data only arrives on default queue */ 54 if (!ieee80211_is_data(hdr->frame_control) || 55 is_multicast_ether_addr(hdr->addr1)) 56 return 0; 57 58 /* do not check PN for open AP */ 59 if (!(stats->flag & RX_FLAG_DECRYPTED)) 60 return 0; 61 62 /* 63 * avoid checking for default queue - we don't want to replicate 64 * all the logic that's necessary for checking the PN on fragmented 65 * frames, leave that to mac80211 66 */ 67 if (queue == 0) 68 return 0; 69 70 /* if we are here - this for sure is either CCMP or GCMP */ 71 if (IS_ERR_OR_NULL(sta)) { 72 IWL_DEBUG_DROP(mvm, 73 "expected hw-decrypted unicast frame for station\n"); 74 return -1; 75 } 76 77 mvmsta = iwl_mvm_sta_from_mac80211(sta); 78 79 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 80 keyidx = extiv[3] >> 6; 81 82 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 83 if (!ptk_pn) 84 return -1; 85 86 if (ieee80211_is_data_qos(hdr->frame_control)) 87 tid = ieee80211_get_tid(hdr); 88 else 89 tid = 0; 90 91 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 92 if (tid >= IWL_MAX_TID_COUNT) 93 return -1; 94 95 /* load pn */ 96 pn[0] = extiv[7]; 97 pn[1] = extiv[6]; 98 pn[2] = extiv[5]; 99 pn[3] = extiv[4]; 100 pn[4] = extiv[1]; 101 pn[5] = extiv[0]; 102 103 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 104 if (res < 0) 105 return -1; 106 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 107 return -1; 108 109 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 110 stats->flag |= RX_FLAG_PN_VALIDATED; 111 112 return 0; 113 } 114 115 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 116 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 117 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 118 struct iwl_rx_cmd_buffer *rxb) 119 { 120 struct iwl_rx_packet *pkt = rxb_addr(rxb); 121 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 122 unsigned int headlen, fraglen, pad_len = 0; 123 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 124 125 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 126 len -= 2; 127 pad_len = 2; 128 } 129 130 /* If frame is small enough to fit in skb->head, pull it completely. 131 * If not, only pull ieee80211_hdr (including crypto if present, and 132 * an additional 8 bytes for SNAP/ethertype, see below) so that 133 * splice() or TCP coalesce are more efficient. 134 * 135 * Since, in addition, ieee80211_data_to_8023() always pull in at 136 * least 8 bytes (possibly more for mesh) we can do the same here 137 * to save the cost of doing it later. That still doesn't pull in 138 * the actual IP header since the typical case has a SNAP header. 139 * If the latter changes (there are efforts in the standards group 140 * to do so) we should revisit this and ieee80211_data_to_8023(). 141 */ 142 headlen = (len <= skb_tailroom(skb)) ? len : 143 hdrlen + crypt_len + 8; 144 145 /* The firmware may align the packet to DWORD. 146 * The padding is inserted after the IV. 147 * After copying the header + IV skip the padding if 148 * present before copying packet data. 149 */ 150 hdrlen += crypt_len; 151 152 if (WARN_ONCE(headlen < hdrlen, 153 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 154 hdrlen, len, crypt_len)) { 155 /* 156 * We warn and trace because we want to be able to see 157 * it in trace-cmd as well. 158 */ 159 IWL_DEBUG_RX(mvm, 160 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 161 hdrlen, len, crypt_len); 162 return -EINVAL; 163 } 164 165 skb_put_data(skb, hdr, hdrlen); 166 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 167 168 /* 169 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 170 * certain cases and starts the checksum after the SNAP. Check if 171 * this is the case - it's easier to just bail out to CHECKSUM_NONE 172 * in the cases the hardware didn't handle, since it's rare to see 173 * such packets, even though the hardware did calculate the checksum 174 * in this case, just starting after the MAC header instead. 175 */ 176 if (skb->ip_summed == CHECKSUM_COMPLETE) { 177 struct { 178 u8 hdr[6]; 179 __be16 type; 180 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 181 182 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 183 !ether_addr_equal(shdr->hdr, rfc1042_header) || 184 (shdr->type != htons(ETH_P_IP) && 185 shdr->type != htons(ETH_P_ARP) && 186 shdr->type != htons(ETH_P_IPV6) && 187 shdr->type != htons(ETH_P_8021Q) && 188 shdr->type != htons(ETH_P_PAE) && 189 shdr->type != htons(ETH_P_TDLS)))) 190 skb->ip_summed = CHECKSUM_NONE; 191 } 192 193 fraglen = len - headlen; 194 195 if (fraglen) { 196 int offset = (void *)hdr + headlen + pad_len - 197 rxb_addr(rxb) + rxb_offset(rxb); 198 199 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 200 fraglen, rxb->truesize); 201 } 202 203 return 0; 204 } 205 206 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 207 struct sk_buff *skb) 208 { 209 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 210 struct ieee80211_vendor_radiotap *radiotap; 211 const int size = sizeof(*radiotap) + sizeof(__le16); 212 213 if (!mvm->cur_aid) 214 return; 215 216 /* ensure alignment */ 217 BUILD_BUG_ON((size + 2) % 4); 218 219 radiotap = skb_put(skb, size + 2); 220 radiotap->align = 1; 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->subns = 1; 227 radiotap->present = 0x1; 228 radiotap->len = size - sizeof(*radiotap); 229 radiotap->pad = 2; 230 231 /* fill the data now */ 232 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 233 /* and clear the padding */ 234 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 235 236 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 237 } 238 239 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 240 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 241 struct napi_struct *napi, 242 struct sk_buff *skb, int queue, 243 struct ieee80211_sta *sta) 244 { 245 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 246 kfree_skb(skb); 247 else 248 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 249 } 250 251 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 252 struct ieee80211_rx_status *rx_status, 253 u32 rate_n_flags, int energy_a, 254 int energy_b) 255 { 256 int max_energy; 257 u32 rate_flags = rate_n_flags; 258 259 energy_a = energy_a ? -energy_a : S8_MIN; 260 energy_b = energy_b ? -energy_b : S8_MIN; 261 max_energy = max(energy_a, energy_b); 262 263 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 264 energy_a, energy_b, max_energy); 265 266 rx_status->signal = max_energy; 267 rx_status->chains = 268 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 269 rx_status->chain_signal[0] = energy_a; 270 rx_status->chain_signal[1] = energy_b; 271 } 272 273 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 274 struct ieee80211_hdr *hdr, 275 struct iwl_rx_mpdu_desc *desc, 276 u32 status) 277 { 278 struct iwl_mvm_sta *mvmsta; 279 struct iwl_mvm_vif *mvmvif; 280 u8 keyid; 281 struct ieee80211_key_conf *key; 282 u32 len = le16_to_cpu(desc->mpdu_len); 283 const u8 *frame = (void *)hdr; 284 285 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 286 return 0; 287 288 /* 289 * For non-beacon, we don't really care. But beacons may 290 * be filtered out, and we thus need the firmware's replay 291 * detection, otherwise beacons the firmware previously 292 * filtered could be replayed, or something like that, and 293 * it can filter a lot - though usually only if nothing has 294 * changed. 295 */ 296 if (!ieee80211_is_beacon(hdr->frame_control)) 297 return 0; 298 299 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 300 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 301 return -1; 302 303 /* good cases */ 304 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 305 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) 306 return 0; 307 308 if (!sta) 309 return -1; 310 311 mvmsta = iwl_mvm_sta_from_mac80211(sta); 312 313 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 314 315 /* 316 * both keys will have the same cipher and MIC length, use 317 * whichever one is available 318 */ 319 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 320 if (!key) { 321 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 322 if (!key) 323 return -1; 324 } 325 326 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 327 return -1; 328 329 /* get the real key ID */ 330 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 331 /* and if that's the other key, look it up */ 332 if (keyid != key->keyidx) { 333 /* 334 * shouldn't happen since firmware checked, but be safe 335 * in case the MIC length is wrong too, for example 336 */ 337 if (keyid != 6 && keyid != 7) 338 return -1; 339 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 340 if (!key) 341 return -1; 342 } 343 344 /* Report status to mac80211 */ 345 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 346 ieee80211_key_mic_failure(key); 347 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 348 ieee80211_key_replay(key); 349 350 return -1; 351 } 352 353 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 354 struct ieee80211_hdr *hdr, 355 struct ieee80211_rx_status *stats, u16 phy_info, 356 struct iwl_rx_mpdu_desc *desc, 357 u32 pkt_flags, int queue, u8 *crypt_len) 358 { 359 u32 status = le32_to_cpu(desc->status); 360 361 /* 362 * Drop UNKNOWN frames in aggregation, unless in monitor mode 363 * (where we don't have the keys). 