1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 11 * Copyright(c) 2018 - 2019 Intel Corporation 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of version 2 of the GNU General Public License as 15 * published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * General Public License for more details. 21 * 22 * The full GNU General Public License is included in this distribution 23 * in the file called COPYING. 24 * 25 * Contact Information: 26 * Intel Linux Wireless <ilw@linux.intel.com> 27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 28 * 29 * BSD LICENSE 30 * 31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 34 * Copyright(c) 2018 - 2019 Intel Corporation 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name Intel Corporation nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 *****************************************************************************/ 63 #include <linux/etherdevice.h> 64 #include <linux/skbuff.h> 65 #include "iwl-trans.h" 66 #include "mvm.h" 67 #include "fw-api.h" 68 69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 70 { 71 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 72 u8 *data = skb->data; 73 74 /* Alignment concerns */ 75 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 76 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 77 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 78 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 79 80 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 81 data += sizeof(struct ieee80211_radiotap_he); 82 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 83 data += sizeof(struct ieee80211_radiotap_he_mu); 84 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 85 data += sizeof(struct ieee80211_radiotap_lsig); 86 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 87 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 88 89 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 90 } 91 92 return data; 93 } 94 95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 96 int queue, struct ieee80211_sta *sta) 97 { 98 struct iwl_mvm_sta *mvmsta; 99 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 100 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 101 struct iwl_mvm_key_pn *ptk_pn; 102 int res; 103 u8 tid, keyidx; 104 u8 pn[IEEE80211_CCMP_PN_LEN]; 105 u8 *extiv; 106 107 /* do PN checking */ 108 109 /* multicast and non-data only arrives on default queue */ 110 if (!ieee80211_is_data(hdr->frame_control) || 111 is_multicast_ether_addr(hdr->addr1)) 112 return 0; 113 114 /* do not check PN for open AP */ 115 if (!(stats->flag & RX_FLAG_DECRYPTED)) 116 return 0; 117 118 /* 119 * avoid checking for default queue - we don't want to replicate 120 * all the logic that's necessary for checking the PN on fragmented 121 * frames, leave that to mac80211 122 */ 123 if (queue == 0) 124 return 0; 125 126 /* if we are here - this for sure is either CCMP or GCMP */ 127 if (IS_ERR_OR_NULL(sta)) { 128 IWL_ERR(mvm, 129 "expected hw-decrypted unicast frame for station\n"); 130 return -1; 131 } 132 133 mvmsta = iwl_mvm_sta_from_mac80211(sta); 134 135 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 136 keyidx = extiv[3] >> 6; 137 138 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 139 if (!ptk_pn) 140 return -1; 141 142 if (ieee80211_is_data_qos(hdr->frame_control)) 143 tid = ieee80211_get_tid(hdr); 144 else 145 tid = 0; 146 147 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 148 if (tid >= IWL_MAX_TID_COUNT) 149 return -1; 150 151 /* load pn */ 152 pn[0] = extiv[7]; 153 pn[1] = extiv[6]; 154 pn[2] = extiv[5]; 155 pn[3] = extiv[4]; 156 pn[4] = extiv[1]; 157 pn[5] = extiv[0]; 158 159 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 160 if (res < 0) 161 return -1; 162 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 163 return -1; 164 165 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 166 stats->flag |= RX_FLAG_PN_VALIDATED; 167 168 return 0; 169 } 170 171 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 172 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 173 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 174 struct iwl_rx_cmd_buffer *rxb) 175 { 176 struct iwl_rx_packet *pkt = rxb_addr(rxb); 177 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 178 unsigned int headlen, fraglen, pad_len = 0; 179 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 180 181 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 182 len -= 2; 183 pad_len = 2; 184 } 185 186 /* If frame is small enough to fit in skb->head, pull it completely. 187 * If not, only pull ieee80211_hdr (including crypto if present, and 188 * an additional 8 bytes for SNAP/ethertype, see below) so that 189 * splice() or TCP coalesce are more efficient. 190 * 191 * Since, in addition, ieee80211_data_to_8023() always pull in at 192 * least 8 bytes (possibly more for mesh) we can do the same here 193 * to save the cost of doing it later. That still doesn't pull in 194 * the actual IP header since the typical case has a SNAP header. 195 * If the latter changes (there are efforts in the standards group 196 * to do so) we should revisit this and ieee80211_data_to_8023(). 197 */ 198 headlen = (len <= skb_tailroom(skb)) ? len : 199 hdrlen + crypt_len + 8; 200 201 /* The firmware may align the packet to DWORD. 202 * The padding is inserted after the IV. 203 * After copying the header + IV skip the padding if 204 * present before copying packet data. 205 */ 206 hdrlen += crypt_len; 207 208 if (WARN_ONCE(headlen < hdrlen, 209 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 210 hdrlen, len, crypt_len)) { 211 /* 212 * We warn and trace because we want to be able to see 213 * it in trace-cmd as well. 214 */ 215 IWL_DEBUG_RX(mvm, 216 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 217 hdrlen, len, crypt_len); 218 return -EINVAL; 219 } 220 221 skb_put_data(skb, hdr, hdrlen); 222 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 223 224 fraglen = len - headlen; 225 226 if (fraglen) { 227 int offset = (void *)hdr + headlen + pad_len - 228 rxb_addr(rxb) + rxb_offset(rxb); 229 230 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 231 fraglen, rxb->truesize); 232 } 233 234 return 0; 235 } 236 237 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 238 struct sk_buff *skb) 239 { 240 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 241 struct ieee80211_vendor_radiotap *radiotap; 242 const int size = sizeof(*radiotap) + sizeof(__le16); 243 244 if (!mvm->cur_aid) 245 return; 246 247 /* ensure alignment */ 248 BUILD_BUG_ON((size + 2) % 4); 249 250 radiotap = skb_put(skb, size + 2); 251 radiotap->align = 1; 252 /* Intel OUI */ 253 radiotap->oui[0] = 0xf6; 254 radiotap->oui[1] = 0x54; 255 radiotap->oui[2] = 0x25; 256 /* radiotap sniffer config sub-namespace */ 257 radiotap->subns = 1; 258 radiotap->present = 0x1; 259 radiotap->len = size - sizeof(*radiotap); 260 radiotap->pad = 2; 261 262 /* fill the data now */ 263 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 264 /* and clear the padding */ 265 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 266 267 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 268 } 269 270 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 271 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 272 struct napi_struct *napi, 273 struct sk_buff *skb, int queue, 274 struct ieee80211_sta *sta, 275 bool csi) 276 { 277 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 278 kfree_skb(skb); 279 else 280 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 281 } 282 283 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 284 struct ieee80211_rx_status *rx_status, 285 u32 rate_n_flags, int energy_a, 286 int energy_b) 287 { 288 int max_energy; 289 u32 rate_flags = rate_n_flags; 290 291 energy_a = energy_a ? -energy_a : S8_MIN; 292 energy_b = energy_b ? -energy_b : S8_MIN; 293 max_energy = max(energy_a, energy_b); 294 295 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 296 energy_a, energy_b, max_energy); 297 298 rx_status->signal = max_energy; 299 rx_status->chains = 300 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 301 rx_status->chain_signal[0] = energy_a; 302 rx_status->chain_signal[1] = energy_b; 303 rx_status->chain_signal[2] = S8_MIN; 304 } 305 306 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr, 307 struct ieee80211_rx_status *stats, u16 phy_info, 308 struct iwl_rx_mpdu_desc *desc, 309 u32 pkt_flags, int queue, u8 *crypt_len) 310 { 311 u16 status = le16_to_cpu(desc->status); 312 313 /* 314 * Drop UNKNOWN frames in aggregation, unless in monitor mode 315 * (where we don't have the keys). 