1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2020 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 13 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 14 { 15 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 16 u8 *data = skb->data; 17 18 /* Alignment concerns */ 19 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 20 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 21 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 22 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 23 24 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 25 data += sizeof(struct ieee80211_radiotap_he); 26 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 27 data += sizeof(struct ieee80211_radiotap_he_mu); 28 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 29 data += sizeof(struct ieee80211_radiotap_lsig); 30 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 31 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 32 33 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 34 } 35 36 return data; 37 } 38 39 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 40 int queue, struct ieee80211_sta *sta) 41 { 42 struct iwl_mvm_sta *mvmsta; 43 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 44 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 45 struct iwl_mvm_key_pn *ptk_pn; 46 int res; 47 u8 tid, keyidx; 48 u8 pn[IEEE80211_CCMP_PN_LEN]; 49 u8 *extiv; 50 51 /* do PN checking */ 52 53 /* multicast and non-data only arrives on default queue */ 54 if (!ieee80211_is_data(hdr->frame_control) || 55 is_multicast_ether_addr(hdr->addr1)) 56 return 0; 57 58 /* do not check PN for open AP */ 59 if (!(stats->flag & RX_FLAG_DECRYPTED)) 60 return 0; 61 62 /* 63 * avoid checking for default queue - we don't want to replicate 64 * all the logic that's necessary for checking the PN on fragmented 65 * frames, leave that to mac80211 66 */ 67 if (queue == 0) 68 return 0; 69 70 /* if we are here - this for sure is either CCMP or GCMP */ 71 if (IS_ERR_OR_NULL(sta)) { 72 IWL_ERR(mvm, 73 "expected hw-decrypted unicast frame for station\n"); 74 return -1; 75 } 76 77 mvmsta = iwl_mvm_sta_from_mac80211(sta); 78 79 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 80 keyidx = extiv[3] >> 6; 81 82 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 83 if (!ptk_pn) 84 return -1; 85 86 if (ieee80211_is_data_qos(hdr->frame_control)) 87 tid = ieee80211_get_tid(hdr); 88 else 89 tid = 0; 90 91 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 92 if (tid >= IWL_MAX_TID_COUNT) 93 return -1; 94 95 /* load pn */ 96 pn[0] = extiv[7]; 97 pn[1] = extiv[6]; 98 pn[2] = extiv[5]; 99 pn[3] = extiv[4]; 100 pn[4] = extiv[1]; 101 pn[5] = extiv[0]; 102 103 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 104 if (res < 0) 105 return -1; 106 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 107 return -1; 108 109 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 110 stats->flag |= RX_FLAG_PN_VALIDATED; 111 112 return 0; 113 } 114 115 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 116 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 117 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 118 struct iwl_rx_cmd_buffer *rxb) 119 { 120 struct iwl_rx_packet *pkt = rxb_addr(rxb); 121 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 122 unsigned int headlen, fraglen, pad_len = 0; 123 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 124 125 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 126 len -= 2; 127 pad_len = 2; 128 } 129 130 /* If frame is small enough to fit in skb->head, pull it completely. 131 * If not, only pull ieee80211_hdr (including crypto if present, and 132 * an additional 8 bytes for SNAP/ethertype, see below) so that 133 * splice() or TCP coalesce are more efficient. 134 * 135 * Since, in addition, ieee80211_data_to_8023() always pull in at 136 * least 8 bytes (possibly more for mesh) we can do the same here 137 * to save the cost of doing it later. That still doesn't pull in 138 * the actual IP header since the typical case has a SNAP header. 139 * If the latter changes (there are efforts in the standards group 140 * to do so) we should revisit this and ieee80211_data_to_8023(). 141 */ 142 headlen = (len <= skb_tailroom(skb)) ? len : 143 hdrlen + crypt_len + 8; 144 145 /* The firmware may align the packet to DWORD. 146 * The padding is inserted after the IV. 147 * After copying the header + IV skip the padding if 148 * present before copying packet data. 149 */ 150 hdrlen += crypt_len; 151 152 if (WARN_ONCE(headlen < hdrlen, 153 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 154 hdrlen, len, crypt_len)) { 155 /* 156 * We warn and trace because we want to be able to see 157 * it in trace-cmd as well. 158 */ 159 IWL_DEBUG_RX(mvm, 160 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 161 hdrlen, len, crypt_len); 162 return -EINVAL; 163 } 164 165 skb_put_data(skb, hdr, hdrlen); 166 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 167 168 /* 169 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 170 * certain cases and starts the checksum after the SNAP. Check if 171 * this is the case - it's easier to just bail out to CHECKSUM_NONE 172 * in the cases the hardware didn't handle, since it's rare to see 173 * such packets, even though the hardware did calculate the checksum 174 * in this case, just starting after the MAC header instead. 175 */ 176 if (skb->ip_summed == CHECKSUM_COMPLETE) { 177 struct { 178 u8 hdr[6]; 179 __be16 type; 180 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 181 182 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 183 !ether_addr_equal(shdr->hdr, rfc1042_header) || 184 (shdr->type != htons(ETH_P_IP) && 185 shdr->type != htons(ETH_P_ARP) && 186 shdr->type != htons(ETH_P_IPV6) && 187 shdr->type != htons(ETH_P_8021Q) && 188 shdr->type != htons(ETH_P_PAE) && 189 shdr->type != htons(ETH_P_TDLS)))) 190 skb->ip_summed = CHECKSUM_NONE; 191 } 192 193 fraglen = len - headlen; 194 195 if (fraglen) { 196 int offset = (void *)hdr + headlen + pad_len - 197 rxb_addr(rxb) + rxb_offset(rxb); 198 199 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 200 fraglen, rxb->truesize); 201 } 202 203 return 0; 204 } 205 206 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 207 struct sk_buff *skb) 208 { 209 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 210 struct ieee80211_vendor_radiotap *radiotap; 211 const int size = sizeof(*radiotap) + sizeof(__le16); 212 213 if (!mvm->cur_aid) 214 return; 215 216 /* ensure alignment */ 217 BUILD_BUG_ON((size + 2) % 4); 218 219 radiotap = skb_put(skb, size + 2); 220 radiotap->align = 1; 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->subns = 1; 227 radiotap->present = 0x1; 228 radiotap->len = size - sizeof(*radiotap); 229 radiotap->pad = 2; 230 231 /* fill the data now */ 232 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 233 /* and clear the padding */ 234 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 235 236 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 237 } 238 239 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 240 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 241 struct napi_struct *napi, 242 struct sk_buff *skb, int queue, 243 struct ieee80211_sta *sta, 244 bool csi) 245 { 246 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 247 kfree_skb(skb); 248 else 249 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 250 } 251 252 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 253 struct ieee80211_rx_status *rx_status, 254 u32 rate_n_flags, int energy_a, 255 int energy_b) 256 { 257 int max_energy; 258 u32 rate_flags = rate_n_flags; 259 260 energy_a = energy_a ? -energy_a : S8_MIN; 261 energy_b = energy_b ? -energy_b : S8_MIN; 262 max_energy = max(energy_a, energy_b); 263 264 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 265 energy_a, energy_b, max_energy); 266 267 rx_status->signal = max_energy; 268 rx_status->chains = 269 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 270 rx_status->chain_signal[0] = energy_a; 271 rx_status->chain_signal[1] = energy_b; 272 rx_status->chain_signal[2] = S8_MIN; 273 } 274 275 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 276 struct ieee80211_hdr *hdr, 277 struct iwl_rx_mpdu_desc *desc, 278 u32 status) 279 { 280 struct iwl_mvm_sta *mvmsta; 281 struct iwl_mvm_vif *mvmvif; 282 u8 fwkeyid = u32_get_bits(status, IWL_RX_MPDU_STATUS_KEY); 283 u8 keyid; 284 struct ieee80211_key_conf *key; 285 u32 len = le16_to_cpu(desc->mpdu_len); 286 const u8 *frame = (void *)hdr; 287 288 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 289 return 0; 290 291 /* 292 * For non-beacon, we don't really care. But beacons may 293 * be filtered out, and we thus need the firmware's replay 294 * detection, otherwise beacons the firmware previously 295 * filtered could be replayed, or something like that, and 296 * it can filter a lot - though usually only if nothing has 297 * changed. 