1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 #include "time-sync.h" 13 14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 15 int queue, struct ieee80211_sta *sta) 16 { 17 struct iwl_mvm_sta *mvmsta; 18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 20 struct iwl_mvm_key_pn *ptk_pn; 21 int res; 22 u8 tid, keyidx; 23 u8 pn[IEEE80211_CCMP_PN_LEN]; 24 u8 *extiv; 25 26 /* do PN checking */ 27 28 /* multicast and non-data only arrives on default queue */ 29 if (!ieee80211_is_data(hdr->frame_control) || 30 is_multicast_ether_addr(hdr->addr1)) 31 return 0; 32 33 /* do not check PN for open AP */ 34 if (!(stats->flag & RX_FLAG_DECRYPTED)) 35 return 0; 36 37 /* 38 * avoid checking for default queue - we don't want to replicate 39 * all the logic that's necessary for checking the PN on fragmented 40 * frames, leave that to mac80211 41 */ 42 if (queue == 0) 43 return 0; 44 45 /* if we are here - this for sure is either CCMP or GCMP */ 46 if (IS_ERR_OR_NULL(sta)) { 47 IWL_DEBUG_DROP(mvm, 48 "expected hw-decrypted unicast frame for station\n"); 49 return -1; 50 } 51 52 mvmsta = iwl_mvm_sta_from_mac80211(sta); 53 54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 55 keyidx = extiv[3] >> 6; 56 57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 58 if (!ptk_pn) 59 return -1; 60 61 if (ieee80211_is_data_qos(hdr->frame_control)) 62 tid = ieee80211_get_tid(hdr); 63 else 64 tid = 0; 65 66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 67 if (tid >= IWL_MAX_TID_COUNT) 68 return -1; 69 70 /* load pn */ 71 pn[0] = extiv[7]; 72 pn[1] = extiv[6]; 73 pn[2] = extiv[5]; 74 pn[3] = extiv[4]; 75 pn[4] = extiv[1]; 76 pn[5] = extiv[0]; 77 78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 79 if (res < 0) 80 return -1; 81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 82 return -1; 83 84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 85 stats->flag |= RX_FLAG_PN_VALIDATED; 86 87 return 0; 88 } 89 90 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 93 struct iwl_rx_cmd_buffer *rxb) 94 { 95 struct iwl_rx_packet *pkt = rxb_addr(rxb); 96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 97 unsigned int headlen, fraglen, pad_len = 0; 98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 101 102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 103 len -= 2; 104 pad_len = 2; 105 } 106 107 /* 108 * For non monitor interface strip the bytes the RADA might not have 109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor 110 * interface cannot exist with other interfaces, this removal is safe 111 * and sufficient, in monitor mode there's no decryption being done. 112 */ 113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) 114 len -= mic_crc_len; 115 116 /* If frame is small enough to fit in skb->head, pull it completely. 117 * If not, only pull ieee80211_hdr (including crypto if present, and 118 * an additional 8 bytes for SNAP/ethertype, see below) so that 119 * splice() or TCP coalesce are more efficient. 120 * 121 * Since, in addition, ieee80211_data_to_8023() always pull in at 122 * least 8 bytes (possibly more for mesh) we can do the same here 123 * to save the cost of doing it later. That still doesn't pull in 124 * the actual IP header since the typical case has a SNAP header. 125 * If the latter changes (there are efforts in the standards group 126 * to do so) we should revisit this and ieee80211_data_to_8023(). 127 */ 128 headlen = (len <= skb_tailroom(skb)) ? len : 129 hdrlen + crypt_len + 8; 130 131 /* The firmware may align the packet to DWORD. 132 * The padding is inserted after the IV. 133 * After copying the header + IV skip the padding if 134 * present before copying packet data. 135 */ 136 hdrlen += crypt_len; 137 138 if (unlikely(headlen < hdrlen)) 139 return -EINVAL; 140 141 /* Since data doesn't move data while putting data on skb and that is 142 * the only way we use, data + len is the next place that hdr would be put 143 */ 144 skb_set_mac_header(skb, skb->len); 145 skb_put_data(skb, hdr, hdrlen); 146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 147 148 /* 149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 150 * certain cases and starts the checksum after the SNAP. Check if 151 * this is the case - it's easier to just bail out to CHECKSUM_NONE 152 * in the cases the hardware didn't handle, since it's rare to see 153 * such packets, even though the hardware did calculate the checksum 154 * in this case, just starting after the MAC header instead. 155 * 156 * Starting from Bz hardware, it calculates starting directly after 157 * the MAC header, so that matches mac80211's expectation. 158 */ 159 if (skb->ip_summed == CHECKSUM_COMPLETE) { 160 struct { 161 u8 hdr[6]; 162 __be16 type; 163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 164 165 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 166 !ether_addr_equal(shdr->hdr, rfc1042_header) || 167 (shdr->type != htons(ETH_P_IP) && 168 shdr->type != htons(ETH_P_ARP) && 169 shdr->type != htons(ETH_P_IPV6) && 170 shdr->type != htons(ETH_P_8021Q) && 171 shdr->type != htons(ETH_P_PAE) && 172 shdr->type != htons(ETH_P_TDLS)))) 173 skb->ip_summed = CHECKSUM_NONE; 174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) 175 /* mac80211 assumes full CSUM including SNAP header */ 176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 177 } 178 179 fraglen = len - headlen; 180 181 if (fraglen) { 182 int offset = (u8 *)hdr + headlen + pad_len - 183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 184 185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 186 fraglen, rxb->truesize); 187 } 188 189 return 0; 190 } 191 192 /* put a TLV on the skb and return data pointer 193 * 194 * Also pad to 4 the len and zero out all data part 195 */ 196 static void * 197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 198 { 199 struct ieee80211_radiotap_tlv *tlv; 200 201 tlv = skb_put(skb, sizeof(*tlv)); 202 tlv->type = cpu_to_le16(type); 203 tlv->len = cpu_to_le16(len); 204 return skb_put_zero(skb, ALIGN(len, 4)); 205 } 206 207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 208 struct sk_buff *skb) 209 { 210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 211 struct ieee80211_radiotap_vendor_content *radiotap; 212 const u16 vendor_data_len = sizeof(mvm->cur_aid); 213 214 if (!mvm->cur_aid) 215 return; 216 217 radiotap = iwl_mvm_radiotap_put_tlv(skb, 218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 219 sizeof(*radiotap) + vendor_data_len); 220 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->oui_subtype = 1; 227 radiotap->vendor_type = 0; 228 229 /* fill the data now */ 230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 231 232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 233 } 234 235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 237 struct napi_struct *napi, 238 struct sk_buff *skb, int queue, 239 struct ieee80211_sta *sta) 240 { 241 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { 242 kfree_skb(skb); 243 return; 244 } 245 246 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 247 } 248 249 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 250 struct ieee80211_rx_status *rx_status, 251 u32 rate_n_flags, int energy_a, 252 int energy_b) 253 { 254 int max_energy; 255 u32 rate_flags = rate_n_flags; 256 257 energy_a = energy_a ? -energy_a : S8_MIN; 258 energy_b = energy_b ? -energy_b : S8_MIN; 259 max_energy = max(energy_a, energy_b); 260 261 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 262 energy_a, energy_b, max_energy); 263 264 rx_status->signal = max_energy; 265 rx_status->chains = 266 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 267 rx_status->chain_signal[0] = energy_a; 268 rx_status->chain_signal[1] = energy_b; 269 } 270 271 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 272 struct ieee80211_hdr *hdr, 273 struct iwl_rx_mpdu_desc *desc, 274 u32 status, 275 struct ieee80211_rx_status *stats) 276 { 277 struct wireless_dev *wdev; 278 struct iwl_mvm_sta *mvmsta; 279 struct iwl_mvm_vif *mvmvif; 280 u8 keyid; 281 struct ieee80211_key_conf *key; 282 u32 len = le16_to_cpu(desc->mpdu_len); 283 const u8 *frame = (void *)hdr; 284 285 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 286 return 0; 287 288 /* 289 * For non-beacon, we don't really care. But beacons may 290 * be filtered out, and we thus need the firmware's replay 291 * detection, otherwise beacons the firmware previously 292 * filtered could be replayed, or something like that, and 293 * it can filter a lot - though usually only if nothing has 294 * changed. 295 */ 296 if (!ieee80211_is_beacon(hdr->frame_control)) 297 return 0; 298 299 if (!sta) 300 return -1; 301 302 mvmsta = iwl_mvm_sta_from_mac80211(sta); 303 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 304 305 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 306 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 307 goto report; 308 309 /* good cases */ 310 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 311 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { 312 stats->flag |= RX_FLAG_DECRYPTED; 313 return 0; 314 } 315 316 /* 317 * both keys will have the same cipher and MIC length, use 318 * whichever one is available 319 */ 320 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 321 if (!key) { 322 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 323 if (!key) 324 goto report; 325 } 326 327 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 328 goto report; 329 330 /* get the real key ID */ 331 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 332 /* and if that's the other key, look it up */ 333 if (keyid != key->keyidx) { 334 /* 335 * shouldn't happen since firmware checked, but be safe 336 * in case the MIC length is wrong too, for example 337 */ 338 if (keyid != 6 && keyid != 7) 339 return -1; 340 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 341 if (!key) 342 goto report; 343 } 344 345 /* Report status to mac80211 */ 346 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 347 ieee80211_key_mic_failure(key); 348 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 349 ieee80211_key_replay(key); 350 report: 351 wdev = ieee80211_vif_to_wdev(mvmsta->vif); 352 if (wdev->netdev) 353 cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len); 354 355 return -1; 356 } 357 358 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 359 struct ieee80211_hdr *hdr, 360 struct ieee80211_rx_status *stats, u16 phy_info, 361 struct iwl_rx_mpdu_desc *desc, 362 u32 pkt_flags, int queue, u8 *crypt_len) 363 { 364 u32 status = le32_to_cpu(desc->status); 365 366 /* 367 * Drop UNKNOWN frames in aggregation, unless in monitor mode 368 * (where we don't have the keys). 369 * We limit this to aggregation because in TKIP this is a valid 370 * scenario, since we may not have the (correct) TTAK (phase 1 371 * key) in the firmware. 