1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2022 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 13 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 14 int queue, struct ieee80211_sta *sta) 15 { 16 struct iwl_mvm_sta *mvmsta; 17 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 18 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 19 struct iwl_mvm_key_pn *ptk_pn; 20 int res; 21 u8 tid, keyidx; 22 u8 pn[IEEE80211_CCMP_PN_LEN]; 23 u8 *extiv; 24 25 /* do PN checking */ 26 27 /* multicast and non-data only arrives on default queue */ 28 if (!ieee80211_is_data(hdr->frame_control) || 29 is_multicast_ether_addr(hdr->addr1)) 30 return 0; 31 32 /* do not check PN for open AP */ 33 if (!(stats->flag & RX_FLAG_DECRYPTED)) 34 return 0; 35 36 /* 37 * avoid checking for default queue - we don't want to replicate 38 * all the logic that's necessary for checking the PN on fragmented 39 * frames, leave that to mac80211 40 */ 41 if (queue == 0) 42 return 0; 43 44 /* if we are here - this for sure is either CCMP or GCMP */ 45 if (IS_ERR_OR_NULL(sta)) { 46 IWL_DEBUG_DROP(mvm, 47 "expected hw-decrypted unicast frame for station\n"); 48 return -1; 49 } 50 51 mvmsta = iwl_mvm_sta_from_mac80211(sta); 52 53 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 54 keyidx = extiv[3] >> 6; 55 56 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 57 if (!ptk_pn) 58 return -1; 59 60 if (ieee80211_is_data_qos(hdr->frame_control)) 61 tid = ieee80211_get_tid(hdr); 62 else 63 tid = 0; 64 65 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 66 if (tid >= IWL_MAX_TID_COUNT) 67 return -1; 68 69 /* load pn */ 70 pn[0] = extiv[7]; 71 pn[1] = extiv[6]; 72 pn[2] = extiv[5]; 73 pn[3] = extiv[4]; 74 pn[4] = extiv[1]; 75 pn[5] = extiv[0]; 76 77 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 78 if (res < 0) 79 return -1; 80 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 81 return -1; 82 83 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 84 stats->flag |= RX_FLAG_PN_VALIDATED; 85 86 return 0; 87 } 88 89 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 90 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 91 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 92 struct iwl_rx_cmd_buffer *rxb) 93 { 94 struct iwl_rx_packet *pkt = rxb_addr(rxb); 95 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 96 unsigned int headlen, fraglen, pad_len = 0; 97 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 98 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 99 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 100 101 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 102 len -= 2; 103 pad_len = 2; 104 } 105 106 /* 107 * For non monitor interface strip the bytes the RADA might not have 108 * removed. As monitor interface cannot exist with other interfaces 109 * this removal is safe. 110 */ 111 if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) { 112 u32 pkt_flags = le32_to_cpu(pkt->len_n_flags); 113 114 /* 115 * If RADA was not enabled then decryption was not performed so 116 * the MIC cannot be removed. 117 */ 118 if (!(pkt_flags & FH_RSCSR_RADA_EN)) { 119 if (WARN_ON(crypt_len > mic_crc_len)) 120 return -EINVAL; 121 122 mic_crc_len -= crypt_len; 123 } 124 125 if (WARN_ON(mic_crc_len > len)) 126 return -EINVAL; 127 128 len -= mic_crc_len; 129 } 130 131 /* If frame is small enough to fit in skb->head, pull it completely. 132 * If not, only pull ieee80211_hdr (including crypto if present, and 133 * an additional 8 bytes for SNAP/ethertype, see below) so that 134 * splice() or TCP coalesce are more efficient. 135 * 136 * Since, in addition, ieee80211_data_to_8023() always pull in at 137 * least 8 bytes (possibly more for mesh) we can do the same here 138 * to save the cost of doing it later. That still doesn't pull in 139 * the actual IP header since the typical case has a SNAP header. 140 * If the latter changes (there are efforts in the standards group 141 * to do so) we should revisit this and ieee80211_data_to_8023(). 142 */ 143 headlen = (len <= skb_tailroom(skb)) ? len : 144 hdrlen + crypt_len + 8; 145 146 /* The firmware may align the packet to DWORD. 147 * The padding is inserted after the IV. 148 * After copying the header + IV skip the padding if 149 * present before copying packet data. 150 */ 151 hdrlen += crypt_len; 152 153 if (unlikely(headlen < hdrlen)) 154 return -EINVAL; 155 156 /* Since data doesn't move data while putting data on skb and that is 157 * the only way we use, data + len is the next place that hdr would be put 158 */ 159 skb_set_mac_header(skb, skb->len); 160 skb_put_data(skb, hdr, hdrlen); 161 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 162 163 /* 164 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 165 * certain cases and starts the checksum after the SNAP. Check if 166 * this is the case - it's easier to just bail out to CHECKSUM_NONE 167 * in the cases the hardware didn't handle, since it's rare to see 168 * such packets, even though the hardware did calculate the checksum 169 * in this case, just starting after the MAC header instead. 170 * 171 * Starting from Bz hardware, it calculates starting directly after 172 * the MAC header, so that matches mac80211's expectation. 173 */ 174 if (skb->ip_summed == CHECKSUM_COMPLETE && 175 mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) { 176 struct { 177 u8 hdr[6]; 178 __be16 type; 179 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 180 181 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 182 !ether_addr_equal(shdr->hdr, rfc1042_header) || 183 (shdr->type != htons(ETH_P_IP) && 184 shdr->type != htons(ETH_P_ARP) && 185 shdr->type != htons(ETH_P_IPV6) && 186 shdr->type != htons(ETH_P_8021Q) && 187 shdr->type != htons(ETH_P_PAE) && 188 shdr->type != htons(ETH_P_TDLS)))) 189 skb->ip_summed = CHECKSUM_NONE; 190 else 191 /* mac80211 assumes full CSUM including SNAP header */ 192 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 193 } 194 195 fraglen = len - headlen; 196 197 if (fraglen) { 198 int offset = (u8 *)hdr + headlen + pad_len - 199 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 200 201 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 202 fraglen, rxb->truesize); 203 } 204 205 return 0; 206 } 207 208 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 209 struct sk_buff *skb) 210 { 211 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 212 struct ieee80211_vendor_radiotap *radiotap; 213 const int size = sizeof(*radiotap) + sizeof(__le16); 214 215 if (!mvm->cur_aid) 216 return; 217 218 /* ensure alignment */ 219 BUILD_BUG_ON((size + 2) % 4); 220 221 radiotap = skb_put(skb, size + 2); 222 radiotap->align = 1; 223 /* Intel OUI */ 224 radiotap->oui[0] = 0xf6; 225 radiotap->oui[1] = 0x54; 226 radiotap->oui[2] = 0x25; 227 /* radiotap sniffer config sub-namespace */ 228 radiotap->subns = 1; 229 radiotap->present = 0x1; 230 radiotap->len = size - sizeof(*radiotap); 231 radiotap->pad = 2; 232 233 /* fill the data now */ 234 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 235 /* and clear the padding */ 236 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 237 238 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 239 } 240 241 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 242 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 243 struct napi_struct *napi, 244 struct sk_buff *skb, int queue, 245 struct ieee80211_sta *sta) 246 { 247 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 248 kfree_skb(skb); 249 else 250 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 251 } 252 253 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 254 struct ieee80211_rx_status *rx_status, 255 u32 rate_n_flags, int energy_a, 256 int energy_b) 257 { 258 int max_energy; 259 u32 rate_flags = rate_n_flags; 260 261 energy_a = energy_a ? -energy_a : S8_MIN; 262 energy_b = energy_b ? -energy_b : S8_MIN; 263 max_energy = max(energy_a, energy_b); 264 265 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 266 energy_a, energy_b, max_energy); 267 268 rx_status->signal = max_energy; 269 rx_status->chains = 270 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 271 rx_status->chain_signal[0] = energy_a; 272 rx_status->chain_signal[1] = energy_b; 273 } 274 275 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 276 struct ieee80211_hdr *hdr, 277 struct iwl_rx_mpdu_desc *desc, 278 u32 status) 279 { 280 struct iwl_mvm_sta *mvmsta; 281 struct iwl_mvm_vif *mvmvif; 282 u8 keyid; 283 struct ieee80211_key_conf *key; 284 u32 len = le16_to_cpu(desc->mpdu_len); 285 const u8 *frame = (void *)hdr; 286 287 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 288 return 0; 289 290 /* 291 * For non-beacon, we don't really care. But beacons may 292 * be filtered out, and we thus need the firmware's replay 293 * detection, otherwise beacons the firmware previously 294 * filtered could be replayed, or something like that, and 295 * it can filter a lot - though usually only if nothing has 296 * changed. 