298 */ 299 if (!ieee80211_is_beacon(hdr->frame_control)) 300 return 0; 301 302 /* good cases */ 303 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 304 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) 305 return 0; 306 307 if (!sta) 308 return -1; 309 310 mvmsta = iwl_mvm_sta_from_mac80211(sta); 311 312 /* what? */ 313 if (fwkeyid != 6 && fwkeyid != 7) 314 return -1; 315 316 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 317 318 key = rcu_dereference(mvmvif->bcn_prot.keys[fwkeyid - 6]); 319 if (!key) 320 return -1; 321 322 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 323 return -1; 324 325 /* 326 * See if the key ID matches - if not this may be due to a 327 * switch and the firmware may erroneously report !MIC_OK. 328 */ 329 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 330 if (keyid != fwkeyid) 331 return -1; 332 333 /* Report status to mac80211 */ 334 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 335 ieee80211_key_mic_failure(key); 336 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 337 ieee80211_key_replay(key); 338 339 return -1; 340 } 341 342 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 343 struct ieee80211_hdr *hdr, 344 struct ieee80211_rx_status *stats, u16 phy_info, 345 struct iwl_rx_mpdu_desc *desc, 346 u32 pkt_flags, int queue, u8 *crypt_len) 347 { 348 u32 status = le32_to_cpu(desc->status); 349 350 /* 351 * Drop UNKNOWN frames in aggregation, unless in monitor mode 352 * (where we don't have the keys). 353 * We limit this to aggregation because in TKIP this is a valid 354 * scenario, since we may not have the (correct) TTAK (phase 1 355 * key) in the firmware. 356 */ 357 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 358 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 359 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 360 return -1; 361 362 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 363 !ieee80211_has_protected(hdr->frame_control))) 364 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status); 365 366 if (!ieee80211_has_protected(hdr->frame_control) || 367 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 368 IWL_RX_MPDU_STATUS_SEC_NONE) 369 return 0; 370 371 /* TODO: handle packets encrypted with unknown alg */ 372 373 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 374 case IWL_RX_MPDU_STATUS_SEC_CCM: 375 case IWL_RX_MPDU_STATUS_SEC_GCM: 376 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 377 /* alg is CCM: check MIC only */ 378 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 379 return -1; 380 381 stats->flag |= RX_FLAG_DECRYPTED; 382 if (pkt_flags & FH_RSCSR_RADA_EN) 383 stats->flag |= RX_FLAG_MIC_STRIPPED; 384 *crypt_len = IEEE80211_CCMP_HDR_LEN; 385 return 0; 386 case IWL_RX_MPDU_STATUS_SEC_TKIP: 387 /* Don't drop the frame and decrypt it in SW */ 388 if (!fw_has_api(&mvm->fw->ucode_capa, 389 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 390 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 391 return 0; 392 393 if (mvm->trans->trans_cfg->gen2 && 394 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 395 stats->flag |= RX_FLAG_MMIC_ERROR; 396 397 *crypt_len = IEEE80211_TKIP_IV_LEN; 398 fallthrough; 399 case IWL_RX_MPDU_STATUS_SEC_WEP: 400 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 401 return -1; 402 403 stats->flag |= RX_FLAG_DECRYPTED; 404 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 405 IWL_RX_MPDU_STATUS_SEC_WEP) 406 *crypt_len = IEEE80211_WEP_IV_LEN; 407 408 if (pkt_flags & FH_RSCSR_RADA_EN) { 409 stats->flag |= RX_FLAG_ICV_STRIPPED; 410 if (mvm->trans->trans_cfg->gen2) 411 stats->flag |= RX_FLAG_MMIC_STRIPPED; 412 } 413 414 return 0; 415 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 416 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 417 return -1; 418 stats->flag |= RX_FLAG_DECRYPTED; 419 return 0; 420 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 421 break; 422 default: 423 /* 424 * Sometimes we can get frames that were not decrypted 425 * because the firmware didn't have the keys yet. This can 426 * happen after connection where we can get multicast frames 427 * before the GTK is installed. 428 * Silently drop those frames. 429 * Also drop un-decrypted frames in monitor mode. 430 */ 431 if (!is_multicast_ether_addr(hdr->addr1) && 432 !mvm->monitor_on && net_ratelimit()) 433 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 434 } 435 436 return 0; 437 } 438 439 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 440 struct ieee80211_sta *sta, 441 struct sk_buff *skb, 442 struct iwl_rx_packet *pkt) 443 { 444 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 445 446 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 447 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 448 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 449 450 skb->ip_summed = CHECKSUM_COMPLETE; 451 skb->csum = csum_unfold(~(__force __sum16)hwsum); 452 } 453 } else { 454 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 455 struct iwl_mvm_vif *mvmvif; 456 u16 flags = le16_to_cpu(desc->l3l4_flags); 457 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 458 IWL_RX_L3_PROTO_POS); 459 460 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 461 462 if (mvmvif->features & NETIF_F_RXCSUM && 463 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 464 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 465 l3_prot == IWL_RX_L3_TYPE_IPV6 || 466 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 467 skb->ip_summed = CHECKSUM_UNNECESSARY; 468 } 469 } 470 471 /* 472 * returns true if a packet is a duplicate and should be dropped. 473 * Updates AMSDU PN tracking info 474 */ 475 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 476 struct ieee80211_rx_status *rx_status, 477 struct ieee80211_hdr *hdr, 478 struct iwl_rx_mpdu_desc *desc) 479 { 480 struct iwl_mvm_sta *mvm_sta; 481 struct iwl_mvm_rxq_dup_data *dup_data; 482 u8 tid, sub_frame_idx; 483 484 if (WARN_ON(IS_ERR_OR_NULL(sta))) 485 return false; 486 487 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 488 dup_data = &mvm_sta->dup_data[queue]; 489 490 /* 491 * Drop duplicate 802.11 retransmissions 492 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 493 */ 494 if (ieee80211_is_ctl(hdr->frame_control) || 495 ieee80211_is_qos_nullfunc(hdr->frame_control) || 496 is_multicast_ether_addr(hdr->addr1)) { 497 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 498 return false; 499 } 500 501 if (ieee80211_is_data_qos(hdr->frame_control)) 502 /* frame has qos control */ 503 tid = ieee80211_get_tid(hdr); 504 else 505 tid = IWL_MAX_TID_COUNT; 506 507 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 508 sub_frame_idx = desc->amsdu_info & 509 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 510 511 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 512 dup_data->last_seq[tid] == hdr->seq_ctrl && 513 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 514 return true; 515 516 /* Allow same PN as the first subframe for following sub frames */ 517 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 518 sub_frame_idx > dup_data->last_sub_frame[tid] && 519 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 520 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 521 522 dup_data->last_seq[tid] = hdr->seq_ctrl; 523 dup_data->last_sub_frame[tid] = sub_frame_idx; 524 525 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 526 527 return false; 528 } 529 530 /* 531 * Returns true if sn2 - buffer_size < sn1 < sn2. 532 * To be used only in order to compare reorder buffer head with NSSN. 533 * We fully trust NSSN unless it is behind us due to reorder timeout. 534 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 535 */ 536 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 537 { 538 return ieee80211_sn_less(sn1, sn2) && 539 !ieee80211_sn_less(sn1, sn2 - buffer_size); 540 } 541 542 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 543 { 544 if (IWL_MVM_USE_NSSN_SYNC) { 545 struct iwl_mvm_nssn_sync_data notif = { 546 .baid = baid, 547 .nssn = nssn, 548 }; 549 550 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 551 ¬if, sizeof(notif)); 552 } 553 } 554 555 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 556 557 enum iwl_mvm_release_flags { 558 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 559 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 560 }; 561 562 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 563 struct ieee80211_sta *sta, 564 struct napi_struct *napi, 565 struct iwl_mvm_baid_data *baid_data, 566 struct iwl_mvm_reorder_buffer *reorder_buf, 567 u16 nssn, u32 flags) 568 { 569 struct iwl_mvm_reorder_buf_entry *entries = 570 &baid_data->entries[reorder_buf->queue * 571 baid_data->entries_per_queue]; 572 u16 ssn = reorder_buf->head_sn; 573 574 lockdep_assert_held(&reorder_buf->lock); 575 576 /* 577 * We keep the NSSN not too far behind, if we are sync'ing it and it 578 * is more than 2048 ahead of us, it must be behind us. Discard it. 579 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 580 * behind and this queue already processed packets. The next if 581 * would have caught cases where this queue would have processed less 582 * than 64 packets, but it may have processed more than 64 packets. 