372 */ 373 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 374 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 375 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 376 return -1; 377 378 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 379 !ieee80211_has_protected(hdr->frame_control))) 380 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats); 381 382 if (!ieee80211_has_protected(hdr->frame_control) || 383 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 384 IWL_RX_MPDU_STATUS_SEC_NONE) 385 return 0; 386 387 /* TODO: handle packets encrypted with unknown alg */ 388 389 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 390 case IWL_RX_MPDU_STATUS_SEC_CCM: 391 case IWL_RX_MPDU_STATUS_SEC_GCM: 392 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 393 /* alg is CCM: check MIC only */ 394 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 395 return -1; 396 397 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; 398 *crypt_len = IEEE80211_CCMP_HDR_LEN; 399 return 0; 400 case IWL_RX_MPDU_STATUS_SEC_TKIP: 401 /* Don't drop the frame and decrypt it in SW */ 402 if (!fw_has_api(&mvm->fw->ucode_capa, 403 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 404 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 405 return 0; 406 407 if (mvm->trans->trans_cfg->gen2 && 408 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 409 stats->flag |= RX_FLAG_MMIC_ERROR; 410 411 *crypt_len = IEEE80211_TKIP_IV_LEN; 412 fallthrough; 413 case IWL_RX_MPDU_STATUS_SEC_WEP: 414 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 415 return -1; 416 417 stats->flag |= RX_FLAG_DECRYPTED; 418 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 419 IWL_RX_MPDU_STATUS_SEC_WEP) 420 *crypt_len = IEEE80211_WEP_IV_LEN; 421 422 if (pkt_flags & FH_RSCSR_RADA_EN) { 423 stats->flag |= RX_FLAG_ICV_STRIPPED; 424 if (mvm->trans->trans_cfg->gen2) 425 stats->flag |= RX_FLAG_MMIC_STRIPPED; 426 } 427 428 return 0; 429 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 430 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 431 return -1; 432 stats->flag |= RX_FLAG_DECRYPTED; 433 return 0; 434 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 435 break; 436 default: 437 /* 438 * Sometimes we can get frames that were not decrypted 439 * because the firmware didn't have the keys yet. This can 440 * happen after connection where we can get multicast frames 441 * before the GTK is installed. 442 * Silently drop those frames. 443 * Also drop un-decrypted frames in monitor mode. 444 */ 445 if (!is_multicast_ether_addr(hdr->addr1) && 446 !mvm->monitor_on && net_ratelimit()) 447 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); 448 } 449 450 return 0; 451 } 452 453 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 454 struct ieee80211_sta *sta, 455 struct sk_buff *skb, 456 struct iwl_rx_packet *pkt) 457 { 458 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 459 460 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 461 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 462 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 463 464 skb->ip_summed = CHECKSUM_COMPLETE; 465 skb->csum = csum_unfold(~(__force __sum16)hwsum); 466 } 467 } else { 468 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 469 struct iwl_mvm_vif *mvmvif; 470 u16 flags = le16_to_cpu(desc->l3l4_flags); 471 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 472 IWL_RX_L3_PROTO_POS); 473 474 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 475 476 if (mvmvif->features & NETIF_F_RXCSUM && 477 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 478 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 479 l3_prot == IWL_RX_L3_TYPE_IPV6 || 480 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 481 skb->ip_summed = CHECKSUM_UNNECESSARY; 482 } 483 } 484 485 /* 486 * returns true if a packet is a duplicate or invalid tid and should be dropped. 487 * Updates AMSDU PN tracking info 488 */ 489 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 490 struct ieee80211_rx_status *rx_status, 491 struct ieee80211_hdr *hdr, 492 struct iwl_rx_mpdu_desc *desc) 493 { 494 struct iwl_mvm_sta *mvm_sta; 495 struct iwl_mvm_rxq_dup_data *dup_data; 496 u8 tid, sub_frame_idx; 497 498 if (WARN_ON(IS_ERR_OR_NULL(sta))) 499 return false; 500 501 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 502 503 if (WARN_ON_ONCE(!mvm_sta->dup_data)) 504 return false; 505 506 dup_data = &mvm_sta->dup_data[queue]; 507 508 /* 509 * Drop duplicate 802.11 retransmissions 510 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 511 */ 512 if (ieee80211_is_ctl(hdr->frame_control) || 513 ieee80211_is_qos_nullfunc(hdr->frame_control) || 514 is_multicast_ether_addr(hdr->addr1)) { 515 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 516 return false; 517 } 518 519 if (ieee80211_is_data_qos(hdr->frame_control)) { 520 /* frame has qos control */ 521 tid = ieee80211_get_tid(hdr); 522 if (tid >= IWL_MAX_TID_COUNT) 523 return true; 524 } else { 525 tid = IWL_MAX_TID_COUNT; 526 } 527 528 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 529 sub_frame_idx = desc->amsdu_info & 530 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 531 532 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 533 dup_data->last_seq[tid] == hdr->seq_ctrl && 534 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 535 return true; 536 537 /* Allow same PN as the first subframe for following sub frames */ 538 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 539 sub_frame_idx > dup_data->last_sub_frame[tid] && 540 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 541 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 542 543 dup_data->last_seq[tid] = hdr->seq_ctrl; 544 dup_data->last_sub_frame[tid] = sub_frame_idx; 545 546 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 547 548 return false; 549 } 550 551 /* 552 * Returns true if sn2 - buffer_size < sn1 < sn2. 553 * To be used only in order to compare reorder buffer head with NSSN. 554 * We fully trust NSSN unless it is behind us due to reorder timeout. 555 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 556 */ 557 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 558 { 559 return ieee80211_sn_less(sn1, sn2) && 560 !ieee80211_sn_less(sn1, sn2 - buffer_size); 561 } 562 563 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 564 { 565 if (IWL_MVM_USE_NSSN_SYNC) { 566 struct iwl_mvm_nssn_sync_data notif = { 567 .baid = baid, 568 .nssn = nssn, 569 }; 570 571 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 572 ¬if, sizeof(notif)); 573 } 574 } 575 576 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 577 578 enum iwl_mvm_release_flags { 579 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 580 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 581 }; 582 583 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 584 struct ieee80211_sta *sta, 585 struct napi_struct *napi, 586 struct iwl_mvm_baid_data *baid_data, 587 struct iwl_mvm_reorder_buffer *reorder_buf, 588 u16 nssn, u32 flags) 589 { 590 struct iwl_mvm_reorder_buf_entry *entries = 591 &baid_data->entries[reorder_buf->queue * 592 baid_data->entries_per_queue]; 593 u16 ssn = reorder_buf->head_sn; 594 595 lockdep_assert_held(&reorder_buf->lock); 596 597 /* 598 * We keep the NSSN not too far behind, if we are sync'ing it and it 599 * is more than 2048 ahead of us, it must be behind us. Discard it. 600 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 601 * behind and this queue already processed packets. The next if 602 * would have caught cases where this queue would have processed less 603 * than 64 packets, but it may have processed more than 64 packets. 604 */ 605 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 606 ieee80211_sn_less(nssn, ssn)) 607 goto set_timer; 608 609 /* ignore nssn smaller than head sn - this can happen due to timeout */ 610 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 611 goto set_timer; 612 613 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 614 int index = ssn % reorder_buf->buf_size; 615 struct sk_buff_head *skb_list = &entries[index].e.frames; 616 struct sk_buff *skb; 617 618 ssn = ieee80211_sn_inc(ssn); 619 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 620 (ssn == 2048 || ssn == 0)) 621 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 622 623 /* 624 * Empty the list. Will have more than one frame for A-MSDU. 625 * Empty list is valid as well since nssn indicates frames were 626 * received. 627 */ 628 while ((skb = __skb_dequeue(skb_list))) { 629 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 630 reorder_buf->queue, 631 sta); 632 reorder_buf->num_stored--; 633 } 634 } 635 reorder_buf->head_sn = nssn; 636 637 set_timer: 638 if (reorder_buf->num_stored && !reorder_buf->removed) { 639 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 640 641 while (skb_queue_empty(&entries[index].e.frames)) 642 index = (index + 1) % reorder_buf->buf_size; 643 /* modify timer to match next frame's expiration time */ 644 mod_timer(&reorder_buf->reorder_timer, 645 entries[index].e.reorder_time + 1 + 646 RX_REORDER_BUF_TIMEOUT_MQ); 647 } else { 648 del_timer(&reorder_buf->reorder_timer); 649 } 650 } 651 652 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 653 { 654 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 655 struct iwl_mvm_baid_data *baid_data = 656 iwl_mvm_baid_data_from_reorder_buf(buf); 657 struct iwl_mvm_reorder_buf_entry *entries = 658 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 659 int i; 660 u16 sn = 0, index = 0; 661 bool expired = false; 662 bool cont = false; 663 664 spin_lock(&buf->lock); 665 666 if (!buf->num_stored || buf->removed) { 667 spin_unlock(&buf->lock); 668 return; 669 } 670 671 for (i = 0; i < buf->buf_size ; i++) { 672 index = (buf->head_sn + i) % buf->buf_size; 673 674 if (skb_queue_empty(&entries[index].e.frames)) { 675 /* 676 * If there is a hole and the next frame didn't expire 677 * we want to break and not advance SN 678 */ 679 cont = false; 680 continue; 681 } 682 if (!cont && 683 !time_after(jiffies, entries[index].e.reorder_time + 684 RX_REORDER_BUF_TIMEOUT_MQ)) 685 break; 686 687 expired = true; 688 /* continue until next hole after this expired frames */ 689 cont = true; 690 sn = ieee80211_sn_add(buf->head_sn, i + 1); 691 } 692 693 if (expired) { 694 struct ieee80211_sta *sta; 695 struct iwl_mvm_sta *mvmsta; 696 u8 sta_id = ffs(baid_data->sta_mask) - 1; 697 698 rcu_read_lock(); 699 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 700 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) { 701 rcu_read_unlock(); 702 goto out; 703 } 704 705 mvmsta = iwl_mvm_sta_from_mac80211(sta); 706 707 /* SN is set to the last expired frame + 1 */ 708 IWL_DEBUG_HT(buf->mvm, 709 "Releasing expired frames for sta %u, sn %d\n", 710 sta_id, sn); 711 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 712 sta, baid_data->tid); 713 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 714 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 715 rcu_read_unlock(); 716 } else { 717 /* 718 * If no frame expired and there are stored frames, index is now 719 * pointing to the first unexpired frame - modify timer 720 * accordingly to this frame. 721 */ 722 mod_timer(&buf->reorder_timer, 723 entries[index].e.reorder_time + 724 1 + RX_REORDER_BUF_TIMEOUT_MQ); 725 } 726 727 out: 728 spin_unlock(&buf->lock); 729 } 730 731 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 732 struct iwl_mvm_delba_data *data) 733 { 734 struct iwl_mvm_baid_data *ba_data; 735 struct ieee80211_sta *sta; 736 struct iwl_mvm_reorder_buffer *reorder_buf; 737 u8 baid = data->baid; 738 u32 sta_id; 739 740 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 741 return; 742 743 rcu_read_lock(); 744 745 ba_data = rcu_dereference(mvm->baid_map[baid]); 746 if (WARN_ON_ONCE(!ba_data)) 747 goto out; 748 749 /* pick any STA ID to find the pointer */ 750 sta_id = ffs(ba_data->sta_mask) - 1; 751 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 752 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 753 goto out; 754 755 reorder_buf = &ba_data->reorder_buf[queue]; 756 757 /* release all frames that are in the reorder buffer to the stack */ 758 spin_lock_bh(&reorder_buf->lock); 759 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 760 ieee80211_sn_add(reorder_buf->head_sn, 761 reorder_buf->buf_size), 762 0); 763 spin_unlock_bh(&reorder_buf->lock); 764 del_timer_sync(&reorder_buf->reorder_timer); 765 766 out: 767 rcu_read_unlock(); 768 } 769 770 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 771 struct napi_struct *napi, 772 u8 baid, u16 nssn, int queue, 773 u32 flags) 774 { 775 struct ieee80211_sta *sta; 776 struct iwl_mvm_reorder_buffer *reorder_buf; 777 struct iwl_mvm_baid_data *ba_data; 778 u32 sta_id; 779 780 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 781 baid, nssn); 782 783 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 784 baid >= ARRAY_SIZE(mvm->baid_map))) 785 return; 786 787 rcu_read_lock(); 788 789 ba_data = rcu_dereference(mvm->baid_map[baid]); 790 if (!ba_data) { 791 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC), 