316 * We limit this to aggregation because in TKIP this is a valid 317 * scenario, since we may not have the (correct) TTAK (phase 1 318 * key) in the firmware. 319 */ 320 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 321 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 322 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 323 return -1; 324 325 if (!ieee80211_has_protected(hdr->frame_control) || 326 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 327 IWL_RX_MPDU_STATUS_SEC_NONE) 328 return 0; 329 330 /* TODO: handle packets encrypted with unknown alg */ 331 332 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 333 case IWL_RX_MPDU_STATUS_SEC_CCM: 334 case IWL_RX_MPDU_STATUS_SEC_GCM: 335 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 336 /* alg is CCM: check MIC only */ 337 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 338 return -1; 339 340 stats->flag |= RX_FLAG_DECRYPTED; 341 if (pkt_flags & FH_RSCSR_RADA_EN) 342 stats->flag |= RX_FLAG_MIC_STRIPPED; 343 *crypt_len = IEEE80211_CCMP_HDR_LEN; 344 return 0; 345 case IWL_RX_MPDU_STATUS_SEC_TKIP: 346 /* Don't drop the frame and decrypt it in SW */ 347 if (!fw_has_api(&mvm->fw->ucode_capa, 348 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 349 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 350 return 0; 351 352 if (mvm->trans->trans_cfg->gen2 && 353 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 354 stats->flag |= RX_FLAG_MMIC_ERROR; 355 356 *crypt_len = IEEE80211_TKIP_IV_LEN; 357 /* fall through */ 358 case IWL_RX_MPDU_STATUS_SEC_WEP: 359 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 360 return -1; 361 362 stats->flag |= RX_FLAG_DECRYPTED; 363 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 364 IWL_RX_MPDU_STATUS_SEC_WEP) 365 *crypt_len = IEEE80211_WEP_IV_LEN; 366 367 if (pkt_flags & FH_RSCSR_RADA_EN) { 368 stats->flag |= RX_FLAG_ICV_STRIPPED; 369 if (mvm->trans->trans_cfg->gen2) 370 stats->flag |= RX_FLAG_MMIC_STRIPPED; 371 } 372 373 return 0; 374 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 375 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 376 return -1; 377 stats->flag |= RX_FLAG_DECRYPTED; 378 return 0; 379 default: 380 /* 381 * Sometimes we can get frames that were not decrypted 382 * because the firmware didn't have the keys yet. This can 383 * happen after connection where we can get multicast frames 384 * before the GTK is installed. 385 * Silently drop those frames. 386 * Also drop un-decrypted frames in monitor mode. 387 */ 388 if (!is_multicast_ether_addr(hdr->addr1) && 389 !mvm->monitor_on && net_ratelimit()) 390 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 391 } 392 393 return 0; 394 } 395 396 static void iwl_mvm_rx_csum(struct ieee80211_sta *sta, 397 struct sk_buff *skb, 398 struct iwl_rx_mpdu_desc *desc) 399 { 400 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 401 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 402 u16 flags = le16_to_cpu(desc->l3l4_flags); 403 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 404 IWL_RX_L3_PROTO_POS); 405 406 if (mvmvif->features & NETIF_F_RXCSUM && 407 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 408 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 409 l3_prot == IWL_RX_L3_TYPE_IPV6 || 410 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 411 skb->ip_summed = CHECKSUM_UNNECESSARY; 412 } 413 414 /* 415 * returns true if a packet is a duplicate and should be dropped. 416 * Updates AMSDU PN tracking info 417 */ 418 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 419 struct ieee80211_rx_status *rx_status, 420 struct ieee80211_hdr *hdr, 421 struct iwl_rx_mpdu_desc *desc) 422 { 423 struct iwl_mvm_sta *mvm_sta; 424 struct iwl_mvm_rxq_dup_data *dup_data; 425 u8 tid, sub_frame_idx; 426 427 if (WARN_ON(IS_ERR_OR_NULL(sta))) 428 return false; 429 430 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 431 dup_data = &mvm_sta->dup_data[queue]; 432 433 /* 434 * Drop duplicate 802.11 retransmissions 435 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 436 */ 437 if (ieee80211_is_ctl(hdr->frame_control) || 438 ieee80211_is_qos_nullfunc(hdr->frame_control) || 439 is_multicast_ether_addr(hdr->addr1)) { 440 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 441 return false; 442 } 443 444 if (ieee80211_is_data_qos(hdr->frame_control)) 445 /* frame has qos control */ 446 tid = ieee80211_get_tid(hdr); 447 else 448 tid = IWL_MAX_TID_COUNT; 449 450 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 451 sub_frame_idx = desc->amsdu_info & 452 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 453 454 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 455 dup_data->last_seq[tid] == hdr->seq_ctrl && 456 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 457 return true; 458 459 /* Allow same PN as the first subframe for following sub frames */ 460 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 461 sub_frame_idx > dup_data->last_sub_frame[tid] && 462 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 463 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 464 465 dup_data->last_seq[tid] = hdr->seq_ctrl; 466 dup_data->last_sub_frame[tid] = sub_frame_idx; 467 468 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 469 470 return false; 471 } 472 473 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask, 474 const u8 *data, u32 count, bool async) 475 { 476 u8 buf[sizeof(struct iwl_rxq_sync_cmd) + 477 sizeof(struct iwl_mvm_rss_sync_notif)]; 478 struct iwl_rxq_sync_cmd *cmd = (void *)buf; 479 u32 data_size = sizeof(*cmd) + count; 480 int ret; 481 482 /* 483 * size must be a multiple of DWORD 484 * Ensure we don't overflow buf 485 */ 486 if (WARN_ON(count & 3 || 487 count > sizeof(struct iwl_mvm_rss_sync_notif))) 488 return -EINVAL; 489 490 cmd->rxq_mask = cpu_to_le32(rxq_mask); 491 cmd->count = cpu_to_le32(count); 492 cmd->flags = 0; 493 memcpy(cmd->payload, data, count); 494 495 ret = iwl_mvm_send_cmd_pdu(mvm, 496 WIDE_ID(DATA_PATH_GROUP, 497 TRIGGER_RX_QUEUES_NOTIF_CMD), 498 async ? CMD_ASYNC : 0, data_size, cmd); 499 500 return ret; 501 } 502 503 /* 504 * Returns true if sn2 - buffer_size < sn1 < sn2. 505 * To be used only in order to compare reorder buffer head with NSSN. 506 * We fully trust NSSN unless it is behind us due to reorder timeout. 507 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 508 */ 509 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 510 { 511 return ieee80211_sn_less(sn1, sn2) && 512 !ieee80211_sn_less(sn1, sn2 - buffer_size); 513 } 514 515 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 516 { 517 struct iwl_mvm_rss_sync_notif notif = { 518 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC, 519 .metadata.sync = 0, 520 .nssn_sync.baid = baid, 521 .nssn_sync.nssn = nssn, 522 }; 523 524 iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if, sizeof(notif)); 525 } 526 527 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 528 529 enum iwl_mvm_release_flags { 530 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 531 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 532 }; 533 534 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 535 struct ieee80211_sta *sta, 536 struct napi_struct *napi, 537 struct iwl_mvm_baid_data *baid_data, 538 struct iwl_mvm_reorder_buffer *reorder_buf, 539 u16 nssn, u32 flags) 540 { 541 struct iwl_mvm_reorder_buf_entry *entries = 542 &baid_data->entries[reorder_buf->queue * 543 baid_data->entries_per_queue]; 544 u16 ssn = reorder_buf->head_sn; 545 546 lockdep_assert_held(&reorder_buf->lock); 547 548 /* 549 * We keep the NSSN not too far behind, if we are sync'ing it and it 550 * is more than 2048 ahead of us, it must be behind us. Discard it. 551 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 552 * behind and this queue already processed packets. The next if 553 * would have caught cases where this queue would have processed less 554 * than 64 packets, but it may have processed more than 64 packets. 555 */ 556 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 557 ieee80211_sn_less(nssn, ssn)) 558 goto set_timer; 559 560 /* ignore nssn smaller than head sn - this can happen due to timeout */ 561 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 562 goto set_timer; 563 564 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 565 int index = ssn % reorder_buf->buf_size; 566 struct sk_buff_head *skb_list = &entries[index].e.frames; 567 struct sk_buff *skb; 568 569 ssn = ieee80211_sn_inc(ssn); 570 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 571 (ssn == 2048 || ssn == 0)) 572 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 573 574 /* 575 * Empty the list. Will have more than one frame for A-MSDU. 576 * Empty list is valid as well since nssn indicates frames were 577 * received. 