297 */ 298 if (!ieee80211_is_beacon(hdr->frame_control)) 299 return 0; 300 301 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 302 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 303 return -1; 304 305 /* good cases */ 306 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 307 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) 308 return 0; 309 310 if (!sta) 311 return -1; 312 313 mvmsta = iwl_mvm_sta_from_mac80211(sta); 314 315 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 316 317 /* 318 * both keys will have the same cipher and MIC length, use 319 * whichever one is available 320 */ 321 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 322 if (!key) { 323 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 324 if (!key) 325 return -1; 326 } 327 328 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 329 return -1; 330 331 /* get the real key ID */ 332 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 333 /* and if that's the other key, look it up */ 334 if (keyid != key->keyidx) { 335 /* 336 * shouldn't happen since firmware checked, but be safe 337 * in case the MIC length is wrong too, for example 338 */ 339 if (keyid != 6 && keyid != 7) 340 return -1; 341 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 342 if (!key) 343 return -1; 344 } 345 346 /* Report status to mac80211 */ 347 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 348 ieee80211_key_mic_failure(key); 349 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 350 ieee80211_key_replay(key); 351 352 return -1; 353 } 354 355 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 356 struct ieee80211_hdr *hdr, 357 struct ieee80211_rx_status *stats, u16 phy_info, 358 struct iwl_rx_mpdu_desc *desc, 359 u32 pkt_flags, int queue, u8 *crypt_len) 360 { 361 u32 status = le32_to_cpu(desc->status); 362 363 /* 364 * Drop UNKNOWN frames in aggregation, unless in monitor mode 365 * (where we don't have the keys). 366 * We limit this to aggregation because in TKIP this is a valid 367 * scenario, since we may not have the (correct) TTAK (phase 1 368 * key) in the firmware. 369 */ 370 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 371 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 372 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 373 return -1; 374 375 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 376 !ieee80211_has_protected(hdr->frame_control))) 377 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status); 378 379 if (!ieee80211_has_protected(hdr->frame_control) || 380 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 381 IWL_RX_MPDU_STATUS_SEC_NONE) 382 return 0; 383 384 /* TODO: handle packets encrypted with unknown alg */ 385 386 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 387 case IWL_RX_MPDU_STATUS_SEC_CCM: 388 case IWL_RX_MPDU_STATUS_SEC_GCM: 389 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 390 /* alg is CCM: check MIC only */ 391 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 392 return -1; 393 394 stats->flag |= RX_FLAG_DECRYPTED; 395 if (pkt_flags & FH_RSCSR_RADA_EN) 396 stats->flag |= RX_FLAG_MIC_STRIPPED; 397 *crypt_len = IEEE80211_CCMP_HDR_LEN; 398 return 0; 399 case IWL_RX_MPDU_STATUS_SEC_TKIP: 400 /* Don't drop the frame and decrypt it in SW */ 401 if (!fw_has_api(&mvm->fw->ucode_capa, 402 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 403 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 404 return 0; 405 406 if (mvm->trans->trans_cfg->gen2 && 407 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 408 stats->flag |= RX_FLAG_MMIC_ERROR; 409 410 *crypt_len = IEEE80211_TKIP_IV_LEN; 411 fallthrough; 412 case IWL_RX_MPDU_STATUS_SEC_WEP: 413 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 414 return -1; 415 416 stats->flag |= RX_FLAG_DECRYPTED; 417 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 418 IWL_RX_MPDU_STATUS_SEC_WEP) 419 *crypt_len = IEEE80211_WEP_IV_LEN; 420 421 if (pkt_flags & FH_RSCSR_RADA_EN) { 422 stats->flag |= RX_FLAG_ICV_STRIPPED; 423 if (mvm->trans->trans_cfg->gen2) 424 stats->flag |= RX_FLAG_MMIC_STRIPPED; 425 } 426 427 return 0; 428 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 429 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 430 return -1; 431 stats->flag |= RX_FLAG_DECRYPTED; 432 return 0; 433 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 434 break; 435 default: 436 /* 437 * Sometimes we can get frames that were not decrypted 438 * because the firmware didn't have the keys yet. This can 439 * happen after connection where we can get multicast frames 440 * before the GTK is installed. 441 * Silently drop those frames. 442 * Also drop un-decrypted frames in monitor mode. 443 */ 444 if (!is_multicast_ether_addr(hdr->addr1) && 445 !mvm->monitor_on && net_ratelimit()) 446 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 447 } 448 449 return 0; 450 } 451 452 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 453 struct ieee80211_sta *sta, 454 struct sk_buff *skb, 455 struct iwl_rx_packet *pkt) 456 { 457 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 458 459 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 460 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 461 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 462 463 skb->ip_summed = CHECKSUM_COMPLETE; 464 skb->csum = csum_unfold(~(__force __sum16)hwsum); 465 } 466 } else { 467 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 468 struct iwl_mvm_vif *mvmvif; 469 u16 flags = le16_to_cpu(desc->l3l4_flags); 470 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 471 IWL_RX_L3_PROTO_POS); 472 473 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 474 475 if (mvmvif->features & NETIF_F_RXCSUM && 476 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 477 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 478 l3_prot == IWL_RX_L3_TYPE_IPV6 || 479 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 480 skb->ip_summed = CHECKSUM_UNNECESSARY; 481 } 482 } 483 484 /* 485 * returns true if a packet is a duplicate and should be dropped. 486 * Updates AMSDU PN tracking info 487 */ 488 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 489 struct ieee80211_rx_status *rx_status, 490 struct ieee80211_hdr *hdr, 491 struct iwl_rx_mpdu_desc *desc) 492 { 493 struct iwl_mvm_sta *mvm_sta; 494 struct iwl_mvm_rxq_dup_data *dup_data; 495 u8 tid, sub_frame_idx; 496 497 if (WARN_ON(IS_ERR_OR_NULL(sta))) 498 return false; 499 500 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 501 dup_data = &mvm_sta->dup_data[queue]; 502 503 /* 504 * Drop duplicate 802.11 retransmissions 505 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 506 */ 507 if (ieee80211_is_ctl(hdr->frame_control) || 508 ieee80211_is_qos_nullfunc(hdr->frame_control) || 509 is_multicast_ether_addr(hdr->addr1)) { 510 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 511 return false; 512 } 513 514 if (ieee80211_is_data_qos(hdr->frame_control)) 515 /* frame has qos control */ 516 tid = ieee80211_get_tid(hdr); 517 else 518 tid = IWL_MAX_TID_COUNT; 519 520 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 521 sub_frame_idx = desc->amsdu_info & 522 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 523 524 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 525 dup_data->last_seq[tid] == hdr->seq_ctrl && 526 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 527 return true; 528 529 /* Allow same PN as the first subframe for following sub frames */ 530 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 531 sub_frame_idx > dup_data->last_sub_frame[tid] && 532 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 533 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 534 535 dup_data->last_seq[tid] = hdr->seq_ctrl; 536 dup_data->last_sub_frame[tid] = sub_frame_idx; 537 538 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 539 540 return false; 541 } 542 543 /* 544 * Returns true if sn2 - buffer_size < sn1 < sn2. 545 * To be used only in order to compare reorder buffer head with NSSN. 546 * We fully trust NSSN unless it is behind us due to reorder timeout. 547 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 548 */ 549 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 550 { 551 return ieee80211_sn_less(sn1, sn2) && 552 !ieee80211_sn_less(sn1, sn2 - buffer_size); 553 } 554 555 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 556 { 557 if (IWL_MVM_USE_NSSN_SYNC) { 558 struct iwl_mvm_nssn_sync_data notif = { 559 .baid = baid, 560 .nssn = nssn, 561 }; 562 563 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 564 ¬if, sizeof(notif)); 565 } 566 } 567 568 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 569 570 enum iwl_mvm_release_flags { 571 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 572 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 573 }; 574 575 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 576 struct ieee80211_sta *sta, 577 struct napi_struct *napi, 578 struct iwl_mvm_baid_data *baid_data, 579 struct iwl_mvm_reorder_buffer *reorder_buf, 580 u16 nssn, u32 flags) 581 { 582 struct iwl_mvm_reorder_buf_entry *entries = 583 &baid_data->entries[reorder_buf->queue * 584 baid_data->entries_per_queue]; 585 u16 ssn = reorder_buf->head_sn; 586 587 lockdep_assert_held(&reorder_buf->lock); 588 589 /* 590 * We keep the NSSN not too far behind, if we are sync'ing it and it 591 * is more than 2048 ahead of us, it must be behind us. Discard it. 592 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 593 * behind and this queue already processed packets. The next if 594 * would have caught cases where this queue would have processed less 595 * than 64 packets, but it may have processed more than 64 packets. 