1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 11 * Copyright(c) 2018 - 2019 Intel Corporation 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of version 2 of the GNU General Public License as 15 * published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * General Public License for more details. 21 * 22 * The full GNU General Public License is included in this distribution 23 * in the file called COPYING. 24 * 25 * Contact Information: 26 * Intel Linux Wireless <linuxwifi@intel.com> 27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 28 * 29 * BSD LICENSE 30 * 31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 34 * Copyright(c) 2018 - 2019 Intel Corporation 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name Intel Corporation nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 *****************************************************************************/ 63 #include <linux/etherdevice.h> 64 #include <linux/skbuff.h> 65 #include "iwl-trans.h" 66 #include "mvm.h" 67 #include "fw-api.h" 68 69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 70 { 71 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 72 u8 *data = skb->data; 73 74 /* Alignment concerns */ 75 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 76 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 77 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 78 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 79 80 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 81 data += sizeof(struct ieee80211_radiotap_he); 82 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 83 data += sizeof(struct ieee80211_radiotap_he_mu); 84 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 85 data += sizeof(struct ieee80211_radiotap_lsig); 86 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 87 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 88 89 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 90 } 91 92 return data; 93 } 94 95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 96 int queue, struct ieee80211_sta *sta) 97 { 98 struct iwl_mvm_sta *mvmsta; 99 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 100 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 101 struct iwl_mvm_key_pn *ptk_pn; 102 int res; 103 u8 tid, keyidx; 104 u8 pn[IEEE80211_CCMP_PN_LEN]; 105 u8 *extiv; 106 107 /* do PN checking */ 108 109 /* multicast and non-data only arrives on default queue */ 110 if (!ieee80211_is_data(hdr->frame_control) || 111 is_multicast_ether_addr(hdr->addr1)) 112 return 0; 113 114 /* do not check PN for open AP */ 115 if (!(stats->flag & RX_FLAG_DECRYPTED)) 116 return 0; 117 118 /* 119 * avoid checking for default queue - we don't want to replicate 120 * all the logic that's necessary for checking the PN on fragmented 121 * frames, leave that to mac80211 122 */ 123 if (queue == 0) 124 return 0; 125 126 /* if we are here - this for sure is either CCMP or GCMP */ 127 if (IS_ERR_OR_NULL(sta)) { 128 IWL_ERR(mvm, 129 "expected hw-decrypted unicast frame for station\n"); 130 return -1; 131 } 132 133 mvmsta = iwl_mvm_sta_from_mac80211(sta); 134 135 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 136 keyidx = extiv[3] >> 6; 137 138 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 139 if (!ptk_pn) 140 return -1; 141 142 if (ieee80211_is_data_qos(hdr->frame_control)) 143 tid = ieee80211_get_tid(hdr); 144 else 145 tid = 0; 146 147 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 148 if (tid >= IWL_MAX_TID_COUNT) 149 return -1; 150 151 /* load pn */ 152 pn[0] = extiv[7]; 153 pn[1] = extiv[6]; 154 pn[2] = extiv[5]; 155 pn[3] = extiv[4]; 156 pn[4] = extiv[1]; 157 pn[5] = extiv[0]; 158 159 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 160 if (res < 0) 161 return -1; 162 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 163 return -1; 164 165 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 166 stats->flag |= RX_FLAG_PN_VALIDATED; 167 168 return 0; 169 } 170 171 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 172 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 173 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 174 struct iwl_rx_cmd_buffer *rxb) 175 { 176 struct iwl_rx_packet *pkt = rxb_addr(rxb); 177 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 178 unsigned int headlen, fraglen, pad_len = 0; 179 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 180 181 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 182 len -= 2; 183 pad_len = 2; 184 } 185 186 /* If frame is small enough to fit in skb->head, pull it completely. 187 * If not, only pull ieee80211_hdr (including crypto if present, and 188 * an additional 8 bytes for SNAP/ethertype, see below) so that 189 * splice() or TCP coalesce are more efficient. 190 * 191 * Since, in addition, ieee80211_data_to_8023() always pull in at 192 * least 8 bytes (possibly more for mesh) we can do the same here 193 * to save the cost of doing it later. That still doesn't pull in 194 * the actual IP header since the typical case has a SNAP header. 195 * If the latter changes (there are efforts in the standards group 196 * to do so) we should revisit this and ieee80211_data_to_8023(). 197 */ 198 headlen = (len <= skb_tailroom(skb)) ? len : 199 hdrlen + crypt_len + 8; 200 201 /* The firmware may align the packet to DWORD. 202 * The padding is inserted after the IV. 203 * After copying the header + IV skip the padding if 204 * present before copying packet data. 205 */ 206 hdrlen += crypt_len; 207 208 if (WARN_ONCE(headlen < hdrlen, 209 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 210 hdrlen, len, crypt_len)) { 211 /* 212 * We warn and trace because we want to be able to see 213 * it in trace-cmd as well. 214 */ 215 IWL_DEBUG_RX(mvm, 216 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 217 hdrlen, len, crypt_len); 218 return -EINVAL; 219 } 220 221 skb_put_data(skb, hdr, hdrlen); 222 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 223 224 fraglen = len - headlen; 225 226 if (fraglen) { 227 int offset = (void *)hdr + headlen + pad_len - 228 rxb_addr(rxb) + rxb_offset(rxb); 229 230 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 231 fraglen, rxb->truesize); 232 } 233 234 return 0; 235 } 236 237 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 238 struct sk_buff *skb) 239 { 240 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 241 struct ieee80211_vendor_radiotap *radiotap; 242 const int size = sizeof(*radiotap) + sizeof(__le16); 243 244 if (!mvm->cur_aid) 245 return; 246 247 /* ensure alignment */ 248 BUILD_BUG_ON((size + 2) % 4); 249 250 radiotap = skb_put(skb, size + 2); 251 radiotap->align = 1; 252 /* Intel OUI */ 253 radiotap->oui[0] = 0xf6; 254 radiotap->oui[1] = 0x54; 255 radiotap->oui[2] = 0x25; 256 /* radiotap sniffer config sub-namespace */ 257 radiotap->subns = 1; 258 radiotap->present = 0x1; 259 radiotap->len = size - sizeof(*radiotap); 260 radiotap->pad = 2; 261 262 /* fill the data now */ 263 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 264 /* and clear the padding */ 265 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 266 267 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 268 } 269 270 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 271 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 272 struct napi_struct *napi, 273 struct sk_buff *skb, int queue, 274 struct ieee80211_sta *sta, 275 bool csi) 276 { 277 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 278 kfree_skb(skb); 279 else 280 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 281 } 282 283 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 284 struct ieee80211_rx_status *rx_status, 285 u32 rate_n_flags, int energy_a, 286 int energy_b) 287 { 288 int max_energy; 289 u32 rate_flags = rate_n_flags; 290 291 energy_a = energy_a ? -energy_a : S8_MIN; 292 energy_b = energy_b ? -energy_b : S8_MIN; 293 max_energy = max(energy_a, energy_b); 294 295 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 296 energy_a, energy_b, max_energy); 297 298 rx_status->signal = max_energy; 299 rx_status->chains = 300 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 301 rx_status->chain_signal[0] = energy_a; 302 rx_status->chain_signal[1] = energy_b; 303 rx_status->chain_signal[2] = S8_MIN; 304 } 305 306 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr, 307 struct ieee80211_rx_status *stats, u16 phy_info, 308 struct iwl_rx_mpdu_desc *desc, 309 u32 pkt_flags, int queue, u8 *crypt_len) 310 { 311 u16 status = le16_to_cpu(desc->status); 312 313 /* 314 * Drop UNKNOWN frames in aggregation, unless in monitor mode 315 * (where we don't have the keys). 