364 * We limit this to aggregation because in TKIP this is a valid 365 * scenario, since we may not have the (correct) TTAK (phase 1 366 * key) in the firmware. 367 */ 368 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 369 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 370 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 371 return -1; 372 373 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 374 !ieee80211_has_protected(hdr->frame_control))) 375 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status); 376 377 if (!ieee80211_has_protected(hdr->frame_control) || 378 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 379 IWL_RX_MPDU_STATUS_SEC_NONE) 380 return 0; 381 382 /* TODO: handle packets encrypted with unknown alg */ 383 384 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 385 case IWL_RX_MPDU_STATUS_SEC_CCM: 386 case IWL_RX_MPDU_STATUS_SEC_GCM: 387 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 388 /* alg is CCM: check MIC only */ 389 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 390 return -1; 391 392 stats->flag |= RX_FLAG_DECRYPTED; 393 if (pkt_flags & FH_RSCSR_RADA_EN) 394 stats->flag |= RX_FLAG_MIC_STRIPPED; 395 *crypt_len = IEEE80211_CCMP_HDR_LEN; 396 return 0; 397 case IWL_RX_MPDU_STATUS_SEC_TKIP: 398 /* Don't drop the frame and decrypt it in SW */ 399 if (!fw_has_api(&mvm->fw->ucode_capa, 400 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 401 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 402 return 0; 403 404 if (mvm->trans->trans_cfg->gen2 && 405 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 406 stats->flag |= RX_FLAG_MMIC_ERROR; 407 408 *crypt_len = IEEE80211_TKIP_IV_LEN; 409 fallthrough; 410 case IWL_RX_MPDU_STATUS_SEC_WEP: 411 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 412 return -1; 413 414 stats->flag |= RX_FLAG_DECRYPTED; 415 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 416 IWL_RX_MPDU_STATUS_SEC_WEP) 417 *crypt_len = IEEE80211_WEP_IV_LEN; 418 419 if (pkt_flags & FH_RSCSR_RADA_EN) { 420 stats->flag |= RX_FLAG_ICV_STRIPPED; 421 if (mvm->trans->trans_cfg->gen2) 422 stats->flag |= RX_FLAG_MMIC_STRIPPED; 423 } 424 425 return 0; 426 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 427 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 428 return -1; 429 stats->flag |= RX_FLAG_DECRYPTED; 430 return 0; 431 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 432 break; 433 default: 434 /* 435 * Sometimes we can get frames that were not decrypted 436 * because the firmware didn't have the keys yet. This can 437 * happen after connection where we can get multicast frames 438 * before the GTK is installed. 439 * Silently drop those frames. 440 * Also drop un-decrypted frames in monitor mode. 441 */ 442 if (!is_multicast_ether_addr(hdr->addr1) && 443 !mvm->monitor_on && net_ratelimit()) 444 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 445 } 446 447 return 0; 448 } 449 450 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 451 struct ieee80211_sta *sta, 452 struct sk_buff *skb, 453 struct iwl_rx_packet *pkt) 454 { 455 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 456 457 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 458 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 459 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 460 461 skb->ip_summed = CHECKSUM_COMPLETE; 462 skb->csum = csum_unfold(~(__force __sum16)hwsum); 463 } 464 } else { 465 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 466 struct iwl_mvm_vif *mvmvif; 467 u16 flags = le16_to_cpu(desc->l3l4_flags); 468 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 469 IWL_RX_L3_PROTO_POS); 470 471 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 472 473 if (mvmvif->features & NETIF_F_RXCSUM && 474 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 475 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 476 l3_prot == IWL_RX_L3_TYPE_IPV6 || 477 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 478 skb->ip_summed = CHECKSUM_UNNECESSARY; 479 } 480 } 481 482 /* 483 * returns true if a packet is a duplicate and should be dropped. 484 * Updates AMSDU PN tracking info 485 */ 486 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 487 struct ieee80211_rx_status *rx_status, 488 struct ieee80211_hdr *hdr, 489 struct iwl_rx_mpdu_desc *desc) 490 { 491 struct iwl_mvm_sta *mvm_sta; 492 struct iwl_mvm_rxq_dup_data *dup_data; 493 u8 tid, sub_frame_idx; 494 495 if (WARN_ON(IS_ERR_OR_NULL(sta))) 496 return false; 497 498 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 499 dup_data = &mvm_sta->dup_data[queue]; 500 501 /* 502 * Drop duplicate 802.11 retransmissions 503 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 504 */ 505 if (ieee80211_is_ctl(hdr->frame_control) || 506 ieee80211_is_qos_nullfunc(hdr->frame_control) || 507 is_multicast_ether_addr(hdr->addr1)) { 508 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 509 return false; 510 } 511 512 if (ieee80211_is_data_qos(hdr->frame_control)) 513 /* frame has qos control */ 514 tid = ieee80211_get_tid(hdr); 515 else 516 tid = IWL_MAX_TID_COUNT; 517 518 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 519 sub_frame_idx = desc->amsdu_info & 520 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 521 522 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 523 dup_data->last_seq[tid] == hdr->seq_ctrl && 524 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 525 return true; 526 527 /* Allow same PN as the first subframe for following sub frames */ 528 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 529 sub_frame_idx > dup_data->last_sub_frame[tid] && 530 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 531 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 532 533 dup_data->last_seq[tid] = hdr->seq_ctrl; 534 dup_data->last_sub_frame[tid] = sub_frame_idx; 535 536 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 537 538 return false; 539 } 540 541 /* 542 * Returns true if sn2 - buffer_size < sn1 < sn2. 543 * To be used only in order to compare reorder buffer head with NSSN. 544 * We fully trust NSSN unless it is behind us due to reorder timeout. 545 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 546 */ 547 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 548 { 549 return ieee80211_sn_less(sn1, sn2) && 550 !ieee80211_sn_less(sn1, sn2 - buffer_size); 551 } 552 553 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 554 { 555 if (IWL_MVM_USE_NSSN_SYNC) { 556 struct iwl_mvm_nssn_sync_data notif = { 557 .baid = baid, 558 .nssn = nssn, 559 }; 560 561 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 562 ¬if, sizeof(notif)); 563 } 564 } 565 566 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 567 568 enum iwl_mvm_release_flags { 569 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 570 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 571 }; 572 573 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 574 struct ieee80211_sta *sta, 575 struct napi_struct *napi, 576 struct iwl_mvm_baid_data *baid_data, 577 struct iwl_mvm_reorder_buffer *reorder_buf, 578 u16 nssn, u32 flags) 579 { 580 struct iwl_mvm_reorder_buf_entry *entries = 581 &baid_data->entries[reorder_buf->queue * 582 baid_data->entries_per_queue]; 583 u16 ssn = reorder_buf->head_sn; 584 585 lockdep_assert_held(&reorder_buf->lock); 586 587 /* 588 * We keep the NSSN not too far behind, if we are sync'ing it and it 589 * is more than 2048 ahead of us, it must be behind us. Discard it. 590 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 591 * behind and this queue already processed packets. The next if 592 * would have caught cases where this queue would have processed less 593 * than 64 packets, but it may have processed more than 64 packets. 594 */ 595 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 596 ieee80211_sn_less(nssn, ssn)) 597 goto set_timer; 598 599 /* ignore nssn smaller than head sn - this can happen due to timeout */ 600 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 601 goto set_timer; 602 603 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 604 int index = ssn % reorder_buf->buf_size; 605 struct sk_buff_head *skb_list = &entries[index].e.frames; 606 struct sk_buff *skb; 607 608 ssn = ieee80211_sn_inc(ssn); 609 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 610 (ssn == 2048 || ssn == 0)) 611 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 612 613 /* 614 * Empty the list. Will have more than one frame for A-MSDU. 615 * Empty list is valid as well since nssn indicates frames were 616 * received. 