1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 #include "time-sync.h" 13 14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 15 int queue, struct ieee80211_sta *sta) 16 { 17 struct iwl_mvm_sta *mvmsta; 18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 20 struct iwl_mvm_key_pn *ptk_pn; 21 int res; 22 u8 tid, keyidx; 23 u8 pn[IEEE80211_CCMP_PN_LEN]; 24 u8 *extiv; 25 26 /* do PN checking */ 27 28 /* multicast and non-data only arrives on default queue */ 29 if (!ieee80211_is_data(hdr->frame_control) || 30 is_multicast_ether_addr(hdr->addr1)) 31 return 0; 32 33 /* do not check PN for open AP */ 34 if (!(stats->flag & RX_FLAG_DECRYPTED)) 35 return 0; 36 37 /* 38 * avoid checking for default queue - we don't want to replicate 39 * all the logic that's necessary for checking the PN on fragmented 40 * frames, leave that to mac80211 41 */ 42 if (queue == 0) 43 return 0; 44 45 /* if we are here - this for sure is either CCMP or GCMP */ 46 if (IS_ERR_OR_NULL(sta)) { 47 IWL_DEBUG_DROP(mvm, 48 "expected hw-decrypted unicast frame for station\n"); 49 return -1; 50 } 51 52 mvmsta = iwl_mvm_sta_from_mac80211(sta); 53 54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 55 keyidx = extiv[3] >> 6; 56 57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 58 if (!ptk_pn) 59 return -1; 60 61 if (ieee80211_is_data_qos(hdr->frame_control)) 62 tid = ieee80211_get_tid(hdr); 63 else 64 tid = 0; 65 66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 67 if (tid >= IWL_MAX_TID_COUNT) 68 return -1; 69 70 /* load pn */ 71 pn[0] = extiv[7]; 72 pn[1] = extiv[6]; 73 pn[2] = extiv[5]; 74 pn[3] = extiv[4]; 75 pn[4] = extiv[1]; 76 pn[5] = extiv[0]; 77 78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 79 if (res < 0) 80 return -1; 81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 82 return -1; 83 84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 85 stats->flag |= RX_FLAG_PN_VALIDATED; 86 87 return 0; 88 } 89 90 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 93 struct iwl_rx_cmd_buffer *rxb) 94 { 95 struct iwl_rx_packet *pkt = rxb_addr(rxb); 96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 97 unsigned int headlen, fraglen, pad_len = 0; 98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 101 102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 103 len -= 2; 104 pad_len = 2; 105 } 106 107 /* 108 * For non monitor interface strip the bytes the RADA might not have 109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor 110 * interface cannot exist with other interfaces, this removal is safe 111 * and sufficient, in monitor mode there's no decryption being done. 112 */ 113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) 114 len -= mic_crc_len; 115 116 /* If frame is small enough to fit in skb->head, pull it completely. 117 * If not, only pull ieee80211_hdr (including crypto if present, and 118 * an additional 8 bytes for SNAP/ethertype, see below) so that 119 * splice() or TCP coalesce are more efficient. 120 * 121 * Since, in addition, ieee80211_data_to_8023() always pull in at 122 * least 8 bytes (possibly more for mesh) we can do the same here 123 * to save the cost of doing it later. That still doesn't pull in 124 * the actual IP header since the typical case has a SNAP header. 125 * If the latter changes (there are efforts in the standards group 126 * to do so) we should revisit this and ieee80211_data_to_8023(). 127 */ 128 headlen = (len <= skb_tailroom(skb)) ? len : 129 hdrlen + crypt_len + 8; 130 131 /* The firmware may align the packet to DWORD. 132 * The padding is inserted after the IV. 133 * After copying the header + IV skip the padding if 134 * present before copying packet data. 135 */ 136 hdrlen += crypt_len; 137 138 if (unlikely(headlen < hdrlen)) 139 return -EINVAL; 140 141 /* Since data doesn't move data while putting data on skb and that is 142 * the only way we use, data + len is the next place that hdr would be put 143 */ 144 skb_set_mac_header(skb, skb->len); 145 skb_put_data(skb, hdr, hdrlen); 146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 147 148 /* 149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 150 * certain cases and starts the checksum after the SNAP. Check if 151 * this is the case - it's easier to just bail out to CHECKSUM_NONE 152 * in the cases the hardware didn't handle, since it's rare to see 153 * such packets, even though the hardware did calculate the checksum 154 * in this case, just starting after the MAC header instead. 