316 * We limit this to aggregation because in TKIP this is a valid 317 * scenario, since we may not have the (correct) TTAK (phase 1 318 * key) in the firmware. 319 */ 320 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 321 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 322 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 323 return -1; 324 325 if (!ieee80211_has_protected(hdr->frame_control) || 326 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 327 IWL_RX_MPDU_STATUS_SEC_NONE) 328 return 0; 329 330 /* TODO: handle packets encrypted with unknown alg */ 331 332 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 333 case IWL_RX_MPDU_STATUS_SEC_CCM: 334 case IWL_RX_MPDU_STATUS_SEC_GCM: 335 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 336 /* alg is CCM: check MIC only */ 337 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 338 return -1; 339 340 stats->flag |= RX_FLAG_DECRYPTED; 341 if (pkt_flags & FH_RSCSR_RADA_EN) 342 stats->flag |= RX_FLAG_MIC_STRIPPED; 343 *crypt_len = IEEE80211_CCMP_HDR_LEN; 344 return 0; 345 case IWL_RX_MPDU_STATUS_SEC_TKIP: 346 /* Don't drop the frame and decrypt it in SW */ 347 if (!fw_has_api(&mvm->fw->ucode_capa, 348 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 349 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 350 return 0; 351 352 if (mvm->trans->trans_cfg->gen2 && 353 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 354 stats->flag |= RX_FLAG_MMIC_ERROR; 355 356 *crypt_len = IEEE80211_TKIP_IV_LEN; 357 /* fall through */ 358 case IWL_RX_MPDU_STATUS_SEC_WEP: 359 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 360 return -1; 361 362 stats->flag |= RX_FLAG_DECRYPTED; 363 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 364 IWL_RX_MPDU_STATUS_SEC_WEP) 365 *crypt_len = IEEE80211_WEP_IV_LEN; 366 367 if (pkt_flags & FH_RSCSR_RADA_EN) { 368 stats->flag |= RX_FLAG_ICV_STRIPPED; 369 if (mvm->trans->trans_cfg->gen2) 370 stats->flag |= RX_FLAG_MMIC_STRIPPED; 371 } 372 373 return 0; 374 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 375 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 376 return -1; 377 stats->flag |= RX_FLAG_DECRYPTED; 378 return 0; 379 default: 380 /* 381 * Sometimes we can get frames that were not decrypted 382 * because the firmware didn't have the keys yet. This can 383 * happen after connection where we can get multicast frames 384 * before the GTK is installed. 385 * Silently drop those frames. 386 * Also drop un-decrypted frames in monitor mode. 387 */ 388 if (!is_multicast_ether_addr(hdr->addr1) && 389 !mvm->monitor_on && net_ratelimit()) 390 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 391 } 392 393 return 0; 394 } 395 396 static void iwl_mvm_rx_csum(struct ieee80211_sta *sta, 397 struct sk_buff *skb, 398 struct iwl_rx_mpdu_desc *desc) 399 { 400 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 401 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 402 u16 flags = le16_to_cpu(desc->l3l4_flags); 403 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 404 IWL_RX_L3_PROTO_POS); 405 406 if (mvmvif->features & NETIF_F_RXCSUM && 407 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 408 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 409 l3_prot == IWL_RX_L3_TYPE_IPV6 || 410 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 411 skb->ip_summed = CHECKSUM_UNNECESSARY; 412 } 413 414 /* 415 * returns true if a packet is a duplicate and should be dropped. 416 * Updates AMSDU PN tracking info 417 */ 418 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 419 struct ieee80211_rx_status *rx_status, 420 struct ieee80211_hdr *hdr, 421 struct iwl_rx_mpdu_desc *desc) 422 { 423 struct iwl_mvm_sta *mvm_sta; 424 struct iwl_mvm_rxq_dup_data *dup_data; 425 u8 tid, sub_frame_idx; 426 427 if (WARN_ON(IS_ERR_OR_NULL(sta))) 428 return false; 429 430 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 431 dup_data = &mvm_sta->dup_data[queue]; 432 433 /* 434 * Drop duplicate 802.11 retransmissions 435 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 436 */ 437 if (ieee80211_is_ctl(hdr->frame_control) || 438 ieee80211_is_qos_nullfunc(hdr->frame_control) || 439 is_multicast_ether_addr(hdr->addr1)) { 440 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 441 return false; 442 } 443 444 if (ieee80211_is_data_qos(hdr->frame_control)) 445 /* frame has qos control */ 446 tid = ieee80211_get_tid(hdr); 447 else 448 tid = IWL_MAX_TID_COUNT; 449 450 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 451 sub_frame_idx = desc->amsdu_info & 452 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 453 454 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 455 dup_data->last_seq[tid] == hdr->seq_ctrl && 456 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 457 return true; 458 459 /* Allow same PN as the first subframe for following sub frames */ 460 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 461 sub_frame_idx > dup_data->last_sub_frame[tid] && 462 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 463 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 464 465 dup_data->last_seq[tid] = hdr->seq_ctrl; 466 dup_data->last_sub_frame[tid] = sub_frame_idx; 467 468 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 469 470 return false; 471 } 472 473 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask, 474 const u8 *data, u32 count, bool async) 475 { 476 u8 buf[sizeof(struct iwl_rxq_sync_cmd) + 477 sizeof(struct iwl_mvm_rss_sync_notif)]; 478 struct iwl_rxq_sync_cmd *cmd = (void *)buf; 479 u32 data_size = sizeof(*cmd) + count; 480 int ret; 481 482 /* 483 * size must be a multiple of DWORD 484 * Ensure we don't overflow buf 485 */ 486 if (WARN_ON(count & 3 || 487 count > sizeof(struct iwl_mvm_rss_sync_notif))) 488 return -EINVAL; 489 490 cmd->rxq_mask = cpu_to_le32(rxq_mask); 491 cmd->count = cpu_to_le32(count); 492 cmd->flags = 0; 493 memcpy(cmd->payload, data, count); 494 495 ret = iwl_mvm_send_cmd_pdu(mvm, 496 WIDE_ID(DATA_PATH_GROUP, 497 TRIGGER_RX_QUEUES_NOTIF_CMD), 498 async ? CMD_ASYNC : 0, data_size, cmd); 499 500 return ret; 501 } 502 503 /* 504 * Returns true if sn2 - buffer_size < sn1 < sn2. 505 * To be used only in order to compare reorder buffer head with NSSN. 506 * We fully trust NSSN unless it is behind us due to reorder timeout. 507 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 508 */ 509 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 510 { 511 return ieee80211_sn_less(sn1, sn2) && 512 !ieee80211_sn_less(sn1, sn2 - buffer_size); 513 } 514 515 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 516 { 517 if (IWL_MVM_USE_NSSN_SYNC) { 518 struct iwl_mvm_rss_sync_notif notif = { 519 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC, 520 .metadata.sync = 0, 521 .nssn_sync.baid = baid, 522 .nssn_sync.nssn = nssn, 523 }; 524 525 iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if, 526 sizeof(notif)); 527 } 528 } 529 530 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 531 532 enum iwl_mvm_release_flags { 533 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 534 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 535 }; 536 537 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 538 struct ieee80211_sta *sta, 539 struct napi_struct *napi, 540 struct iwl_mvm_baid_data *baid_data, 541 struct iwl_mvm_reorder_buffer *reorder_buf, 542 u16 nssn, u32 flags) 543 { 544 struct iwl_mvm_reorder_buf_entry *entries = 545 &baid_data->entries[reorder_buf->queue * 546 baid_data->entries_per_queue]; 547 u16 ssn = reorder_buf->head_sn; 548 549 lockdep_assert_held(&reorder_buf->lock); 550 551 /* 552 * We keep the NSSN not too far behind, if we are sync'ing it and it 553 * is more than 2048 ahead of us, it must be behind us. Discard it. 554 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 555 * behind and this queue already processed packets. The next if 556 * would have caught cases where this queue would have processed less 557 * than 64 packets, but it may have processed more than 64 packets. 558 */ 559 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 560 ieee80211_sn_less(nssn, ssn)) 561 goto set_timer; 562 563 /* ignore nssn smaller than head sn - this can happen due to timeout */ 564 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 565 goto set_timer; 566 567 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 568 int index = ssn % reorder_buf->buf_size; 569 struct sk_buff_head *skb_list = &entries[index].e.frames; 570 struct sk_buff *skb; 571 572 ssn = ieee80211_sn_inc(ssn); 573 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 574 (ssn == 2048 || ssn == 0)) 575 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 576 577 /* 578 * Empty the list. Will have more than one frame for A-MSDU. 579 * Empty list is valid as well since nssn indicates frames were 580 * received. 