596 */ 597 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 598 ieee80211_sn_less(nssn, ssn)) 599 goto set_timer; 600 601 /* ignore nssn smaller than head sn - this can happen due to timeout */ 602 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 603 goto set_timer; 604 605 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 606 int index = ssn % reorder_buf->buf_size; 607 struct sk_buff_head *skb_list = &entries[index].e.frames; 608 struct sk_buff *skb; 609 610 ssn = ieee80211_sn_inc(ssn); 611 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 612 (ssn == 2048 || ssn == 0)) 613 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 614 615 /* 616 * Empty the list. Will have more than one frame for A-MSDU. 617 * Empty list is valid as well since nssn indicates frames were 618 * received. 619 */ 620 while ((skb = __skb_dequeue(skb_list))) { 621 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 622 reorder_buf->queue, 623 sta); 624 reorder_buf->num_stored--; 625 } 626 } 627 reorder_buf->head_sn = nssn; 628 629 set_timer: 630 if (reorder_buf->num_stored && !reorder_buf->removed) { 631 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 632 633 while (skb_queue_empty(&entries[index].e.frames)) 634 index = (index + 1) % reorder_buf->buf_size; 635 /* modify timer to match next frame's expiration time */ 636 mod_timer(&reorder_buf->reorder_timer, 637 entries[index].e.reorder_time + 1 + 638 RX_REORDER_BUF_TIMEOUT_MQ); 639 } else { 640 del_timer(&reorder_buf->reorder_timer); 641 } 642 } 643 644 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 645 { 646 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 647 struct iwl_mvm_baid_data *baid_data = 648 iwl_mvm_baid_data_from_reorder_buf(buf); 649 struct iwl_mvm_reorder_buf_entry *entries = 650 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 651 int i; 652 u16 sn = 0, index = 0; 653 bool expired = false; 654 bool cont = false; 655 656 spin_lock(&buf->lock); 657 658 if (!buf->num_stored || buf->removed) { 659 spin_unlock(&buf->lock); 660 return; 661 } 662 663 for (i = 0; i < buf->buf_size ; i++) { 664 index = (buf->head_sn + i) % buf->buf_size; 665 666 if (skb_queue_empty(&entries[index].e.frames)) { 667 /* 668 * If there is a hole and the next frame didn't expire 669 * we want to break and not advance SN 670 */ 671 cont = false; 672 continue; 673 } 674 if (!cont && 675 !time_after(jiffies, entries[index].e.reorder_time + 676 RX_REORDER_BUF_TIMEOUT_MQ)) 677 break; 678 679 expired = true; 680 /* continue until next hole after this expired frames */ 681 cont = true; 682 sn = ieee80211_sn_add(buf->head_sn, i + 1); 683 } 684 685 if (expired) { 686 struct ieee80211_sta *sta; 687 struct iwl_mvm_sta *mvmsta; 688 u8 sta_id = baid_data->sta_id; 689 690 rcu_read_lock(); 691 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 692 mvmsta = iwl_mvm_sta_from_mac80211(sta); 693 694 /* SN is set to the last expired frame + 1 */ 695 IWL_DEBUG_HT(buf->mvm, 696 "Releasing expired frames for sta %u, sn %d\n", 697 sta_id, sn); 698 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 699 sta, baid_data->tid); 700 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 701 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 702 rcu_read_unlock(); 703 } else { 704 /* 705 * If no frame expired and there are stored frames, index is now 706 * pointing to the first unexpired frame - modify timer 707 * accordingly to this frame. 708 */ 709 mod_timer(&buf->reorder_timer, 710 entries[index].e.reorder_time + 711 1 + RX_REORDER_BUF_TIMEOUT_MQ); 712 } 713 spin_unlock(&buf->lock); 714 } 715 716 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 717 struct iwl_mvm_delba_data *data) 718 { 719 struct iwl_mvm_baid_data *ba_data; 720 struct ieee80211_sta *sta; 721 struct iwl_mvm_reorder_buffer *reorder_buf; 722 u8 baid = data->baid; 723 724 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 725 return; 726 727 rcu_read_lock(); 728 729 ba_data = rcu_dereference(mvm->baid_map[baid]); 730 if (WARN_ON_ONCE(!ba_data)) 731 goto out; 732 733 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 734 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 735 goto out; 736 737 reorder_buf = &ba_data->reorder_buf[queue]; 738 739 /* release all frames that are in the reorder buffer to the stack */ 740 spin_lock_bh(&reorder_buf->lock); 741 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 742 ieee80211_sn_add(reorder_buf->head_sn, 743 reorder_buf->buf_size), 744 0); 745 spin_unlock_bh(&reorder_buf->lock); 746 del_timer_sync(&reorder_buf->reorder_timer); 747 748 out: 749 rcu_read_unlock(); 750 } 751 752 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 753 struct napi_struct *napi, 754 u8 baid, u16 nssn, int queue, 755 u32 flags) 756 { 757 struct ieee80211_sta *sta; 758 struct iwl_mvm_reorder_buffer *reorder_buf; 759 struct iwl_mvm_baid_data *ba_data; 760 761 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 762 baid, nssn); 763 764 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 765 baid >= ARRAY_SIZE(mvm->baid_map))) 766 return; 767 768 rcu_read_lock(); 769 770 ba_data = rcu_dereference(mvm->baid_map[baid]); 771 if (!ba_data) { 772 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC), 773 "BAID %d not found in map\n", baid); 774 goto out; 775 } 776 777 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 778 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 779 goto out; 780 781 reorder_buf = &ba_data->reorder_buf[queue]; 782 783 spin_lock_bh(&reorder_buf->lock); 784 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 785 reorder_buf, nssn, flags); 786 spin_unlock_bh(&reorder_buf->lock); 787 788 out: 789 rcu_read_unlock(); 790 } 791 792 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 793 struct napi_struct *napi, int queue, 794 const struct iwl_mvm_nssn_sync_data *data) 795 { 796 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 797 data->nssn, queue, 798 IWL_MVM_RELEASE_FROM_RSS_SYNC); 799 } 800 801 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 802 struct iwl_rx_cmd_buffer *rxb, int queue) 803 { 804 struct iwl_rx_packet *pkt = rxb_addr(rxb); 805 struct iwl_rxq_sync_notification *notif; 806 struct iwl_mvm_internal_rxq_notif *internal_notif; 807 u32 len = iwl_rx_packet_payload_len(pkt); 808 809 notif = (void *)pkt->data; 810 internal_notif = (void *)notif->payload; 811 812 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 813 "invalid notification size %d (%d)", 814 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 815 return; 816 len -= sizeof(*notif) + sizeof(*internal_notif); 817 818 if (internal_notif->sync && 819 mvm->queue_sync_cookie != internal_notif->cookie) { 820 WARN_ONCE(1, "Received expired RX queue sync message\n"); 821 return; 822 } 823 824 switch (internal_notif->type) { 825 case IWL_MVM_RXQ_EMPTY: 826 WARN_ONCE(len, "invalid empty notification size %d", len); 827 break; 828 case IWL_MVM_RXQ_NOTIF_DEL_BA: 829 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 830 "invalid delba notification size %d (%d)", 831 len, (int)sizeof(struct iwl_mvm_delba_data))) 832 break; 833 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 834 break; 835 case IWL_MVM_RXQ_NSSN_SYNC: 836 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 837 "invalid nssn sync notification size %d (%d)", 838 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 839 break; 840 iwl_mvm_nssn_sync(mvm, napi, queue, 841 (void *)internal_notif->data); 842 break; 843 default: 844 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 845 } 846 847 if (internal_notif->sync) { 848 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 849 "queue sync: queue %d responded a second time!\n", 850 queue); 851 if (READ_ONCE(mvm->queue_sync_state) == 0) 852 wake_up(&mvm->rx_sync_waitq); 853 } 854 } 855 856 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 857 struct ieee80211_sta *sta, int tid, 858 struct iwl_mvm_reorder_buffer *buffer, 859 u32 reorder, u32 gp2, int queue) 860 { 861 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 862 863 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 864 /* we have a new (A-)MPDU ... */ 865 866 /* 867 * reset counter to 0 if we didn't have any oldsn in 868 * the last A-MPDU (as detected by GP2 being identical) 869 */ 870 if (!buffer->consec_oldsn_prev_drop) 871 buffer->consec_oldsn_drops = 0; 872 873 /* either way, update our tracking state */ 874 buffer->consec_oldsn_ampdu_gp2 = gp2; 875 } else if (buffer->consec_oldsn_prev_drop) { 876 /* 877 * tracking state didn't change, and we had an old SN 878 * indication before - do nothing in this case, we 879 * already noted this one down and are waiting for the 880 * next A-MPDU (by GP2) 881 */ 882 return; 883 } 884 885 /* return unless this MPDU has old SN */ 886 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 887 return; 888 889 /* update state */ 890 buffer->consec_oldsn_prev_drop = 1; 891 buffer->consec_oldsn_drops++; 892 893 /* if limit is reached, send del BA and reset state */ 894 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 895 IWL_WARN(mvm, 896 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 897 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 898 sta->addr, queue, tid); 899 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 900 buffer->consec_oldsn_prev_drop = 0; 901 buffer->consec_oldsn_drops = 0; 902 } 903 } 904 905 /* 906 * Returns true if the MPDU was buffered\dropped, false if it should be passed 907 * to upper layer. 