155 * 156 * Starting from Bz hardware, it calculates starting directly after 157 * the MAC header, so that matches mac80211's expectation. 158 */ 159 if (skb->ip_summed == CHECKSUM_COMPLETE) { 160 struct { 161 u8 hdr[6]; 162 __be16 type; 163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 164 165 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 166 !ether_addr_equal(shdr->hdr, rfc1042_header) || 167 (shdr->type != htons(ETH_P_IP) && 168 shdr->type != htons(ETH_P_ARP) && 169 shdr->type != htons(ETH_P_IPV6) && 170 shdr->type != htons(ETH_P_8021Q) && 171 shdr->type != htons(ETH_P_PAE) && 172 shdr->type != htons(ETH_P_TDLS)))) 173 skb->ip_summed = CHECKSUM_NONE; 174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) 175 /* mac80211 assumes full CSUM including SNAP header */ 176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 177 } 178 179 fraglen = len - headlen; 180 181 if (fraglen) { 182 int offset = (u8 *)hdr + headlen + pad_len - 183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 184 185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 186 fraglen, rxb->truesize); 187 } 188 189 return 0; 190 } 191 192 /* put a TLV on the skb and return data pointer 193 * 194 * Also pad to 4 the len and zero out all data part 195 */ 196 static void * 197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 198 { 199 struct ieee80211_radiotap_tlv *tlv; 200 201 tlv = skb_put(skb, sizeof(*tlv)); 202 tlv->type = cpu_to_le16(type); 203 tlv->len = cpu_to_le16(len); 204 return skb_put_zero(skb, ALIGN(len, 4)); 205 } 206 207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 208 struct sk_buff *skb) 209 { 210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 211 struct ieee80211_radiotap_vendor_content *radiotap; 212 const u16 vendor_data_len = sizeof(mvm->cur_aid); 213 214 if (!mvm->cur_aid) 215 return; 216 217 radiotap = iwl_mvm_radiotap_put_tlv(skb, 218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 219 sizeof(*radiotap) + vendor_data_len); 220 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->oui_subtype = 1; 227 radiotap->vendor_type = 0; 228 229 /* fill the data now */ 230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 231 232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 233 } 234 235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 237 struct napi_struct *napi, 238 struct sk_buff *skb, int queue, 239 struct ieee80211_sta *sta, 240 struct ieee80211_link_sta *link_sta) 241 { 242 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { 243 kfree_skb(skb); 244 return; 245 } 246 247 if (sta && sta->valid_links && link_sta) { 248 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 249 250 rx_status->link_valid = 1; 251 rx_status->link_id = link_sta->link_id; 252 } 253 254 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 255 } 256 257 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 258 struct ieee80211_rx_status *rx_status, 259 u32 rate_n_flags, int energy_a, 260 int energy_b) 261 { 262 int max_energy; 263 u32 rate_flags = rate_n_flags; 264 265 energy_a = energy_a ? -energy_a : S8_MIN; 266 energy_b = energy_b ? -energy_b : S8_MIN; 267 max_energy = max(energy_a, energy_b); 268 269 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 270 energy_a, energy_b, max_energy); 271 272 rx_status->signal = max_energy; 273 rx_status->chains = 274 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 275 rx_status->chain_signal[0] = energy_a; 276 rx_status->chain_signal[1] = energy_b; 277 } 278 279 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 280 struct ieee80211_hdr *hdr, 281 struct iwl_rx_mpdu_desc *desc, 282 u32 status) 283 { 284 struct iwl_mvm_sta *mvmsta; 285 struct iwl_mvm_vif *mvmvif; 286 u8 keyid; 287 struct ieee80211_key_conf *key; 288 u32 len = le16_to_cpu(desc->mpdu_len); 289 const u8 *frame = (void *)hdr; 290 291 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 292 return 0; 293 294 /* 295 * For non-beacon, we don't really care. But beacons may 296 * be filtered out, and we thus need the firmware's replay 297 * detection, otherwise beacons the firmware previously 298 * filtered could be replayed, or something like that, and 299 * it can filter a lot - though usually only if nothing has 300 * changed. 