617 */ 618 while ((skb = __skb_dequeue(skb_list))) { 619 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 620 reorder_buf->queue, 621 sta); 622 reorder_buf->num_stored--; 623 } 624 } 625 reorder_buf->head_sn = nssn; 626 627 set_timer: 628 if (reorder_buf->num_stored && !reorder_buf->removed) { 629 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 630 631 while (skb_queue_empty(&entries[index].e.frames)) 632 index = (index + 1) % reorder_buf->buf_size; 633 /* modify timer to match next frame's expiration time */ 634 mod_timer(&reorder_buf->reorder_timer, 635 entries[index].e.reorder_time + 1 + 636 RX_REORDER_BUF_TIMEOUT_MQ); 637 } else { 638 del_timer(&reorder_buf->reorder_timer); 639 } 640 } 641 642 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 643 { 644 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 645 struct iwl_mvm_baid_data *baid_data = 646 iwl_mvm_baid_data_from_reorder_buf(buf); 647 struct iwl_mvm_reorder_buf_entry *entries = 648 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 649 int i; 650 u16 sn = 0, index = 0; 651 bool expired = false; 652 bool cont = false; 653 654 spin_lock(&buf->lock); 655 656 if (!buf->num_stored || buf->removed) { 657 spin_unlock(&buf->lock); 658 return; 659 } 660 661 for (i = 0; i < buf->buf_size ; i++) { 662 index = (buf->head_sn + i) % buf->buf_size; 663 664 if (skb_queue_empty(&entries[index].e.frames)) { 665 /* 666 * If there is a hole and the next frame didn't expire 667 * we want to break and not advance SN 668 */ 669 cont = false; 670 continue; 671 } 672 if (!cont && 673 !time_after(jiffies, entries[index].e.reorder_time + 674 RX_REORDER_BUF_TIMEOUT_MQ)) 675 break; 676 677 expired = true; 678 /* continue until next hole after this expired frames */ 679 cont = true; 680 sn = ieee80211_sn_add(buf->head_sn, i + 1); 681 } 682 683 if (expired) { 684 struct ieee80211_sta *sta; 685 struct iwl_mvm_sta *mvmsta; 686 u8 sta_id = baid_data->sta_id; 687 688 rcu_read_lock(); 689 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 690 mvmsta = iwl_mvm_sta_from_mac80211(sta); 691 692 /* SN is set to the last expired frame + 1 */ 693 IWL_DEBUG_HT(buf->mvm, 694 "Releasing expired frames for sta %u, sn %d\n", 695 sta_id, sn); 696 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 697 sta, baid_data->tid); 698 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 699 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 700 rcu_read_unlock(); 701 } else { 702 /* 703 * If no frame expired and there are stored frames, index is now 704 * pointing to the first unexpired frame - modify timer 705 * accordingly to this frame. 706 */ 707 mod_timer(&buf->reorder_timer, 708 entries[index].e.reorder_time + 709 1 + RX_REORDER_BUF_TIMEOUT_MQ); 710 } 711 spin_unlock(&buf->lock); 712 } 713 714 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 715 struct iwl_mvm_delba_data *data) 716 { 717 struct iwl_mvm_baid_data *ba_data; 718 struct ieee80211_sta *sta; 719 struct iwl_mvm_reorder_buffer *reorder_buf; 720 u8 baid = data->baid; 721 722 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 723 return; 724 725 rcu_read_lock(); 726 727 ba_data = rcu_dereference(mvm->baid_map[baid]); 728 if (WARN_ON_ONCE(!ba_data)) 729 goto out; 730 731 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 732 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 733 goto out; 734 735 reorder_buf = &ba_data->reorder_buf[queue]; 736 737 /* release all frames that are in the reorder buffer to the stack */ 738 spin_lock_bh(&reorder_buf->lock); 739 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 740 ieee80211_sn_add(reorder_buf->head_sn, 741 reorder_buf->buf_size), 742 0); 743 spin_unlock_bh(&reorder_buf->lock); 744 del_timer_sync(&reorder_buf->reorder_timer); 745 746 out: 747 rcu_read_unlock(); 748 } 749 750 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 751 struct napi_struct *napi, 752 u8 baid, u16 nssn, int queue, 753 u32 flags) 754 { 755 struct ieee80211_sta *sta; 756 struct iwl_mvm_reorder_buffer *reorder_buf; 757 struct iwl_mvm_baid_data *ba_data; 758 759 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 760 baid, nssn); 761 762 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 763 baid >= ARRAY_SIZE(mvm->baid_map))) 764 return; 765 766 rcu_read_lock(); 767 768 ba_data = rcu_dereference(mvm->baid_map[baid]); 769 if (WARN_ON_ONCE(!ba_data)) 770 goto out; 771 772 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 773 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 774 goto out; 775 776 reorder_buf = &ba_data->reorder_buf[queue]; 777 778 spin_lock_bh(&reorder_buf->lock); 779 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 780 reorder_buf, nssn, flags); 781 spin_unlock_bh(&reorder_buf->lock); 782 783 out: 784 rcu_read_unlock(); 785 } 786 787 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 788 struct napi_struct *napi, int queue, 789 const struct iwl_mvm_nssn_sync_data *data) 790 { 791 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 792 data->nssn, queue, 793 IWL_MVM_RELEASE_FROM_RSS_SYNC); 794 } 795 796 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 797 struct iwl_rx_cmd_buffer *rxb, int queue) 798 { 799 struct iwl_rx_packet *pkt = rxb_addr(rxb); 800 struct iwl_rxq_sync_notification *notif; 801 struct iwl_mvm_internal_rxq_notif *internal_notif; 802 u32 len = iwl_rx_packet_payload_len(pkt); 803 804 notif = (void *)pkt->data; 805 internal_notif = (void *)notif->payload; 806 807 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 808 "invalid notification size %d (%d)", 809 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 810 return; 811 len -= sizeof(*notif) + sizeof(*internal_notif); 812 813 if (internal_notif->sync && 814 mvm->queue_sync_cookie != internal_notif->cookie) { 815 WARN_ONCE(1, "Received expired RX queue sync message\n"); 816 return; 817 } 818 819 switch (internal_notif->type) { 820 case IWL_MVM_RXQ_EMPTY: 821 WARN_ONCE(len, "invalid empty notification size %d", len); 822 break; 823 case IWL_MVM_RXQ_NOTIF_DEL_BA: 824 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 825 "invalid delba notification size %d (%d)", 826 len, (int)sizeof(struct iwl_mvm_delba_data))) 827 break; 828 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 829 break; 830 case IWL_MVM_RXQ_NSSN_SYNC: 831 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 832 "invalid nssn sync notification size %d (%d)", 833 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 834 break; 835 iwl_mvm_nssn_sync(mvm, napi, queue, 836 (void *)internal_notif->data); 837 break; 838 default: 839 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 840 } 841 842 if (internal_notif->sync) { 843 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 844 "queue sync: queue %d responded a second time!\n", 845 queue); 846 if (READ_ONCE(mvm->queue_sync_state) == 0) 847 wake_up(&mvm->rx_sync_waitq); 848 } 849 } 850 851 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 852 struct ieee80211_sta *sta, int tid, 853 struct iwl_mvm_reorder_buffer *buffer, 854 u32 reorder, u32 gp2, int queue) 855 { 856 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 857 858 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 859 /* we have a new (A-)MPDU ... */ 860 861 /* 862 * reset counter to 0 if we didn't have any oldsn in 863 * the last A-MPDU (as detected by GP2 being identical) 864 */ 865 if (!buffer->consec_oldsn_prev_drop) 866 buffer->consec_oldsn_drops = 0; 867 868 /* either way, update our tracking state */ 869 buffer->consec_oldsn_ampdu_gp2 = gp2; 870 } else if (buffer->consec_oldsn_prev_drop) { 871 /* 872 * tracking state didn't change, and we had an old SN 873 * indication before - do nothing in this case, we 874 * already noted this one down and are waiting for the 875 * next A-MPDU (by GP2) 876 */ 877 return; 878 } 879 880 /* return unless this MPDU has old SN */ 881 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 882 return; 883 884 /* update state */ 885 buffer->consec_oldsn_prev_drop = 1; 886 buffer->consec_oldsn_drops++; 887 888 /* if limit is reached, send del BA and reset state */ 889 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 890 IWL_WARN(mvm, 891 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 892 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 893 sta->addr, queue, tid); 894 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 895 buffer->consec_oldsn_prev_drop = 0; 896 buffer->consec_oldsn_drops = 0; 897 } 898 } 899 900 /* 901 * Returns true if the MPDU was buffered\dropped, false if it should be passed 902 * to upper layer. 903 */ 904 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 905 struct napi_struct *napi, 906 int queue, 907 struct ieee80211_sta *sta, 908 struct sk_buff *skb, 909 struct iwl_rx_mpdu_desc *desc) 910 { 911 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 912 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 913 struct iwl_mvm_sta *mvm_sta; 914 struct iwl_mvm_baid_data *baid_data; 915 struct iwl_mvm_reorder_buffer *buffer; 916 struct sk_buff *tail; 917 u32 reorder = le32_to_cpu(desc->reorder_data); 918 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 919 bool last_subframe = 920 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 921 u8 tid = ieee80211_get_tid(hdr); 922 u8 sub_frame_idx = desc->amsdu_info & 923 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 924 struct iwl_mvm_reorder_buf_entry *entries; 925 int index; 926 u16 nssn, sn; 927 u8 baid; 928 929 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 930 IWL_RX_MPDU_REORDER_BAID_SHIFT; 931 932 /* 933 * This also covers the case of receiving a Block Ack Request 934 * outside a BA session; we'll pass it to mac80211 and that 935 * then sends a delBA action frame. 