581 */ 582 while ((skb = __skb_dequeue(skb_list))) { 583 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 584 reorder_buf->queue, 585 sta, false); 586 reorder_buf->num_stored--; 587 } 588 } 589 reorder_buf->head_sn = nssn; 590 591 set_timer: 592 if (reorder_buf->num_stored && !reorder_buf->removed) { 593 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 594 595 while (skb_queue_empty(&entries[index].e.frames)) 596 index = (index + 1) % reorder_buf->buf_size; 597 /* modify timer to match next frame's expiration time */ 598 mod_timer(&reorder_buf->reorder_timer, 599 entries[index].e.reorder_time + 1 + 600 RX_REORDER_BUF_TIMEOUT_MQ); 601 } else { 602 del_timer(&reorder_buf->reorder_timer); 603 } 604 } 605 606 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 607 { 608 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 609 struct iwl_mvm_baid_data *baid_data = 610 iwl_mvm_baid_data_from_reorder_buf(buf); 611 struct iwl_mvm_reorder_buf_entry *entries = 612 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 613 int i; 614 u16 sn = 0, index = 0; 615 bool expired = false; 616 bool cont = false; 617 618 spin_lock(&buf->lock); 619 620 if (!buf->num_stored || buf->removed) { 621 spin_unlock(&buf->lock); 622 return; 623 } 624 625 for (i = 0; i < buf->buf_size ; i++) { 626 index = (buf->head_sn + i) % buf->buf_size; 627 628 if (skb_queue_empty(&entries[index].e.frames)) { 629 /* 630 * If there is a hole and the next frame didn't expire 631 * we want to break and not advance SN 632 */ 633 cont = false; 634 continue; 635 } 636 if (!cont && 637 !time_after(jiffies, entries[index].e.reorder_time + 638 RX_REORDER_BUF_TIMEOUT_MQ)) 639 break; 640 641 expired = true; 642 /* continue until next hole after this expired frames */ 643 cont = true; 644 sn = ieee80211_sn_add(buf->head_sn, i + 1); 645 } 646 647 if (expired) { 648 struct ieee80211_sta *sta; 649 struct iwl_mvm_sta *mvmsta; 650 u8 sta_id = baid_data->sta_id; 651 652 rcu_read_lock(); 653 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 654 mvmsta = iwl_mvm_sta_from_mac80211(sta); 655 656 /* SN is set to the last expired frame + 1 */ 657 IWL_DEBUG_HT(buf->mvm, 658 "Releasing expired frames for sta %u, sn %d\n", 659 sta_id, sn); 660 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 661 sta, baid_data->tid); 662 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 663 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 664 rcu_read_unlock(); 665 } else { 666 /* 667 * If no frame expired and there are stored frames, index is now 668 * pointing to the first unexpired frame - modify timer 669 * accordingly to this frame. 670 */ 671 mod_timer(&buf->reorder_timer, 672 entries[index].e.reorder_time + 673 1 + RX_REORDER_BUF_TIMEOUT_MQ); 674 } 675 spin_unlock(&buf->lock); 676 } 677 678 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 679 struct iwl_mvm_delba_data *data) 680 { 681 struct iwl_mvm_baid_data *ba_data; 682 struct ieee80211_sta *sta; 683 struct iwl_mvm_reorder_buffer *reorder_buf; 684 u8 baid = data->baid; 685 686 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 687 return; 688 689 rcu_read_lock(); 690 691 ba_data = rcu_dereference(mvm->baid_map[baid]); 692 if (WARN_ON_ONCE(!ba_data)) 693 goto out; 694 695 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 696 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 697 goto out; 698 699 reorder_buf = &ba_data->reorder_buf[queue]; 700 701 /* release all frames that are in the reorder buffer to the stack */ 702 spin_lock_bh(&reorder_buf->lock); 703 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 704 ieee80211_sn_add(reorder_buf->head_sn, 705 reorder_buf->buf_size), 706 0); 707 spin_unlock_bh(&reorder_buf->lock); 708 del_timer_sync(&reorder_buf->reorder_timer); 709 710 out: 711 rcu_read_unlock(); 712 } 713 714 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 715 struct napi_struct *napi, 716 u8 baid, u16 nssn, int queue, 717 u32 flags) 718 { 719 struct ieee80211_sta *sta; 720 struct iwl_mvm_reorder_buffer *reorder_buf; 721 struct iwl_mvm_baid_data *ba_data; 722 723 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 724 baid, nssn); 725 726 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 727 baid >= ARRAY_SIZE(mvm->baid_map))) 728 return; 729 730 rcu_read_lock(); 731 732 ba_data = rcu_dereference(mvm->baid_map[baid]); 733 if (WARN_ON_ONCE(!ba_data)) 734 goto out; 735 736 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 737 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 738 goto out; 739 740 reorder_buf = &ba_data->reorder_buf[queue]; 741 742 spin_lock_bh(&reorder_buf->lock); 743 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 744 reorder_buf, nssn, flags); 745 spin_unlock_bh(&reorder_buf->lock); 746 747 out: 748 rcu_read_unlock(); 749 } 750 751 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 752 struct napi_struct *napi, int queue, 753 const struct iwl_mvm_nssn_sync_data *data) 754 { 755 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 756 data->nssn, queue, 757 IWL_MVM_RELEASE_FROM_RSS_SYNC); 758 } 759 760 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 761 struct iwl_rx_cmd_buffer *rxb, int queue) 762 { 763 struct iwl_rx_packet *pkt = rxb_addr(rxb); 764 struct iwl_rxq_sync_notification *notif; 765 struct iwl_mvm_internal_rxq_notif *internal_notif; 766 767 notif = (void *)pkt->data; 768 internal_notif = (void *)notif->payload; 769 770 if (internal_notif->sync && 771 mvm->queue_sync_cookie != internal_notif->cookie) { 772 WARN_ONCE(1, "Received expired RX queue sync message\n"); 773 return; 774 } 775 776 switch (internal_notif->type) { 777 case IWL_MVM_RXQ_EMPTY: 778 break; 779 case IWL_MVM_RXQ_NOTIF_DEL_BA: 780 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 781 break; 782 case IWL_MVM_RXQ_NSSN_SYNC: 783 iwl_mvm_nssn_sync(mvm, napi, queue, 784 (void *)internal_notif->data); 785 break; 786 default: 787 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 788 } 789 790 if (internal_notif->sync && 791 !atomic_dec_return(&mvm->queue_sync_counter)) 792 wake_up(&mvm->rx_sync_waitq); 793 } 794 795 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 796 struct ieee80211_sta *sta, int tid, 797 struct iwl_mvm_reorder_buffer *buffer, 798 u32 reorder, u32 gp2, int queue) 799 { 800 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 801 802 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 803 /* we have a new (A-)MPDU ... */ 804 805 /* 806 * reset counter to 0 if we didn't have any oldsn in 807 * the last A-MPDU (as detected by GP2 being identical) 808 */ 809 if (!buffer->consec_oldsn_prev_drop) 810 buffer->consec_oldsn_drops = 0; 811 812 /* either way, update our tracking state */ 813 buffer->consec_oldsn_ampdu_gp2 = gp2; 814 } else if (buffer->consec_oldsn_prev_drop) { 815 /* 816 * tracking state didn't change, and we had an old SN 817 * indication before - do nothing in this case, we 818 * already noted this one down and are waiting for the 819 * next A-MPDU (by GP2) 820 */ 821 return; 822 } 823 824 /* return unless this MPDU has old SN */ 825 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 826 return; 827 828 /* update state */ 829 buffer->consec_oldsn_prev_drop = 1; 830 buffer->consec_oldsn_drops++; 831 832 /* if limit is reached, send del BA and reset state */ 833 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 834 IWL_WARN(mvm, 835 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 836 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 837 sta->addr, queue, tid); 838 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 839 buffer->consec_oldsn_prev_drop = 0; 840 buffer->consec_oldsn_drops = 0; 841 } 842 } 843 844 /* 845 * Returns true if the MPDU was buffered\dropped, false if it should be passed 846 * to upper layer. 847 */ 848 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 849 struct napi_struct *napi, 850 int queue, 851 struct ieee80211_sta *sta, 852 struct sk_buff *skb, 853 struct iwl_rx_mpdu_desc *desc) 854 { 855 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 856 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 857 struct iwl_mvm_sta *mvm_sta; 858 struct iwl_mvm_baid_data *baid_data; 859 struct iwl_mvm_reorder_buffer *buffer; 860 struct sk_buff *tail; 861 u32 reorder = le32_to_cpu(desc->reorder_data); 862 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 863 bool last_subframe = 864 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 865 u8 tid = ieee80211_get_tid(hdr); 866 u8 sub_frame_idx = desc->amsdu_info & 867 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 868 struct iwl_mvm_reorder_buf_entry *entries; 869 int index; 870 u16 nssn, sn; 871 u8 baid; 872 873 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 874 IWL_RX_MPDU_REORDER_BAID_SHIFT; 875 876 /* 877 * This also covers the case of receiving a Block Ack Request 878 * outside a BA session; we'll pass it to mac80211 and that 879 * then sends a delBA action frame. 