301 */ 302 if (!ieee80211_is_beacon(hdr->frame_control)) 303 return 0; 304 305 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 306 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 307 return -1; 308 309 /* good cases */ 310 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 311 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) 312 return 0; 313 314 if (!sta) 315 return -1; 316 317 mvmsta = iwl_mvm_sta_from_mac80211(sta); 318 319 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 320 321 /* 322 * both keys will have the same cipher and MIC length, use 323 * whichever one is available 324 */ 325 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 326 if (!key) { 327 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 328 if (!key) 329 return -1; 330 } 331 332 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 333 return -1; 334 335 /* get the real key ID */ 336 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 337 /* and if that's the other key, look it up */ 338 if (keyid != key->keyidx) { 339 /* 340 * shouldn't happen since firmware checked, but be safe 341 * in case the MIC length is wrong too, for example 342 */ 343 if (keyid != 6 && keyid != 7) 344 return -1; 345 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 346 if (!key) 347 return -1; 348 } 349 350 /* Report status to mac80211 */ 351 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 352 ieee80211_key_mic_failure(key); 353 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 354 ieee80211_key_replay(key); 355 356 return -1; 357 } 358 359 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 360 struct ieee80211_hdr *hdr, 361 struct ieee80211_rx_status *stats, u16 phy_info, 362 struct iwl_rx_mpdu_desc *desc, 363 u32 pkt_flags, int queue, u8 *crypt_len) 364 { 365 u32 status = le32_to_cpu(desc->status); 366 367 /* 368 * Drop UNKNOWN frames in aggregation, unless in monitor mode 369 * (where we don't have the keys). 370 * We limit this to aggregation because in TKIP this is a valid 371 * scenario, since we may not have the (correct) TTAK (phase 1 372 * key) in the firmware. 373 */ 374 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 375 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 376 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 377 return -1; 378 379 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 380 !ieee80211_has_protected(hdr->frame_control))) 381 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status); 382 383 if (!ieee80211_has_protected(hdr->frame_control) || 384 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 385 IWL_RX_MPDU_STATUS_SEC_NONE) 386 return 0; 387 388 /* TODO: handle packets encrypted with unknown alg */ 389 390 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 391 case IWL_RX_MPDU_STATUS_SEC_CCM: 392 case IWL_RX_MPDU_STATUS_SEC_GCM: 393 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 394 /* alg is CCM: check MIC only */ 395 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 396 return -1; 397 398 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; 399 *crypt_len = IEEE80211_CCMP_HDR_LEN; 400 return 0; 401 case IWL_RX_MPDU_STATUS_SEC_TKIP: 402 /* Don't drop the frame and decrypt it in SW */ 403 if (!fw_has_api(&mvm->fw->ucode_capa, 404 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 405 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 406 return 0; 407 408 if (mvm->trans->trans_cfg->gen2 && 409 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 410 stats->flag |= RX_FLAG_MMIC_ERROR; 411 412 *crypt_len = IEEE80211_TKIP_IV_LEN; 413 fallthrough; 414 case IWL_RX_MPDU_STATUS_SEC_WEP: 415 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 416 return -1; 417 418 stats->flag |= RX_FLAG_DECRYPTED; 419 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 420 IWL_RX_MPDU_STATUS_SEC_WEP) 421 *crypt_len = IEEE80211_WEP_IV_LEN; 422 423 if (pkt_flags & FH_RSCSR_RADA_EN) { 424 stats->flag |= RX_FLAG_ICV_STRIPPED; 425 if (mvm->trans->trans_cfg->gen2) 426 stats->flag |= RX_FLAG_MMIC_STRIPPED; 427 } 428 429 return 0; 430 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 431 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 432 return -1; 433 stats->flag |= RX_FLAG_DECRYPTED; 434 return 0; 435 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 436 break; 437 default: 438 /* 439 * Sometimes we can get frames that were not decrypted 440 * because the firmware didn't have the keys yet. This can 441 * happen after connection where we can get multicast frames 442 * before the GTK is installed. 443 * Silently drop those frames. 