908 */ 909 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 910 struct napi_struct *napi, 911 int queue, 912 struct ieee80211_sta *sta, 913 struct sk_buff *skb, 914 struct iwl_rx_mpdu_desc *desc) 915 { 916 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 917 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 918 struct iwl_mvm_sta *mvm_sta; 919 struct iwl_mvm_baid_data *baid_data; 920 struct iwl_mvm_reorder_buffer *buffer; 921 struct sk_buff *tail; 922 u32 reorder = le32_to_cpu(desc->reorder_data); 923 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 924 bool last_subframe = 925 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 926 u8 tid = ieee80211_get_tid(hdr); 927 u8 sub_frame_idx = desc->amsdu_info & 928 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 929 struct iwl_mvm_reorder_buf_entry *entries; 930 int index; 931 u16 nssn, sn; 932 u8 baid; 933 934 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 935 IWL_RX_MPDU_REORDER_BAID_SHIFT; 936 937 /* 938 * This also covers the case of receiving a Block Ack Request 939 * outside a BA session; we'll pass it to mac80211 and that 940 * then sends a delBA action frame. 941 * This also covers pure monitor mode, in which case we won't 942 * have any BA sessions. 943 */ 944 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 945 return false; 946 947 /* no sta yet */ 948 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 949 "Got valid BAID without a valid station assigned\n")) 950 return false; 951 952 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 953 954 /* not a data packet or a bar */ 955 if (!ieee80211_is_back_req(hdr->frame_control) && 956 (!ieee80211_is_data_qos(hdr->frame_control) || 957 is_multicast_ether_addr(hdr->addr1))) 958 return false; 959 960 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 961 return false; 962 963 baid_data = rcu_dereference(mvm->baid_map[baid]); 964 if (!baid_data) { 965 IWL_DEBUG_RX(mvm, 966 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 967 baid, reorder); 968 return false; 969 } 970 971 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 972 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 973 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 974 tid)) 975 return false; 976 977 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 978 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 979 IWL_RX_MPDU_REORDER_SN_SHIFT; 980 981 buffer = &baid_data->reorder_buf[queue]; 982 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 983 984 spin_lock_bh(&buffer->lock); 985 986 if (!buffer->valid) { 987 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 988 spin_unlock_bh(&buffer->lock); 989 return false; 990 } 991 buffer->valid = true; 992 } 993 994 if (ieee80211_is_back_req(hdr->frame_control)) { 995 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 996 buffer, nssn, 0); 997 goto drop; 998 } 999 1000 /* 1001 * If there was a significant jump in the nssn - adjust. 1002 * If the SN is smaller than the NSSN it might need to first go into 1003 * the reorder buffer, in which case we just release up to it and the 1004 * rest of the function will take care of storing it and releasing up to 1005 * the nssn. 1006 * This should not happen. This queue has been lagging and it should 1007 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1008 * and update the other queues. 1009 */ 1010 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1011 buffer->buf_size) || 1012 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1013 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1014 1015 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1016 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1017 } 1018 1019 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1020 rx_status->device_timestamp, queue); 1021 1022 /* drop any oudated packets */ 1023 if (ieee80211_sn_less(sn, buffer->head_sn)) 1024 goto drop; 1025 1026 /* release immediately if allowed by nssn and no stored frames */ 1027 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1028 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1029 buffer->buf_size) && 1030 (!amsdu || last_subframe)) { 1031 /* 1032 * If we crossed the 2048 or 0 SN, notify all the 1033 * queues. This is done in order to avoid having a 1034 * head_sn that lags behind for too long. When that 1035 * happens, we can get to a situation where the head_sn 1036 * is within the interval [nssn - buf_size : nssn] 1037 * which will make us think that the nssn is a packet 1038 * that we already freed because of the reordering 1039 * buffer and we will ignore it. So maintain the 1040 * head_sn somewhat updated across all the queues: 1041 * when it crosses 0 and 2048. 1042 */ 1043 if (sn == 2048 || sn == 0) 1044 iwl_mvm_sync_nssn(mvm, baid, sn); 1045 buffer->head_sn = nssn; 1046 } 1047 /* No need to update AMSDU last SN - we are moving the head */ 1048 spin_unlock_bh(&buffer->lock); 1049 return false; 1050 } 1051 1052 /* 1053 * release immediately if there are no stored frames, and the sn is 1054 * equal to the head. 1055 * This can happen due to reorder timer, where NSSN is behind head_sn. 1056 * When we released everything, and we got the next frame in the 1057 * sequence, according to the NSSN we can't release immediately, 1058 * while technically there is no hole and we can move forward. 1059 */ 1060 if (!buffer->num_stored && sn == buffer->head_sn) { 1061 if (!amsdu || last_subframe) { 1062 if (sn == 2048 || sn == 0) 1063 iwl_mvm_sync_nssn(mvm, baid, sn); 1064 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1065 } 1066 /* No need to update AMSDU last SN - we are moving the head */ 1067 spin_unlock_bh(&buffer->lock); 1068 return false; 1069 } 1070 1071 index = sn % buffer->buf_size; 1072 1073 /* 1074 * Check if we already stored this frame 1075 * As AMSDU is either received or not as whole, logic is simple: 1076 * If we have frames in that position in the buffer and the last frame 1077 * originated from AMSDU had a different SN then it is a retransmission. 1078 * If it is the same SN then if the subframe index is incrementing it 1079 * is the same AMSDU - otherwise it is a retransmission. 1080 */ 1081 tail = skb_peek_tail(&entries[index].e.frames); 1082 if (tail && !amsdu) 1083 goto drop; 1084 else if (tail && (sn != buffer->last_amsdu || 1085 buffer->last_sub_index >= sub_frame_idx)) 1086 goto drop; 1087 1088 /* put in reorder buffer */ 1089 __skb_queue_tail(&entries[index].e.frames, skb); 1090 buffer->num_stored++; 1091 entries[index].e.reorder_time = jiffies; 1092 1093 if (amsdu) { 1094 buffer->last_amsdu = sn; 1095 buffer->last_sub_index = sub_frame_idx; 1096 } 1097 1098 /* 1099 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1100 * The reason is that NSSN advances on the first sub-frame, and may 1101 * cause the reorder buffer to advance before all the sub-frames arrive. 1102 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1103 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1104 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1105 * already ahead and it will be dropped. 1106 * If the last sub-frame is not on this queue - we will get frame 1107 * release notification with up to date NSSN. 1108 */ 1109 if (!amsdu || last_subframe) 1110 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1111 buffer, nssn, 1112 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1113 1114 spin_unlock_bh(&buffer->lock); 1115 return true; 1116 1117 drop: 1118 kfree_skb(skb); 1119 spin_unlock_bh(&buffer->lock); 1120 return true; 1121 } 1122 1123 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1124 u32 reorder_data, u8 baid) 1125 { 1126 unsigned long now = jiffies; 1127 unsigned long timeout; 1128 struct iwl_mvm_baid_data *data; 1129 1130 rcu_read_lock(); 1131 1132 data = rcu_dereference(mvm->baid_map[baid]); 1133 if (!data) { 1134 IWL_DEBUG_RX(mvm, 1135 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1136 baid, reorder_data); 1137 goto out; 1138 } 1139 1140 if (!data->timeout) 1141 goto out; 1142 1143 timeout = data->timeout; 1144 /* 1145 * Do not update last rx all the time to avoid cache bouncing 1146 * between the rx queues. 