792 "BAID %d not found in map\n", baid); 793 goto out; 794 } 795 796 /* pick any STA ID to find the pointer */ 797 sta_id = ffs(ba_data->sta_mask) - 1; 798 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 799 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 800 goto out; 801 802 reorder_buf = &ba_data->reorder_buf[queue]; 803 804 spin_lock_bh(&reorder_buf->lock); 805 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 806 reorder_buf, nssn, flags); 807 spin_unlock_bh(&reorder_buf->lock); 808 809 out: 810 rcu_read_unlock(); 811 } 812 813 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 814 struct napi_struct *napi, int queue, 815 const struct iwl_mvm_nssn_sync_data *data) 816 { 817 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 818 data->nssn, queue, 819 IWL_MVM_RELEASE_FROM_RSS_SYNC); 820 } 821 822 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 823 struct iwl_rx_cmd_buffer *rxb, int queue) 824 { 825 struct iwl_rx_packet *pkt = rxb_addr(rxb); 826 struct iwl_rxq_sync_notification *notif; 827 struct iwl_mvm_internal_rxq_notif *internal_notif; 828 u32 len = iwl_rx_packet_payload_len(pkt); 829 830 notif = (void *)pkt->data; 831 internal_notif = (void *)notif->payload; 832 833 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 834 "invalid notification size %d (%d)", 835 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 836 return; 837 len -= sizeof(*notif) + sizeof(*internal_notif); 838 839 if (internal_notif->sync && 840 mvm->queue_sync_cookie != internal_notif->cookie) { 841 WARN_ONCE(1, "Received expired RX queue sync message\n"); 842 return; 843 } 844 845 switch (internal_notif->type) { 846 case IWL_MVM_RXQ_EMPTY: 847 WARN_ONCE(len, "invalid empty notification size %d", len); 848 break; 849 case IWL_MVM_RXQ_NOTIF_DEL_BA: 850 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 851 "invalid delba notification size %d (%d)", 852 len, (int)sizeof(struct iwl_mvm_delba_data))) 853 break; 854 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 855 break; 856 case IWL_MVM_RXQ_NSSN_SYNC: 857 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 858 "invalid nssn sync notification size %d (%d)", 859 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 860 break; 861 iwl_mvm_nssn_sync(mvm, napi, queue, 862 (void *)internal_notif->data); 863 break; 864 default: 865 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 866 } 867 868 if (internal_notif->sync) { 869 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 870 "queue sync: queue %d responded a second time!\n", 871 queue); 872 if (READ_ONCE(mvm->queue_sync_state) == 0) 873 wake_up(&mvm->rx_sync_waitq); 874 } 875 } 876 877 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 878 struct ieee80211_sta *sta, int tid, 879 struct iwl_mvm_reorder_buffer *buffer, 880 u32 reorder, u32 gp2, int queue) 881 { 882 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 883 884 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 885 /* we have a new (A-)MPDU ... */ 886 887 /* 888 * reset counter to 0 if we didn't have any oldsn in 889 * the last A-MPDU (as detected by GP2 being identical) 890 */ 891 if (!buffer->consec_oldsn_prev_drop) 892 buffer->consec_oldsn_drops = 0; 893 894 /* either way, update our tracking state */ 895 buffer->consec_oldsn_ampdu_gp2 = gp2; 896 } else if (buffer->consec_oldsn_prev_drop) { 897 /* 898 * tracking state didn't change, and we had an old SN 899 * indication before - do nothing in this case, we 900 * already noted this one down and are waiting for the 901 * next A-MPDU (by GP2) 902 */ 903 return; 904 } 905 906 /* return unless this MPDU has old SN */ 907 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 908 return; 909 910 /* update state */ 911 buffer->consec_oldsn_prev_drop = 1; 912 buffer->consec_oldsn_drops++; 913 914 /* if limit is reached, send del BA and reset state */ 915 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 916 IWL_WARN(mvm, 917 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 918 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 919 sta->addr, queue, tid); 920 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 921 buffer->consec_oldsn_prev_drop = 0; 922 buffer->consec_oldsn_drops = 0; 923 } 924 } 925 926 /* 927 * Returns true if the MPDU was buffered\dropped, false if it should be passed 928 * to upper layer. 929 */ 930 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 931 struct napi_struct *napi, 932 int queue, 933 struct ieee80211_sta *sta, 934 struct sk_buff *skb, 935 struct iwl_rx_mpdu_desc *desc) 936 { 937 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 938 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 939 struct iwl_mvm_baid_data *baid_data; 940 struct iwl_mvm_reorder_buffer *buffer; 941 struct sk_buff *tail; 942 u32 reorder = le32_to_cpu(desc->reorder_data); 943 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 944 bool last_subframe = 945 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 946 u8 tid = ieee80211_get_tid(hdr); 947 u8 sub_frame_idx = desc->amsdu_info & 948 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 949 struct iwl_mvm_reorder_buf_entry *entries; 950 u32 sta_mask; 951 int index; 952 u16 nssn, sn; 953 u8 baid; 954 955 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 956 IWL_RX_MPDU_REORDER_BAID_SHIFT; 957 958 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000) 959 return false; 960 961 /* 962 * This also covers the case of receiving a Block Ack Request 963 * outside a BA session; we'll pass it to mac80211 and that 964 * then sends a delBA action frame. 965 * This also covers pure monitor mode, in which case we won't 966 * have any BA sessions. 967 */ 968 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 969 return false; 970 971 /* no sta yet */ 972 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 973 "Got valid BAID without a valid station assigned\n")) 974 return false; 975 976 /* not a data packet or a bar */ 977 if (!ieee80211_is_back_req(hdr->frame_control) && 978 (!ieee80211_is_data_qos(hdr->frame_control) || 979 is_multicast_ether_addr(hdr->addr1))) 980 return false; 981 982 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 983 return false; 984 985 baid_data = rcu_dereference(mvm->baid_map[baid]); 986 if (!baid_data) { 987 IWL_DEBUG_RX(mvm, 988 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 989 baid, reorder); 990 return false; 991 } 992 993 rcu_read_lock(); 994 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); 995 rcu_read_unlock(); 996 997 if (IWL_FW_CHECK(mvm, 998 tid != baid_data->tid || 999 !(sta_mask & baid_data->sta_mask), 1000 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", 1001 baid, baid_data->sta_mask, baid_data->tid, 1002 sta_mask, tid)) 1003 return false; 1004 1005 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 1006 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 1007 IWL_RX_MPDU_REORDER_SN_SHIFT; 1008 1009 buffer = &baid_data->reorder_buf[queue]; 1010 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 1011 1012 spin_lock_bh(&buffer->lock); 1013 1014 if (!buffer->valid) { 1015 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 1016 spin_unlock_bh(&buffer->lock); 1017 return false; 1018 } 1019 buffer->valid = true; 1020 } 1021 1022 if (ieee80211_is_back_req(hdr->frame_control)) { 1023 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1024 buffer, nssn, 0); 1025 goto drop; 1026 } 1027 1028 /* 1029 * If there was a significant jump in the nssn - adjust. 1030 * If the SN is smaller than the NSSN it might need to first go into 1031 * the reorder buffer, in which case we just release up to it and the 1032 * rest of the function will take care of storing it and releasing up to 1033 * the nssn. 1034 * This should not happen. This queue has been lagging and it should 1035 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1036 * and update the other queues. 1037 */ 1038 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1039 buffer->buf_size) || 1040 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1041 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1042 1043 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1044 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1045 } 1046 1047 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1048 rx_status->device_timestamp, queue); 1049 1050 /* drop any oudated packets */ 1051 if (ieee80211_sn_less(sn, buffer->head_sn)) 1052 goto drop; 1053 1054 /* release immediately if allowed by nssn and no stored frames */ 1055 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1056 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1057 buffer->buf_size) && 1058 (!amsdu || last_subframe)) { 1059 /* 1060 * If we crossed the 2048 or 0 SN, notify all the 1061 * queues. This is done in order to avoid having a 1062 * head_sn that lags behind for too long. When that 1063 * happens, we can get to a situation where the head_sn 1064 * is within the interval [nssn - buf_size : nssn] 1065 * which will make us think that the nssn is a packet 1066 * that we already freed because of the reordering 1067 * buffer and we will ignore it. So maintain the 1068 * head_sn somewhat updated across all the queues: 1069 * when it crosses 0 and 2048. 1070 */ 1071 if (sn == 2048 || sn == 0) 1072 iwl_mvm_sync_nssn(mvm, baid, sn); 1073 buffer->head_sn = nssn; 1074 } 1075 /* No need to update AMSDU last SN - we are moving the head */ 1076 spin_unlock_bh(&buffer->lock); 1077 return false; 1078 } 1079 1080 /* 1081 * release immediately if there are no stored frames, and the sn is 1082 * equal to the head. 1083 * This can happen due to reorder timer, where NSSN is behind head_sn. 1084 * When we released everything, and we got the next frame in the 1085 * sequence, according to the NSSN we can't release immediately, 1086 * while technically there is no hole and we can move forward. 1087 */ 1088 if (!buffer->num_stored && sn == buffer->head_sn) { 1089 if (!amsdu || last_subframe) { 1090 if (sn == 2048 || sn == 0) 1091 iwl_mvm_sync_nssn(mvm, baid, sn); 1092 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1093 } 1094 /* No need to update AMSDU last SN - we are moving the head */ 1095 spin_unlock_bh(&buffer->lock); 1096 return false; 1097 } 1098 1099 index = sn % buffer->buf_size; 1100 1101 /* 1102 * Check if we already stored this frame 1103 * As AMSDU is either received or not as whole, logic is simple: 1104 * If we have frames in that position in the buffer and the last frame 1105 * originated from AMSDU had a different SN then it is a retransmission. 1106 * If it is the same SN then if the subframe index is incrementing it 1107 * is the same AMSDU - otherwise it is a retransmission. 1108 */ 1109 tail = skb_peek_tail(&entries[index].e.frames); 1110 if (tail && !amsdu) 1111 goto drop; 1112 else if (tail && (sn != buffer->last_amsdu || 1113 buffer->last_sub_index >= sub_frame_idx)) 1114 goto drop; 1115 1116 /* put in reorder buffer */ 1117 __skb_queue_tail(&entries[index].e.frames, skb); 1118 buffer->num_stored++; 1119 entries[index].e.reorder_time = jiffies; 1120 1121 if (amsdu) { 1122 buffer->last_amsdu = sn; 1123 buffer->last_sub_index = sub_frame_idx; 1124 } 1125 1126 /* 1127 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1128 * The reason is that NSSN advances on the first sub-frame, and may 1129 * cause the reorder buffer to advance before all the sub-frames arrive. 1130 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1131 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1132 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1133 * already ahead and it will be dropped. 