444 * Also drop un-decrypted frames in monitor mode. 445 */ 446 if (!is_multicast_ether_addr(hdr->addr1) && 447 !mvm->monitor_on && net_ratelimit()) 448 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); 449 } 450 451 return 0; 452 } 453 454 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 455 struct ieee80211_sta *sta, 456 struct sk_buff *skb, 457 struct iwl_rx_packet *pkt) 458 { 459 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 460 461 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 462 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 463 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 464 465 skb->ip_summed = CHECKSUM_COMPLETE; 466 skb->csum = csum_unfold(~(__force __sum16)hwsum); 467 } 468 } else { 469 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 470 struct iwl_mvm_vif *mvmvif; 471 u16 flags = le16_to_cpu(desc->l3l4_flags); 472 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 473 IWL_RX_L3_PROTO_POS); 474 475 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 476 477 if (mvmvif->features & NETIF_F_RXCSUM && 478 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 479 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 480 l3_prot == IWL_RX_L3_TYPE_IPV6 || 481 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 482 skb->ip_summed = CHECKSUM_UNNECESSARY; 483 } 484 } 485 486 /* 487 * returns true if a packet is a duplicate and should be dropped. 488 * Updates AMSDU PN tracking info 489 */ 490 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 491 struct ieee80211_rx_status *rx_status, 492 struct ieee80211_hdr *hdr, 493 struct iwl_rx_mpdu_desc *desc) 494 { 495 struct iwl_mvm_sta *mvm_sta; 496 struct iwl_mvm_rxq_dup_data *dup_data; 497 u8 tid, sub_frame_idx; 498 499 if (WARN_ON(IS_ERR_OR_NULL(sta))) 500 return false; 501 502 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 503 dup_data = &mvm_sta->dup_data[queue]; 504 505 /* 506 * Drop duplicate 802.11 retransmissions 507 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 508 */ 509 if (ieee80211_is_ctl(hdr->frame_control) || 510 ieee80211_is_qos_nullfunc(hdr->frame_control) || 511 is_multicast_ether_addr(hdr->addr1)) { 512 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 513 return false; 514 } 515 516 if (ieee80211_is_data_qos(hdr->frame_control)) 517 /* frame has qos control */ 518 tid = ieee80211_get_tid(hdr); 519 else 520 tid = IWL_MAX_TID_COUNT; 521 522 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 523 sub_frame_idx = desc->amsdu_info & 524 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 525 526 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 527 dup_data->last_seq[tid] == hdr->seq_ctrl && 528 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 529 return true; 530 531 /* Allow same PN as the first subframe for following sub frames */ 532 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 533 sub_frame_idx > dup_data->last_sub_frame[tid] && 534 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 535 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 536 537 dup_data->last_seq[tid] = hdr->seq_ctrl; 538 dup_data->last_sub_frame[tid] = sub_frame_idx; 539 540 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 541 542 return false; 543 } 544 545 /* 546 * Returns true if sn2 - buffer_size < sn1 < sn2. 547 * To be used only in order to compare reorder buffer head with NSSN. 548 * We fully trust NSSN unless it is behind us due to reorder timeout. 549 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 550 */ 551 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 552 { 553 return ieee80211_sn_less(sn1, sn2) && 554 !ieee80211_sn_less(sn1, sn2 - buffer_size); 555 } 556 557 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 558 { 559 if (IWL_MVM_USE_NSSN_SYNC) { 560 struct iwl_mvm_nssn_sync_data notif = { 561 .baid = baid, 562 .nssn = nssn, 563 }; 564 565 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 566 ¬if, sizeof(notif)); 567 } 568 } 569 570 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 571 572 enum iwl_mvm_release_flags { 573 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 574 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 575 }; 576 577 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 578 struct ieee80211_sta *sta, 579 struct napi_struct *napi, 580 struct iwl_mvm_baid_data *baid_data, 581 struct iwl_mvm_reorder_buffer *reorder_buf, 582 u16 nssn, u32 flags) 583 { 584 struct iwl_mvm_reorder_buf_entry *entries = 585 &baid_data->entries[reorder_buf->queue * 586 baid_data->entries_per_queue]; 587 u16 ssn = reorder_buf->head_sn; 588 589 lockdep_assert_held(&reorder_buf->lock); 590 591 /* 592 * We keep the NSSN not too far behind, if we are sync'ing it and it 593 * is more than 2048 ahead of us, it must be behind us. Discard it. 594 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 595 * behind and this queue already processed packets. The next if 596 * would have caught cases where this queue would have processed less 597 * than 64 packets, but it may have processed more than 64 packets. 