1147 * Update it every timeout. Worst case is the session will 1148 * expire after ~ 2 * timeout, which doesn't matter that much. 1149 */ 1150 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1151 /* Update is atomic */ 1152 data->last_rx = now; 1153 1154 out: 1155 rcu_read_unlock(); 1156 } 1157 1158 static void iwl_mvm_flip_address(u8 *addr) 1159 { 1160 int i; 1161 u8 mac_addr[ETH_ALEN]; 1162 1163 for (i = 0; i < ETH_ALEN; i++) 1164 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1165 ether_addr_copy(addr, mac_addr); 1166 } 1167 1168 struct iwl_mvm_rx_phy_data { 1169 enum iwl_rx_phy_info_type info_type; 1170 __le32 d0, d1, d2, d3; 1171 __le16 d4; 1172 1173 u32 rate_n_flags; 1174 u32 gp2_on_air_rise; 1175 u16 phy_info; 1176 u8 energy_a, energy_b; 1177 u8 channel; 1178 }; 1179 1180 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1181 struct iwl_mvm_rx_phy_data *phy_data, 1182 struct ieee80211_radiotap_he_mu *he_mu) 1183 { 1184 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1185 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1186 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1187 u32 rate_n_flags = phy_data->rate_n_flags; 1188 1189 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1190 he_mu->flags1 |= 1191 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1192 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1193 1194 he_mu->flags1 |= 1195 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1196 phy_data4), 1197 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1198 1199 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1200 phy_data2); 1201 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1202 phy_data3); 1203 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1204 phy_data2); 1205 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1206 phy_data3); 1207 } 1208 1209 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1210 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1211 he_mu->flags1 |= 1212 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1213 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1214 1215 he_mu->flags2 |= 1216 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1217 phy_data4), 1218 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1219 1220 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1221 phy_data2); 1222 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1223 phy_data3); 1224 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1225 phy_data2); 1226 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1227 phy_data3); 1228 } 1229 } 1230 1231 static void 1232 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1233 struct ieee80211_radiotap_he *he, 1234 struct ieee80211_radiotap_he_mu *he_mu, 1235 struct ieee80211_rx_status *rx_status) 1236 { 1237 /* 1238 * Unfortunately, we have to leave the mac80211 data 1239 * incorrect for the case that we receive an HE-MU 1240 * transmission and *don't* have the HE phy data (due 1241 * to the bits being used for TSF). This shouldn't 1242 * happen though as management frames where we need 1243 * the TSF/timers are not be transmitted in HE-MU. 1244 */ 1245 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1246 u32 rate_n_flags = phy_data->rate_n_flags; 1247 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1248 u8 offs = 0; 1249 1250 rx_status->bw = RATE_INFO_BW_HE_RU; 1251 1252 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1253 1254 switch (ru) { 1255 case 0 ... 36: 1256 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1257 offs = ru; 1258 break; 1259 case 37 ... 52: 1260 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1261 offs = ru - 37; 1262 break; 1263 case 53 ... 60: 1264 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1265 offs = ru - 53; 1266 break; 1267 case 61 ... 64: 1268 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1269 offs = ru - 61; 1270 break; 1271 case 65 ... 66: 1272 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1273 offs = ru - 65; 1274 break; 1275 case 67: 1276 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1277 break; 1278 case 68: 1279 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1280 break; 1281 } 1282 he->data2 |= le16_encode_bits(offs, 1283 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1284 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1285 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1286 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1287 he->data2 |= 1288 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1289 1290 #define CHECK_BW(bw) \ 1291 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1292 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1293 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1294 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1295 CHECK_BW(20); 1296 CHECK_BW(40); 1297 CHECK_BW(80); 1298 CHECK_BW(160); 1299 1300 if (he_mu) 1301 he_mu->flags2 |= 1302 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1303 rate_n_flags), 1304 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1305 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1306 he->data6 |= 1307 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1308 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1309 rate_n_flags), 1310 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1311 } 1312 1313 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1314 struct iwl_mvm_rx_phy_data *phy_data, 1315 struct ieee80211_radiotap_he *he, 1316 struct ieee80211_radiotap_he_mu *he_mu, 1317 struct ieee80211_rx_status *rx_status, 1318 int queue) 1319 { 1320 switch (phy_data->info_type) { 1321 case IWL_RX_PHY_INFO_TYPE_NONE: 1322 case IWL_RX_PHY_INFO_TYPE_CCK: 1323 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1324 case IWL_RX_PHY_INFO_TYPE_HT: 1325 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1326 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1327 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1328 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1329 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1330 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1331 return; 1332 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1333 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1334 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1335 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1336 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1337 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1338 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1339 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1340 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1341 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1342 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1343 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1344 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1345 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1346 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1347 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1348 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1349 fallthrough; 1350 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1351 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1352 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1353 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1354 /* HE common */ 1355 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1356 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1357 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1358 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1359 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1360 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1361 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1362 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1363 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1364 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1365 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1366 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1367 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1368 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1369 IWL_RX_PHY_DATA0_HE_UPLINK), 1370 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1371 } 1372 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1373 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1374 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1375 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1376 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1377 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1378 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1379 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1380 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1381 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1382 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1383 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1384 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1385 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1386 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1387 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1388 IWL_RX_PHY_DATA0_HE_DOPPLER), 1389 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1390 break; 1391 } 1392 1393 switch (phy_data->info_type) { 1394 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1395 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1396 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1397 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1398 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1399 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1400 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1401 break; 1402 default: 1403 /* nothing here */ 1404 break; 1405 } 1406 1407 switch (phy_data->info_type) { 1408 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1409 he_mu->flags1 |= 1410 le16_encode_bits(le16_get_bits(phy_data->d4, 1411 