936 * This also covers pure monitor mode, in which case we won't 937 * have any BA sessions. 938 */ 939 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 940 return false; 941 942 /* no sta yet */ 943 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 944 "Got valid BAID without a valid station assigned\n")) 945 return false; 946 947 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 948 949 /* not a data packet or a bar */ 950 if (!ieee80211_is_back_req(hdr->frame_control) && 951 (!ieee80211_is_data_qos(hdr->frame_control) || 952 is_multicast_ether_addr(hdr->addr1))) 953 return false; 954 955 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 956 return false; 957 958 baid_data = rcu_dereference(mvm->baid_map[baid]); 959 if (!baid_data) { 960 IWL_DEBUG_RX(mvm, 961 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 962 baid, reorder); 963 return false; 964 } 965 966 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 967 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 968 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 969 tid)) 970 return false; 971 972 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 973 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 974 IWL_RX_MPDU_REORDER_SN_SHIFT; 975 976 buffer = &baid_data->reorder_buf[queue]; 977 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 978 979 spin_lock_bh(&buffer->lock); 980 981 if (!buffer->valid) { 982 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 983 spin_unlock_bh(&buffer->lock); 984 return false; 985 } 986 buffer->valid = true; 987 } 988 989 if (ieee80211_is_back_req(hdr->frame_control)) { 990 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 991 buffer, nssn, 0); 992 goto drop; 993 } 994 995 /* 996 * If there was a significant jump in the nssn - adjust. 997 * If the SN is smaller than the NSSN it might need to first go into 998 * the reorder buffer, in which case we just release up to it and the 999 * rest of the function will take care of storing it and releasing up to 1000 * the nssn. 1001 * This should not happen. This queue has been lagging and it should 1002 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1003 * and update the other queues. 1004 */ 1005 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1006 buffer->buf_size) || 1007 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1008 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1009 1010 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1011 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1012 } 1013 1014 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1015 rx_status->device_timestamp, queue); 1016 1017 /* drop any oudated packets */ 1018 if (ieee80211_sn_less(sn, buffer->head_sn)) 1019 goto drop; 1020 1021 /* release immediately if allowed by nssn and no stored frames */ 1022 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1023 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1024 buffer->buf_size) && 1025 (!amsdu || last_subframe)) { 1026 /* 1027 * If we crossed the 2048 or 0 SN, notify all the 1028 * queues. This is done in order to avoid having a 1029 * head_sn that lags behind for too long. When that 1030 * happens, we can get to a situation where the head_sn 1031 * is within the interval [nssn - buf_size : nssn] 1032 * which will make us think that the nssn is a packet 1033 * that we already freed because of the reordering 1034 * buffer and we will ignore it. So maintain the 1035 * head_sn somewhat updated across all the queues: 1036 * when it crosses 0 and 2048. 1037 */ 1038 if (sn == 2048 || sn == 0) 1039 iwl_mvm_sync_nssn(mvm, baid, sn); 1040 buffer->head_sn = nssn; 1041 } 1042 /* No need to update AMSDU last SN - we are moving the head */ 1043 spin_unlock_bh(&buffer->lock); 1044 return false; 1045 } 1046 1047 /* 1048 * release immediately if there are no stored frames, and the sn is 1049 * equal to the head. 1050 * This can happen due to reorder timer, where NSSN is behind head_sn. 1051 * When we released everything, and we got the next frame in the 1052 * sequence, according to the NSSN we can't release immediately, 1053 * while technically there is no hole and we can move forward. 1054 */ 1055 if (!buffer->num_stored && sn == buffer->head_sn) { 1056 if (!amsdu || last_subframe) { 1057 if (sn == 2048 || sn == 0) 1058 iwl_mvm_sync_nssn(mvm, baid, sn); 1059 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1060 } 1061 /* No need to update AMSDU last SN - we are moving the head */ 1062 spin_unlock_bh(&buffer->lock); 1063 return false; 1064 } 1065 1066 index = sn % buffer->buf_size; 1067 1068 /* 1069 * Check if we already stored this frame 1070 * As AMSDU is either received or not as whole, logic is simple: 1071 * If we have frames in that position in the buffer and the last frame 1072 * originated from AMSDU had a different SN then it is a retransmission. 1073 * If it is the same SN then if the subframe index is incrementing it 1074 * is the same AMSDU - otherwise it is a retransmission. 1075 */ 1076 tail = skb_peek_tail(&entries[index].e.frames); 1077 if (tail && !amsdu) 1078 goto drop; 1079 else if (tail && (sn != buffer->last_amsdu || 1080 buffer->last_sub_index >= sub_frame_idx)) 1081 goto drop; 1082 1083 /* put in reorder buffer */ 1084 __skb_queue_tail(&entries[index].e.frames, skb); 1085 buffer->num_stored++; 1086 entries[index].e.reorder_time = jiffies; 1087 1088 if (amsdu) { 1089 buffer->last_amsdu = sn; 1090 buffer->last_sub_index = sub_frame_idx; 1091 } 1092 1093 /* 1094 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1095 * The reason is that NSSN advances on the first sub-frame, and may 1096 * cause the reorder buffer to advance before all the sub-frames arrive. 1097 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1098 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1099 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1100 * already ahead and it will be dropped. 1101 * If the last sub-frame is not on this queue - we will get frame 1102 * release notification with up to date NSSN. 1103 */ 1104 if (!amsdu || last_subframe) 1105 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1106 buffer, nssn, 1107 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1108 1109 spin_unlock_bh(&buffer->lock); 1110 return true; 1111 1112 drop: 1113 kfree_skb(skb); 1114 spin_unlock_bh(&buffer->lock); 1115 return true; 1116 } 1117 1118 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1119 u32 reorder_data, u8 baid) 1120 { 1121 unsigned long now = jiffies; 1122 unsigned long timeout; 1123 struct iwl_mvm_baid_data *data; 1124 1125 rcu_read_lock(); 1126 1127 data = rcu_dereference(mvm->baid_map[baid]); 1128 if (!data) { 1129 IWL_DEBUG_RX(mvm, 1130 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1131 baid, reorder_data); 1132 goto out; 1133 } 1134 1135 if (!data->timeout) 1136 goto out; 1137 1138 timeout = data->timeout; 1139 /* 1140 * Do not update last rx all the time to avoid cache bouncing 1141 * between the rx queues. 1142 * Update it every timeout. Worst case is the session will 1143 * expire after ~ 2 * timeout, which doesn't matter that much. 1144 */ 1145 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1146 /* Update is atomic */ 1147 data->last_rx = now; 1148 1149 out: 1150 rcu_read_unlock(); 1151 } 1152 1153 static void iwl_mvm_flip_address(u8 *addr) 1154 { 1155 int i; 1156 u8 mac_addr[ETH_ALEN]; 1157 1158 for (i = 0; i < ETH_ALEN; i++) 1159 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1160 ether_addr_copy(addr, mac_addr); 1161 } 1162 1163 struct iwl_mvm_rx_phy_data { 1164 enum iwl_rx_phy_info_type info_type; 1165 __le32 d0, d1, d2, d3; 1166 __le16 d4; 1167 }; 1168 1169 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1170 struct iwl_mvm_rx_phy_data *phy_data, 1171 u32 rate_n_flags, 1172 struct ieee80211_radiotap_he_mu *he_mu) 1173 { 1174 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1175 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1176 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1177 1178 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1179 he_mu->flags1 |= 1180 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1181 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1182 1183 he_mu->flags1 |= 1184 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1185 phy_data4), 1186 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1187 1188 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1189 phy_data2); 1190 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1191 phy_data3); 1192 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1193 phy_data2); 1194 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1195 phy_data3); 1196 } 1197 1198 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1199 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1200 he_mu->flags1 |= 1201 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1202 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1203 1204 he_mu->flags2 |= 1205 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1206 phy_data4), 1207 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1208 1209 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1210 phy_data2); 1211 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1212 phy_data3); 1213 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1214 phy_data2); 1215 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1216 phy_data3); 1217 } 1218 } 1219 1220 static void 1221 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1222 u32 rate_n_flags, 1223 struct ieee80211_radiotap_he *he, 1224 struct ieee80211_radiotap_he_mu *he_mu, 1225 struct ieee80211_rx_status *rx_status) 1226 { 1227 /* 1228 * Unfortunately, we have to leave the mac80211 data 1229 * incorrect for the case that we receive an HE-MU 1230 * transmission and *don't* have the HE phy data (due 1231 * to the bits being used for TSF). This shouldn't 1232 * happen though as management frames where we need 1233 * the TSF/timers are not be transmitted in HE-MU. 1234 */ 1235 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1236 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1237 u8 offs = 0; 1238 1239 rx_status->bw = RATE_INFO_BW_HE_RU; 1240 1241 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1242 1243 switch (ru) { 1244 case 0 ... 36: 1245 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1246 offs = ru; 1247 break; 1248 case 37 ... 52: 1249 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1250 offs = ru - 37; 1251 break; 1252 case 53 ... 60: 1253 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1254 offs = ru - 53; 1255 break; 1256 case 61 ... 64: 1257 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1258 offs = ru - 61; 1259 break; 1260 case 65 ... 66: 1261 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1262 offs = ru - 65; 1263 break; 1264 case 67: 1265 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1266 break; 1267 case 68: 1268 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1269 break; 1270 } 1271 he->data2 |= le16_encode_bits(offs, 1272 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1273 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1274 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1275 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1276 he->data2 |= 1277 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1278 1279 #define CHECK_BW(bw) \ 1280 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1281 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1282 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1283 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1284 CHECK_BW(20); 1285 CHECK_BW(40); 1286 CHECK_BW(80); 1287 CHECK_BW(160); 1288 1289 if (he_mu) 1290 he_mu->flags2 |= 1291 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1292 rate_n_flags), 1293 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1294 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1295 he->data6 |= 1296 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1297 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1298 rate_n_flags), 1299 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1300 } 1301 1302 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1303 struct iwl_mvm_rx_phy_data *phy_data, 1304 struct ieee80211_radiotap_he *he, 1305 struct ieee80211_radiotap_he_mu *he_mu, 1306 struct ieee80211_rx_status *rx_status, 1307 u32 rate_n_flags, int queue) 1308 { 1309 switch (phy_data->info_type) { 1310 case IWL_RX_PHY_INFO_TYPE_NONE: 1311 case IWL_RX_PHY_INFO_TYPE_CCK: 1312 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1313 case IWL_RX_PHY_INFO_TYPE_HT: 1314 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1315 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1316 return; 1317 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1318 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1319 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1320 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1321 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1322 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1323 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1324 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1325 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1326 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1327 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1328 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1329 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1330 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1331 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1332 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1333 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1334 fallthrough; 1335 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1336 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1337 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1338 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1339 /* HE common */ 1340 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1341 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1342 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1343 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1344 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1345 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1346 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1347 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1348 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1349 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1350 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1351 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1352 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1353 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1354 IWL_RX_PHY_DATA0_HE_UPLINK), 1355 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1356 } 1357 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1358 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1359 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1360 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1361 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1362 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1363 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1364 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1365 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1366 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1367 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1368 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1369 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1370 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1371 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1372 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1373 IWL_RX_PHY_DATA0_HE_DOPPLER), 1374 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1375 break; 1376 } 1377 1378 switch (phy_data->info_type) { 1379 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1380 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1381 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1382 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1383 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1384 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1385 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1386 break; 1387 default: 1388 /* nothing here */ 1389 break; 1390 } 1391 1392 switch (phy_data->info_type) { 1393 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1394 he_mu->flags1 |= 1395 le16_encode_bits(le16_get_bits(phy_data->d4, 1396 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1397 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1398 he_mu->flags1 |= 1399 le16_encode_bits(le16_get_bits(phy_data->d4, 1400 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1401 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1402 he_mu->flags2 |= 1403 le16_encode_bits(le16_get_bits(phy_data->d4, 1404 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1405 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1406 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1407 fallthrough; 1408 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1409 he_mu->flags2 |= 1410 le16_encode_bits(le32_get_bits(phy_data->d1, 1411 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1412 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1413 he_mu->flags2 |= 1414 le16_encode_bits(le32_get_bits(phy_data->d1, 1415 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1416 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1417 fallthrough; 1418 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1419 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1420 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1421 he, he_mu, rx_status); 1422 break; 1423 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1424 