578 */ 579 while ((skb = __skb_dequeue(skb_list))) { 580 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 581 reorder_buf->queue, 582 sta, false); 583 reorder_buf->num_stored--; 584 } 585 } 586 reorder_buf->head_sn = nssn; 587 588 set_timer: 589 if (reorder_buf->num_stored && !reorder_buf->removed) { 590 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 591 592 while (skb_queue_empty(&entries[index].e.frames)) 593 index = (index + 1) % reorder_buf->buf_size; 594 /* modify timer to match next frame's expiration time */ 595 mod_timer(&reorder_buf->reorder_timer, 596 entries[index].e.reorder_time + 1 + 597 RX_REORDER_BUF_TIMEOUT_MQ); 598 } else { 599 del_timer(&reorder_buf->reorder_timer); 600 } 601 } 602 603 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 604 { 605 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 606 struct iwl_mvm_baid_data *baid_data = 607 iwl_mvm_baid_data_from_reorder_buf(buf); 608 struct iwl_mvm_reorder_buf_entry *entries = 609 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 610 int i; 611 u16 sn = 0, index = 0; 612 bool expired = false; 613 bool cont = false; 614 615 spin_lock(&buf->lock); 616 617 if (!buf->num_stored || buf->removed) { 618 spin_unlock(&buf->lock); 619 return; 620 } 621 622 for (i = 0; i < buf->buf_size ; i++) { 623 index = (buf->head_sn + i) % buf->buf_size; 624 625 if (skb_queue_empty(&entries[index].e.frames)) { 626 /* 627 * If there is a hole and the next frame didn't expire 628 * we want to break and not advance SN 629 */ 630 cont = false; 631 continue; 632 } 633 if (!cont && 634 !time_after(jiffies, entries[index].e.reorder_time + 635 RX_REORDER_BUF_TIMEOUT_MQ)) 636 break; 637 638 expired = true; 639 /* continue until next hole after this expired frames */ 640 cont = true; 641 sn = ieee80211_sn_add(buf->head_sn, i + 1); 642 } 643 644 if (expired) { 645 struct ieee80211_sta *sta; 646 struct iwl_mvm_sta *mvmsta; 647 u8 sta_id = baid_data->sta_id; 648 649 rcu_read_lock(); 650 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 651 mvmsta = iwl_mvm_sta_from_mac80211(sta); 652 653 /* SN is set to the last expired frame + 1 */ 654 IWL_DEBUG_HT(buf->mvm, 655 "Releasing expired frames for sta %u, sn %d\n", 656 sta_id, sn); 657 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 658 sta, baid_data->tid); 659 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 660 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 661 rcu_read_unlock(); 662 } else { 663 /* 664 * If no frame expired and there are stored frames, index is now 665 * pointing to the first unexpired frame - modify timer 666 * accordingly to this frame. 667 */ 668 mod_timer(&buf->reorder_timer, 669 entries[index].e.reorder_time + 670 1 + RX_REORDER_BUF_TIMEOUT_MQ); 671 } 672 spin_unlock(&buf->lock); 673 } 674 675 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 676 struct iwl_mvm_delba_data *data) 677 { 678 struct iwl_mvm_baid_data *ba_data; 679 struct ieee80211_sta *sta; 680 struct iwl_mvm_reorder_buffer *reorder_buf; 681 u8 baid = data->baid; 682 683 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 684 return; 685 686 rcu_read_lock(); 687 688 ba_data = rcu_dereference(mvm->baid_map[baid]); 689 if (WARN_ON_ONCE(!ba_data)) 690 goto out; 691 692 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 693 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 694 goto out; 695 696 reorder_buf = &ba_data->reorder_buf[queue]; 697 698 /* release all frames that are in the reorder buffer to the stack */ 699 spin_lock_bh(&reorder_buf->lock); 700 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 701 ieee80211_sn_add(reorder_buf->head_sn, 702 reorder_buf->buf_size), 703 0); 704 spin_unlock_bh(&reorder_buf->lock); 705 del_timer_sync(&reorder_buf->reorder_timer); 706 707 out: 708 rcu_read_unlock(); 709 } 710 711 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 712 struct napi_struct *napi, 713 u8 baid, u16 nssn, int queue, 714 u32 flags) 715 { 716 struct ieee80211_sta *sta; 717 struct iwl_mvm_reorder_buffer *reorder_buf; 718 struct iwl_mvm_baid_data *ba_data; 719 720 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 721 baid, nssn); 722 723 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 724 baid >= ARRAY_SIZE(mvm->baid_map))) 725 return; 726 727 rcu_read_lock(); 728 729 ba_data = rcu_dereference(mvm->baid_map[baid]); 730 if (WARN_ON_ONCE(!ba_data)) 731 goto out; 732 733 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 734 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 735 goto out; 736 737 reorder_buf = &ba_data->reorder_buf[queue]; 738 739 spin_lock_bh(&reorder_buf->lock); 740 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 741 reorder_buf, nssn, flags); 742 spin_unlock_bh(&reorder_buf->lock); 743 744 out: 745 rcu_read_unlock(); 746 } 747 748 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 749 struct napi_struct *napi, int queue, 750 const struct iwl_mvm_nssn_sync_data *data) 751 { 752 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 753 data->nssn, queue, 754 IWL_MVM_RELEASE_FROM_RSS_SYNC); 755 } 756 757 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 758 struct iwl_rx_cmd_buffer *rxb, int queue) 759 { 760 struct iwl_rx_packet *pkt = rxb_addr(rxb); 761 struct iwl_rxq_sync_notification *notif; 762 struct iwl_mvm_internal_rxq_notif *internal_notif; 763 764 notif = (void *)pkt->data; 765 internal_notif = (void *)notif->payload; 766 767 if (internal_notif->sync && 768 mvm->queue_sync_cookie != internal_notif->cookie) { 769 WARN_ONCE(1, "Received expired RX queue sync message\n"); 770 return; 771 } 772 773 switch (internal_notif->type) { 774 case IWL_MVM_RXQ_EMPTY: 775 break; 776 case IWL_MVM_RXQ_NOTIF_DEL_BA: 777 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 778 break; 779 case IWL_MVM_RXQ_NSSN_SYNC: 780 iwl_mvm_nssn_sync(mvm, napi, queue, 781 (void *)internal_notif->data); 782 break; 783 default: 784 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 785 } 786 787 if (internal_notif->sync && 788 !atomic_dec_return(&mvm->queue_sync_counter)) 789 wake_up(&mvm->rx_sync_waitq); 790 } 791 792 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 793 struct ieee80211_sta *sta, int tid, 794 struct iwl_mvm_reorder_buffer *buffer, 795 u32 reorder, u32 gp2, int queue) 796 { 797 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 798 799 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 800 /* we have a new (A-)MPDU ... */ 801 802 /* 803 * reset counter to 0 if we didn't have any oldsn in 804 * the last A-MPDU (as detected by GP2 being identical) 805 */ 806 if (!buffer->consec_oldsn_prev_drop) 807 buffer->consec_oldsn_drops = 0; 808 809 /* either way, update our tracking state */ 810 buffer->consec_oldsn_ampdu_gp2 = gp2; 811 } else if (buffer->consec_oldsn_prev_drop) { 812 /* 813 * tracking state didn't change, and we had an old SN 814 * indication before - do nothing in this case, we 815 * already noted this one down and are waiting for the 816 * next A-MPDU (by GP2) 817 */ 818 return; 819 } 820 821 /* return unless this MPDU has old SN */ 822 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 823 return; 824 825 /* update state */ 826 buffer->consec_oldsn_prev_drop = 1; 827 buffer->consec_oldsn_drops++; 828 829 /* if limit is reached, send del BA and reset state */ 830 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 831 IWL_WARN(mvm, 832 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 833 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 834 sta->addr, queue, tid); 835 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 836 buffer->consec_oldsn_prev_drop = 0; 837 buffer->consec_oldsn_drops = 0; 838 } 839 } 840 841 /* 842 * Returns true if the MPDU was buffered\dropped, false if it should be passed 843 * to upper layer. 844 */ 845 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 846 struct napi_struct *napi, 847 int queue, 848 struct ieee80211_sta *sta, 849 struct sk_buff *skb, 850 struct iwl_rx_mpdu_desc *desc) 851 { 852 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 853 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 854 struct iwl_mvm_sta *mvm_sta; 855 struct iwl_mvm_baid_data *baid_data; 856 struct iwl_mvm_reorder_buffer *buffer; 857 struct sk_buff *tail; 858 u32 reorder = le32_to_cpu(desc->reorder_data); 859 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 860 bool last_subframe = 861 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 862 u8 tid = ieee80211_get_tid(hdr); 863 u8 sub_frame_idx = desc->amsdu_info & 864 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 865 struct iwl_mvm_reorder_buf_entry *entries; 866 int index; 867 u16 nssn, sn; 868 u8 baid; 869 870 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 871 IWL_RX_MPDU_REORDER_BAID_SHIFT; 872 873 /* 874 * This also covers the case of receiving a Block Ack Request 875 * outside a BA session; we'll pass it to mac80211 and that 876 * then sends a delBA action frame. 