880 * This also covers pure monitor mode, in which case we won't 881 * have any BA sessions. 882 */ 883 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 884 return false; 885 886 /* no sta yet */ 887 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 888 "Got valid BAID without a valid station assigned\n")) 889 return false; 890 891 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 892 893 /* not a data packet or a bar */ 894 if (!ieee80211_is_back_req(hdr->frame_control) && 895 (!ieee80211_is_data_qos(hdr->frame_control) || 896 is_multicast_ether_addr(hdr->addr1))) 897 return false; 898 899 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 900 return false; 901 902 baid_data = rcu_dereference(mvm->baid_map[baid]); 903 if (!baid_data) { 904 IWL_DEBUG_RX(mvm, 905 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 906 baid, reorder); 907 return false; 908 } 909 910 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 911 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 912 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 913 tid)) 914 return false; 915 916 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 917 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 918 IWL_RX_MPDU_REORDER_SN_SHIFT; 919 920 buffer = &baid_data->reorder_buf[queue]; 921 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 922 923 spin_lock_bh(&buffer->lock); 924 925 if (!buffer->valid) { 926 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 927 spin_unlock_bh(&buffer->lock); 928 return false; 929 } 930 buffer->valid = true; 931 } 932 933 if (ieee80211_is_back_req(hdr->frame_control)) { 934 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 935 buffer, nssn, 0); 936 goto drop; 937 } 938 939 /* 940 * If there was a significant jump in the nssn - adjust. 941 * If the SN is smaller than the NSSN it might need to first go into 942 * the reorder buffer, in which case we just release up to it and the 943 * rest of the function will take care of storing it and releasing up to 944 * the nssn. 945 * This should not happen. This queue has been lagging and it should 946 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 947 * and update the other queues. 948 */ 949 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 950 buffer->buf_size) || 951 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 952 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 953 954 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 955 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 956 } 957 958 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 959 rx_status->device_timestamp, queue); 960 961 /* drop any oudated packets */ 962 if (ieee80211_sn_less(sn, buffer->head_sn)) 963 goto drop; 964 965 /* release immediately if allowed by nssn and no stored frames */ 966 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 967 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 968 buffer->buf_size) && 969 (!amsdu || last_subframe)) { 970 /* 971 * If we crossed the 2048 or 0 SN, notify all the 972 * queues. This is done in order to avoid having a 973 * head_sn that lags behind for too long. When that 974 * happens, we can get to a situation where the head_sn 975 * is within the interval [nssn - buf_size : nssn] 976 * which will make us think that the nssn is a packet 977 * that we already freed because of the reordering 978 * buffer and we will ignore it. So maintain the 979 * head_sn somewhat updated across all the queues: 980 * when it crosses 0 and 2048. 981 */ 982 if (sn == 2048 || sn == 0) 983 iwl_mvm_sync_nssn(mvm, baid, sn); 984 buffer->head_sn = nssn; 985 } 986 /* No need to update AMSDU last SN - we are moving the head */ 987 spin_unlock_bh(&buffer->lock); 988 return false; 989 } 990 991 /* 992 * release immediately if there are no stored frames, and the sn is 993 * equal to the head. 994 * This can happen due to reorder timer, where NSSN is behind head_sn. 995 * When we released everything, and we got the next frame in the 996 * sequence, according to the NSSN we can't release immediately, 997 * while technically there is no hole and we can move forward. 998 */ 999 if (!buffer->num_stored && sn == buffer->head_sn) { 1000 if (!amsdu || last_subframe) { 1001 if (sn == 2048 || sn == 0) 1002 iwl_mvm_sync_nssn(mvm, baid, sn); 1003 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1004 } 1005 /* No need to update AMSDU last SN - we are moving the head */ 1006 spin_unlock_bh(&buffer->lock); 1007 return false; 1008 } 1009 1010 index = sn % buffer->buf_size; 1011 1012 /* 1013 * Check if we already stored this frame 1014 * As AMSDU is either received or not as whole, logic is simple: 1015 * If we have frames in that position in the buffer and the last frame 1016 * originated from AMSDU had a different SN then it is a retransmission. 1017 * If it is the same SN then if the subframe index is incrementing it 1018 * is the same AMSDU - otherwise it is a retransmission. 1019 */ 1020 tail = skb_peek_tail(&entries[index].e.frames); 1021 if (tail && !amsdu) 1022 goto drop; 1023 else if (tail && (sn != buffer->last_amsdu || 1024 buffer->last_sub_index >= sub_frame_idx)) 1025 goto drop; 1026 1027 /* put in reorder buffer */ 1028 __skb_queue_tail(&entries[index].e.frames, skb); 1029 buffer->num_stored++; 1030 entries[index].e.reorder_time = jiffies; 1031 1032 if (amsdu) { 1033 buffer->last_amsdu = sn; 1034 buffer->last_sub_index = sub_frame_idx; 1035 } 1036 1037 /* 1038 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1039 * The reason is that NSSN advances on the first sub-frame, and may 1040 * cause the reorder buffer to advance before all the sub-frames arrive. 1041 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1042 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1043 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1044 * already ahead and it will be dropped. 1045 * If the last sub-frame is not on this queue - we will get frame 1046 * release notification with up to date NSSN. 1047 */ 1048 if (!amsdu || last_subframe) 1049 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1050 buffer, nssn, 1051 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1052 1053 spin_unlock_bh(&buffer->lock); 1054 return true; 1055 1056 drop: 1057 kfree_skb(skb); 1058 spin_unlock_bh(&buffer->lock); 1059 return true; 1060 } 1061 1062 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1063 u32 reorder_data, u8 baid) 1064 { 1065 unsigned long now = jiffies; 1066 unsigned long timeout; 1067 struct iwl_mvm_baid_data *data; 1068 1069 rcu_read_lock(); 1070 1071 data = rcu_dereference(mvm->baid_map[baid]); 1072 if (!data) { 1073 IWL_DEBUG_RX(mvm, 1074 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1075 baid, reorder_data); 1076 goto out; 1077 } 1078 1079 if (!data->timeout) 1080 goto out; 1081 1082 timeout = data->timeout; 1083 /* 1084 * Do not update last rx all the time to avoid cache bouncing 1085 * between the rx queues. 1086 * Update it every timeout. Worst case is the session will 1087 * expire after ~ 2 * timeout, which doesn't matter that much. 1088 */ 1089 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1090 /* Update is atomic */ 1091 data->last_rx = now; 1092 1093 out: 1094 rcu_read_unlock(); 1095 } 1096 1097 static void iwl_mvm_flip_address(u8 *addr) 1098 { 1099 int i; 1100 u8 mac_addr[ETH_ALEN]; 1101 1102 for (i = 0; i < ETH_ALEN; i++) 1103 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1104 ether_addr_copy(addr, mac_addr); 1105 } 1106 1107 struct iwl_mvm_rx_phy_data { 1108 enum iwl_rx_phy_info_type info_type; 1109 __le32 d0, d1, d2, d3; 1110 __le16 d4; 1111 }; 1112 1113 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1114 struct iwl_mvm_rx_phy_data *phy_data, 1115 u32 rate_n_flags, 1116 struct ieee80211_radiotap_he_mu *he_mu) 1117 { 1118 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1119 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1120 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1121 1122 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1123 he_mu->flags1 |= 1124 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1125 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1126 1127 he_mu->flags1 |= 1128 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1129 phy_data4), 1130 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1131 1132 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1133 