583 */ 584 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 585 ieee80211_sn_less(nssn, ssn)) 586 goto set_timer; 587 588 /* ignore nssn smaller than head sn - this can happen due to timeout */ 589 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 590 goto set_timer; 591 592 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 593 int index = ssn % reorder_buf->buf_size; 594 struct sk_buff_head *skb_list = &entries[index].e.frames; 595 struct sk_buff *skb; 596 597 ssn = ieee80211_sn_inc(ssn); 598 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 599 (ssn == 2048 || ssn == 0)) 600 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 601 602 /* 603 * Empty the list. Will have more than one frame for A-MSDU. 604 * Empty list is valid as well since nssn indicates frames were 605 * received. 606 */ 607 while ((skb = __skb_dequeue(skb_list))) { 608 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 609 reorder_buf->queue, 610 sta, false); 611 reorder_buf->num_stored--; 612 } 613 } 614 reorder_buf->head_sn = nssn; 615 616 set_timer: 617 if (reorder_buf->num_stored && !reorder_buf->removed) { 618 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 619 620 while (skb_queue_empty(&entries[index].e.frames)) 621 index = (index + 1) % reorder_buf->buf_size; 622 /* modify timer to match next frame's expiration time */ 623 mod_timer(&reorder_buf->reorder_timer, 624 entries[index].e.reorder_time + 1 + 625 RX_REORDER_BUF_TIMEOUT_MQ); 626 } else { 627 del_timer(&reorder_buf->reorder_timer); 628 } 629 } 630 631 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 632 { 633 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 634 struct iwl_mvm_baid_data *baid_data = 635 iwl_mvm_baid_data_from_reorder_buf(buf); 636 struct iwl_mvm_reorder_buf_entry *entries = 637 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 638 int i; 639 u16 sn = 0, index = 0; 640 bool expired = false; 641 bool cont = false; 642 643 spin_lock(&buf->lock); 644 645 if (!buf->num_stored || buf->removed) { 646 spin_unlock(&buf->lock); 647 return; 648 } 649 650 for (i = 0; i < buf->buf_size ; i++) { 651 index = (buf->head_sn + i) % buf->buf_size; 652 653 if (skb_queue_empty(&entries[index].e.frames)) { 654 /* 655 * If there is a hole and the next frame didn't expire 656 * we want to break and not advance SN 657 */ 658 cont = false; 659 continue; 660 } 661 if (!cont && 662 !time_after(jiffies, entries[index].e.reorder_time + 663 RX_REORDER_BUF_TIMEOUT_MQ)) 664 break; 665 666 expired = true; 667 /* continue until next hole after this expired frames */ 668 cont = true; 669 sn = ieee80211_sn_add(buf->head_sn, i + 1); 670 } 671 672 if (expired) { 673 struct ieee80211_sta *sta; 674 struct iwl_mvm_sta *mvmsta; 675 u8 sta_id = baid_data->sta_id; 676 677 rcu_read_lock(); 678 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 679 mvmsta = iwl_mvm_sta_from_mac80211(sta); 680 681 /* SN is set to the last expired frame + 1 */ 682 IWL_DEBUG_HT(buf->mvm, 683 "Releasing expired frames for sta %u, sn %d\n", 684 sta_id, sn); 685 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 686 sta, baid_data->tid); 687 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 688 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 689 rcu_read_unlock(); 690 } else { 691 /* 692 * If no frame expired and there are stored frames, index is now 693 * pointing to the first unexpired frame - modify timer 694 * accordingly to this frame. 695 */ 696 mod_timer(&buf->reorder_timer, 697 entries[index].e.reorder_time + 698 1 + RX_REORDER_BUF_TIMEOUT_MQ); 699 } 700 spin_unlock(&buf->lock); 701 } 702 703 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 704 struct iwl_mvm_delba_data *data) 705 { 706 struct iwl_mvm_baid_data *ba_data; 707 struct ieee80211_sta *sta; 708 struct iwl_mvm_reorder_buffer *reorder_buf; 709 u8 baid = data->baid; 710 711 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 712 return; 713 714 rcu_read_lock(); 715 716 ba_data = rcu_dereference(mvm->baid_map[baid]); 717 if (WARN_ON_ONCE(!ba_data)) 718 goto out; 719 720 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 721 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 722 goto out; 723 724 reorder_buf = &ba_data->reorder_buf[queue]; 725 726 /* release all frames that are in the reorder buffer to the stack */ 727 spin_lock_bh(&reorder_buf->lock); 728 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 729 ieee80211_sn_add(reorder_buf->head_sn, 730 reorder_buf->buf_size), 731 0); 732 spin_unlock_bh(&reorder_buf->lock); 733 del_timer_sync(&reorder_buf->reorder_timer); 734 735 out: 736 rcu_read_unlock(); 737 } 738 739 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 740 struct napi_struct *napi, 741 u8 baid, u16 nssn, int queue, 742 u32 flags) 743 { 744 struct ieee80211_sta *sta; 745 struct iwl_mvm_reorder_buffer *reorder_buf; 746 struct iwl_mvm_baid_data *ba_data; 747 748 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 749 baid, nssn); 750 751 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 752 baid >= ARRAY_SIZE(mvm->baid_map))) 753 return; 754 755 rcu_read_lock(); 756 757 ba_data = rcu_dereference(mvm->baid_map[baid]); 758 if (WARN_ON_ONCE(!ba_data)) 759 goto out; 760 761 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 762 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 763 goto out; 764 765 reorder_buf = &ba_data->reorder_buf[queue]; 766 767 spin_lock_bh(&reorder_buf->lock); 768 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 769 reorder_buf, nssn, flags); 770 spin_unlock_bh(&reorder_buf->lock); 771 772 out: 773 rcu_read_unlock(); 774 } 775 776 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 777 struct napi_struct *napi, int queue, 778 const struct iwl_mvm_nssn_sync_data *data) 779 { 780 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 781 data->nssn, queue, 782 IWL_MVM_RELEASE_FROM_RSS_SYNC); 783 } 784 785 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 786 struct iwl_rx_cmd_buffer *rxb, int queue) 787 { 788 struct iwl_rx_packet *pkt = rxb_addr(rxb); 789 struct iwl_rxq_sync_notification *notif; 790 struct iwl_mvm_internal_rxq_notif *internal_notif; 791 u32 len = iwl_rx_packet_payload_len(pkt); 792 793 notif = (void *)pkt->data; 794 internal_notif = (void *)notif->payload; 795 796 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 797 "invalid notification size %d (%d)", 798 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 799 return; 800 len -= sizeof(*notif) + sizeof(*internal_notif); 801 802 if (internal_notif->sync && 803 mvm->queue_sync_cookie != internal_notif->cookie) { 804 WARN_ONCE(1, "Received expired RX queue sync message\n"); 805 return; 806 } 807 808 switch (internal_notif->type) { 809 case IWL_MVM_RXQ_EMPTY: 810 WARN_ONCE(len, "invalid empty notification size %d", len); 811 break; 812 case IWL_MVM_RXQ_NOTIF_DEL_BA: 813 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 814 "invalid delba notification size %d (%d)", 815 len, (int)sizeof(struct iwl_mvm_delba_data))) 816 break; 817 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 818 break; 819 case IWL_MVM_RXQ_NSSN_SYNC: 820 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 821 "invalid nssn sync notification size %d (%d)", 822 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 823 break; 824 iwl_mvm_nssn_sync(mvm, napi, queue, 825 (void *)internal_notif->data); 826 break; 827 default: 828 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 829 } 830 831 if (internal_notif->sync) { 832 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 833 "queue sync: queue %d responded a second time!\n", 834 queue); 835 if (READ_ONCE(mvm->queue_sync_state) == 0) 836 wake_up(&mvm->rx_sync_waitq); 837 } 838 } 839 840 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 841 struct ieee80211_sta *sta, int tid, 842 struct iwl_mvm_reorder_buffer *buffer, 843 u32 reorder, u32 gp2, int queue) 844 { 845 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 846 847 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 848 /* we have a new (A-)MPDU ... */ 849 850 /* 851 * reset counter to 0 if we didn't have any oldsn in 852 * the last A-MPDU (as detected by GP2 being identical) 853 */ 854 if (!buffer->consec_oldsn_prev_drop) 855 buffer->consec_oldsn_drops = 0; 856 857 /* either way, update our tracking state */ 858 buffer->consec_oldsn_ampdu_gp2 = gp2; 859 } else if (buffer->consec_oldsn_prev_drop) { 860 /* 861 * tracking state didn't change, and we had an old SN 862 * indication before - do nothing in this case, we 863 * already noted this one down and are waiting for the 864 * next A-MPDU (by GP2) 865 */ 866 return; 867 } 868 869 /* return unless this MPDU has old SN */ 870 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 871 return; 872 873 /* update state */ 874 buffer->consec_oldsn_prev_drop = 1; 875 buffer->consec_oldsn_drops++; 876 877 /* if limit is reached, send del BA and reset state */ 878 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 879 IWL_WARN(mvm, 880 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 881 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 882 sta->addr, queue, tid); 883 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 884 buffer->consec_oldsn_prev_drop = 0; 885 buffer->consec_oldsn_drops = 0; 886 } 887 } 888 889 /* 890 * Returns true if the MPDU was buffered\dropped, false if it should be passed 891 * to upper layer. 