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1412 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1413 he_mu->flags1 |= 1414 le16_encode_bits(le16_get_bits(phy_data->d4, 1415 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1416 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1417 he_mu->flags2 |= 1418 le16_encode_bits(le16_get_bits(phy_data->d4, 1419 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1420 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1421 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1422 fallthrough; 1423 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1424 he_mu->flags2 |= 1425 le16_encode_bits(le32_get_bits(phy_data->d1, 1426 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1427 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1428 he_mu->flags2 |= 1429 le16_encode_bits(le32_get_bits(phy_data->d1, 1430 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1431 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1432 fallthrough; 1433 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1434 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1435 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1436 break; 1437 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1438 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1439 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1440 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1441 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1442 break; 1443 default: 1444 /* nothing */ 1445 break; 1446 } 1447 } 1448 1449 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1450 struct iwl_mvm_rx_phy_data *phy_data, 1451 int queue) 1452 { 1453 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1454 struct ieee80211_radiotap_he *he = NULL; 1455 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1456 u32 rate_n_flags = phy_data->rate_n_flags; 1457 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1458 u8 ltf; 1459 static const struct ieee80211_radiotap_he known = { 1460 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1461 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1462 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1463 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1464 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1465 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1466 }; 1467 static const struct ieee80211_radiotap_he_mu mu_known = { 1468 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1469 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1470 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1471 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1472 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1473 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1474 }; 1475 u16 phy_info = phy_data->phy_info; 1476 1477 he = skb_put_data(skb, &known, sizeof(known)); 1478 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1479 1480 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1481 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1482 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1483 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1484 } 1485 1486 /* report the AMPDU-EOF bit on single frames */ 1487 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1488 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1489 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1490 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1491 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1492 } 1493 1494 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1495 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1496 queue); 1497 1498 /* update aggregation data for monitor sake on default queue */ 1499 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1500 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1501 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1502 1503 /* toggle is switched whenever new aggregation starts */ 1504 if (toggle_bit != mvm->ampdu_toggle) { 1505 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1506 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1507 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1508 } 1509 } 1510 1511 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1512 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1513 rx_status->bw = RATE_INFO_BW_HE_RU; 1514 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1515 } 1516 1517 /* actually data is filled in mac80211 */ 1518 if (he_type == RATE_MCS_HE_TYPE_SU || 1519 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1520 he->data1 |= 1521 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1522 1523 #define CHECK_TYPE(F) \ 1524 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1525 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1526 1527 CHECK_TYPE(SU); 1528 CHECK_TYPE(EXT_SU); 1529 CHECK_TYPE(MU); 1530 CHECK_TYPE(TRIG); 1531 1532 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1533 1534 if (rate_n_flags & RATE_MCS_BF_MSK) 1535 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1536 1537 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1538 RATE_MCS_HE_GI_LTF_POS) { 1539 case 0: 1540 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1541 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1542 else 1543 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1544 if (he_type == RATE_MCS_HE_TYPE_MU) 1545 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1546 else 1547 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1548 break; 1549 case 1: 1550 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1551 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1552 else 1553 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1554 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1555 break; 1556 case 2: 1557 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1558 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1559 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1560 } else { 1561 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1562 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1563 } 1564 break; 1565 case 3: 1566 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1567 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1568 break; 1569 case 4: 1570 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1571 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1572 break; 1573 default: 1574 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1575 } 1576 1577 he->data5 |= le16_encode_bits(ltf, 1578 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1579 } 1580 1581 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1582 struct iwl_mvm_rx_phy_data *phy_data) 1583 { 1584 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1585 struct ieee80211_radiotap_lsig *lsig; 1586 1587 switch (phy_data->info_type) { 1588 case IWL_RX_PHY_INFO_TYPE_HT: 1589 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1590 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1591 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1592 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1593 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1594 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1595 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1596 lsig = skb_put(skb, sizeof(*lsig)); 1597 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1598 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1599 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1600 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1601 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1602 break; 1603 default: 1604 break; 1605 } 1606 } 1607 1608 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1609 { 1610 switch (phy_band) { 1611 case PHY_BAND_24: 1612 return NL80211_BAND_2GHZ; 1613 case PHY_BAND_5: 1614 return NL80211_BAND_5GHZ; 1615 case PHY_BAND_6: 1616 return NL80211_BAND_6GHZ; 1617 default: 1618 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1619 return NL80211_BAND_5GHZ; 1620 } 1621 } 1622 1623 struct iwl_rx_sta_csa { 1624 bool all_sta_unblocked; 1625 struct ieee80211_vif *vif; 1626 }; 1627 1628 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1629 { 1630 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1631 struct iwl_rx_sta_csa *rx_sta_csa = data; 1632 1633 if (mvmsta->vif != rx_sta_csa->vif) 1634 return; 1635 1636 if (mvmsta->disable_tx) 1637 rx_sta_csa->all_sta_unblocked = false; 1638 } 1639 1640 /* 1641 * Note: requires also rx_status->band to be prefilled, as well 1642 * as phy_data (apart from phy_data->info_type) 1643 */ 1644 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 1645 struct sk_buff *skb, 1646 struct iwl_mvm_rx_phy_data *phy_data, 1647 int queue) 1648 { 1649 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1650 u32 rate_n_flags = phy_data->rate_n_flags; 1651 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 1652 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1653 bool is_sgi; 1654 1655 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 1656 1657 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1658 phy_data->info_type = 1659 le32_get_bits(phy_data->d1, 1660 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1661 1662 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1663 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1664 case RATE_MCS_CHAN_WIDTH_20: 1665 break; 1666 case RATE_MCS_CHAN_WIDTH_40: 1667 rx_status->bw = RATE_INFO_BW_40; 1668 break; 1669 case RATE_MCS_CHAN_WIDTH_80: 1670 rx_status->bw = RATE_INFO_BW_80; 1671 break; 1672 case RATE_MCS_CHAN_WIDTH_160: 1673 rx_status->bw = RATE_INFO_BW_160; 1674 break; 1675 case RATE_MCS_CHAN_WIDTH_320: 1676 rx_status->bw = RATE_INFO_BW_320; 1677 break; 1678 } 1679 1680 /* must be before L-SIG data */ 1681 if (format == RATE_MCS_HE_MSK) 1682 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 1683 1684 iwl_mvm_decode_lsig(skb, phy_data); 1685 1686 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 1687 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 1688 rx_status->band); 1689 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, 1690 phy_data->energy_a, phy_data->energy_b); 1691 1692 if (unlikely(mvm->monitor_on)) 1693 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1694 1695 is_sgi = format == RATE_MCS_HE_MSK ? 