phy_data2); 1134 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1135 phy_data3); 1136 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1137 phy_data2); 1138 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1139 phy_data3); 1140 } 1141 1142 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1143 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { 1144 he_mu->flags1 |= 1145 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1146 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1147 1148 he_mu->flags2 |= 1149 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1150 phy_data4), 1151 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1152 1153 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1154 phy_data2); 1155 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1156 phy_data3); 1157 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1158 phy_data2); 1159 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1160 phy_data3); 1161 } 1162 } 1163 1164 static void 1165 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1166 u32 rate_n_flags, 1167 struct ieee80211_radiotap_he *he, 1168 struct ieee80211_radiotap_he_mu *he_mu, 1169 struct ieee80211_rx_status *rx_status) 1170 { 1171 /* 1172 * Unfortunately, we have to leave the mac80211 data 1173 * incorrect for the case that we receive an HE-MU 1174 * transmission and *don't* have the HE phy data (due 1175 * to the bits being used for TSF). This shouldn't 1176 * happen though as management frames where we need 1177 * the TSF/timers are not be transmitted in HE-MU. 1178 */ 1179 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1180 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1181 u8 offs = 0; 1182 1183 rx_status->bw = RATE_INFO_BW_HE_RU; 1184 1185 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1186 1187 switch (ru) { 1188 case 0 ... 36: 1189 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1190 offs = ru; 1191 break; 1192 case 37 ... 52: 1193 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1194 offs = ru - 37; 1195 break; 1196 case 53 ... 60: 1197 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1198 offs = ru - 53; 1199 break; 1200 case 61 ... 64: 1201 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1202 offs = ru - 61; 1203 break; 1204 case 65 ... 66: 1205 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1206 offs = ru - 65; 1207 break; 1208 case 67: 1209 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1210 break; 1211 case 68: 1212 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1213 break; 1214 } 1215 he->data2 |= le16_encode_bits(offs, 1216 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1217 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1218 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1219 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1220 he->data2 |= 1221 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1222 1223 #define CHECK_BW(bw) \ 1224 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1225 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1226 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1227 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1228 CHECK_BW(20); 1229 CHECK_BW(40); 1230 CHECK_BW(80); 1231 CHECK_BW(160); 1232 1233 if (he_mu) 1234 he_mu->flags2 |= 1235 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1236 rate_n_flags), 1237 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1238 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 1239 he->data6 |= 1240 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1241 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1242 rate_n_flags), 1243 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1244 } 1245 1246 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1247 struct iwl_mvm_rx_phy_data *phy_data, 1248 struct ieee80211_radiotap_he *he, 1249 struct ieee80211_radiotap_he_mu *he_mu, 1250 struct ieee80211_rx_status *rx_status, 1251 u32 rate_n_flags, int queue) 1252 { 1253 switch (phy_data->info_type) { 1254 case IWL_RX_PHY_INFO_TYPE_NONE: 1255 case IWL_RX_PHY_INFO_TYPE_CCK: 1256 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1257 case IWL_RX_PHY_INFO_TYPE_HT: 1258 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1259 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1260 return; 1261 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1262 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1263 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1264 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1265 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1266 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1267 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1268 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1269 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1270 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1271 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1272 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1273 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1274 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1275 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1276 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1277 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1278 /* fall through */ 1279 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1280 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1281 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1282 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1283 /* HE common */ 1284 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1285 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1286 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1287 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1288 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1289 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1290 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1291 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1292 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1293 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1294 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1295 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1296 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1297 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1298 IWL_RX_PHY_DATA0_HE_UPLINK), 1299 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1300 } 1301 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1302 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1303 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1304 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1305 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1306 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1307 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1308 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1309 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1310 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1311 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1312 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1313 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1314 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1315 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1316 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1317 IWL_RX_PHY_DATA0_HE_DOPPLER), 1318 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1319 break; 1320 } 1321 1322 switch (phy_data->info_type) { 1323 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1324 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1325 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1326 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1327 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1328 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1329 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1330 break; 1331 default: 1332 /* nothing here */ 1333 break; 1334 } 1335 1336 switch (phy_data->info_type) { 1337 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1338 he_mu->flags1 |= 1339 le16_encode_bits(le16_get_bits(phy_data->d4, 1340 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1341 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1342 he_mu->flags1 |= 1343 le16_encode_bits(le16_get_bits(phy_data->d4, 1344 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1345 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1346 he_mu->flags2 |= 1347 le16_encode_bits(le16_get_bits(phy_data->d4, 1348 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1349 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1350 