877 * This also covers pure monitor mode, in which case we won't 878 * have any BA sessions. 879 */ 880 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 881 return false; 882 883 /* no sta yet */ 884 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 885 "Got valid BAID without a valid station assigned\n")) 886 return false; 887 888 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 889 890 /* not a data packet or a bar */ 891 if (!ieee80211_is_back_req(hdr->frame_control) && 892 (!ieee80211_is_data_qos(hdr->frame_control) || 893 is_multicast_ether_addr(hdr->addr1))) 894 return false; 895 896 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 897 return false; 898 899 baid_data = rcu_dereference(mvm->baid_map[baid]); 900 if (!baid_data) { 901 IWL_DEBUG_RX(mvm, 902 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 903 baid, reorder); 904 return false; 905 } 906 907 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 908 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 909 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 910 tid)) 911 return false; 912 913 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 914 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 915 IWL_RX_MPDU_REORDER_SN_SHIFT; 916 917 buffer = &baid_data->reorder_buf[queue]; 918 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 919 920 spin_lock_bh(&buffer->lock); 921 922 if (!buffer->valid) { 923 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 924 spin_unlock_bh(&buffer->lock); 925 return false; 926 } 927 buffer->valid = true; 928 } 929 930 if (ieee80211_is_back_req(hdr->frame_control)) { 931 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 932 buffer, nssn, 0); 933 goto drop; 934 } 935 936 /* 937 * If there was a significant jump in the nssn - adjust. 938 * If the SN is smaller than the NSSN it might need to first go into 939 * the reorder buffer, in which case we just release up to it and the 940 * rest of the function will take care of storing it and releasing up to 941 * the nssn. 942 * This should not happen. This queue has been lagging and it should 943 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 944 * and update the other queues. 945 */ 946 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 947 buffer->buf_size) || 948 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 949 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 950 951 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 952 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 953 } 954 955 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 956 rx_status->device_timestamp, queue); 957 958 /* drop any oudated packets */ 959 if (ieee80211_sn_less(sn, buffer->head_sn)) 960 goto drop; 961 962 /* release immediately if allowed by nssn and no stored frames */ 963 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 964 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 965 buffer->buf_size) && 966 (!amsdu || last_subframe)) { 967 /* 968 * If we crossed the 2048 or 0 SN, notify all the 969 * queues. This is done in order to avoid having a 970 * head_sn that lags behind for too long. When that 971 * happens, we can get to a situation where the head_sn 972 * is within the interval [nssn - buf_size : nssn] 973 * which will make us think that the nssn is a packet 974 * that we already freed because of the reordering 975 * buffer and we will ignore it. So maintain the 976 * head_sn somewhat updated across all the queues: 977 * when it crosses 0 and 2048. 978 */ 979 if (sn == 2048 || sn == 0) 980 iwl_mvm_sync_nssn(mvm, baid, sn); 981 buffer->head_sn = nssn; 982 } 983 /* No need to update AMSDU last SN - we are moving the head */ 984 spin_unlock_bh(&buffer->lock); 985 return false; 986 } 987 988 /* 989 * release immediately if there are no stored frames, and the sn is 990 * equal to the head. 991 * This can happen due to reorder timer, where NSSN is behind head_sn. 992 * When we released everything, and we got the next frame in the 993 * sequence, according to the NSSN we can't release immediately, 994 * while technically there is no hole and we can move forward. 995 */ 996 if (!buffer->num_stored && sn == buffer->head_sn) { 997 if (!amsdu || last_subframe) { 998 if (sn == 2048 || sn == 0) 999 iwl_mvm_sync_nssn(mvm, baid, sn); 1000 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1001 } 1002 /* No need to update AMSDU last SN - we are moving the head */ 1003 spin_unlock_bh(&buffer->lock); 1004 return false; 1005 } 1006 1007 index = sn % buffer->buf_size; 1008 1009 /* 1010 * Check if we already stored this frame 1011 * As AMSDU is either received or not as whole, logic is simple: 1012 * If we have frames in that position in the buffer and the last frame 1013 * originated from AMSDU had a different SN then it is a retransmission. 1014 * If it is the same SN then if the subframe index is incrementing it 1015 * is the same AMSDU - otherwise it is a retransmission. 1016 */ 1017 tail = skb_peek_tail(&entries[index].e.frames); 1018 if (tail && !amsdu) 1019 goto drop; 1020 else if (tail && (sn != buffer->last_amsdu || 1021 buffer->last_sub_index >= sub_frame_idx)) 1022 goto drop; 1023 1024 /* put in reorder buffer */ 1025 __skb_queue_tail(&entries[index].e.frames, skb); 1026 buffer->num_stored++; 1027 entries[index].e.reorder_time = jiffies; 1028 1029 if (amsdu) { 1030 buffer->last_amsdu = sn; 1031 buffer->last_sub_index = sub_frame_idx; 1032 } 1033 1034 /* 1035 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1036 * The reason is that NSSN advances on the first sub-frame, and may 1037 * cause the reorder buffer to advance before all the sub-frames arrive. 1038 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1039 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1040 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1041 * already ahead and it will be dropped. 1042 * If the last sub-frame is not on this queue - we will get frame 1043 * release notification with up to date NSSN. 1044 */ 1045 if (!amsdu || last_subframe) 1046 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1047 buffer, nssn, 1048 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1049 1050 spin_unlock_bh(&buffer->lock); 1051 return true; 1052 1053 drop: 1054 kfree_skb(skb); 1055 spin_unlock_bh(&buffer->lock); 1056 return true; 1057 } 1058 1059 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1060 u32 reorder_data, u8 baid) 1061 { 1062 unsigned long now = jiffies; 1063 unsigned long timeout; 1064 struct iwl_mvm_baid_data *data; 1065 1066 rcu_read_lock(); 1067 1068 data = rcu_dereference(mvm->baid_map[baid]); 1069 if (!data) { 1070 IWL_DEBUG_RX(mvm, 1071 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1072 baid, reorder_data); 1073 goto out; 1074 } 1075 1076 if (!data->timeout) 1077 goto out; 1078 1079 timeout = data->timeout; 1080 /* 1081 * Do not update last rx all the time to avoid cache bouncing 1082 * between the rx queues. 