892 */ 893 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 894 struct napi_struct *napi, 895 int queue, 896 struct ieee80211_sta *sta, 897 struct sk_buff *skb, 898 struct iwl_rx_mpdu_desc *desc) 899 { 900 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 901 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 902 struct iwl_mvm_sta *mvm_sta; 903 struct iwl_mvm_baid_data *baid_data; 904 struct iwl_mvm_reorder_buffer *buffer; 905 struct sk_buff *tail; 906 u32 reorder = le32_to_cpu(desc->reorder_data); 907 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 908 bool last_subframe = 909 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 910 u8 tid = ieee80211_get_tid(hdr); 911 u8 sub_frame_idx = desc->amsdu_info & 912 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 913 struct iwl_mvm_reorder_buf_entry *entries; 914 int index; 915 u16 nssn, sn; 916 u8 baid; 917 918 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 919 IWL_RX_MPDU_REORDER_BAID_SHIFT; 920 921 /* 922 * This also covers the case of receiving a Block Ack Request 923 * outside a BA session; we'll pass it to mac80211 and that 924 * then sends a delBA action frame. 925 * This also covers pure monitor mode, in which case we won't 926 * have any BA sessions. 927 */ 928 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 929 return false; 930 931 /* no sta yet */ 932 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 933 "Got valid BAID without a valid station assigned\n")) 934 return false; 935 936 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 937 938 /* not a data packet or a bar */ 939 if (!ieee80211_is_back_req(hdr->frame_control) && 940 (!ieee80211_is_data_qos(hdr->frame_control) || 941 is_multicast_ether_addr(hdr->addr1))) 942 return false; 943 944 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 945 return false; 946 947 baid_data = rcu_dereference(mvm->baid_map[baid]); 948 if (!baid_data) { 949 IWL_DEBUG_RX(mvm, 950 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 951 baid, reorder); 952 return false; 953 } 954 955 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 956 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 957 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 958 tid)) 959 return false; 960 961 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 962 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 963 IWL_RX_MPDU_REORDER_SN_SHIFT; 964 965 buffer = &baid_data->reorder_buf[queue]; 966 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 967 968 spin_lock_bh(&buffer->lock); 969 970 if (!buffer->valid) { 971 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 972 spin_unlock_bh(&buffer->lock); 973 return false; 974 } 975 buffer->valid = true; 976 } 977 978 if (ieee80211_is_back_req(hdr->frame_control)) { 979 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 980 buffer, nssn, 0); 981 goto drop; 982 } 983 984 /* 985 * If there was a significant jump in the nssn - adjust. 986 * If the SN is smaller than the NSSN it might need to first go into 987 * the reorder buffer, in which case we just release up to it and the 988 * rest of the function will take care of storing it and releasing up to 989 * the nssn. 990 * This should not happen. This queue has been lagging and it should 991 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 992 * and update the other queues. 993 */ 994 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 995 buffer->buf_size) || 996 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 997 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 998 999 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1000 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1001 } 1002 1003 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1004 rx_status->device_timestamp, queue); 1005 1006 /* drop any oudated packets */ 1007 if (ieee80211_sn_less(sn, buffer->head_sn)) 1008 goto drop; 1009 1010 /* release immediately if allowed by nssn and no stored frames */ 1011 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1012 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1013 buffer->buf_size) && 1014 (!amsdu || last_subframe)) { 1015 /* 1016 * If we crossed the 2048 or 0 SN, notify all the 1017 * queues. This is done in order to avoid having a 1018 * head_sn that lags behind for too long. When that 1019 * happens, we can get to a situation where the head_sn 1020 * is within the interval [nssn - buf_size : nssn] 1021 * which will make us think that the nssn is a packet 1022 * that we already freed because of the reordering 1023 * buffer and we will ignore it. So maintain the 1024 * head_sn somewhat updated across all the queues: 1025 * when it crosses 0 and 2048. 1026 */ 1027 if (sn == 2048 || sn == 0) 1028 iwl_mvm_sync_nssn(mvm, baid, sn); 1029 buffer->head_sn = nssn; 1030 } 1031 /* No need to update AMSDU last SN - we are moving the head */ 1032 spin_unlock_bh(&buffer->lock); 1033 return false; 1034 } 1035 1036 /* 1037 * release immediately if there are no stored frames, and the sn is 1038 * equal to the head. 1039 * This can happen due to reorder timer, where NSSN is behind head_sn. 1040 * When we released everything, and we got the next frame in the 1041 * sequence, according to the NSSN we can't release immediately, 1042 * while technically there is no hole and we can move forward. 1043 */ 1044 if (!buffer->num_stored && sn == buffer->head_sn) { 1045 if (!amsdu || last_subframe) { 1046 if (sn == 2048 || sn == 0) 1047 iwl_mvm_sync_nssn(mvm, baid, sn); 1048 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1049 } 1050 /* No need to update AMSDU last SN - we are moving the head */ 1051 spin_unlock_bh(&buffer->lock); 1052 return false; 1053 } 1054 1055 index = sn % buffer->buf_size; 1056 1057 /* 1058 * Check if we already stored this frame 1059 * As AMSDU is either received or not as whole, logic is simple: 1060 * If we have frames in that position in the buffer and the last frame 1061 * originated from AMSDU had a different SN then it is a retransmission. 1062 * If it is the same SN then if the subframe index is incrementing it 1063 * is the same AMSDU - otherwise it is a retransmission. 1064 */ 1065 tail = skb_peek_tail(&entries[index].e.frames); 1066 if (tail && !amsdu) 1067 goto drop; 1068 else if (tail && (sn != buffer->last_amsdu || 1069 buffer->last_sub_index >= sub_frame_idx)) 1070 goto drop; 1071 1072 /* put in reorder buffer */ 1073 __skb_queue_tail(&entries[index].e.frames, skb); 1074 buffer->num_stored++; 1075 entries[index].e.reorder_time = jiffies; 1076 1077 if (amsdu) { 1078 buffer->last_amsdu = sn; 1079 buffer->last_sub_index = sub_frame_idx; 1080 } 1081 1082 /* 1083 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1084 * The reason is that NSSN advances on the first sub-frame, and may 1085 * cause the reorder buffer to advance before all the sub-frames arrive. 1086 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1087 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1088 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1089 * already ahead and it will be dropped. 1090 * If the last sub-frame is not on this queue - we will get frame 1091 * release notification with up to date NSSN. 1092 */ 1093 if (!amsdu || last_subframe) 1094 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1095 buffer, nssn, 1096 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1097 1098 spin_unlock_bh(&buffer->lock); 1099 return true; 1100 1101 drop: 1102 kfree_skb(skb); 1103 spin_unlock_bh(&buffer->lock); 1104 return true; 1105 } 1106 1107 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1108 u32 reorder_data, u8 baid) 1109 { 1110 unsigned long now = jiffies; 1111 unsigned long timeout; 1112 struct iwl_mvm_baid_data *data; 1113 1114 rcu_read_lock(); 1115 1116 data = rcu_dereference(mvm->baid_map[baid]); 1117 if (!data) { 1118 IWL_DEBUG_RX(mvm, 1119 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1120 baid, reorder_data); 1121 goto out; 1122 } 1123 1124 if (!data->timeout) 1125 goto out; 1126 1127 timeout = data->timeout; 1128 /* 1129 * Do not update last rx all the time to avoid cache bouncing 1130 * between the rx queues. 