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1425 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1426 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1427 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1428 break; 1429 default: 1430 /* nothing */ 1431 break; 1432 } 1433 } 1434 1435 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1436 struct iwl_mvm_rx_phy_data *phy_data, 1437 u32 rate_n_flags, u16 phy_info, int queue) 1438 { 1439 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1440 struct ieee80211_radiotap_he *he = NULL; 1441 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1442 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1443 u8 stbc, ltf; 1444 static const struct ieee80211_radiotap_he known = { 1445 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1446 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1447 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1448 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1449 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1450 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1451 }; 1452 static const struct ieee80211_radiotap_he_mu mu_known = { 1453 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1454 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1455 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1456 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1457 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1458 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1459 }; 1460 1461 he = skb_put_data(skb, &known, sizeof(known)); 1462 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1463 1464 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1465 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1466 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1467 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1468 } 1469 1470 /* report the AMPDU-EOF bit on single frames */ 1471 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1472 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1473 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1474 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1475 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1476 } 1477 1478 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1479 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1480 rate_n_flags, queue); 1481 1482 /* update aggregation data for monitor sake on default queue */ 1483 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1484 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1485 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1486 1487 /* toggle is switched whenever new aggregation starts */ 1488 if (toggle_bit != mvm->ampdu_toggle) { 1489 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1490 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1491 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1492 } 1493 } 1494 1495 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1496 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1497 rx_status->bw = RATE_INFO_BW_HE_RU; 1498 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1499 } 1500 1501 /* actually data is filled in mac80211 */ 1502 if (he_type == RATE_MCS_HE_TYPE_SU || 1503 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1504 he->data1 |= 1505 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1506 1507 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1508 rx_status->nss = 1509 ((rate_n_flags & RATE_MCS_NSS_MSK) >> 1510 RATE_MCS_NSS_POS) + 1; 1511 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 1512 rx_status->encoding = RX_ENC_HE; 1513 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1514 if (rate_n_flags & RATE_MCS_BF_MSK) 1515 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1516 1517 rx_status->he_dcm = 1518 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1519 1520 #define CHECK_TYPE(F) \ 1521 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1522 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1523 1524 CHECK_TYPE(SU); 1525 CHECK_TYPE(EXT_SU); 1526 CHECK_TYPE(MU); 1527 CHECK_TYPE(TRIG); 1528 1529 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1530 1531 if (rate_n_flags & RATE_MCS_BF_MSK) 1532 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1533 1534 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1535 RATE_MCS_HE_GI_LTF_POS) { 1536 case 0: 1537 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1538 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1539 else 1540 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1541 if (he_type == RATE_MCS_HE_TYPE_MU) 1542 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1543 else 1544 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1545 break; 1546 case 1: 1547 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1548 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1549 else 1550 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1551 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1552 break; 1553 case 2: 1554 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1555 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1556 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1557 } else { 1558 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1559 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1560 } 1561 break; 1562 case 3: 1563 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1564 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1565 break; 1566 case 4: 1567 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1568 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1569 break; 1570 default: 1571 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1572 } 1573 1574 he->data5 |= le16_encode_bits(ltf, 1575 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1576 } 1577 1578 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1579 struct iwl_mvm_rx_phy_data *phy_data) 1580 { 1581 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1582 struct ieee80211_radiotap_lsig *lsig; 1583 1584 switch (phy_data->info_type) { 1585 case IWL_RX_PHY_INFO_TYPE_HT: 1586 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1587 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1588 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1589 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1590 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1591 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1592 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1593 lsig = skb_put(skb, sizeof(*lsig)); 1594 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1595 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1596 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1597 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1598 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1599 break; 1600 default: 1601 break; 1602 } 1603 } 1604 1605 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1606 { 1607 switch (phy_band) { 1608 case PHY_BAND_24: 1609 return NL80211_BAND_2GHZ; 1610 case PHY_BAND_5: 1611 return NL80211_BAND_5GHZ; 1612 case PHY_BAND_6: 1613 return NL80211_BAND_6GHZ; 1614 default: 1615 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1616 return NL80211_BAND_5GHZ; 1617 } 1618 } 1619 1620 struct iwl_rx_sta_csa { 1621 bool all_sta_unblocked; 1622 struct ieee80211_vif *vif; 1623 }; 1624 1625 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1626 { 1627 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1628 struct iwl_rx_sta_csa *rx_sta_csa = data; 1629 1630 if (mvmsta->vif != rx_sta_csa->vif) 1631 return; 1632 1633 if (mvmsta->disable_tx) 1634 rx_sta_csa->all_sta_unblocked = false; 1635 } 1636 1637 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1638 struct iwl_rx_cmd_buffer *rxb, int queue) 1639 { 1640 struct ieee80211_rx_status *rx_status; 1641 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1642 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1643 struct ieee80211_hdr *hdr; 1644 u32 len; 1645 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 1646 u32 rate_n_flags, gp2_on_air_rise; 1647 u16 phy_info; 1648 struct ieee80211_sta *sta = NULL; 1649 struct sk_buff *skb; 1650 u8 crypt_len = 0, channel, energy_a, energy_b; 1651 size_t desc_size; 1652 struct iwl_mvm_rx_phy_data phy_data = { 1653 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1654 }; 1655 u32 format; 1656 bool is_sgi; 1657 1658 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1659 return; 1660 1661 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1662 desc_size = sizeof(*desc); 1663 else 1664 desc_size = IWL_RX_DESC_SIZE_V1; 1665 1666 if (unlikely(pkt_len < desc_size)) { 1667 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 1668 return; 1669 } 1670 1671 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1672 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1673 channel = desc->v3.channel; 1674 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1675 energy_a = desc->v3.energy_a; 1676 energy_b = desc->v3.energy_b; 1677 1678 phy_data.d0 = desc->v3.phy_data0; 