1134 * If the last sub-frame is not on this queue - we will get frame 1135 * release notification with up to date NSSN. 1136 */ 1137 if (!amsdu || last_subframe) 1138 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1139 buffer, nssn, 1140 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1141 1142 spin_unlock_bh(&buffer->lock); 1143 return true; 1144 1145 drop: 1146 kfree_skb(skb); 1147 spin_unlock_bh(&buffer->lock); 1148 return true; 1149 } 1150 1151 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1152 u32 reorder_data, u8 baid) 1153 { 1154 unsigned long now = jiffies; 1155 unsigned long timeout; 1156 struct iwl_mvm_baid_data *data; 1157 1158 rcu_read_lock(); 1159 1160 data = rcu_dereference(mvm->baid_map[baid]); 1161 if (!data) { 1162 IWL_DEBUG_RX(mvm, 1163 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1164 baid, reorder_data); 1165 goto out; 1166 } 1167 1168 if (!data->timeout) 1169 goto out; 1170 1171 timeout = data->timeout; 1172 /* 1173 * Do not update last rx all the time to avoid cache bouncing 1174 * between the rx queues. 1175 * Update it every timeout. Worst case is the session will 1176 * expire after ~ 2 * timeout, which doesn't matter that much. 1177 */ 1178 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1179 /* Update is atomic */ 1180 data->last_rx = now; 1181 1182 out: 1183 rcu_read_unlock(); 1184 } 1185 1186 static void iwl_mvm_flip_address(u8 *addr) 1187 { 1188 int i; 1189 u8 mac_addr[ETH_ALEN]; 1190 1191 for (i = 0; i < ETH_ALEN; i++) 1192 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1193 ether_addr_copy(addr, mac_addr); 1194 } 1195 1196 struct iwl_mvm_rx_phy_data { 1197 enum iwl_rx_phy_info_type info_type; 1198 __le32 d0, d1, d2, d3, eht_d4, d5; 1199 __le16 d4; 1200 bool with_data; 1201 bool first_subframe; 1202 __le32 rx_vec[4]; 1203 1204 u32 rate_n_flags; 1205 u32 gp2_on_air_rise; 1206 u16 phy_info; 1207 u8 energy_a, energy_b; 1208 u8 channel; 1209 }; 1210 1211 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1212 struct iwl_mvm_rx_phy_data *phy_data, 1213 struct ieee80211_radiotap_he_mu *he_mu) 1214 { 1215 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1216 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1217 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1218 u32 rate_n_flags = phy_data->rate_n_flags; 1219 1220 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1221 he_mu->flags1 |= 1222 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1223 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1224 1225 he_mu->flags1 |= 1226 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1227 phy_data4), 1228 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1229 1230 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1231 phy_data2); 1232 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1233 phy_data3); 1234 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1235 phy_data2); 1236 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1237 phy_data3); 1238 } 1239 1240 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1241 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1242 he_mu->flags1 |= 1243 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1244 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1245 1246 he_mu->flags2 |= 1247 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1248 phy_data4), 1249 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1250 1251 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1252 phy_data2); 1253 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1254 phy_data3); 1255 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1256 phy_data2); 1257 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1258 phy_data3); 1259 } 1260 } 1261 1262 static void 1263 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1264 struct ieee80211_radiotap_he *he, 1265 struct ieee80211_radiotap_he_mu *he_mu, 1266 struct ieee80211_rx_status *rx_status) 1267 { 1268 /* 1269 * Unfortunately, we have to leave the mac80211 data 1270 * incorrect for the case that we receive an HE-MU 1271 * transmission and *don't* have the HE phy data (due 1272 * to the bits being used for TSF). This shouldn't 1273 * happen though as management frames where we need 1274 * the TSF/timers are not be transmitted in HE-MU. 1275 */ 1276 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1277 u32 rate_n_flags = phy_data->rate_n_flags; 1278 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1279 u8 offs = 0; 1280 1281 rx_status->bw = RATE_INFO_BW_HE_RU; 1282 1283 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1284 1285 switch (ru) { 1286 case 0 ... 36: 1287 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1288 offs = ru; 1289 break; 1290 case 37 ... 52: 1291 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1292 offs = ru - 37; 1293 break; 1294 case 53 ... 60: 1295 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1296 offs = ru - 53; 1297 break; 1298 case 61 ... 64: 1299 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1300 offs = ru - 61; 1301 break; 1302 case 65 ... 66: 1303 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1304 offs = ru - 65; 1305 break; 1306 case 67: 1307 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1308 break; 1309 case 68: 1310 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1311 break; 1312 } 1313 he->data2 |= le16_encode_bits(offs, 1314 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1315 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1316 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1317 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1318 he->data2 |= 1319 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1320 1321 #define CHECK_BW(bw) \ 1322 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1323 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1324 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1325 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1326 CHECK_BW(20); 1327 CHECK_BW(40); 1328 CHECK_BW(80); 1329 CHECK_BW(160); 1330 1331 if (he_mu) 1332 he_mu->flags2 |= 1333 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1334 rate_n_flags), 1335 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1336 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1337 he->data6 |= 1338 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1339 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1340 rate_n_flags), 1341 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1342 } 1343 1344 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1345 struct iwl_mvm_rx_phy_data *phy_data, 1346 struct ieee80211_radiotap_he *he, 1347 struct ieee80211_radiotap_he_mu *he_mu, 1348 struct ieee80211_rx_status *rx_status, 1349 int queue) 1350 { 1351 switch (phy_data->info_type) { 1352 case IWL_RX_PHY_INFO_TYPE_NONE: 1353 case IWL_RX_PHY_INFO_TYPE_CCK: 1354 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1355 case IWL_RX_PHY_INFO_TYPE_HT: 1356 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1357 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1358 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1359 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1360 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1361 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1362 return; 1363 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1364 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1365 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1366 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1367 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1368 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1369 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1370 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1371 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1372 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1373 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1374 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1375 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1376 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1377 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1378 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1379 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1380 fallthrough; 1381 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1382 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1383 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1384 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1385 /* HE common */ 1386 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1387 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1388 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1389 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1390 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1391 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1392 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1393 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1394 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1395 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1396 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1397 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1398 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1399 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1400 IWL_RX_PHY_DATA0_HE_UPLINK), 1401 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1402 } 1403 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1404 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1405 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1406 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1407 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1408 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1409 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1410 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1411 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1412 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1413 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1414 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1415 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1416 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1417 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1418 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1419 IWL_RX_PHY_DATA0_HE_DOPPLER), 1420 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1421 break; 1422 } 1423 1424 switch (phy_data->info_type) { 1425 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1426 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1427 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1428 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1429 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1430 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1431 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1432 break; 1433 default: 1434 /* nothing here */ 1435 break; 1436 } 1437 1438 switch (phy_data->info_type) { 1439 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1440 he_mu->flags1 |= 1441 le16_encode_bits(le16_get_bits(phy_data->d4, 1442 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1443 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1444 he_mu->flags1 |= 1445 le16_encode_bits(le16_get_bits(phy_data->d4, 1446 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1447 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1448 he_mu->flags2 |= 1449 le16_encode_bits(le16_get_bits(phy_data->d4, 1450 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1451 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1452 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1453 fallthrough; 1454 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1455 he_mu->flags2 |= 1456 le16_encode_bits(le32_get_bits(phy_data->d1, 1457 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1458 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1459 he_mu->flags2 |= 1460 le16_encode_bits(le32_get_bits(phy_data->d1, 1461 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1462 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1463 fallthrough; 1464 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1465 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1466 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1467 