1696 iwl_he_is_sgi(rate_n_flags) : 1697 rate_n_flags & RATE_MCS_SGI_MSK; 1698 1699 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 1700 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1701 1702 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1703 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1704 1705 switch (format) { 1706 case RATE_MCS_VHT_MSK: 1707 rx_status->encoding = RX_ENC_VHT; 1708 break; 1709 case RATE_MCS_HE_MSK: 1710 rx_status->encoding = RX_ENC_HE; 1711 rx_status->he_dcm = 1712 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1713 break; 1714 case RATE_MCS_EHT_MSK: 1715 rx_status->encoding = RX_ENC_EHT; 1716 break; 1717 } 1718 1719 switch (format) { 1720 case RATE_MCS_HT_MSK: 1721 rx_status->encoding = RX_ENC_HT; 1722 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 1723 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1724 break; 1725 case RATE_MCS_VHT_MSK: 1726 case RATE_MCS_HE_MSK: 1727 case RATE_MCS_EHT_MSK: 1728 rx_status->nss = 1729 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 1730 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 1731 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1732 break; 1733 default: { 1734 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 1735 rx_status->band); 1736 1737 rx_status->rate_idx = rate; 1738 1739 if ((rate < 0 || rate > 0xFF)) { 1740 rx_status->rate_idx = 0; 1741 if (net_ratelimit()) 1742 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 1743 rate_n_flags, rx_status->band); 1744 } 1745 1746 break; 1747 } 1748 } 1749 } 1750 1751 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1752 struct iwl_rx_cmd_buffer *rxb, int queue) 1753 { 1754 struct ieee80211_rx_status *rx_status; 1755 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1756 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1757 struct ieee80211_hdr *hdr; 1758 u32 len; 1759 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 1760 struct ieee80211_sta *sta = NULL; 1761 struct sk_buff *skb; 1762 u8 crypt_len = 0; 1763 size_t desc_size; 1764 struct iwl_mvm_rx_phy_data phy_data = {}; 1765 u32 format; 1766 1767 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1768 return; 1769 1770 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1771 desc_size = sizeof(*desc); 1772 else 1773 desc_size = IWL_RX_DESC_SIZE_V1; 1774 1775 if (unlikely(pkt_len < desc_size)) { 1776 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 1777 return; 1778 } 1779 1780 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1781 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1782 phy_data.channel = desc->v3.channel; 1783 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1784 phy_data.energy_a = desc->v3.energy_a; 1785 phy_data.energy_b = desc->v3.energy_b; 1786 1787 phy_data.d0 = desc->v3.phy_data0; 1788 phy_data.d1 = desc->v3.phy_data1; 1789 phy_data.d2 = desc->v3.phy_data2; 1790 phy_data.d3 = desc->v3.phy_data3; 1791 } else { 1792 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1793 phy_data.channel = desc->v1.channel; 1794 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1795 phy_data.energy_a = desc->v1.energy_a; 1796 phy_data.energy_b = desc->v1.energy_b; 1797 1798 phy_data.d0 = desc->v1.phy_data0; 1799 phy_data.d1 = desc->v1.phy_data1; 1800 phy_data.d2 = desc->v1.phy_data2; 1801 phy_data.d3 = desc->v1.phy_data3; 1802 } 1803 1804 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 1805 REPLY_RX_MPDU_CMD, 0) < 4) { 1806 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 1807 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 1808 phy_data.rate_n_flags); 1809 } 1810 1811 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1812 1813 len = le16_to_cpu(desc->mpdu_len); 1814 1815 if (unlikely(len + desc_size > pkt_len)) { 1816 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 1817 return; 1818 } 1819 1820 phy_data.phy_info = le16_to_cpu(desc->phy_info); 1821 phy_data.d4 = desc->phy_data4; 1822 1823 hdr = (void *)(pkt->data + desc_size); 1824 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1825 * ieee80211_hdr pulled. 1826 */ 1827 skb = alloc_skb(128, GFP_ATOMIC); 1828 if (!skb) { 1829 IWL_ERR(mvm, "alloc_skb failed\n"); 1830 return; 1831 } 1832 1833 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1834 /* 1835 * If the device inserted padding it means that (it thought) 1836 * the 802.11 header wasn't a multiple of 4 bytes long. In 1837 * this case, reserve two bytes at the start of the SKB to 1838 * align the payload properly in case we end up copying it. 1839 */ 1840 skb_reserve(skb, 2); 1841 } 1842 1843 rx_status = IEEE80211_SKB_RXCB(skb); 1844 1845 /* 1846 * Keep packets with CRC errors (and with overrun) for monitor mode 1847 * (otherwise the firmware discards them) but mark them as bad. 1848 */ 1849 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1850 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1851 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1852 le32_to_cpu(desc->status)); 1853 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1854 } 1855 1856 /* set the preamble flag if appropriate */ 1857 if (format == RATE_MCS_CCK_MSK && 1858 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1859 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1860 1861 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1862 u64 tsf_on_air_rise; 1863 1864 if (mvm->trans->trans_cfg->device_family >= 1865 IWL_DEVICE_FAMILY_AX210) 1866 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1867 else 1868 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1869 1870 rx_status->mactime = tsf_on_air_rise; 1871 /* TSF as indicated by the firmware is at INA time */ 1872 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1873 } 1874 1875 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1876 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1877 1878 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1879 } else { 1880 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 1881 NL80211_BAND_2GHZ; 1882 } 1883 1884 /* update aggregation data for monitor sake on default queue */ 1885 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1886 bool toggle_bit; 1887 1888 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1889 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1890 /* 1891 * Toggle is switched whenever new aggregation starts. Make 1892 * sure ampdu_reference is never 0 so we can later use it to 1893 * see if the frame was really part of an A-MPDU or not. 1894 */ 1895 if (toggle_bit != mvm->ampdu_toggle) { 1896 mvm->ampdu_ref++; 1897 if (mvm->ampdu_ref == 0) 1898 mvm->ampdu_ref++; 1899 mvm->ampdu_toggle = toggle_bit; 1900 } 1901 rx_status->ampdu_reference = mvm->ampdu_ref; 1902 } 1903 1904 rcu_read_lock(); 1905 1906 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1907 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 1908 1909 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 1910 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1911 if (IS_ERR(sta)) 1912 sta = NULL; 1913 } 1914 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1915 /* 1916 * This is fine since we prevent two stations with the same 1917 * address from being added. 1918 */ 1919 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1920 } 1921 1922 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 1923 le32_to_cpu(pkt->len_n_flags), queue, 1924 &crypt_len)) { 1925 kfree_skb(skb); 1926 goto out; 1927 } 1928 1929 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 1930 1931 if (sta) { 1932 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1933 struct ieee80211_vif *tx_blocked_vif = 1934 rcu_dereference(mvm->csa_tx_blocked_vif); 1935 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1936 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1937 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1938 struct iwl_fw_dbg_trigger_tlv *trig; 1939 struct ieee80211_vif *vif = mvmsta->vif; 1940 1941 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1942 !is_multicast_ether_addr(hdr->addr1) && 1943 ieee80211_is_data(hdr->frame_control) && 1944 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1945 schedule_delayed_work(&mvm->tcm.work, 0); 1946 1947 /* 1948 * We have tx blocked stations (with CS bit). If we heard 1949 * frames from a blocked station on a new channel we can 1950 * TX to it again. 