1679 phy_data.d1 = desc->v3.phy_data1; 1680 phy_data.d2 = desc->v3.phy_data2; 1681 phy_data.d3 = desc->v3.phy_data3; 1682 } else { 1683 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1684 channel = desc->v1.channel; 1685 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1686 energy_a = desc->v1.energy_a; 1687 energy_b = desc->v1.energy_b; 1688 1689 phy_data.d0 = desc->v1.phy_data0; 1690 phy_data.d1 = desc->v1.phy_data1; 1691 phy_data.d2 = desc->v1.phy_data2; 1692 phy_data.d3 = desc->v1.phy_data3; 1693 } 1694 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 1695 REPLY_RX_MPDU_CMD, 0) < 4) { 1696 rate_n_flags = iwl_new_rate_from_v1(rate_n_flags); 1697 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 1698 rate_n_flags); 1699 } 1700 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1701 1702 len = le16_to_cpu(desc->mpdu_len); 1703 1704 if (unlikely(len + desc_size > pkt_len)) { 1705 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 1706 return; 1707 } 1708 1709 phy_info = le16_to_cpu(desc->phy_info); 1710 phy_data.d4 = desc->phy_data4; 1711 1712 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1713 phy_data.info_type = 1714 le32_get_bits(phy_data.d1, 1715 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1716 1717 hdr = (void *)(pkt->data + desc_size); 1718 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1719 * ieee80211_hdr pulled. 1720 */ 1721 skb = alloc_skb(128, GFP_ATOMIC); 1722 if (!skb) { 1723 IWL_ERR(mvm, "alloc_skb failed\n"); 1724 return; 1725 } 1726 1727 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1728 /* 1729 * If the device inserted padding it means that (it thought) 1730 * the 802.11 header wasn't a multiple of 4 bytes long. In 1731 * this case, reserve two bytes at the start of the SKB to 1732 * align the payload properly in case we end up copying it. 1733 */ 1734 skb_reserve(skb, 2); 1735 } 1736 1737 rx_status = IEEE80211_SKB_RXCB(skb); 1738 1739 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1740 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1741 case RATE_MCS_CHAN_WIDTH_20: 1742 break; 1743 case RATE_MCS_CHAN_WIDTH_40: 1744 rx_status->bw = RATE_INFO_BW_40; 1745 break; 1746 case RATE_MCS_CHAN_WIDTH_80: 1747 rx_status->bw = RATE_INFO_BW_80; 1748 break; 1749 case RATE_MCS_CHAN_WIDTH_160: 1750 rx_status->bw = RATE_INFO_BW_160; 1751 break; 1752 } 1753 1754 if (format == RATE_MCS_HE_MSK) 1755 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1756 phy_info, queue); 1757 1758 iwl_mvm_decode_lsig(skb, &phy_data); 1759 1760 /* 1761 * Keep packets with CRC errors (and with overrun) for monitor mode 1762 * (otherwise the firmware discards them) but mark them as bad. 1763 */ 1764 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1765 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1766 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1767 le32_to_cpu(desc->status)); 1768 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1769 } 1770 /* set the preamble flag if appropriate */ 1771 if (format == RATE_MCS_CCK_MSK && 1772 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1773 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1774 1775 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1776 u64 tsf_on_air_rise; 1777 1778 if (mvm->trans->trans_cfg->device_family >= 1779 IWL_DEVICE_FAMILY_AX210) 1780 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1781 else 1782 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1783 1784 rx_status->mactime = tsf_on_air_rise; 1785 /* TSF as indicated by the firmware is at INA time */ 1786 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1787 } 1788 1789 rx_status->device_timestamp = gp2_on_air_rise; 1790 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1791 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1792 1793 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1794 } else { 1795 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1796 NL80211_BAND_2GHZ; 1797 } 1798 rx_status->freq = ieee80211_channel_to_frequency(channel, 1799 rx_status->band); 1800 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1801 energy_b); 1802 1803 /* update aggregation data for monitor sake on default queue */ 1804 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1805 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1806 1807 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1808 /* 1809 * Toggle is switched whenever new aggregation starts. Make 1810 * sure ampdu_reference is never 0 so we can later use it to 1811 * see if the frame was really part of an A-MPDU or not. 1812 */ 1813 if (toggle_bit != mvm->ampdu_toggle) { 1814 mvm->ampdu_ref++; 1815 if (mvm->ampdu_ref == 0) 1816 mvm->ampdu_ref++; 1817 mvm->ampdu_toggle = toggle_bit; 1818 } 1819 rx_status->ampdu_reference = mvm->ampdu_ref; 1820 } 1821 1822 if (unlikely(mvm->monitor_on)) 1823 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1824 1825 rcu_read_lock(); 1826 1827 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1828 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 1829 1830 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 1831 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1832 if (IS_ERR(sta)) 1833 sta = NULL; 1834 } 1835 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1836 /* 1837 * This is fine since we prevent two stations with the same 1838 * address from being added. 1839 */ 1840 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1841 } 1842 1843 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc, 1844 le32_to_cpu(pkt->len_n_flags), queue, 1845 &crypt_len)) { 1846 kfree_skb(skb); 1847 goto out; 1848 } 1849 1850 if (sta) { 1851 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1852 struct ieee80211_vif *tx_blocked_vif = 1853 rcu_dereference(mvm->csa_tx_blocked_vif); 1854 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1855 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1856 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1857 struct iwl_fw_dbg_trigger_tlv *trig; 1858 struct ieee80211_vif *vif = mvmsta->vif; 1859 1860 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1861 !is_multicast_ether_addr(hdr->addr1) && 1862 ieee80211_is_data(hdr->frame_control) && 1863 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1864 schedule_delayed_work(&mvm->tcm.work, 0); 1865 1866 /* 1867 * We have tx blocked stations (with CS bit). If we heard 1868 * frames from a blocked station on a new channel we can 1869 * TX to it again. 1870 */ 1871 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1872 struct iwl_mvm_vif *mvmvif = 1873 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1874 struct iwl_rx_sta_csa rx_sta_csa = { 1875 .all_sta_unblocked = true, 1876 .vif = tx_blocked_vif, 1877 }; 1878 1879 if (mvmvif->csa_target_freq == rx_status->freq) 1880 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1881 false); 1882 ieee80211_iterate_stations_atomic(mvm->hw, 1883 iwl_mvm_rx_get_sta_block_tx, 1884 &rx_sta_csa); 1885 1886 if (rx_sta_csa.all_sta_unblocked) { 1887 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 1888 /* Unblock BCAST / MCAST station */ 1889 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 1890 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork); 1891 } 1892 } 1893 1894 rs_update_last_rssi(mvm, mvmsta, rx_status); 1895 1896 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1897 ieee80211_vif_to_wdev(vif), 1898 FW_DBG_TRIGGER_RSSI); 1899 1900 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1901 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1902 s32 rssi; 1903 1904 rssi_trig = (void *)trig->data; 1905 rssi = le32_to_cpu(rssi_trig->rssi); 1906 1907 if (rx_status->signal < rssi) 1908 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1909 NULL); 1910 } 1911 1912 if (ieee80211_is_data(hdr->frame_control)) 1913 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 1914 1915 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1916 kfree_skb(skb); 1917 goto out; 1918 } 1919 1920 /* 1921 * Our hardware de-aggregates AMSDUs but copies the mac header 1922 * as it to the de-aggregated MPDUs. We need to turn off the 1923 * AMSDU bit in the QoS control ourselves. 1924 * In addition, HW reverses addr3 and addr4 - reverse it back. 1925 */ 1926 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1927 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1928 u8 *qc = ieee80211_get_qos_ctl(hdr); 1929 1930 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1931 1932 if (mvm->trans->trans_cfg->device_family == 1933 IWL_DEVICE_FAMILY_9000) { 1934 iwl_mvm_flip_address(hdr->addr3); 1935 1936 if (ieee80211_has_a4(hdr->frame_control)) 1937 iwl_mvm_flip_address(hdr->addr4); 1938 } 1939 } 1940 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1941 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1942 1943 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1944 } 1945 } 1946 1947 is_sgi = format == RATE_MCS_HE_MSK ? 