break; 1468 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1469 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1470 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1471 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1472 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1473 break; 1474 default: 1475 /* nothing */ 1476 break; 1477 } 1478 } 1479 1480 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 1481 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 1482 1483 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 1484 typeof(enc_bits) _enc_bits = enc_bits; \ 1485 typeof(usig) _usig = usig; \ 1486 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 1487 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 1488 } while (0) 1489 1490 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1491 eht->data[(rt_data)] |= \ 1492 (cpu_to_le32 \ 1493 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 1494 LE32_DEC_ENC(data ## fw_data, \ 1495 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 1496 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 1497 1498 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1499 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 1500 1501 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 1502 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 1503 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 1504 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 1505 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 1506 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 1507 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 1508 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 1509 1510 #define IWL_RX_RU_DATA_A1 2 1511 #define IWL_RX_RU_DATA_A2 2 1512 #define IWL_RX_RU_DATA_B1 2 1513 #define IWL_RX_RU_DATA_B2 3 1514 #define IWL_RX_RU_DATA_C1 3 1515 #define IWL_RX_RU_DATA_C2 3 1516 #define IWL_RX_RU_DATA_D1 4 1517 #define IWL_RX_RU_DATA_D2 4 1518 1519 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ 1520 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 1521 rt_ru, \ 1522 IWL_RX_RU_DATA_ ## fw_ru, \ 1523 fw_ru) 1524 1525 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, 1526 struct iwl_mvm_rx_phy_data *phy_data, 1527 struct ieee80211_rx_status *rx_status, 1528 struct ieee80211_radiotap_eht *eht, 1529 struct ieee80211_radiotap_eht_usig *usig) 1530 { 1531 if (phy_data->with_data) { 1532 __le32 data1 = phy_data->d1; 1533 __le32 data2 = phy_data->d2; 1534 __le32 data3 = phy_data->d3; 1535 __le32 data4 = phy_data->eht_d4; 1536 __le32 data5 = phy_data->d5; 1537 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 1538 1539 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1540 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1541 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1542 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1543 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 1544 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1545 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, 1546 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 1547 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1548 IWL_MVM_ENC_USIG_VALUE_MASK 1549 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 1550 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1551 1552 eht->user_info[0] |= 1553 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 1554 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 1555 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 1556 1557 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 1558 eht->data[7] |= LE32_DEC_ENC 1559 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 1560 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 1561 1562 /* 1563 * Hardware labels the content channels/RU allocation values 1564 * as follows: 1565 * Content Channel 1 Content Channel 2 1566 * 20 MHz: A1 1567 * 40 MHz: A1 B1 1568 * 80 MHz: A1 C1 B1 D1 1569 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 1570 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 1571 * 1572 * However firmware can only give us A1-D2, so the higher 1573 * frequencies are missing. 1574 */ 1575 1576 switch (phy_bw) { 1577 case RATE_MCS_CHAN_WIDTH_320: 1578 /* additional values are missing in RX metadata */ 1579 case RATE_MCS_CHAN_WIDTH_160: 1580 /* content channel 1 */ 1581 IWL_MVM_ENC_EHT_RU(1_2_1, A2); 1582 IWL_MVM_ENC_EHT_RU(1_2_2, C2); 1583 /* content channel 2 */ 1584 IWL_MVM_ENC_EHT_RU(2_2_1, B2); 1585 IWL_MVM_ENC_EHT_RU(2_2_2, D2); 1586 fallthrough; 1587 case RATE_MCS_CHAN_WIDTH_80: 1588 /* content channel 1 */ 1589 IWL_MVM_ENC_EHT_RU(1_1_2, C1); 1590 /* content channel 2 */ 1591 IWL_MVM_ENC_EHT_RU(2_1_2, D1); 1592 fallthrough; 1593 case RATE_MCS_CHAN_WIDTH_40: 1594 /* content channel 2 */ 1595 IWL_MVM_ENC_EHT_RU(2_1_1, B1); 1596 fallthrough; 1597 case RATE_MCS_CHAN_WIDTH_20: 1598 IWL_MVM_ENC_EHT_RU(1_1_1, A1); 1599 break; 1600 } 1601 } else { 1602 __le32 usig_a1 = phy_data->rx_vec[0]; 1603 __le32 usig_a2 = phy_data->rx_vec[1]; 1604 1605 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1606 IWL_RX_USIG_A1_DISREGARD, 1607 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 1608 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1609 IWL_RX_USIG_A1_VALIDATE, 1610 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 1611 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1612 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1613 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1614 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1615 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1616 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 1617 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1618 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 1619 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1620 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1621 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 1622 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 1623 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1624 IWL_RX_USIG_A2_EHT_SIG_MCS, 1625 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1626 IWL_MVM_ENC_USIG_VALUE_MASK 1627 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 1628 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1629 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1630 IWL_RX_USIG_A2_EHT_CRC_OK, 1631 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 1632 } 1633 } 1634 1635 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, 1636 struct iwl_mvm_rx_phy_data *phy_data, 1637 struct ieee80211_rx_status *rx_status, 1638 struct ieee80211_radiotap_eht *eht, 1639 struct ieee80211_radiotap_eht_usig *usig) 1640 { 1641 if (phy_data->with_data) { 1642 __le32 data5 = phy_data->d5; 1643 1644 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1645 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1646 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1647 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1648 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 1649 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1650 1651 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1652 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 1653 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1654 } else { 1655 __le32 usig_a1 = phy_data->rx_vec[0]; 1656 __le32 usig_a2 = phy_data->rx_vec[1]; 1657 1658 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1659 IWL_RX_USIG_A1_DISREGARD, 1660 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 1661 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1662 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1663 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1664 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1665 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1666 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 1667 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1668 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 1669 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1670 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1671 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 1672 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1673 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1674 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 1675 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 1676 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1677 IWL_RX_USIG_A2_EHT_CRC_OK, 1678 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 1679 } 1680 } 1681 1682 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, 1683 struct ieee80211_rx_status *rx_status, 1684 struct ieee80211_radiotap_eht *eht) 1685 { 1686 u32 ru = le32_get_bits(eht->data[8], 1687 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1688 enum nl80211_eht_ru_alloc nl_ru; 1689 1690 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 1691 * in an EHT variant User Info field 1692 */ 1693 1694 switch (ru) { 1695 case 0 ... 36: 1696 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 1697 break; 1698 case 37 ... 52: 1699 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 1700 break; 1701 case 53 ... 60: 1702 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 1703 break; 1704 case 61 ... 64: 1705 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 1706 break; 1707 case 65 ... 66: 1708 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 1709 break; 1710 case 67: 1711 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 1712 break; 1713 case 68: 1714 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 1715 break; 1716 case 69: 1717 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 1718 break; 1719 case 70 ... 81: 1720 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 1721 break; 1722 case 82 ... 89: 1723 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 1724 break; 1725 case 90 ... 93: 1726 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 1727 break; 1728 case 94 ... 95: 1729 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 1730 break; 1731 case 96 ... 99: 1732 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 1733 break; 1734 case 100 ... 103: 1735 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 1736 break; 1737 case 104: 1738 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 1739 break; 1740 case 105 ... 