1083 * Update it every timeout. Worst case is the session will 1084 * expire after ~ 2 * timeout, which doesn't matter that much. 1085 */ 1086 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1087 /* Update is atomic */ 1088 data->last_rx = now; 1089 1090 out: 1091 rcu_read_unlock(); 1092 } 1093 1094 static void iwl_mvm_flip_address(u8 *addr) 1095 { 1096 int i; 1097 u8 mac_addr[ETH_ALEN]; 1098 1099 for (i = 0; i < ETH_ALEN; i++) 1100 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1101 ether_addr_copy(addr, mac_addr); 1102 } 1103 1104 struct iwl_mvm_rx_phy_data { 1105 enum iwl_rx_phy_info_type info_type; 1106 __le32 d0, d1, d2, d3; 1107 __le16 d4; 1108 }; 1109 1110 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1111 struct iwl_mvm_rx_phy_data *phy_data, 1112 u32 rate_n_flags, 1113 struct ieee80211_radiotap_he_mu *he_mu) 1114 { 1115 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1116 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1117 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1118 1119 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1120 he_mu->flags1 |= 1121 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1122 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1123 1124 he_mu->flags1 |= 1125 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1126 phy_data4), 1127 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1128 1129 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1130 phy_data2); 1131 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1132 phy_data3); 1133 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1134 phy_data2); 1135 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1136 phy_data3); 1137 } 1138 1139 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1140 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { 1141 he_mu->flags1 |= 1142 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1143 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1144 1145 he_mu->flags2 |= 1146 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1147 phy_data4), 1148 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1149 1150 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1151 phy_data2); 1152 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1153 phy_data3); 1154 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1155 phy_data2); 1156 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1157 phy_data3); 1158 } 1159 } 1160 1161 static void 1162 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1163 u32 rate_n_flags, 1164 struct ieee80211_radiotap_he *he, 1165 struct ieee80211_radiotap_he_mu *he_mu, 1166 struct ieee80211_rx_status *rx_status) 1167 { 1168 /* 1169 * Unfortunately, we have to leave the mac80211 data 1170 * incorrect for the case that we receive an HE-MU 1171 * transmission and *don't* have the HE phy data (due 1172 * to the bits being used for TSF). This shouldn't 1173 * happen though as management frames where we need 1174 * the TSF/timers are not be transmitted in HE-MU. 1175 */ 1176 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1177 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1178 u8 offs = 0; 1179 1180 rx_status->bw = RATE_INFO_BW_HE_RU; 1181 1182 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1183 1184 switch (ru) { 1185 case 0 ... 36: 1186 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1187 offs = ru; 1188 break; 1189 case 37 ... 52: 1190 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1191 offs = ru - 37; 1192 break; 1193 case 53 ... 60: 1194 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1195 offs = ru - 53; 1196 break; 1197 case 61 ... 64: 1198 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1199 offs = ru - 61; 1200 break; 1201 case 65 ... 66: 1202 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1203 offs = ru - 65; 1204 break; 1205 case 67: 1206 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1207 break; 1208 case 68: 1209 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1210 break; 1211 } 1212 he->data2 |= le16_encode_bits(offs, 1213 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1214 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1215 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1216 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1217 he->data2 |= 1218 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1219 1220 #define CHECK_BW(bw) \ 1221 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1222 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1223 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1224 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1225 CHECK_BW(20); 1226 CHECK_BW(40); 1227 CHECK_BW(80); 1228 CHECK_BW(160); 1229 1230 if (he_mu) 1231 he_mu->flags2 |= 1232 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1233 rate_n_flags), 1234 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1235 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 1236 he->data6 |= 1237 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1238 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1239 rate_n_flags), 1240 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1241 } 1242 1243 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1244 struct iwl_mvm_rx_phy_data *phy_data, 1245 struct ieee80211_radiotap_he *he, 1246 struct ieee80211_radiotap_he_mu *he_mu, 1247 struct ieee80211_rx_status *rx_status, 1248 u32 rate_n_flags, int queue) 1249 { 1250 switch (phy_data->info_type) { 1251 case IWL_RX_PHY_INFO_TYPE_NONE: 1252 case IWL_RX_PHY_INFO_TYPE_CCK: 1253 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1254 case IWL_RX_PHY_INFO_TYPE_HT: 1255 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1256 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1257 return; 1258 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1259 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1260 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1261 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1262 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1263 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1264 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1265 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1266 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1267 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1268 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1269 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1270 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1271 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1272 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1273 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1274 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1275 /* fall through */ 1276 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1277 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1278 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1279 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1280 /* HE common */ 1281 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1282 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1283 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1284 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1285 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1286 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1287 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1288 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1289 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1290 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1291 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1292 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1293 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1294 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1295 IWL_RX_PHY_DATA0_HE_UPLINK), 1296 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1297 } 1298 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1299 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1300 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1301 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1302 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1303 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1304 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1305 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1306 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1307 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1308 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1309 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1310 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1311 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1312 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1313 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1314 IWL_RX_PHY_DATA0_HE_DOPPLER), 1315 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1316 break; 1317 } 1318 1319 switch (phy_data->info_type) { 1320 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1321 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1322 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1323 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1324 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1325 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1326 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1327 break; 1328 default: 1329 /* nothing here */ 1330 break; 1331 } 1332 1333 switch (phy_data->info_type) { 1334 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1335 he_mu->flags1 |= 1336 le16_encode_bits(le16_get_bits(phy_data->d4, 1337 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1338 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1339 he_mu->flags1 |= 1340 le16_encode_bits(le16_get_bits(phy_data->d4, 