1948 iwl_he_is_sgi(rate_n_flags) : 1949 rate_n_flags & RATE_MCS_SGI_MSK; 1950 1951 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 1952 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1953 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1954 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1955 if (format == RATE_MCS_HT_MSK) { 1956 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1957 RATE_MCS_STBC_POS; 1958 rx_status->encoding = RX_ENC_HT; 1959 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 1960 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1961 } else if (format == RATE_MCS_VHT_MSK) { 1962 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1963 RATE_MCS_STBC_POS; 1964 rx_status->nss = 1965 ((rate_n_flags & RATE_MCS_NSS_MSK) >> 1966 RATE_MCS_NSS_POS) + 1; 1967 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 1968 rx_status->encoding = RX_ENC_VHT; 1969 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1970 if (rate_n_flags & RATE_MCS_BF_MSK) 1971 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1972 } else if (!(format == RATE_MCS_HE_MSK)) { 1973 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 1974 rx_status->band); 1975 1976 if (WARN(rate < 0 || rate > 0xFF, 1977 "Invalid rate flags 0x%x, band %d,\n", 1978 rate_n_flags, rx_status->band)) { 1979 kfree_skb(skb); 1980 goto out; 1981 } 1982 rx_status->rate_idx = rate; 1983 } 1984 1985 /* management stuff on default queue */ 1986 if (!queue) { 1987 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 1988 ieee80211_is_probe_resp(hdr->frame_control)) && 1989 mvm->sched_scan_pass_all == 1990 SCHED_SCAN_PASS_ALL_ENABLED)) 1991 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 1992 1993 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 1994 ieee80211_is_probe_resp(hdr->frame_control))) 1995 rx_status->boottime_ns = ktime_get_boottime_ns(); 1996 } 1997 1998 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 1999 kfree_skb(skb); 2000 goto out; 2001 } 2002 2003 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 2004 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 2005 sta); 2006 out: 2007 rcu_read_unlock(); 2008 } 2009 2010 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2011 struct iwl_rx_cmd_buffer *rxb, int queue) 2012 { 2013 struct ieee80211_rx_status *rx_status; 2014 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2015 struct iwl_rx_no_data *desc = (void *)pkt->data; 2016 u32 rate_n_flags = le32_to_cpu(desc->rate); 2017 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2018 u32 rssi = le32_to_cpu(desc->rssi); 2019 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2020 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2021 struct ieee80211_sta *sta = NULL; 2022 struct sk_buff *skb; 2023 u8 channel, energy_a, energy_b; 2024 u32 format; 2025 struct iwl_mvm_rx_phy_data phy_data = { 2026 .info_type = le32_get_bits(desc->phy_info[1], 2027 IWL_RX_PHY_DATA1_INFO_TYPE_MASK), 2028 .d0 = desc->phy_info[0], 2029 .d1 = desc->phy_info[1], 2030 }; 2031 bool is_sgi; 2032 2033 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2034 RX_NO_DATA_NOTIF, 0) < 2) { 2035 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2036 rate_n_flags); 2037 rate_n_flags = iwl_new_rate_from_v1(rate_n_flags); 2038 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2039 rate_n_flags); 2040 } 2041 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2042 2043 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc))) 2044 return; 2045 2046 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2047 return; 2048 2049 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 2050 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 2051 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 2052 2053 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2054 * ieee80211_hdr pulled. 2055 */ 2056 skb = alloc_skb(128, GFP_ATOMIC); 2057 if (!skb) { 2058 IWL_ERR(mvm, "alloc_skb failed\n"); 2059 return; 2060 } 2061 2062 rx_status = IEEE80211_SKB_RXCB(skb); 2063 2064 /* 0-length PSDU */ 2065 rx_status->flag |= RX_FLAG_NO_PSDU; 2066 2067 switch (info_type) { 2068 case RX_NO_DATA_INFO_TYPE_NDP: 2069 rx_status->zero_length_psdu_type = 2070 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2071 break; 2072 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2073 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 2074 rx_status->zero_length_psdu_type = 2075 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2076 break; 2077 default: 2078 rx_status->zero_length_psdu_type = 2079 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2080 break; 2081 } 2082 2083 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2084 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2085 case RATE_MCS_CHAN_WIDTH_20: 2086 break; 2087 case RATE_MCS_CHAN_WIDTH_40: 2088 rx_status->bw = RATE_INFO_BW_40; 2089 break; 2090 case RATE_MCS_CHAN_WIDTH_80: 2091 rx_status->bw = RATE_INFO_BW_80; 2092 break; 2093 case RATE_MCS_CHAN_WIDTH_160: 2094 rx_status->bw = RATE_INFO_BW_160; 2095 break; 2096 } 2097 2098 if (format == RATE_MCS_HE_MSK) 2099 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 2100 phy_info, queue); 2101 2102 iwl_mvm_decode_lsig(skb, &phy_data); 2103 2104 rx_status->device_timestamp = gp2_on_air_rise; 2105 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 2106 NL80211_BAND_2GHZ; 2107 rx_status->freq = ieee80211_channel_to_frequency(channel, 2108 rx_status->band); 2109 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 2110 energy_b); 2111 2112 rcu_read_lock(); 2113 2114 is_sgi = format == RATE_MCS_HE_MSK ? 2115 iwl_he_is_sgi(rate_n_flags) : 2116 rate_n_flags & RATE_MCS_SGI_MSK; 2117 2118 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 2119 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2120 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2121 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2122 if (format == RATE_MCS_HT_MSK) { 2123 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2124 RATE_MCS_STBC_POS; 2125 rx_status->encoding = RX_ENC_HT; 2126 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2127 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2128 } else if (format == RATE_MCS_VHT_MSK) { 2129 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2130 RATE_MCS_STBC_POS; 2131 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2132 rx_status->encoding = RX_ENC_VHT; 2133 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2134 if (rate_n_flags & RATE_MCS_BF_MSK) 2135 rx_status->enc_flags |= RX_ENC_FLAG_BF; 2136 /* 2137 * take the nss from the rx_vec since the rate_n_flags has 2138 * only 2 bits for the nss which gives a max of 4 ss but 2139 * there may be up to 8 spatial streams 2140 */ 2141 rx_status->nss = 2142 le32_get_bits(desc->rx_vec[0], 2143 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2144 } else if (format == RATE_MCS_HE_MSK) { 2145 rx_status->nss = 2146 le32_get_bits(desc->rx_vec[0], 2147 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2148 } else { 2149 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2150 rx_status->band); 2151 2152 if (WARN(rate < 0 || rate > 0xFF, 2153 "Invalid rate flags 0x%x, band %d,\n", 2154 rate_n_flags, rx_status->band)) { 2155 kfree_skb(skb); 2156 goto out; 2157 } 2158 rx_status->rate_idx = rate; 2159 } 2160 2161 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2162 out: 2163 rcu_read_unlock(); 2164 } 2165 2166 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2167 struct iwl_rx_cmd_buffer *rxb, int queue) 2168 { 2169 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2170 struct iwl_frame_release *release = (void *)pkt->data; 2171 2172 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2173 return; 2174 2175 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2176 le16_to_cpu(release->nssn), 2177 queue, 0); 2178 } 2179 2180 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2181 struct iwl_rx_cmd_buffer *rxb, int queue) 2182 { 2183 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2184 struct iwl_bar_frame_release *release = (void *)pkt->data; 2185 unsigned int baid = le32_get_bits(release->ba_info, 2186 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2187 unsigned int nssn = le32_get_bits(release->ba_info, 2188 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2189 unsigned int sta_id = le32_get_bits(release->sta_tid, 2190 IWL_BAR_FRAME_RELEASE_STA_MASK); 2191 unsigned int tid = le32_get_bits(release->sta_tid, 2192 IWL_BAR_FRAME_RELEASE_TID_MASK); 2193 struct iwl_mvm_baid_data *baid_data; 2194 2195 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2196 return; 2197 2198 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2199 baid >= ARRAY_SIZE(mvm->baid_map))) 2200 return; 2201 2202 rcu_read_lock(); 2203 baid_data = rcu_dereference(mvm->baid_map[baid]); 2204 if (!baid_data) { 2205 IWL_DEBUG_RX(mvm, 2206 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2207 baid); 2208 goto out; 2209 } 2210 2211 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2212 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2213 baid, baid_data->sta_id, baid_data->tid, sta_id, 2214 tid)) 2215 goto out; 2216 2217 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2218 out: 2219 rcu_read_unlock(); 2220 } 2221