1131 * Update it every timeout. Worst case is the session will 1132 * expire after ~ 2 * timeout, which doesn't matter that much. 1133 */ 1134 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1135 /* Update is atomic */ 1136 data->last_rx = now; 1137 1138 out: 1139 rcu_read_unlock(); 1140 } 1141 1142 static void iwl_mvm_flip_address(u8 *addr) 1143 { 1144 int i; 1145 u8 mac_addr[ETH_ALEN]; 1146 1147 for (i = 0; i < ETH_ALEN; i++) 1148 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1149 ether_addr_copy(addr, mac_addr); 1150 } 1151 1152 struct iwl_mvm_rx_phy_data { 1153 enum iwl_rx_phy_info_type info_type; 1154 __le32 d0, d1, d2, d3; 1155 __le16 d4; 1156 }; 1157 1158 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1159 struct iwl_mvm_rx_phy_data *phy_data, 1160 u32 rate_n_flags, 1161 struct ieee80211_radiotap_he_mu *he_mu) 1162 { 1163 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1164 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1165 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1166 1167 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1168 he_mu->flags1 |= 1169 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1170 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1171 1172 he_mu->flags1 |= 1173 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1174 phy_data4), 1175 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1176 1177 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1178 phy_data2); 1179 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1180 phy_data3); 1181 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1182 phy_data2); 1183 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1184 phy_data3); 1185 } 1186 1187 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1188 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { 1189 he_mu->flags1 |= 1190 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1191 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1192 1193 he_mu->flags2 |= 1194 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1195 phy_data4), 1196 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1197 1198 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1199 phy_data2); 1200 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1201 phy_data3); 1202 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1203 phy_data2); 1204 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1205 phy_data3); 1206 } 1207 } 1208 1209 static void 1210 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1211 u32 rate_n_flags, 1212 struct ieee80211_radiotap_he *he, 1213 struct ieee80211_radiotap_he_mu *he_mu, 1214 struct ieee80211_rx_status *rx_status) 1215 { 1216 /* 1217 * Unfortunately, we have to leave the mac80211 data 1218 * incorrect for the case that we receive an HE-MU 1219 * transmission and *don't* have the HE phy data (due 1220 * to the bits being used for TSF). This shouldn't 1221 * happen though as management frames where we need 1222 * the TSF/timers are not be transmitted in HE-MU. 1223 */ 1224 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1225 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1226 u8 offs = 0; 1227 1228 rx_status->bw = RATE_INFO_BW_HE_RU; 1229 1230 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1231 1232 switch (ru) { 1233 case 0 ... 36: 1234 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1235 offs = ru; 1236 break; 1237 case 37 ... 52: 1238 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1239 offs = ru - 37; 1240 break; 1241 case 53 ... 60: 1242 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1243 offs = ru - 53; 1244 break; 1245 case 61 ... 64: 1246 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1247 offs = ru - 61; 1248 break; 1249 case 65 ... 66: 1250 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1251 offs = ru - 65; 1252 break; 1253 case 67: 1254 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1255 break; 1256 case 68: 1257 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1258 break; 1259 } 1260 he->data2 |= le16_encode_bits(offs, 1261 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1262 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1263 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1264 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1265 he->data2 |= 1266 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1267 1268 #define CHECK_BW(bw) \ 1269 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1270 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1271 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1272 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1273 CHECK_BW(20); 1274 CHECK_BW(40); 1275 CHECK_BW(80); 1276 CHECK_BW(160); 1277 1278 if (he_mu) 1279 he_mu->flags2 |= 1280 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1281 rate_n_flags), 1282 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1283 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 1284 he->data6 |= 1285 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1286 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1287 rate_n_flags), 1288 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1289 } 1290 1291 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1292 struct iwl_mvm_rx_phy_data *phy_data, 1293 struct ieee80211_radiotap_he *he, 1294 struct ieee80211_radiotap_he_mu *he_mu, 1295 struct ieee80211_rx_status *rx_status, 1296 u32 rate_n_flags, int queue) 1297 { 1298 switch (phy_data->info_type) { 1299 case IWL_RX_PHY_INFO_TYPE_NONE: 1300 case IWL_RX_PHY_INFO_TYPE_CCK: 1301 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1302 case IWL_RX_PHY_INFO_TYPE_HT: 1303 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1304 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1305 return; 1306 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1307 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1308 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1309 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1310 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1311 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1312 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1313 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1314 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1315 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1316 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1317 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1318 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1319 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1320 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1321 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1322 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1323 fallthrough; 1324 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1325 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1326 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1327 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1328 /* HE common */ 1329 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1330 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1331 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1332 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1333 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1334 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1335 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1336 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1337 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1338 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1339 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1340 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1341 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1342 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1343 IWL_RX_PHY_DATA0_HE_UPLINK), 1344 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1345 } 1346 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1347 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1348 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1349 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1350 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1351 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1352 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1353 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1354 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1355 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1356 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1357 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1358 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1359 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1360 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1361 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1362 IWL_RX_PHY_DATA0_HE_DOPPLER), 1363 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1364 break; 1365 } 1366 1367 switch (phy_data->info_type) { 1368 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1369 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1370 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1371 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1372 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1373 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1374 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1375 break; 1376 default: 1377 /* nothing here */ 1378 break; 1379 } 1380 1381 switch (phy_data->info_type) { 1382 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1383 he_mu->flags1 |= 1384 le16_encode_bits(le16_get_bits(phy_data->d4, 1385 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1386 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1387 he_mu->flags1 |= 1388 le16_encode_bits(le16_get_bits(phy_data->d4, 1389 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1390 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1391 he_mu->flags2 |= 1392 le16_encode_bits(le16_get_bits(phy_data->d4, 1393 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1394 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1395 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1396 fallthrough; 