1341 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1342 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1343 he_mu->flags2 |= 1344 le16_encode_bits(le16_get_bits(phy_data->d4, 1345 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1346 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1347 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1348 /* fall through */ 1349 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1350 he_mu->flags2 |= 1351 le16_encode_bits(le32_get_bits(phy_data->d1, 1352 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1353 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1354 he_mu->flags2 |= 1355 le16_encode_bits(le32_get_bits(phy_data->d1, 1356 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1357 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1358 /* fall through */ 1359 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1360 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1361 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1362 he, he_mu, rx_status); 1363 break; 1364 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1365 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1366 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1367 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1368 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1369 break; 1370 default: 1371 /* nothing */ 1372 break; 1373 } 1374 } 1375 1376 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1377 struct iwl_mvm_rx_phy_data *phy_data, 1378 u32 rate_n_flags, u16 phy_info, int queue) 1379 { 1380 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1381 struct ieee80211_radiotap_he *he = NULL; 1382 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1383 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1384 u8 stbc, ltf; 1385 static const struct ieee80211_radiotap_he known = { 1386 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1387 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1388 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1389 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1390 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1391 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1392 }; 1393 static const struct ieee80211_radiotap_he_mu mu_known = { 1394 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1395 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1396 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1397 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1398 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1399 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1400 }; 1401 1402 he = skb_put_data(skb, &known, sizeof(known)); 1403 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1404 1405 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1406 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1407 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1408 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1409 } 1410 1411 /* report the AMPDU-EOF bit on single frames */ 1412 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1413 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1414 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1415 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1416 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1417 } 1418 1419 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1420 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1421 rate_n_flags, queue); 1422 1423 /* update aggregation data for monitor sake on default queue */ 1424 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1425 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1426 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1427 1428 /* toggle is switched whenever new aggregation starts */ 1429 if (toggle_bit != mvm->ampdu_toggle) { 1430 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1431 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1432 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1433 } 1434 } 1435 1436 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1437 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1438 rx_status->bw = RATE_INFO_BW_HE_RU; 1439 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1440 } 1441 1442 /* actually data is filled in mac80211 */ 1443 if (he_type == RATE_MCS_HE_TYPE_SU || 1444 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1445 he->data1 |= 1446 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1447 1448 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1449 rx_status->nss = 1450 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1451 RATE_VHT_MCS_NSS_POS) + 1; 1452 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1453 rx_status->encoding = RX_ENC_HE; 1454 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1455 if (rate_n_flags & RATE_MCS_BF_MSK) 1456 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1457 1458 rx_status->he_dcm = 1459 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1460 1461 #define CHECK_TYPE(F) \ 1462 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1463 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1464 1465 CHECK_TYPE(SU); 1466 CHECK_TYPE(EXT_SU); 1467 CHECK_TYPE(MU); 1468 CHECK_TYPE(TRIG); 1469 1470 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1471 1472 if (rate_n_flags & RATE_MCS_BF_MSK) 1473 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1474 1475 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1476 RATE_MCS_HE_GI_LTF_POS) { 1477 case 0: 1478 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1479 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1480 else 1481 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1482 if (he_type == RATE_MCS_HE_TYPE_MU) 1483 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1484 else 1485 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1486 break; 1487 case 1: 1488 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1489 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1490 else 1491 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1492 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1493 break; 1494 case 2: 1495 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1496 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1497 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1498 } else { 1499 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1500 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1501 } 1502 break; 1503 case 3: 1504 if ((he_type == RATE_MCS_HE_TYPE_SU || 1505 he_type == RATE_MCS_HE_TYPE_EXT_SU) && 1506 rate_n_flags & RATE_MCS_SGI_MSK) 1507 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1508 else 1509 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1510 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1511 break; 1512 } 1513 1514 he->data5 |= le16_encode_bits(ltf, 1515 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1516 } 1517 1518 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1519 struct iwl_mvm_rx_phy_data *phy_data) 1520 { 1521 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1522 struct ieee80211_radiotap_lsig *lsig; 1523 1524 switch (phy_data->info_type) { 1525 case IWL_RX_PHY_INFO_TYPE_HT: 1526 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1527 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1528 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1529 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1530 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1531 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1532 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1533 lsig = skb_put(skb, sizeof(*lsig)); 1534 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1535 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1536 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1537 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1538 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1539 break; 1540 default: 1541 break; 1542 } 1543 } 1544 1545 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1546 struct iwl_rx_cmd_buffer *rxb, int queue) 1547 { 1548 struct ieee80211_rx_status *rx_status; 1549 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1550 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1551 struct ieee80211_hdr *hdr; 1552 u32 len = le16_to_cpu(desc->mpdu_len); 1553 u32 rate_n_flags, gp2_on_air_rise; 1554 u16 phy_info = le16_to_cpu(desc->phy_info); 1555 struct ieee80211_sta *sta = NULL; 1556 struct sk_buff *skb; 1557 u8 crypt_len = 0, channel, energy_a, energy_b; 1558 size_t desc_size; 1559 