106: 1741 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 1742 break; 1743 default: 1744 return; 1745 } 1746 1747 rx_status->bw = RATE_INFO_BW_EHT_RU; 1748 rx_status->eht.ru = nl_ru; 1749 } 1750 1751 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, 1752 struct iwl_mvm_rx_phy_data *phy_data, 1753 struct ieee80211_rx_status *rx_status, 1754 struct ieee80211_radiotap_eht *eht, 1755 struct ieee80211_radiotap_eht_usig *usig) 1756 1757 { 1758 __le32 data0 = phy_data->d0; 1759 __le32 data1 = phy_data->d1; 1760 __le32 usig_a1 = phy_data->rx_vec[0]; 1761 u8 info_type = phy_data->info_type; 1762 1763 /* Not in EHT range */ 1764 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 1765 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 1766 return; 1767 1768 usig->common |= cpu_to_le32 1769 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 1770 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 1771 if (phy_data->with_data) { 1772 usig->common |= LE32_DEC_ENC(data0, 1773 IWL_RX_PHY_DATA0_EHT_UPLINK, 1774 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1775 usig->common |= LE32_DEC_ENC(data0, 1776 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 1777 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1778 } else { 1779 usig->common |= LE32_DEC_ENC(usig_a1, 1780 IWL_RX_USIG_A1_UL_FLAG, 1781 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1782 usig->common |= LE32_DEC_ENC(usig_a1, 1783 IWL_RX_USIG_A1_BSS_COLOR, 1784 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1785 } 1786 1787 if (fw_has_capa(&mvm->fw->ucode_capa, 1788 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) { 1789 usig->common |= 1790 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); 1791 usig->common |= 1792 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, 1793 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); 1794 } 1795 1796 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 1797 eht->data[0] |= LE32_DEC_ENC(data0, 1798 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 1799 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 1800 1801 /* All RU allocating size/index is in TB format */ 1802 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 1803 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 1804 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 1805 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, 1806 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 1807 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, 1808 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1809 1810 iwl_mvm_decode_eht_ru(mvm, rx_status, eht); 1811 1812 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 1813 * which is on only in case of monitor mode so no need to check monitor 1814 * mode 1815 */ 1816 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 1817 eht->data[1] |= 1818 le32_encode_bits(mvm->monitor_p80, 1819 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 1820 1821 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 1822 if (phy_data->with_data) 1823 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 1824 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1825 else 1826 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 1827 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1828 1829 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 1830 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 1831 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 1832 1833 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 1834 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 1835 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 1836 1837 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 1838 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 1839 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 1840 1841 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 1842 1843 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 1844 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 1845 1846 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 1847 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 1848 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 1849 1850 /* 1851 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 1852 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 1853 */ 1854 1855 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 1856 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 1857 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 1858 1859 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 1860 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 1861 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); 1862 1863 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 1864 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 1865 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); 1866 } 1867 1868 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, 1869 struct iwl_mvm_rx_phy_data *phy_data, 1870 int queue) 1871 { 1872 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1873 1874 struct ieee80211_radiotap_eht *eht; 1875 struct ieee80211_radiotap_eht_usig *usig; 1876 size_t eht_len = sizeof(*eht); 1877 1878 u32 rate_n_flags = phy_data->rate_n_flags; 1879 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1880 /* EHT and HE have the same valus for LTF */ 1881 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1882 u16 phy_info = phy_data->phy_info; 1883 u32 bw; 1884 1885 /* u32 for 1 user_info */ 1886 if (phy_data->with_data) 1887 eht_len += sizeof(u32); 1888 1889 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1890 1891 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1892 sizeof(*usig)); 1893 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1894 usig->common |= 1895 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1896 1897 /* specific handling for 320MHz */ 1898 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); 1899 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1900 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, 1901 le32_to_cpu(phy_data->d0)); 1902 1903 usig->common |= cpu_to_le32 1904 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1905 1906 /* report the AMPDU-EOF bit on single frames */ 1907 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1908 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1909 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1910 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1911 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1912 } 1913 1914 /* update aggregation data for monitor sake on default queue */ 1915 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1916 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1917 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1918 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1919 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1920 } 1921 1922 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1923 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); 1924 1925 #define CHECK_TYPE(F) \ 1926 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1927 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1928 1929 CHECK_TYPE(SU); 1930 CHECK_TYPE(EXT_SU); 1931 CHECK_TYPE(MU); 1932 CHECK_TYPE(TRIG); 1933 1934 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { 1935 case 0: 1936 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1937 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1938 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1939 } else { 1940 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1941 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1942 } 1943 break; 1944 case 1: 1945 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1946 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1947 break; 1948 case 2: 1949 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1950 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1951 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1952 else 1953 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1954 break; 1955 case 3: 1956 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1957 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1958 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1959 } 1960 break; 1961 default: 1962 /* nothing here */ 1963 break; 1964 } 1965 1966 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1967 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1968 eht->data[0] |= cpu_to_le32 1969 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1970 ltf) | 1971 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1972 rx_status->eht.gi)); 1973 } 1974 1975 1976 if (!phy_data->with_data) { 1977 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1978 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 1979 eht->data[7] |= 1980 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 1981 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 1982 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 1983 if (rate_n_flags & RATE_MCS_BF_MSK) 1984 eht->data[7] |= 1985 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 1986 } else { 1987 eht->user_info[0] |= 1988 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 1989 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 1990 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 1991 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 1992 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 1993 1994 if (rate_n_flags & RATE_MCS_BF_MSK) 1995 eht->user_info[0] |= 1996 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 1997 1998 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1999 eht->user_info[0] |= 2000 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 2001 2002 eht->user_info[0] |= cpu_to_le32 2003 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 2004 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, 2005 rate_n_flags)) | 2006 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 2007 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); 2008 } 2009 } 2010 2011 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 2012 struct iwl_mvm_rx_phy_data *phy_data, 2013 int queue) 2014 { 2015 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2016 struct ieee80211_radiotap_he *he = NULL; 2017 struct ieee80211_radiotap_he_mu *he_mu = NULL; 2018 u32 rate_n_flags = phy_data->rate_n_flags; 2019 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 2020 u8 ltf; 2021 static const struct ieee80211_radiotap_he known = { 2022 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 2023 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 2024 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 2025 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 2026 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 2027 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 2028 }; 2029 static const struct ieee80211_radiotap_he_mu mu_known = { 2030 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 2031 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 2032 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 2033 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 2034 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 2035 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 2036 }; 2037 u16 phy_info = phy_data->phy_info; 2038 2039 he = skb_put_data(skb, &known, sizeof(known)); 2040 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 2041 2042 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 2043 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 2044 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 2045 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 2046 } 2047 2048 /* report the AMPDU-EOF bit on single frames */ 2049 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2050 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2051 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2052 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 2053 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2054 } 2055 2056 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2057 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 2058 queue); 2059 2060 /* update aggregation data for monitor sake on default queue */ 2061 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 2062 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 2063 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2064 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 2065 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2066 } 2067 2068 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 2069 rate_n_flags & RATE_MCS_HE_106T_MSK) { 2070 rx_status->bw = RATE_INFO_BW_HE_RU; 2071 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 2072 } 2073 2074 /* actually data is filled in mac80211 */ 2075 if (he_type == RATE_MCS_HE_TYPE_SU || 2076 he_type == RATE_MCS_HE_TYPE_EXT_SU) 2077 he->data1 |= 2078 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 2079 2080 #define CHECK_TYPE(F) \ 2081 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 2082 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 2083 2084 CHECK_TYPE(SU); 2085 CHECK_TYPE(EXT_SU); 2086 CHECK_TYPE(MU); 2087 CHECK_TYPE(TRIG); 2088 2089 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 2090 2091 if (rate_n_flags & RATE_MCS_BF_MSK) 2092 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 2093 2094 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 2095 RATE_MCS_HE_GI_LTF_POS) { 