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1351 /* fall through */ 1352 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1353 he_mu->flags2 |= 1354 le16_encode_bits(le32_get_bits(phy_data->d1, 1355 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1356 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1357 he_mu->flags2 |= 1358 le16_encode_bits(le32_get_bits(phy_data->d1, 1359 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1360 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1361 /* fall through */ 1362 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1363 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1364 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1365 he, he_mu, rx_status); 1366 break; 1367 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1368 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1369 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1370 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1371 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1372 break; 1373 default: 1374 /* nothing */ 1375 break; 1376 } 1377 } 1378 1379 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1380 struct iwl_mvm_rx_phy_data *phy_data, 1381 u32 rate_n_flags, u16 phy_info, int queue) 1382 { 1383 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1384 struct ieee80211_radiotap_he *he = NULL; 1385 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1386 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1387 u8 stbc, ltf; 1388 static const struct ieee80211_radiotap_he known = { 1389 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1390 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1391 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1392 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1393 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1394 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1395 }; 1396 static const struct ieee80211_radiotap_he_mu mu_known = { 1397 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1398 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1399 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1400 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1401 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1402 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1403 }; 1404 1405 he = skb_put_data(skb, &known, sizeof(known)); 1406 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1407 1408 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1409 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1410 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1411 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1412 } 1413 1414 /* report the AMPDU-EOF bit on single frames */ 1415 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1416 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1417 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1418 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1419 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1420 } 1421 1422 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1423 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1424 rate_n_flags, queue); 1425 1426 /* update aggregation data for monitor sake on default queue */ 1427 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1428 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1429 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1430 1431 /* toggle is switched whenever new aggregation starts */ 1432 if (toggle_bit != mvm->ampdu_toggle) { 1433 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1434 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1435 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1436 } 1437 } 1438 1439 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1440 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1441 rx_status->bw = RATE_INFO_BW_HE_RU; 1442 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1443 } 1444 1445 /* actually data is filled in mac80211 */ 1446 if (he_type == RATE_MCS_HE_TYPE_SU || 1447 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1448 he->data1 |= 1449 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1450 1451 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1452 rx_status->nss = 1453 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1454 RATE_VHT_MCS_NSS_POS) + 1; 1455 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1456 rx_status->encoding = RX_ENC_HE; 1457 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1458 if (rate_n_flags & RATE_MCS_BF_MSK) 1459 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1460 1461 rx_status->he_dcm = 1462 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1463 1464 #define CHECK_TYPE(F) \ 1465 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1466 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1467 1468 CHECK_TYPE(SU); 1469 CHECK_TYPE(EXT_SU); 1470 CHECK_TYPE(MU); 1471 CHECK_TYPE(TRIG); 1472 1473 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1474 1475 if (rate_n_flags & RATE_MCS_BF_MSK) 1476 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1477 1478 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1479 RATE_MCS_HE_GI_LTF_POS) { 1480 case 0: 1481 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1482 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1483 else 1484 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1485 if (he_type == RATE_MCS_HE_TYPE_MU) 1486 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1487 else 1488 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1489 break; 1490 case 1: 1491 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1492 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1493 else 1494 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1495 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1496 break; 1497 case 2: 1498 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1499 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1500 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1501 } else { 1502 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1503 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1504 } 1505 break; 1506 case 3: 1507 if ((he_type == RATE_MCS_HE_TYPE_SU || 1508 he_type == RATE_MCS_HE_TYPE_EXT_SU) && 1509 rate_n_flags & RATE_MCS_SGI_MSK) 1510 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1511 else 1512 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1513 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1514 break; 1515 } 1516 1517 he->data5 |= le16_encode_bits(ltf, 1518 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1519 } 1520 1521 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1522 struct iwl_mvm_rx_phy_data *phy_data) 1523 { 1524 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1525 struct ieee80211_radiotap_lsig *lsig; 1526 1527 switch (phy_data->info_type) { 1528 case IWL_RX_PHY_INFO_TYPE_HT: 1529 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1530 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1531 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1532 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1533 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1534 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1535 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1536 lsig = skb_put(skb, sizeof(*lsig)); 1537 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1538 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1539 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1540 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1541 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1542 break; 1543 default: 1544 break; 1545 } 1546 } 1547 1548 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1549 { 1550 switch (phy_band) { 1551 case PHY_BAND_24: 1552 return NL80211_BAND_2GHZ; 1553 case PHY_BAND_5: 1554 return NL80211_BAND_5GHZ; 1555 default: 1556 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1557 return NL80211_BAND_5GHZ; 1558 } 1559 } 1560 1561 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1562 struct iwl_rx_cmd_buffer *rxb, int queue) 1563 { 1564 struct ieee80211_rx_status *rx_status; 1565 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1566 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1567 struct ieee80211_hdr *hdr; 1568 u32 len = le16_to_cpu(desc->mpdu_len); 1569 u32 rate_n_flags, gp2_on_air_rise; 1570 u16 phy_info = le16_to_cpu(desc->phy_info); 1571 struct ieee80211_sta *sta = NULL; 1572 struct sk_buff *skb; 1573 u8 crypt_len = 0, channel, energy_a, energy_b; 1574 size_t desc_size; 1575 struct iwl_mvm_rx_phy_data phy_data = { 