struct iwl_mvm_rx_phy_data phy_data = { 1560 .d4 = desc->phy_data4, 1561 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1562 }; 1563 bool csi = false; 1564 1565 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1566 return; 1567 1568 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560) { 1569 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1570 channel = desc->v3.channel; 1571 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1572 energy_a = desc->v3.energy_a; 1573 energy_b = desc->v3.energy_b; 1574 desc_size = sizeof(*desc); 1575 1576 phy_data.d0 = desc->v3.phy_data0; 1577 phy_data.d1 = desc->v3.phy_data1; 1578 phy_data.d2 = desc->v3.phy_data2; 1579 phy_data.d3 = desc->v3.phy_data3; 1580 } else { 1581 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1582 channel = desc->v1.channel; 1583 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1584 energy_a = desc->v1.energy_a; 1585 energy_b = desc->v1.energy_b; 1586 desc_size = IWL_RX_DESC_SIZE_V1; 1587 1588 phy_data.d0 = desc->v1.phy_data0; 1589 phy_data.d1 = desc->v1.phy_data1; 1590 phy_data.d2 = desc->v1.phy_data2; 1591 phy_data.d3 = desc->v1.phy_data3; 1592 } 1593 1594 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1595 phy_data.info_type = 1596 le32_get_bits(phy_data.d1, 1597 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1598 1599 hdr = (void *)(pkt->data + desc_size); 1600 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1601 * ieee80211_hdr pulled. 1602 */ 1603 skb = alloc_skb(128, GFP_ATOMIC); 1604 if (!skb) { 1605 IWL_ERR(mvm, "alloc_skb failed\n"); 1606 return; 1607 } 1608 1609 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1610 /* 1611 * If the device inserted padding it means that (it thought) 1612 * the 802.11 header wasn't a multiple of 4 bytes long. In 1613 * this case, reserve two bytes at the start of the SKB to 1614 * align the payload properly in case we end up copying it. 1615 */ 1616 skb_reserve(skb, 2); 1617 } 1618 1619 rx_status = IEEE80211_SKB_RXCB(skb); 1620 1621 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1622 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1623 case RATE_MCS_CHAN_WIDTH_20: 1624 break; 1625 case RATE_MCS_CHAN_WIDTH_40: 1626 rx_status->bw = RATE_INFO_BW_40; 1627 break; 1628 case RATE_MCS_CHAN_WIDTH_80: 1629 rx_status->bw = RATE_INFO_BW_80; 1630 break; 1631 case RATE_MCS_CHAN_WIDTH_160: 1632 rx_status->bw = RATE_INFO_BW_160; 1633 break; 1634 } 1635 1636 if (rate_n_flags & RATE_MCS_HE_MSK) 1637 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1638 phy_info, queue); 1639 1640 iwl_mvm_decode_lsig(skb, &phy_data); 1641 1642 rx_status = IEEE80211_SKB_RXCB(skb); 1643 1644 if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc, 1645 le32_to_cpu(pkt->len_n_flags), queue, 1646 &crypt_len)) { 1647 kfree_skb(skb); 1648 return; 1649 } 1650 1651 /* 1652 * Keep packets with CRC errors (and with overrun) for monitor mode 1653 * (otherwise the firmware discards them) but mark them as bad. 1654 */ 1655 if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) || 1656 !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1657 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1658 le16_to_cpu(desc->status)); 1659 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1660 } 1661 /* set the preamble flag if appropriate */ 1662 if (rate_n_flags & RATE_MCS_CCK_MSK && 1663 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1664 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1665 1666 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1667 u64 tsf_on_air_rise; 1668 1669 if (mvm->trans->trans_cfg->device_family >= 1670 IWL_DEVICE_FAMILY_22560) 1671 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1672 else 1673 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1674 1675 rx_status->mactime = tsf_on_air_rise; 1676 /* TSF as indicated by the firmware is at INA time */ 1677 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1678 } 1679 1680 rx_status->device_timestamp = gp2_on_air_rise; 1681 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1682 NL80211_BAND_2GHZ; 1683 rx_status->freq = ieee80211_channel_to_frequency(channel, 1684 rx_status->band); 1685 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1686 energy_b); 1687 1688 /* update aggregation data for monitor sake on default queue */ 1689 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1690 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1691 1692 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1693 /* 1694 * Toggle is switched whenever new aggregation starts. Make 1695 * sure ampdu_reference is never 0 so we can later use it to 1696 * see if the frame was really part of an A-MPDU or not. 1697 */ 1698 if (toggle_bit != mvm->ampdu_toggle) { 1699 mvm->ampdu_ref++; 1700 if (mvm->ampdu_ref == 0) 1701 mvm->ampdu_ref++; 1702 mvm->ampdu_toggle = toggle_bit; 1703 } 1704 rx_status->ampdu_reference = mvm->ampdu_ref; 1705 } 1706 1707 if (unlikely(mvm->monitor_on)) 1708 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1709 1710 rcu_read_lock(); 1711 1712 if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1713 u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK; 1714 1715 if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) { 1716 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1717 if (IS_ERR(sta)) 1718 sta = NULL; 1719 } 1720 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1721 /* 1722 * This is fine since we prevent two stations with the same 1723 * address from being added. 1724 */ 1725 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1726 } 1727 1728 if (sta) { 1729 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1730 struct ieee80211_vif *tx_blocked_vif = 1731 rcu_dereference(mvm->csa_tx_blocked_vif); 1732 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1733 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1734 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1735 struct iwl_fw_dbg_trigger_tlv *trig; 1736 struct ieee80211_vif *vif = mvmsta->vif; 1737 1738 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1739 !is_multicast_ether_addr(hdr->addr1) && 1740 ieee80211_is_data(hdr->frame_control) && 1741 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1742 schedule_delayed_work(&mvm->tcm.work, 0); 1743 1744 /* 1745 * We have tx blocked stations (with CS bit). If we heard 1746 * frames from a blocked station on a new channel we can 1747 * TX to it again. 1748 */ 1749 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1750 struct iwl_mvm_vif *mvmvif = 1751 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1752 1753 if (mvmvif->csa_target_freq == rx_status->freq) 1754 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1755 false); 1756 } 1757 1758 rs_update_last_rssi(mvm, mvmsta, rx_status); 1759 1760 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1761 ieee80211_vif_to_wdev(vif), 1762 FW_DBG_TRIGGER_RSSI); 1763 1764 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1765 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1766 s32 rssi; 1767 1768 rssi_trig = (void *)trig->data; 1769 rssi = le32_to_cpu(rssi_trig->rssi); 1770 1771 if (rx_status->signal < rssi) 1772 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1773 NULL); 1774 } 1775 1776 if (ieee80211_is_data(hdr->frame_control)) 1777 iwl_mvm_rx_csum(sta, skb, desc); 1778 1779 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1780 kfree_skb(skb); 1781 goto out; 1782 } 1783 1784 /* 1785 * Our hardware de-aggregates AMSDUs but copies the mac header 1786 * as it to the de-aggregated MPDUs. We need to turn off the 1787 * AMSDU bit in the QoS control ourselves. 