2096 case 0: 2097 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2098 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2099 else 2100 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2101 if (he_type == RATE_MCS_HE_TYPE_MU) 2102 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2103 else 2104 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 2105 break; 2106 case 1: 2107 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2108 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2109 else 2110 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2111 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2112 break; 2113 case 2: 2114 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 2115 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2116 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2117 } else { 2118 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2119 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2120 } 2121 break; 2122 case 3: 2123 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2124 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2125 break; 2126 case 4: 2127 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2128 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2129 break; 2130 default: 2131 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 2132 } 2133 2134 he->data5 |= le16_encode_bits(ltf, 2135 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 2136 } 2137 2138 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 2139 struct iwl_mvm_rx_phy_data *phy_data) 2140 { 2141 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2142 struct ieee80211_radiotap_lsig *lsig; 2143 2144 switch (phy_data->info_type) { 2145 case IWL_RX_PHY_INFO_TYPE_HT: 2146 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 2147 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 2148 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 2149 case IWL_RX_PHY_INFO_TYPE_HE_SU: 2150 case IWL_RX_PHY_INFO_TYPE_HE_MU: 2151 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 2152 case IWL_RX_PHY_INFO_TYPE_HE_TB: 2153 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 2154 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 2155 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 2156 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 2157 lsig = skb_put(skb, sizeof(*lsig)); 2158 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 2159 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 2160 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 2161 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 2162 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 2163 break; 2164 default: 2165 break; 2166 } 2167 } 2168 2169 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 2170 { 2171 switch (phy_band) { 2172 case PHY_BAND_24: 2173 return NL80211_BAND_2GHZ; 2174 case PHY_BAND_5: 2175 return NL80211_BAND_5GHZ; 2176 case PHY_BAND_6: 2177 return NL80211_BAND_6GHZ; 2178 default: 2179 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 2180 return NL80211_BAND_5GHZ; 2181 } 2182 } 2183 2184 struct iwl_rx_sta_csa { 2185 bool all_sta_unblocked; 2186 struct ieee80211_vif *vif; 2187 }; 2188 2189 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 2190 { 2191 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2192 struct iwl_rx_sta_csa *rx_sta_csa = data; 2193 2194 if (mvmsta->vif != rx_sta_csa->vif) 2195 return; 2196 2197 if (mvmsta->disable_tx) 2198 rx_sta_csa->all_sta_unblocked = false; 2199 } 2200 2201 /* 2202 * Note: requires also rx_status->band to be prefilled, as well 2203 * as phy_data (apart from phy_data->info_type) 2204 */ 2205 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 2206 struct sk_buff *skb, 2207 struct iwl_mvm_rx_phy_data *phy_data, 2208 int queue) 2209 { 2210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2211 u32 rate_n_flags = phy_data->rate_n_flags; 2212 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 2213 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2214 bool is_sgi; 2215 2216 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 2217 2218 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2219 phy_data->info_type = 2220 le32_get_bits(phy_data->d1, 2221 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 2222 2223 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2224 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2225 case RATE_MCS_CHAN_WIDTH_20: 2226 break; 2227 case RATE_MCS_CHAN_WIDTH_40: 2228 rx_status->bw = RATE_INFO_BW_40; 2229 break; 2230 case RATE_MCS_CHAN_WIDTH_80: 2231 rx_status->bw = RATE_INFO_BW_80; 2232 break; 2233 case RATE_MCS_CHAN_WIDTH_160: 2234 rx_status->bw = RATE_INFO_BW_160; 2235 break; 2236 case RATE_MCS_CHAN_WIDTH_320: 2237 rx_status->bw = RATE_INFO_BW_320; 2238 break; 2239 } 2240 2241 /* must be before L-SIG data */ 2242 if (format == RATE_MCS_HE_MSK) 2243 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 2244 2245 iwl_mvm_decode_lsig(skb, phy_data); 2246 2247 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 2248 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 2249 rx_status->band); 2250 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, 2251 phy_data->energy_a, phy_data->energy_b); 2252 2253 /* using TLV format and must be after all fixed len fields */ 2254 if (format == RATE_MCS_EHT_MSK) 2255 iwl_mvm_rx_eht(mvm, skb, phy_data, queue); 2256 2257 if (unlikely(mvm->monitor_on)) 2258 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 2259 2260 is_sgi = format == RATE_MCS_HE_MSK ? 2261 iwl_he_is_sgi(rate_n_flags) : 2262 rate_n_flags & RATE_MCS_SGI_MSK; 2263 2264 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 2265 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2266 2267 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2268 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2269 2270 switch (format) { 2271 case RATE_MCS_VHT_MSK: 2272 rx_status->encoding = RX_ENC_VHT; 2273 break; 2274 case RATE_MCS_HE_MSK: 2275 rx_status->encoding = RX_ENC_HE; 2276 rx_status->he_dcm = 2277 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 2278 break; 2279 case RATE_MCS_EHT_MSK: 2280 rx_status->encoding = RX_ENC_EHT; 2281 break; 2282 } 2283 2284 switch (format) { 2285 case RATE_MCS_HT_MSK: 2286 rx_status->encoding = RX_ENC_HT; 2287 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2288 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2289 break; 2290 case RATE_MCS_VHT_MSK: 2291 case RATE_MCS_HE_MSK: 2292 case RATE_MCS_EHT_MSK: 2293 rx_status->nss = 2294 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 2295 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2296 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2297 break; 2298 default: { 2299 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2300 rx_status->band); 2301 2302 rx_status->rate_idx = rate; 2303 2304 if ((rate < 0 || rate > 0xFF)) { 2305 rx_status->rate_idx = 0; 2306 if (net_ratelimit()) 2307 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 2308 rate_n_flags, rx_status->band); 2309 } 2310 2311 break; 2312 } 2313 } 2314 } 2315 2316 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 2317 struct iwl_rx_cmd_buffer *rxb, int queue) 2318 { 2319 struct ieee80211_rx_status *rx_status; 2320 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2321 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 2322 struct ieee80211_hdr *hdr; 2323 u32 len; 2324 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2325 struct ieee80211_sta *sta = NULL; 2326 struct ieee80211_link_sta *link_sta = NULL; 2327 struct sk_buff *skb; 2328 u8 crypt_len = 0; 2329 size_t desc_size; 2330 struct iwl_mvm_rx_phy_data phy_data = {}; 2331 u32 format; 2332 2333 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2334 return; 2335 2336 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 2337 desc_size = sizeof(*desc); 2338 else 2339 desc_size = IWL_RX_DESC_SIZE_V1; 2340 2341 if (unlikely(pkt_len < desc_size)) { 2342 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 2343 return; 2344 } 2345 2346 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 2347 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 2348 phy_data.channel = desc->v3.channel; 2349 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 2350 phy_data.energy_a = desc->v3.energy_a; 2351 phy_data.energy_b = desc->v3.energy_b; 2352 2353 phy_data.d0 = desc->v3.phy_data0; 2354 phy_data.d1 = desc->v3.phy_data1; 2355 phy_data.d2 = desc->v3.phy_data2; 2356 phy_data.d3 = desc->v3.phy_data3; 2357 phy_data.eht_d4 = desc->phy_eht_data4; 2358 phy_data.d5 = desc->v3.phy_data5; 2359 } else { 2360 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 2361 phy_data.channel = desc->v1.channel; 2362 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 2363 phy_data.energy_a = desc->v1.energy_a; 2364 phy_data.energy_b = desc->v1.energy_b; 2365 2366 phy_data.d0 = desc->v1.phy_data0; 2367 phy_data.d1 = desc->v1.phy_data1; 2368 phy_data.d2 = desc->v1.phy_data2; 2369 phy_data.d3 = desc->v1.phy_data3; 2370 } 2371 2372 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 2373 REPLY_RX_MPDU_CMD, 0) < 4) { 2374 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2375 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 2376 phy_data.rate_n_flags); 2377 } 2378 2379 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2380 2381 len = le16_to_cpu(desc->mpdu_len); 2382 2383 if (unlikely(len + desc_size > pkt_len)) { 2384 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 2385 return; 2386 } 2387 2388 phy_data.with_data = true; 2389 phy_data.phy_info = le16_to_cpu(desc->phy_info); 2390 phy_data.d4 = desc->phy_data4; 2391 2392 hdr = (void *)(pkt->data + desc_size); 2393 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2394 * ieee80211_hdr pulled. 2395 */ 2396 skb = alloc_skb(128, GFP_ATOMIC); 2397 if (!skb) { 2398 IWL_ERR(mvm, "alloc_skb failed\n"); 2399 return; 2400 } 2401 2402 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 2403 /* 2404 * If the device inserted padding it means that (it thought) 2405 * the 802.11 header wasn't a multiple of 4 bytes long. In 2406 * this case, reserve two bytes at the start of the SKB to 2407 * align the payload properly in case we end up copying it. 2408 */ 2409 skb_reserve(skb, 2); 2410 } 2411 2412 rx_status = IEEE80211_SKB_RXCB(skb); 2413 2414 /* 2415 * Keep packets with CRC errors (and with overrun) for monitor mode 2416 * (otherwise the firmware discards them) but mark them as bad. 2417 */ 2418 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 2419 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 2420 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 2421 le32_to_cpu(desc->status)); 2422 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2423 } 2424 2425 /* set the preamble flag if appropriate */ 2426 if (format == RATE_MCS_CCK_MSK && 2427 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 2428 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 2429 2430 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 2431 u64 tsf_on_air_rise; 2432 2433 if (mvm->trans->trans_cfg->device_family >= 2434 IWL_DEVICE_FAMILY_AX210) 2435 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 2436 else 2437 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 2438 2439 rx_status->mactime = tsf_on_air_rise; 2440 /* TSF as indicated by the firmware is at INA time */ 2441 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 2442 } 2443 2444 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 2445 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 2446 2447 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 2448 } else { 2449 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2450 NL80211_BAND_2GHZ; 2451 } 2452 2453 /* update aggregation data for monitor sake on default queue */ 2454 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2455 bool toggle_bit; 2456 2457 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 2458 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2459 /* 2460 * Toggle is switched whenever new aggregation starts. Make 2461 * sure ampdu_reference is never 0 so we can later use it to 2462 * see if the frame was really part of an A-MPDU or not. 2463 */ 2464 if (toggle_bit != mvm->ampdu_toggle) { 2465 mvm->ampdu_ref++; 2466 if (mvm->ampdu_ref == 0) 2467 mvm->ampdu_ref++; 2468 mvm->ampdu_toggle = toggle_bit; 2469 phy_data.first_subframe = true; 2470 } 2471 rx_status->ampdu_reference = mvm->ampdu_ref; 2472 } 2473 2474 rcu_read_lock(); 2475 2476 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 2477 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 2478 2479 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 2480 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 2481 if (IS_ERR(sta)) 2482 sta = NULL; 2483 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]); 2484 2485 if (sta && sta->valid_links && link_sta) { 2486 rx_status->link_valid = 1; 2487 rx_status->link_id = link_sta->link_id; 2488 } 2489 } 2490 } else if (!is_multicast_ether_addr(hdr->addr2)) { 2491 /* 2492 * This is fine since we prevent two stations with the same 2493 * address from being added. 