1576 .d4 = desc->phy_data4, 1577 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1578 }; 1579 bool csi = false; 1580 1581 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1582 return; 1583 1584 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1585 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1586 channel = desc->v3.channel; 1587 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1588 energy_a = desc->v3.energy_a; 1589 energy_b = desc->v3.energy_b; 1590 desc_size = sizeof(*desc); 1591 1592 phy_data.d0 = desc->v3.phy_data0; 1593 phy_data.d1 = desc->v3.phy_data1; 1594 phy_data.d2 = desc->v3.phy_data2; 1595 phy_data.d3 = desc->v3.phy_data3; 1596 } else { 1597 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1598 channel = desc->v1.channel; 1599 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1600 energy_a = desc->v1.energy_a; 1601 energy_b = desc->v1.energy_b; 1602 desc_size = IWL_RX_DESC_SIZE_V1; 1603 1604 phy_data.d0 = desc->v1.phy_data0; 1605 phy_data.d1 = desc->v1.phy_data1; 1606 phy_data.d2 = desc->v1.phy_data2; 1607 phy_data.d3 = desc->v1.phy_data3; 1608 } 1609 1610 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1611 phy_data.info_type = 1612 le32_get_bits(phy_data.d1, 1613 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1614 1615 hdr = (void *)(pkt->data + desc_size); 1616 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1617 * ieee80211_hdr pulled. 1618 */ 1619 skb = alloc_skb(128, GFP_ATOMIC); 1620 if (!skb) { 1621 IWL_ERR(mvm, "alloc_skb failed\n"); 1622 return; 1623 } 1624 1625 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1626 /* 1627 * If the device inserted padding it means that (it thought) 1628 * the 802.11 header wasn't a multiple of 4 bytes long. In 1629 * this case, reserve two bytes at the start of the SKB to 1630 * align the payload properly in case we end up copying it. 1631 */ 1632 skb_reserve(skb, 2); 1633 } 1634 1635 rx_status = IEEE80211_SKB_RXCB(skb); 1636 1637 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1638 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1639 case RATE_MCS_CHAN_WIDTH_20: 1640 break; 1641 case RATE_MCS_CHAN_WIDTH_40: 1642 rx_status->bw = RATE_INFO_BW_40; 1643 break; 1644 case RATE_MCS_CHAN_WIDTH_80: 1645 rx_status->bw = RATE_INFO_BW_80; 1646 break; 1647 case RATE_MCS_CHAN_WIDTH_160: 1648 rx_status->bw = RATE_INFO_BW_160; 1649 break; 1650 } 1651 1652 if (rate_n_flags & RATE_MCS_HE_MSK) 1653 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1654 phy_info, queue); 1655 1656 iwl_mvm_decode_lsig(skb, &phy_data); 1657 1658 rx_status = IEEE80211_SKB_RXCB(skb); 1659 1660 if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc, 1661 le32_to_cpu(pkt->len_n_flags), queue, 1662 &crypt_len)) { 1663 kfree_skb(skb); 1664 return; 1665 } 1666 1667 /* 1668 * Keep packets with CRC errors (and with overrun) for monitor mode 1669 * (otherwise the firmware discards them) but mark them as bad. 1670 */ 1671 if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) || 1672 !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1673 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1674 le16_to_cpu(desc->status)); 1675 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1676 } 1677 /* set the preamble flag if appropriate */ 1678 if (rate_n_flags & RATE_MCS_CCK_MSK && 1679 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1680 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1681 1682 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1683 u64 tsf_on_air_rise; 1684 1685 if (mvm->trans->trans_cfg->device_family >= 1686 IWL_DEVICE_FAMILY_AX210) 1687 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1688 else 1689 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1690 1691 rx_status->mactime = tsf_on_air_rise; 1692 /* TSF as indicated by the firmware is at INA time */ 1693 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1694 } 1695 1696 rx_status->device_timestamp = gp2_on_air_rise; 1697 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1698 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1699 1700 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1701 } else { 1702 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1703 NL80211_BAND_2GHZ; 1704 } 1705 rx_status->freq = ieee80211_channel_to_frequency(channel, 1706 rx_status->band); 1707 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1708 energy_b); 1709 1710 /* update aggregation data for monitor sake on default queue */ 1711 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1712 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1713 1714 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1715 /* 1716 * Toggle is switched whenever new aggregation starts. Make 1717 * sure ampdu_reference is never 0 so we can later use it to 1718 * see if the frame was really part of an A-MPDU or not. 1719 */ 1720 if (toggle_bit != mvm->ampdu_toggle) { 1721 mvm->ampdu_ref++; 1722 if (mvm->ampdu_ref == 0) 1723 mvm->ampdu_ref++; 1724 mvm->ampdu_toggle = toggle_bit; 1725 } 1726 rx_status->ampdu_reference = mvm->ampdu_ref; 1727 } 1728 1729 if (unlikely(mvm->monitor_on)) 1730 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1731 1732 rcu_read_lock(); 1733 1734 if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1735 u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK; 1736 1737 if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) { 1738 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1739 if (IS_ERR(sta)) 1740 sta = NULL; 1741 } 1742 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1743 /* 1744 * This is fine since we prevent two stations with the same 1745 * address from being added. 1746 */ 1747 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1748 } 1749 1750 if (sta) { 1751 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1752 struct ieee80211_vif *tx_blocked_vif = 1753 rcu_dereference(mvm->csa_tx_blocked_vif); 1754 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1755 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1756 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1757 struct iwl_fw_dbg_trigger_tlv *trig; 1758 struct ieee80211_vif *vif = mvmsta->vif; 1759 1760 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1761 !is_multicast_ether_addr(hdr->addr1) && 1762 ieee80211_is_data(hdr->frame_control) && 1763 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1764 schedule_delayed_work(&mvm->tcm.work, 0); 1765 1766 /* 1767 * We have tx blocked stations (with CS bit). If we heard 1768 * frames from a blocked station on a new channel we can 1769 * TX to it again. 1770 */ 1771 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1772 struct iwl_mvm_vif *mvmvif = 1773 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1774 1775 if (mvmvif->csa_target_freq == rx_status->freq) 1776 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1777 false); 1778 } 1779 1780 rs_update_last_rssi(mvm, mvmsta, rx_status); 1781 1782 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1783 ieee80211_vif_to_wdev(vif), 1784 FW_DBG_TRIGGER_RSSI); 1785 1786 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1787 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1788 s32 rssi; 1789 1790 rssi_trig = (void *)trig->data; 1791 rssi = le32_to_cpu(rssi_trig->rssi); 1792 1793 if (rx_status->signal < rssi) 1794 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1795 NULL); 1796 } 1797 1798 if (ieee80211_is_data(hdr->frame_control)) 1799 iwl_mvm_rx_csum(sta, skb, desc); 1800 1801 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1802 kfree_skb(skb); 1803 goto out; 1804 } 1805 1806 /* 1807 * Our hardware de-aggregates AMSDUs but copies the mac header 1808 * as it to the de-aggregated MPDUs. We need to turn off the 1809 * AMSDU bit in the QoS control ourselves. 