1788 * In addition, HW reverses addr3 and addr4 - reverse it back. 1789 */ 1790 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1791 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1792 u8 *qc = ieee80211_get_qos_ctl(hdr); 1793 1794 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1795 1796 if (mvm->trans->trans_cfg->device_family == 1797 IWL_DEVICE_FAMILY_9000) { 1798 iwl_mvm_flip_address(hdr->addr3); 1799 1800 if (ieee80211_has_a4(hdr->frame_control)) 1801 iwl_mvm_flip_address(hdr->addr4); 1802 } 1803 } 1804 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1805 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1806 1807 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1808 } 1809 } 1810 1811 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1812 rate_n_flags & RATE_MCS_SGI_MSK) 1813 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1814 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1815 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1816 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1817 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1818 if (rate_n_flags & RATE_MCS_HT_MSK) { 1819 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1820 RATE_MCS_STBC_POS; 1821 rx_status->encoding = RX_ENC_HT; 1822 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1823 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1824 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 1825 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1826 RATE_MCS_STBC_POS; 1827 rx_status->nss = 1828 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1829 RATE_VHT_MCS_NSS_POS) + 1; 1830 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1831 rx_status->encoding = RX_ENC_VHT; 1832 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1833 if (rate_n_flags & RATE_MCS_BF_MSK) 1834 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1835 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) { 1836 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 1837 rx_status->band); 1838 1839 if (WARN(rate < 0 || rate > 0xFF, 1840 "Invalid rate flags 0x%x, band %d,\n", 1841 rate_n_flags, rx_status->band)) { 1842 kfree_skb(skb); 1843 goto out; 1844 } 1845 rx_status->rate_idx = rate; 1846 } 1847 1848 /* management stuff on default queue */ 1849 if (!queue) { 1850 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 1851 ieee80211_is_probe_resp(hdr->frame_control)) && 1852 mvm->sched_scan_pass_all == 1853 SCHED_SCAN_PASS_ALL_ENABLED)) 1854 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 1855 1856 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 1857 ieee80211_is_probe_resp(hdr->frame_control))) 1858 rx_status->boottime_ns = ktime_get_boottime_ns(); 1859 } 1860 1861 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 1862 kfree_skb(skb); 1863 goto out; 1864 } 1865 1866 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 1867 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 1868 sta, csi); 1869 out: 1870 rcu_read_unlock(); 1871 } 1872 1873 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 1874 struct iwl_rx_cmd_buffer *rxb, int queue) 1875 { 1876 struct ieee80211_rx_status *rx_status; 1877 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1878 struct iwl_rx_no_data *desc = (void *)pkt->data; 1879 u32 rate_n_flags = le32_to_cpu(desc->rate); 1880 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 1881 u32 rssi = le32_to_cpu(desc->rssi); 1882 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 1883 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 1884 struct ieee80211_sta *sta = NULL; 1885 struct sk_buff *skb; 1886 u8 channel, energy_a, energy_b; 1887 struct iwl_mvm_rx_phy_data phy_data = { 1888 .d0 = desc->phy_info[0], 1889 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1890 }; 1891 1892 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1893 return; 1894 1895 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 1896 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 1897 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 1898 1899 phy_data.info_type = 1900 le32_get_bits(desc->phy_info[1], 1901 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1902 1903 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1904 * ieee80211_hdr pulled. 1905 */ 1906 skb = alloc_skb(128, GFP_ATOMIC); 1907 if (!skb) { 1908 IWL_ERR(mvm, "alloc_skb failed\n"); 1909 return; 1910 } 1911 1912 rx_status = IEEE80211_SKB_RXCB(skb); 1913 1914 /* 0-length PSDU */ 1915 rx_status->flag |= RX_FLAG_NO_PSDU; 1916 1917 switch (info_type) { 1918 case RX_NO_DATA_INFO_TYPE_NDP: 1919 rx_status->zero_length_psdu_type = 1920 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 1921 break; 1922 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 1923 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 1924 rx_status->zero_length_psdu_type = 1925 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 1926 break; 1927 default: 1928 rx_status->zero_length_psdu_type = 1929 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 1930 break; 1931 } 1932 1933 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1934 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1935 case RATE_MCS_CHAN_WIDTH_20: 1936 break; 1937 case RATE_MCS_CHAN_WIDTH_40: 1938 rx_status->bw = RATE_INFO_BW_40; 1939 break; 1940 case RATE_MCS_CHAN_WIDTH_80: 1941 rx_status->bw = RATE_INFO_BW_80; 1942 break; 1943 case RATE_MCS_CHAN_WIDTH_160: 1944 rx_status->bw = RATE_INFO_BW_160; 1945 break; 1946 } 1947 1948 if (rate_n_flags & RATE_MCS_HE_MSK) 1949 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1950 phy_info, queue); 1951 1952 iwl_mvm_decode_lsig(skb, &phy_data); 1953 1954 rx_status->device_timestamp = gp2_on_air_rise; 1955 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1956 NL80211_BAND_2GHZ; 1957 rx_status->freq = ieee80211_channel_to_frequency(channel, 1958 rx_status->band); 1959 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1960 energy_b); 1961 1962 rcu_read_lock(); 1963 1964 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1965 rate_n_flags & RATE_MCS_SGI_MSK) 1966 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1967 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1968 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1969 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1970 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1971 if (rate_n_flags & RATE_MCS_HT_MSK) { 1972 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1973 RATE_MCS_STBC_POS; 1974 rx_status->encoding = RX_ENC_HT; 1975 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1976 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1977 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 1978 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1979 RATE_MCS_STBC_POS; 1980 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1981 rx_status->encoding = RX_ENC_VHT; 1982 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1983 if (rate_n_flags & RATE_MCS_BF_MSK) 1984 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1985 /* 1986 * take the nss from the rx_vec since the rate_n_flags has 1987 * only 2 bits for the nss which gives a max of 4 ss but 1988 * there may be up to 8 spatial streams 1989 */ 1990 rx_status->nss = 1991 le32_get_bits(desc->rx_vec[0], 1992 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 1993 } else if (rate_n_flags & RATE_MCS_HE_MSK) { 1994 rx_status->nss = 1995 le32_get_bits(desc->rx_vec[0], 1996 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 1997 } else { 1998 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 1999 rx_status->band); 2000 2001 if (WARN(rate < 0 || rate > 0xFF, 2002 "Invalid rate flags 0x%x, band %d,\n", 2003 rate_n_flags, rx_status->band)) { 2004 kfree_skb(skb); 2005 goto out; 2006 } 2007 rx_status->rate_idx = rate; 2008 } 2009 2010 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2011 out: 2012 rcu_read_unlock(); 2013 } 2014 2015 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2016 struct iwl_rx_cmd_buffer *rxb, int queue) 2017 { 2018 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2019 struct iwl_frame_release *release = (void *)pkt->data; 2020 2021 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2022 le16_to_cpu(release->nssn), 2023 queue, 0); 2024 } 2025 2026 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2027 struct iwl_rx_cmd_buffer *rxb, int queue) 2028 { 2029 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2030 struct iwl_bar_frame_release *release = (void *)pkt->data; 2031 unsigned int baid = le32_get_bits(release->ba_info, 2032 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2033 unsigned int nssn = le32_get_bits(release->ba_info, 2034 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2035 unsigned int sta_id = le32_get_bits(release->sta_tid, 2036 IWL_BAR_FRAME_RELEASE_STA_MASK); 2037 unsigned int tid = le32_get_bits(release->sta_tid, 2038 IWL_BAR_FRAME_RELEASE_TID_MASK); 2039 struct iwl_mvm_baid_data *baid_data; 2040 2041 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2042 baid >= ARRAY_SIZE(mvm->baid_map))) 2043 return; 2044 2045 rcu_read_lock(); 2046 baid_data = rcu_dereference(mvm->baid_map[baid]); 2047 if (!baid_data) { 2048 IWL_DEBUG_RX(mvm, 2049 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2050 baid); 2051 goto out; 2052 } 2053 2054 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2055 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2056 baid, baid_data->sta_id, baid_data->tid, sta_id, 2057 tid)) 2058 goto out; 2059 2060 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2061 out: 2062 rcu_read_unlock(); 2063 } 2064