1951 */ 1952 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1953 struct iwl_mvm_vif *mvmvif = 1954 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1955 struct iwl_rx_sta_csa rx_sta_csa = { 1956 .all_sta_unblocked = true, 1957 .vif = tx_blocked_vif, 1958 }; 1959 1960 if (mvmvif->csa_target_freq == rx_status->freq) 1961 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1962 false); 1963 ieee80211_iterate_stations_atomic(mvm->hw, 1964 iwl_mvm_rx_get_sta_block_tx, 1965 &rx_sta_csa); 1966 1967 if (rx_sta_csa.all_sta_unblocked) { 1968 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 1969 /* Unblock BCAST / MCAST station */ 1970 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 1971 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork); 1972 } 1973 } 1974 1975 rs_update_last_rssi(mvm, mvmsta, rx_status); 1976 1977 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1978 ieee80211_vif_to_wdev(vif), 1979 FW_DBG_TRIGGER_RSSI); 1980 1981 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1982 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1983 s32 rssi; 1984 1985 rssi_trig = (void *)trig->data; 1986 rssi = le32_to_cpu(rssi_trig->rssi); 1987 1988 if (rx_status->signal < rssi) 1989 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1990 NULL); 1991 } 1992 1993 if (ieee80211_is_data(hdr->frame_control)) 1994 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 1995 1996 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1997 kfree_skb(skb); 1998 goto out; 1999 } 2000 2001 /* 2002 * Our hardware de-aggregates AMSDUs but copies the mac header 2003 * as it to the de-aggregated MPDUs. We need to turn off the 2004 * AMSDU bit in the QoS control ourselves. 2005 * In addition, HW reverses addr3 and addr4 - reverse it back. 2006 */ 2007 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2008 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2009 u8 *qc = ieee80211_get_qos_ctl(hdr); 2010 2011 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2012 2013 if (mvm->trans->trans_cfg->device_family == 2014 IWL_DEVICE_FAMILY_9000) { 2015 iwl_mvm_flip_address(hdr->addr3); 2016 2017 if (ieee80211_has_a4(hdr->frame_control)) 2018 iwl_mvm_flip_address(hdr->addr4); 2019 } 2020 } 2021 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2022 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2023 2024 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2025 } 2026 } 2027 2028 /* management stuff on default queue */ 2029 if (!queue) { 2030 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2031 ieee80211_is_probe_resp(hdr->frame_control)) && 2032 mvm->sched_scan_pass_all == 2033 SCHED_SCAN_PASS_ALL_ENABLED)) 2034 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2035 2036 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2037 ieee80211_is_probe_resp(hdr->frame_control))) 2038 rx_status->boottime_ns = ktime_get_boottime_ns(); 2039 } 2040 2041 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2042 kfree_skb(skb); 2043 goto out; 2044 } 2045 2046 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 2047 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 2048 sta); 2049 out: 2050 rcu_read_unlock(); 2051 } 2052 2053 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2054 struct iwl_rx_cmd_buffer *rxb, int queue) 2055 { 2056 struct ieee80211_rx_status *rx_status; 2057 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2058 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2059 u32 rssi; 2060 u32 info_type; 2061 struct ieee80211_sta *sta = NULL; 2062 struct sk_buff *skb; 2063 struct iwl_mvm_rx_phy_data phy_data; 2064 u32 format; 2065 2066 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2067 return; 2068 2069 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2070 return; 2071 2072 rssi = le32_to_cpu(desc->rssi); 2073 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2074 phy_data.d0 = desc->phy_info[0]; 2075 phy_data.d1 = desc->phy_info[1]; 2076 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2077 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2078 phy_data.rate_n_flags = le32_to_cpu(desc->rate); 2079 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2080 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2081 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2082 2083 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2084 RX_NO_DATA_NOTIF, 0) < 2) { 2085 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2086 phy_data.rate_n_flags); 2087 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2088 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2089 phy_data.rate_n_flags); 2090 } 2091 2092 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2093 2094 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2095 RX_NO_DATA_NOTIF, 0) >= 3) { 2096 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2097 sizeof(struct iwl_rx_no_data_ver_3))) 2098 /* invalid len for ver 3 */ 2099 return; 2100 } else { 2101 if (format == RATE_MCS_EHT_MSK) 2102 /* no support for EHT before version 3 API */ 2103 return; 2104 } 2105 2106 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2107 * ieee80211_hdr pulled. 2108 */ 2109 skb = alloc_skb(128, GFP_ATOMIC); 2110 if (!skb) { 2111 IWL_ERR(mvm, "alloc_skb failed\n"); 2112 return; 2113 } 2114 2115 rx_status = IEEE80211_SKB_RXCB(skb); 2116 2117 /* 0-length PSDU */ 2118 rx_status->flag |= RX_FLAG_NO_PSDU; 2119 2120 switch (info_type) { 2121 case RX_NO_DATA_INFO_TYPE_NDP: 2122 rx_status->zero_length_psdu_type = 2123 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2124 break; 2125 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2126 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 2127 rx_status->zero_length_psdu_type = 2128 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2129 break; 2130 default: 2131 rx_status->zero_length_psdu_type = 2132 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2133 break; 2134 } 2135 2136 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2137 NL80211_BAND_2GHZ; 2138 2139 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2140 2141 /* no more radio tap info should be put after this point. 2142 * 2143 * We mark it as mac header, for upper layers to know where 2144 * all radio tap header ends. 2145 * 2146 * Since data doesn't move data while putting data on skb and that is 2147 * the only way we use, data + len is the next place that hdr would be put 2148 */ 2149 skb_set_mac_header(skb, skb->len); 2150 2151 /* 2152 * Override the nss from the rx_vec since the rate_n_flags has 2153 * only 2 bits for the nss which gives a max of 4 ss but there 2154 * may be up to 8 spatial streams. 2155 */ 2156 switch (format) { 2157 case RATE_MCS_VHT_MSK: 2158 rx_status->nss = 2159 le32_get_bits(desc->rx_vec[0], 2160 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2161 break; 2162 case RATE_MCS_HE_MSK: 2163 rx_status->nss = 2164 le32_get_bits(desc->rx_vec[0], 2165 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2166 break; 2167 case RATE_MCS_EHT_MSK: 2168 rx_status->nss = 2169 le32_get_bits(desc->rx_vec[2], 2170 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2171 } 2172 2173 rcu_read_lock(); 2174 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2175 rcu_read_unlock(); 2176 } 2177 2178 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2179 struct iwl_rx_cmd_buffer *rxb, int queue) 2180 { 2181 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2182 struct iwl_frame_release *release = (void *)pkt->data; 2183 2184 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2185 return; 2186 2187 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2188 le16_to_cpu(release->nssn), 2189 queue, 0); 2190 } 2191 2192 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2193 struct iwl_rx_cmd_buffer *rxb, int queue) 2194 { 2195 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2196 struct iwl_bar_frame_release *release = (void *)pkt->data; 2197 unsigned int baid = le32_get_bits(release->ba_info, 2198 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2199 unsigned int nssn = le32_get_bits(release->ba_info, 2200 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2201 unsigned int sta_id = le32_get_bits(release->sta_tid, 2202 IWL_BAR_FRAME_RELEASE_STA_MASK); 2203 unsigned int tid = le32_get_bits(release->sta_tid, 2204 IWL_BAR_FRAME_RELEASE_TID_MASK); 2205 struct iwl_mvm_baid_data *baid_data; 2206 2207 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2208 return; 2209 2210 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2211 baid >= ARRAY_SIZE(mvm->baid_map))) 2212 return; 2213 2214 rcu_read_lock(); 2215 baid_data = rcu_dereference(mvm->baid_map[baid]); 2216 if (!baid_data) { 2217 IWL_DEBUG_RX(mvm, 2218 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2219 baid); 2220 goto out; 2221 } 2222 2223 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2224 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2225 baid, baid_data->sta_id, baid_data->tid, sta_id, 2226 tid)) 2227 goto out; 2228 2229 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2230 out: 2231 rcu_read_unlock(); 2232 } 2233