2494 */ 2495 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 2496 } 2497 2498 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 2499 le32_to_cpu(pkt->len_n_flags), queue, 2500 &crypt_len)) { 2501 kfree_skb(skb); 2502 goto out; 2503 } 2504 2505 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2506 2507 if (sta) { 2508 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2509 struct ieee80211_vif *tx_blocked_vif = 2510 rcu_dereference(mvm->csa_tx_blocked_vif); 2511 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 2512 IWL_RX_MPDU_REORDER_BAID_MASK) >> 2513 IWL_RX_MPDU_REORDER_BAID_SHIFT); 2514 struct iwl_fw_dbg_trigger_tlv *trig; 2515 struct ieee80211_vif *vif = mvmsta->vif; 2516 2517 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 2518 !is_multicast_ether_addr(hdr->addr1) && 2519 ieee80211_is_data(hdr->frame_control) && 2520 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 2521 schedule_delayed_work(&mvm->tcm.work, 0); 2522 2523 /* 2524 * We have tx blocked stations (with CS bit). If we heard 2525 * frames from a blocked station on a new channel we can 2526 * TX to it again. 2527 */ 2528 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 2529 struct iwl_mvm_vif *mvmvif = 2530 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 2531 struct iwl_rx_sta_csa rx_sta_csa = { 2532 .all_sta_unblocked = true, 2533 .vif = tx_blocked_vif, 2534 }; 2535 2536 if (mvmvif->csa_target_freq == rx_status->freq) 2537 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 2538 false); 2539 ieee80211_iterate_stations_atomic(mvm->hw, 2540 iwl_mvm_rx_get_sta_block_tx, 2541 &rx_sta_csa); 2542 2543 if (rx_sta_csa.all_sta_unblocked) { 2544 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 2545 /* Unblock BCAST / MCAST station */ 2546 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 2547 cancel_delayed_work(&mvm->cs_tx_unblock_dwork); 2548 } 2549 } 2550 2551 rs_update_last_rssi(mvm, mvmsta, rx_status); 2552 2553 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 2554 ieee80211_vif_to_wdev(vif), 2555 FW_DBG_TRIGGER_RSSI); 2556 2557 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 2558 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 2559 s32 rssi; 2560 2561 rssi_trig = (void *)trig->data; 2562 rssi = le32_to_cpu(rssi_trig->rssi); 2563 2564 if (rx_status->signal < rssi) 2565 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 2566 NULL); 2567 } 2568 2569 if (ieee80211_is_data(hdr->frame_control)) 2570 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 2571 2572 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 2573 kfree_skb(skb); 2574 goto out; 2575 } 2576 2577 /* 2578 * Our hardware de-aggregates AMSDUs but copies the mac header 2579 * as it to the de-aggregated MPDUs. We need to turn off the 2580 * AMSDU bit in the QoS control ourselves. 2581 * In addition, HW reverses addr3 and addr4 - reverse it back. 2582 */ 2583 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2584 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2585 u8 *qc = ieee80211_get_qos_ctl(hdr); 2586 2587 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2588 2589 if (mvm->trans->trans_cfg->device_family == 2590 IWL_DEVICE_FAMILY_9000) { 2591 iwl_mvm_flip_address(hdr->addr3); 2592 2593 if (ieee80211_has_a4(hdr->frame_control)) 2594 iwl_mvm_flip_address(hdr->addr4); 2595 } 2596 } 2597 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2598 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2599 2600 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2601 } 2602 } 2603 2604 /* management stuff on default queue */ 2605 if (!queue) { 2606 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2607 ieee80211_is_probe_resp(hdr->frame_control)) && 2608 mvm->sched_scan_pass_all == 2609 SCHED_SCAN_PASS_ALL_ENABLED)) 2610 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2611 2612 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2613 ieee80211_is_probe_resp(hdr->frame_control))) 2614 rx_status->boottime_ns = ktime_get_boottime_ns(); 2615 } 2616 2617 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2618 kfree_skb(skb); 2619 goto out; 2620 } 2621 2622 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && 2623 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && 2624 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) { 2625 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 && 2626 (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2627 !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME)) 2628 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2629 2630 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta); 2631 } 2632 out: 2633 rcu_read_unlock(); 2634 } 2635 2636 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2637 struct iwl_rx_cmd_buffer *rxb, int queue) 2638 { 2639 struct ieee80211_rx_status *rx_status; 2640 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2641 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2642 u32 rssi; 2643 u32 info_type; 2644 struct ieee80211_sta *sta = NULL; 2645 struct sk_buff *skb; 2646 struct iwl_mvm_rx_phy_data phy_data; 2647 u32 format; 2648 2649 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2650 return; 2651 2652 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2653 return; 2654 2655 rssi = le32_to_cpu(desc->rssi); 2656 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2657 phy_data.d0 = desc->phy_info[0]; 2658 phy_data.d1 = desc->phy_info[1]; 2659 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2660 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2661 phy_data.rate_n_flags = le32_to_cpu(desc->rate); 2662 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2663 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2664 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2665 phy_data.with_data = false; 2666 phy_data.rx_vec[0] = desc->rx_vec[0]; 2667 phy_data.rx_vec[1] = desc->rx_vec[1]; 2668 2669 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2670 RX_NO_DATA_NOTIF, 0) < 2) { 2671 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2672 phy_data.rate_n_flags); 2673 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2674 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2675 phy_data.rate_n_flags); 2676 } 2677 2678 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2679 2680 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2681 RX_NO_DATA_NOTIF, 0) >= 3) { 2682 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2683 sizeof(struct iwl_rx_no_data_ver_3))) 2684 /* invalid len for ver 3 */ 2685 return; 2686 phy_data.rx_vec[2] = desc->rx_vec[2]; 2687 phy_data.rx_vec[3] = desc->rx_vec[3]; 2688 } else { 2689 if (format == RATE_MCS_EHT_MSK) 2690 /* no support for EHT before version 3 API */ 2691 return; 2692 } 2693 2694 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2695 * ieee80211_hdr pulled. 2696 */ 2697 skb = alloc_skb(128, GFP_ATOMIC); 2698 if (!skb) { 2699 IWL_ERR(mvm, "alloc_skb failed\n"); 2700 return; 2701 } 2702 2703 rx_status = IEEE80211_SKB_RXCB(skb); 2704 2705 /* 0-length PSDU */ 2706 rx_status->flag |= RX_FLAG_NO_PSDU; 2707 2708 switch (info_type) { 2709 case RX_NO_DATA_INFO_TYPE_NDP: 2710 rx_status->zero_length_psdu_type = 2711 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2712 break; 2713 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2714 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2715 rx_status->zero_length_psdu_type = 2716 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2717 break; 2718 default: 2719 rx_status->zero_length_psdu_type = 2720 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2721 break; 2722 } 2723 2724 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2725 NL80211_BAND_2GHZ; 2726 2727 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2728 2729 /* no more radio tap info should be put after this point. 2730 * 2731 * We mark it as mac header, for upper layers to know where 2732 * all radio tap header ends. 2733 * 2734 * Since data doesn't move data while putting data on skb and that is 2735 * the only way we use, data + len is the next place that hdr would be put 2736 */ 2737 skb_set_mac_header(skb, skb->len); 2738 2739 /* 2740 * Override the nss from the rx_vec since the rate_n_flags has 2741 * only 2 bits for the nss which gives a max of 4 ss but there 2742 * may be up to 8 spatial streams. 2743 */ 2744 switch (format) { 2745 case RATE_MCS_VHT_MSK: 2746 rx_status->nss = 2747 le32_get_bits(desc->rx_vec[0], 2748 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2749 break; 2750 case RATE_MCS_HE_MSK: 2751 rx_status->nss = 2752 le32_get_bits(desc->rx_vec[0], 2753 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2754 break; 2755 case RATE_MCS_EHT_MSK: 2756 rx_status->nss = 2757 le32_get_bits(desc->rx_vec[2], 2758 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2759 } 2760 2761 rcu_read_lock(); 2762 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2763 rcu_read_unlock(); 2764 } 2765 2766 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2767 struct iwl_rx_cmd_buffer *rxb, int queue) 2768 { 2769 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2770 struct iwl_frame_release *release = (void *)pkt->data; 2771 2772 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2773 return; 2774 2775 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2776 le16_to_cpu(release->nssn), 2777 queue, 0); 2778 } 2779 2780 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2781 struct iwl_rx_cmd_buffer *rxb, int queue) 2782 { 2783 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2784 struct iwl_bar_frame_release *release = (void *)pkt->data; 2785 unsigned int baid = le32_get_bits(release->ba_info, 2786 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2787 unsigned int nssn = le32_get_bits(release->ba_info, 2788 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2789 unsigned int sta_id = le32_get_bits(release->sta_tid, 2790 IWL_BAR_FRAME_RELEASE_STA_MASK); 2791 unsigned int tid = le32_get_bits(release->sta_tid, 2792 IWL_BAR_FRAME_RELEASE_TID_MASK); 2793 struct iwl_mvm_baid_data *baid_data; 2794 2795 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2796 return; 2797 2798 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2799 baid >= ARRAY_SIZE(mvm->baid_map))) 2800 return; 2801 2802 rcu_read_lock(); 2803 baid_data = rcu_dereference(mvm->baid_map[baid]); 2804 if (!baid_data) { 2805 IWL_DEBUG_RX(mvm, 2806 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2807 baid); 2808 goto out; 2809 } 2810 2811 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX || 2812 !(baid_data->sta_mask & BIT(sta_id)), 2813 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", 2814 baid, baid_data->sta_mask, baid_data->tid, sta_id, 2815 tid)) 2816 goto out; 2817 2818 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2819 out: 2820 rcu_read_unlock(); 2821 } 2822