1810 * In addition, HW reverses addr3 and addr4 - reverse it back. 1811 */ 1812 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1813 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1814 u8 *qc = ieee80211_get_qos_ctl(hdr); 1815 1816 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1817 1818 if (mvm->trans->trans_cfg->device_family == 1819 IWL_DEVICE_FAMILY_9000) { 1820 iwl_mvm_flip_address(hdr->addr3); 1821 1822 if (ieee80211_has_a4(hdr->frame_control)) 1823 iwl_mvm_flip_address(hdr->addr4); 1824 } 1825 } 1826 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1827 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1828 1829 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1830 } 1831 } 1832 1833 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1834 rate_n_flags & RATE_MCS_SGI_MSK) 1835 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1836 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1837 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1838 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1839 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1840 if (rate_n_flags & RATE_MCS_HT_MSK) { 1841 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1842 RATE_MCS_STBC_POS; 1843 rx_status->encoding = RX_ENC_HT; 1844 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1845 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1846 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 1847 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1848 RATE_MCS_STBC_POS; 1849 rx_status->nss = 1850 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1851 RATE_VHT_MCS_NSS_POS) + 1; 1852 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1853 rx_status->encoding = RX_ENC_VHT; 1854 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1855 if (rate_n_flags & RATE_MCS_BF_MSK) 1856 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1857 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) { 1858 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 1859 rx_status->band); 1860 1861 if (WARN(rate < 0 || rate > 0xFF, 1862 "Invalid rate flags 0x%x, band %d,\n", 1863 rate_n_flags, rx_status->band)) { 1864 kfree_skb(skb); 1865 goto out; 1866 } 1867 rx_status->rate_idx = rate; 1868 } 1869 1870 /* management stuff on default queue */ 1871 if (!queue) { 1872 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 1873 ieee80211_is_probe_resp(hdr->frame_control)) && 1874 mvm->sched_scan_pass_all == 1875 SCHED_SCAN_PASS_ALL_ENABLED)) 1876 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 1877 1878 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 1879 ieee80211_is_probe_resp(hdr->frame_control))) 1880 rx_status->boottime_ns = ktime_get_boottime_ns(); 1881 } 1882 1883 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 1884 kfree_skb(skb); 1885 goto out; 1886 } 1887 1888 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 1889 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 1890 sta, csi); 1891 out: 1892 rcu_read_unlock(); 1893 } 1894 1895 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 1896 struct iwl_rx_cmd_buffer *rxb, int queue) 1897 { 1898 struct ieee80211_rx_status *rx_status; 1899 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1900 struct iwl_rx_no_data *desc = (void *)pkt->data; 1901 u32 rate_n_flags = le32_to_cpu(desc->rate); 1902 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 1903 u32 rssi = le32_to_cpu(desc->rssi); 1904 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 1905 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 1906 struct ieee80211_sta *sta = NULL; 1907 struct sk_buff *skb; 1908 u8 channel, energy_a, energy_b; 1909 struct iwl_mvm_rx_phy_data phy_data = { 1910 .d0 = desc->phy_info[0], 1911 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1912 }; 1913 1914 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1915 return; 1916 1917 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 1918 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 1919 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 1920 1921 phy_data.info_type = 1922 le32_get_bits(desc->phy_info[1], 1923 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1924 1925 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1926 * ieee80211_hdr pulled. 1927 */ 1928 skb = alloc_skb(128, GFP_ATOMIC); 1929 if (!skb) { 1930 IWL_ERR(mvm, "alloc_skb failed\n"); 1931 return; 1932 } 1933 1934 rx_status = IEEE80211_SKB_RXCB(skb); 1935 1936 /* 0-length PSDU */ 1937 rx_status->flag |= RX_FLAG_NO_PSDU; 1938 1939 switch (info_type) { 1940 case RX_NO_DATA_INFO_TYPE_NDP: 1941 rx_status->zero_length_psdu_type = 1942 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 1943 break; 1944 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 1945 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 1946 rx_status->zero_length_psdu_type = 1947 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 1948 break; 1949 default: 1950 rx_status->zero_length_psdu_type = 1951 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 1952 break; 1953 } 1954 1955 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1956 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1957 case RATE_MCS_CHAN_WIDTH_20: 1958 break; 1959 case RATE_MCS_CHAN_WIDTH_40: 1960 rx_status->bw = RATE_INFO_BW_40; 1961 break; 1962 case RATE_MCS_CHAN_WIDTH_80: 1963 rx_status->bw = RATE_INFO_BW_80; 1964 break; 1965 case RATE_MCS_CHAN_WIDTH_160: 1966 rx_status->bw = RATE_INFO_BW_160; 1967 break; 1968 } 1969 1970 if (rate_n_flags & RATE_MCS_HE_MSK) 1971 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1972 phy_info, queue); 1973 1974 iwl_mvm_decode_lsig(skb, &phy_data); 1975 1976 rx_status->device_timestamp = gp2_on_air_rise; 1977 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1978 NL80211_BAND_2GHZ; 1979 rx_status->freq = ieee80211_channel_to_frequency(channel, 1980 rx_status->band); 1981 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1982 energy_b); 1983 1984 rcu_read_lock(); 1985 1986 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1987 rate_n_flags & RATE_MCS_SGI_MSK) 1988 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1989 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1990 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1991 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1992 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1993 if (rate_n_flags & RATE_MCS_HT_MSK) { 1994 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1995 RATE_MCS_STBC_POS; 1996 rx_status->encoding = RX_ENC_HT; 1997 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1998 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1999 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 2000 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2001 RATE_MCS_STBC_POS; 2002 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 2003 rx_status->encoding = RX_ENC_VHT; 2004 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2005 if (rate_n_flags & RATE_MCS_BF_MSK) 2006 rx_status->enc_flags |= RX_ENC_FLAG_BF; 2007 /* 2008 * take the nss from the rx_vec since the rate_n_flags has 2009 * only 2 bits for the nss which gives a max of 4 ss but 2010 * there may be up to 8 spatial streams 2011 */ 2012 rx_status->nss = 2013 le32_get_bits(desc->rx_vec[0], 2014 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2015 } else if (rate_n_flags & RATE_MCS_HE_MSK) { 2016 rx_status->nss = 2017 le32_get_bits(desc->rx_vec[0], 2018 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2019 } else { 2020 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 2021 rx_status->band); 2022 2023 if (WARN(rate < 0 || rate > 0xFF, 2024 "Invalid rate flags 0x%x, band %d,\n", 2025 rate_n_flags, rx_status->band)) { 2026 kfree_skb(skb); 2027 goto out; 2028 } 2029 rx_status->rate_idx = rate; 2030 } 2031 2032 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2033 out: 2034 rcu_read_unlock(); 2035 } 2036 2037 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2038 struct iwl_rx_cmd_buffer *rxb, int queue) 2039 { 2040 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2041 struct iwl_frame_release *release = (void *)pkt->data; 2042 2043 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2044 le16_to_cpu(release->nssn), 2045 queue, 0); 2046 } 2047 2048 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2049 struct iwl_rx_cmd_buffer *rxb, int queue) 2050 { 2051 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2052 struct iwl_bar_frame_release *release = (void *)pkt->data; 2053 unsigned int baid = le32_get_bits(release->ba_info, 2054 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2055 unsigned int nssn = le32_get_bits(release->ba_info, 2056 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2057 unsigned int sta_id = le32_get_bits(release->sta_tid, 2058 IWL_BAR_FRAME_RELEASE_STA_MASK); 2059 unsigned int tid = le32_get_bits(release->sta_tid, 2060 IWL_BAR_FRAME_RELEASE_TID_MASK); 2061 struct iwl_mvm_baid_data *baid_data; 2062 2063 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2064 baid >= ARRAY_SIZE(mvm->baid_map))) 2065 return; 2066 2067 rcu_read_lock(); 2068 baid_data = rcu_dereference(mvm->baid_map[baid]); 2069 if (!baid_data) { 2070 IWL_DEBUG_RX(mvm, 2071 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2072 baid); 2073 goto out; 2074 } 2075 2076 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2077 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2078 baid, baid_data->sta_id, baid_data->tid, sta_id, 2079 tid)) 2080 goto out; 2081 2082 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2083 out: 2084 rcu_read_unlock(); 2085 } 2086