1397 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1398 he_mu->flags2 |= 1399 le16_encode_bits(le32_get_bits(phy_data->d1, 1400 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1401 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1402 he_mu->flags2 |= 1403 le16_encode_bits(le32_get_bits(phy_data->d1, 1404 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1405 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1406 fallthrough; 1407 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1408 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1409 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1410 he, he_mu, rx_status); 1411 break; 1412 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1413 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1414 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1415 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1416 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1417 break; 1418 default: 1419 /* nothing */ 1420 break; 1421 } 1422 } 1423 1424 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1425 struct iwl_mvm_rx_phy_data *phy_data, 1426 u32 rate_n_flags, u16 phy_info, int queue) 1427 { 1428 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1429 struct ieee80211_radiotap_he *he = NULL; 1430 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1431 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1432 u8 stbc, ltf; 1433 static const struct ieee80211_radiotap_he known = { 1434 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1435 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1436 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1437 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1438 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1439 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1440 }; 1441 static const struct ieee80211_radiotap_he_mu mu_known = { 1442 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1443 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1444 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1445 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1446 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1447 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1448 }; 1449 1450 he = skb_put_data(skb, &known, sizeof(known)); 1451 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1452 1453 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1454 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1455 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1456 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1457 } 1458 1459 /* report the AMPDU-EOF bit on single frames */ 1460 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1461 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1462 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1463 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1464 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1465 } 1466 1467 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1468 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1469 rate_n_flags, queue); 1470 1471 /* update aggregation data for monitor sake on default queue */ 1472 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1473 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1474 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1475 1476 /* toggle is switched whenever new aggregation starts */ 1477 if (toggle_bit != mvm->ampdu_toggle) { 1478 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1479 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1480 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1481 } 1482 } 1483 1484 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1485 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1486 rx_status->bw = RATE_INFO_BW_HE_RU; 1487 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1488 } 1489 1490 /* actually data is filled in mac80211 */ 1491 if (he_type == RATE_MCS_HE_TYPE_SU || 1492 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1493 he->data1 |= 1494 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1495 1496 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1497 rx_status->nss = 1498 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1499 RATE_VHT_MCS_NSS_POS) + 1; 1500 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1501 rx_status->encoding = RX_ENC_HE; 1502 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1503 if (rate_n_flags & RATE_MCS_BF_MSK) 1504 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1505 1506 rx_status->he_dcm = 1507 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1508 1509 #define CHECK_TYPE(F) \ 1510 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1511 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1512 1513 CHECK_TYPE(SU); 1514 CHECK_TYPE(EXT_SU); 1515 CHECK_TYPE(MU); 1516 CHECK_TYPE(TRIG); 1517 1518 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1519 1520 if (rate_n_flags & RATE_MCS_BF_MSK) 1521 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1522 1523 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1524 RATE_MCS_HE_GI_LTF_POS) { 1525 case 0: 1526 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1527 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1528 else 1529 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1530 if (he_type == RATE_MCS_HE_TYPE_MU) 1531 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1532 else 1533 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1534 break; 1535 case 1: 1536 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1537 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1538 else 1539 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1540 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1541 break; 1542 case 2: 1543 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1544 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1545 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1546 } else { 1547 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1548 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1549 } 1550 break; 1551 case 3: 1552 if ((he_type == RATE_MCS_HE_TYPE_SU || 1553 he_type == RATE_MCS_HE_TYPE_EXT_SU) && 1554 rate_n_flags & RATE_MCS_SGI_MSK) 1555 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1556 else 1557 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1558 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1559 break; 1560 } 1561 1562 he->data5 |= le16_encode_bits(ltf, 1563 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1564 } 1565 1566 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1567 struct iwl_mvm_rx_phy_data *phy_data) 1568 { 1569 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1570 struct ieee80211_radiotap_lsig *lsig; 1571 1572 switch (phy_data->info_type) { 1573 case IWL_RX_PHY_INFO_TYPE_HT: 1574 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1575 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1576 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1577 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1578 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1579 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1580 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1581 lsig = skb_put(skb, sizeof(*lsig)); 1582 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1583 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1584 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1585 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1586 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1587 break; 1588 default: 1589 break; 1590 } 1591 } 1592 1593 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1594 { 1595 switch (phy_band) { 1596 case PHY_BAND_24: 1597 return NL80211_BAND_2GHZ; 1598 case PHY_BAND_5: 1599 return NL80211_BAND_5GHZ; 1600 case PHY_BAND_6: 1601 return NL80211_BAND_6GHZ; 1602 default: 1603 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1604 return NL80211_BAND_5GHZ; 1605 } 1606 } 1607 1608 struct iwl_rx_sta_csa { 1609 bool all_sta_unblocked; 1610 struct ieee80211_vif *vif; 1611 }; 1612 1613 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1614 { 1615 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1616 struct iwl_rx_sta_csa *rx_sta_csa = data; 1617 1618 if (mvmsta->vif != rx_sta_csa->vif) 1619 return; 1620 1621 if (mvmsta->disable_tx) 1622 rx_sta_csa->all_sta_unblocked = false; 1623 } 1624 1625 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1626 struct iwl_rx_cmd_buffer *rxb, int queue) 1627 { 1628 struct ieee80211_rx_status *rx_status; 1629 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1630 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1631 struct ieee80211_hdr *hdr; 1632 u32 len; 1633 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 1634 u32 rate_n_flags, gp2_on_air_rise; 1635 u16 phy_info; 1636 struct ieee80211_sta *sta = NULL; 1637 struct sk_buff *skb; 1638 u8 crypt_len = 0, channel, energy_a, energy_b; 1639 size_t desc_size; 1640 struct iwl_mvm_rx_phy_data phy_data = { 1641 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1642 }; 1643 bool csi = false; 1644 1645 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1646 return; 1647 1648 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1649 desc_size = sizeof(*desc); 1650 else 1651 desc_size = IWL_RX_DESC_SIZE_V1; 1652 1653 if (unlikely(pkt_len < desc_size)) { 1654 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 1655 return; 1656 } 1657 1658 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1659 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1660 channel = desc->v3.channel; 1661 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1662 energy_a = desc->v3.energy_a; 1663 energy_b = desc->v3.energy_b; 1664 1665 phy_data.d0 = desc->v3.phy_data0; 1666 phy_data.d1 = desc->v3.phy_data1; 1667 phy_data.d2 = desc->v3.phy_data2; 1668 phy_data.d3 = desc->v3.phy_data3; 1669 } else { 1670 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1671 channel = desc->v1.channel; 1672 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1673 energy_a = desc->v1.energy_a; 1674 energy_b = desc->v1.energy_b; 1675 1676 phy_data.d0 = desc->v1.phy_data0; 1677 phy_data.d1 = desc->v1.phy_data1; 1678 phy_data.d2 = desc->v1.phy_data2; 1679 phy_data.d3 = desc->v1.phy_data3; 1680 } 1681 1682 len = le16_to_cpu(desc->mpdu_len); 1683 1684 if (unlikely(len + desc_size > pkt_len)) { 1685 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 1686 return; 1687 } 1688 1689 phy_info = le16_to_cpu(desc->phy_info); 1690 phy_data.d4 = desc->phy_data4; 1691 1692 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1693 phy_data.info_type = 1694 le32_get_bits(phy_data.d1, 1695 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1696 1697 hdr = (void *)(pkt->data + desc_size); 1698 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1699 * ieee80211_hdr pulled. 1700 */ 1701 skb = alloc_skb(128, GFP_ATOMIC); 1702 if (!skb) { 1703 IWL_ERR(mvm, "alloc_skb failed\n"); 1704 return; 1705 } 1706 1707 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1708 /* 1709 * If the device inserted padding it means that (it thought) 1710 * the 802.11 header wasn't a multiple of 4 bytes long. In 1711 * this case, reserve two bytes at the start of the SKB to 1712 * align the payload properly in case we end up copying it. 1713 */ 1714 skb_reserve(skb, 2); 1715 } 1716 1717 rx_status = IEEE80211_SKB_RXCB(skb); 1718 1719 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1720 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1721 case RATE_MCS_CHAN_WIDTH_20: 1722 break; 1723 case RATE_MCS_CHAN_WIDTH_40: 1724 rx_status->bw = RATE_INFO_BW_40; 1725 break; 1726 case RATE_MCS_CHAN_WIDTH_80: 1727 rx_status->bw = RATE_INFO_BW_80; 1728 break; 1729 case RATE_MCS_CHAN_WIDTH_160: 1730 rx_status->bw = RATE_INFO_BW_160; 1731 break; 1732 } 1733 1734 if (rate_n_flags & RATE_MCS_HE_MSK) 1735 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1736 phy_info, queue); 1737 1738 iwl_mvm_decode_lsig(skb, &phy_data); 1739 1740 /* 1741 * Keep packets with CRC errors (and with overrun) for monitor mode 1742 * (otherwise the firmware discards them) but mark them as bad. 1743 */ 1744 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1745 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1746 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1747 le32_to_cpu(desc->status)); 1748 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1749 } 1750 /* set the preamble flag if appropriate */ 1751 if (rate_n_flags & RATE_MCS_CCK_MSK && 1752 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1753 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1754 1755 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1756 u64 tsf_on_air_rise; 1757 1758 if (mvm->trans->trans_cfg->device_family >= 1759 IWL_DEVICE_FAMILY_AX210) 1760 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1761 else 1762 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1763 1764 rx_status->mactime = tsf_on_air_rise; 1765 /* TSF as indicated by the firmware is at INA time */ 1766 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1767 } 1768 1769 rx_status->device_timestamp = gp2_on_air_rise; 1770 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1771 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1772 1773 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1774 } else { 1775 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1776 NL80211_BAND_2GHZ; 1777 } 1778 rx_status->freq = ieee80211_channel_to_frequency(channel, 1779 rx_status->band); 1780 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1781 energy_b); 1782 1783 /* update aggregation data for monitor sake on default queue */ 1784 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1785 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1786 1787 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1788 /* 1789 * Toggle is switched whenever new aggregation starts. Make 1790 * sure ampdu_reference is never 0 so we can later use it to 1791 * see if the frame was really part of an A-MPDU or not. 1792 */ 1793 if (toggle_bit != mvm->ampdu_toggle) { 1794 mvm->ampdu_ref++; 1795 if (mvm->ampdu_ref == 0) 1796 mvm->ampdu_ref++; 1797 mvm->ampdu_toggle = toggle_bit; 1798 } 1799 rx_status->ampdu_reference = mvm->ampdu_ref; 1800 } 1801 1802 if (unlikely(mvm->monitor_on)) 1803 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1804 1805 rcu_read_lock(); 1806 1807 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1808 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 1809 1810 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 1811 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1812 if (IS_ERR(sta)) 1813 sta = NULL; 1814 } 1815 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1816 /* 1817 * This is fine since we prevent two stations with the same 1818 * address from being added. 1819 */ 1820 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1821 } 1822 1823 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc, 1824 le32_to_cpu(pkt->len_n_flags), queue, 1825 &crypt_len)) { 1826 kfree_skb(skb); 1827 goto out; 1828 } 1829 1830 if (sta) { 1831 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1832 struct ieee80211_vif *tx_blocked_vif = 1833 rcu_dereference(mvm->csa_tx_blocked_vif); 1834 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1835 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1836 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1837 struct iwl_fw_dbg_trigger_tlv *trig; 1838 struct ieee80211_vif *vif = mvmsta->vif; 1839 1840 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1841 !is_multicast_ether_addr(hdr->addr1) && 1842 ieee80211_is_data(hdr->frame_control) && 1843 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1844 schedule_delayed_work(&mvm->tcm.work, 0); 1845 1846 /* 1847 * We have tx blocked stations (with CS bit). If we heard 1848 * frames from a blocked station on a new channel we can 1849 * TX to it again. 1850 */ 1851 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1852 struct iwl_mvm_vif *mvmvif = 1853 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1854 struct iwl_rx_sta_csa rx_sta_csa = { 1855 .all_sta_unblocked = true, 1856 .vif = tx_blocked_vif, 1857 }; 1858 1859 if (mvmvif->csa_target_freq == rx_status->freq) 1860 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1861 false); 1862 ieee80211_iterate_stations_atomic(mvm->hw, 1863 iwl_mvm_rx_get_sta_block_tx, 1864 &rx_sta_csa); 1865 1866 if (rx_sta_csa.all_sta_unblocked) { 1867 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 1868 /* Unblock BCAST / MCAST station */ 1869 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 1870 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork); 1871 } 1872 } 1873 1874 rs_update_last_rssi(mvm, mvmsta, rx_status); 1875 1876 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1877 ieee80211_vif_to_wdev(vif), 1878 FW_DBG_TRIGGER_RSSI); 1879 1880 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1881 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1882 s32 rssi; 1883 1884 rssi_trig = (void *)trig->data; 1885 rssi = le32_to_cpu(rssi_trig->rssi); 1886 1887 if (rx_status->signal < rssi) 1888 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1889 NULL); 1890 } 1891 1892 if (ieee80211_is_data(hdr->frame_control)) 1893 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 1894 1895 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1896 kfree_skb(skb); 1897 goto out; 1898 } 1899 1900 /* 1901 * Our hardware de-aggregates AMSDUs but copies the mac header 1902 * as it to the de-aggregated MPDUs. We need to turn off the 1903 * AMSDU bit in the QoS control ourselves. 1904 * In addition, HW reverses addr3 and addr4 - reverse it back. 1905 */ 1906 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1907 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1908 u8 *qc = ieee80211_get_qos_ctl(hdr); 1909 1910 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1911 1912 if (mvm->trans->trans_cfg->device_family == 1913 IWL_DEVICE_FAMILY_9000) { 1914 iwl_mvm_flip_address(hdr->addr3); 1915 1916 if (ieee80211_has_a4(hdr->frame_control)) 1917 iwl_mvm_flip_address(hdr->addr4); 1918 } 1919 } 1920 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1921 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1922 1923 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1924 } 1925 } 1926 1927 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1928 rate_n_flags & RATE_MCS_SGI_MSK) 1929 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1930 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1931 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1932 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1933 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1934 if (rate_n_flags & RATE_MCS_HT_MSK) { 1935 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1936 RATE_MCS_STBC_POS; 1937 rx_status->encoding = RX_ENC_HT; 1938 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1939 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1940 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 1941 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1942 RATE_MCS_STBC_POS; 1943 rx_status->nss = 1944 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1945 RATE_VHT_MCS_NSS_POS) + 1; 1946 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1947 rx_status->encoding = RX_ENC_VHT; 1948 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1949 if (rate_n_flags & RATE_MCS_BF_MSK) 1950 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1951 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) { 1952 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 1953 rx_status->band); 1954 1955 if (WARN(rate < 0 || rate > 0xFF, 1956 "Invalid rate flags 0x%x, band %d,\n", 1957 rate_n_flags, rx_status->band)) { 1958 kfree_skb(skb); 1959 goto out; 1960 } 1961 rx_status->rate_idx = rate; 1962 } 1963 1964 /* management stuff on default queue */ 1965 if (!queue) { 1966 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 1967 ieee80211_is_probe_resp(hdr->frame_control)) && 1968 mvm->sched_scan_pass_all == 1969 SCHED_SCAN_PASS_ALL_ENABLED)) 1970 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 1971 1972 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 1973 ieee80211_is_probe_resp(hdr->frame_control))) 1974 rx_status->boottime_ns = ktime_get_boottime_ns(); 1975 } 1976 1977 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 1978 kfree_skb(skb); 1979 goto out; 1980 } 1981 1982 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 1983 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 1984 sta, csi); 1985 out: 1986 rcu_read_unlock(); 1987 } 1988 1989 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 1990 struct iwl_rx_cmd_buffer *rxb, int queue) 1991 { 1992 struct ieee80211_rx_status *rx_status; 1993 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1994 struct iwl_rx_no_data *desc = (void *)pkt->data; 1995 u32 rate_n_flags = le32_to_cpu(desc->rate); 1996 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 1997 u32 rssi = le32_to_cpu(desc->rssi); 1998 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 1999 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2000 struct ieee80211_sta *sta = NULL; 2001 struct sk_buff *skb; 2002 u8 channel, energy_a, energy_b; 2003 struct iwl_mvm_rx_phy_data phy_data = { 2004 .d0 = desc->phy_info[0], 2005 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 2006 }; 2007 2008 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc))) 2009 return; 2010 2011 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2012 return; 2013 2014 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 2015 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 2016 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 2017 2018 phy_data.info_type = 2019 le32_get_bits(desc->phy_info[1], 2020 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 2021 2022 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2023 * ieee80211_hdr pulled. 2024 */ 2025 skb = alloc_skb(128, GFP_ATOMIC); 2026 if (!skb) { 2027 IWL_ERR(mvm, "alloc_skb failed\n"); 2028 return; 2029 } 2030 2031 rx_status = IEEE80211_SKB_RXCB(skb); 2032 2033 /* 0-length PSDU */ 2034 rx_status->flag |= RX_FLAG_NO_PSDU; 2035 2036 switch (info_type) { 2037 case RX_NO_DATA_INFO_TYPE_NDP: 2038 rx_status->zero_length_psdu_type = 2039 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2040 break; 2041 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2042 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 2043 rx_status->zero_length_psdu_type = 2044 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2045 break; 2046 default: 2047 rx_status->zero_length_psdu_type = 2048 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2049 break; 2050 } 2051 2052 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2053 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2054 case RATE_MCS_CHAN_WIDTH_20: 2055 break; 2056 case RATE_MCS_CHAN_WIDTH_40: 2057 rx_status->bw = RATE_INFO_BW_40; 2058 break; 2059 case RATE_MCS_CHAN_WIDTH_80: 2060 rx_status->bw = RATE_INFO_BW_80; 2061 break; 2062 case RATE_MCS_CHAN_WIDTH_160: 2063 rx_status->bw = RATE_INFO_BW_160; 2064 break; 2065 } 2066 2067 if (rate_n_flags & RATE_MCS_HE_MSK) 2068 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 2069 phy_info, queue); 2070 2071 iwl_mvm_decode_lsig(skb, &phy_data); 2072 2073 rx_status->device_timestamp = gp2_on_air_rise; 2074 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 2075 NL80211_BAND_2GHZ; 2076 rx_status->freq = ieee80211_channel_to_frequency(channel, 2077 rx_status->band); 2078 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 2079 energy_b); 2080 2081 rcu_read_lock(); 2082 2083 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 2084 rate_n_flags & RATE_MCS_SGI_MSK) 2085 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2086 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 2087 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 2088 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2089 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2090 if (rate_n_flags & RATE_MCS_HT_MSK) { 2091 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2092 RATE_MCS_STBC_POS; 2093 rx_status->encoding = RX_ENC_HT; 2094 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 2095 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2096 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 2097 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2098 RATE_MCS_STBC_POS; 2099 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 2100 rx_status->encoding = RX_ENC_VHT; 2101 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2102 if (rate_n_flags & RATE_MCS_BF_MSK) 2103 rx_status->enc_flags |= RX_ENC_FLAG_BF; 2104 /* 2105 * take the nss from the rx_vec since the rate_n_flags has 2106 * only 2 bits for the nss which gives a max of 4 ss but 2107 * there may be up to 8 spatial streams 2108 */ 2109 rx_status->nss = 2110 le32_get_bits(desc->rx_vec[0], 2111 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2112 } else if (rate_n_flags & RATE_MCS_HE_MSK) { 2113 rx_status->nss = 2114 le32_get_bits(desc->rx_vec[0], 2115 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2116 } else { 2117 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 2118 rx_status->band); 2119 2120 if (WARN(rate < 0 || rate > 0xFF, 2121 "Invalid rate flags 0x%x, band %d,\n", 2122 rate_n_flags, rx_status->band)) { 2123 kfree_skb(skb); 2124 goto out; 2125 } 2126 rx_status->rate_idx = rate; 2127 } 2128 2129 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2130 out: 2131 rcu_read_unlock(); 2132 } 2133 2134 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2135 struct iwl_rx_cmd_buffer *rxb, int queue) 2136 { 2137 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2138 struct iwl_frame_release *release = (void *)pkt->data; 2139 2140 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2141 return; 2142 2143 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2144 le16_to_cpu(release->nssn), 2145 queue, 0); 2146 } 2147 2148 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2149 struct iwl_rx_cmd_buffer *rxb, int queue) 2150 { 2151 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2152 struct iwl_bar_frame_release *release = (void *)pkt->data; 2153 unsigned int baid = le32_get_bits(release->ba_info, 2154 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2155 unsigned int nssn = le32_get_bits(release->ba_info, 2156 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2157 unsigned int sta_id = le32_get_bits(release->sta_tid, 2158 IWL_BAR_FRAME_RELEASE_STA_MASK); 2159 unsigned int tid = le32_get_bits(release->sta_tid, 2160 IWL_BAR_FRAME_RELEASE_TID_MASK); 2161 struct iwl_mvm_baid_data *baid_data; 2162 2163 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2164 return; 2165 2166 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2167 baid >= ARRAY_SIZE(mvm->baid_map))) 2168 return; 2169 2170 rcu_read_lock(); 2171 baid_data = rcu_dereference(mvm->baid_map[baid]); 2172 if (!baid_data) { 2173 IWL_DEBUG_RX(mvm, 2174 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2175 baid); 2176 goto out; 2177 } 2178 2179 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2180 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2181 baid, baid_data->sta_id, baid_data->tid, sta_id, 2182 tid)) 2183 goto out; 2184 2185 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2186 out: 2187 rcu_read_unlock(); 2188 } 2189