598 */ 599 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 600 ieee80211_sn_less(nssn, ssn)) 601 goto set_timer; 602 603 /* ignore nssn smaller than head sn - this can happen due to timeout */ 604 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 605 goto set_timer; 606 607 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 608 int index = ssn % reorder_buf->buf_size; 609 struct sk_buff_head *skb_list = &entries[index].e.frames; 610 struct sk_buff *skb; 611 612 ssn = ieee80211_sn_inc(ssn); 613 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 614 (ssn == 2048 || ssn == 0)) 615 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 616 617 /* 618 * Empty the list. Will have more than one frame for A-MSDU. 619 * Empty list is valid as well since nssn indicates frames were 620 * received. 621 */ 622 while ((skb = __skb_dequeue(skb_list))) { 623 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 624 reorder_buf->queue, 625 sta, NULL /* FIXME */); 626 reorder_buf->num_stored--; 627 } 628 } 629 reorder_buf->head_sn = nssn; 630 631 set_timer: 632 if (reorder_buf->num_stored && !reorder_buf->removed) { 633 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 634 635 while (skb_queue_empty(&entries[index].e.frames)) 636 index = (index + 1) % reorder_buf->buf_size; 637 /* modify timer to match next frame's expiration time */ 638 mod_timer(&reorder_buf->reorder_timer, 639 entries[index].e.reorder_time + 1 + 640 RX_REORDER_BUF_TIMEOUT_MQ); 641 } else { 642 del_timer(&reorder_buf->reorder_timer); 643 } 644 } 645 646 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 647 { 648 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 649 struct iwl_mvm_baid_data *baid_data = 650 iwl_mvm_baid_data_from_reorder_buf(buf); 651 struct iwl_mvm_reorder_buf_entry *entries = 652 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 653 int i; 654 u16 sn = 0, index = 0; 655 bool expired = false; 656 bool cont = false; 657 658 spin_lock(&buf->lock); 659 660 if (!buf->num_stored || buf->removed) { 661 spin_unlock(&buf->lock); 662 return; 663 } 664 665 for (i = 0; i < buf->buf_size ; i++) { 666 index = (buf->head_sn + i) % buf->buf_size; 667 668 if (skb_queue_empty(&entries[index].e.frames)) { 669 /* 670 * If there is a hole and the next frame didn't expire 671 * we want to break and not advance SN 672 */ 673 cont = false; 674 continue; 675 } 676 if (!cont && 677 !time_after(jiffies, entries[index].e.reorder_time + 678 RX_REORDER_BUF_TIMEOUT_MQ)) 679 break; 680 681 expired = true; 682 /* continue until next hole after this expired frames */ 683 cont = true; 684 sn = ieee80211_sn_add(buf->head_sn, i + 1); 685 } 686 687 if (expired) { 688 struct ieee80211_sta *sta; 689 struct iwl_mvm_sta *mvmsta; 690 u8 sta_id = ffs(baid_data->sta_mask) - 1; 691 692 rcu_read_lock(); 693 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 694 mvmsta = iwl_mvm_sta_from_mac80211(sta); 695 696 /* SN is set to the last expired frame + 1 */ 697 IWL_DEBUG_HT(buf->mvm, 698 "Releasing expired frames for sta %u, sn %d\n", 699 sta_id, sn); 700 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 701 sta, baid_data->tid); 702 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 703 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 704 rcu_read_unlock(); 705 } else { 706 /* 707 * If no frame expired and there are stored frames, index is now 708 * pointing to the first unexpired frame - modify timer 709 * accordingly to this frame. 710 */ 711 mod_timer(&buf->reorder_timer, 712 entries[index].e.reorder_time + 713 1 + RX_REORDER_BUF_TIMEOUT_MQ); 714 } 715 spin_unlock(&buf->lock); 716 } 717 718 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 719 struct iwl_mvm_delba_data *data) 720 { 721 struct iwl_mvm_baid_data *ba_data; 722 struct ieee80211_sta *sta; 723 struct iwl_mvm_reorder_buffer *reorder_buf; 724 u8 baid = data->baid; 725 u32 sta_id; 726 727 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 728 return; 729 730 rcu_read_lock(); 731 732 ba_data = rcu_dereference(mvm->baid_map[baid]); 733 if (WARN_ON_ONCE(!ba_data)) 734 goto out; 735 736 /* pick any STA ID to find the pointer */ 737 sta_id = ffs(ba_data->sta_mask) - 1; 738 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 739 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 740 goto out; 741 742 reorder_buf = &ba_data->reorder_buf[queue]; 743 744 /* release all frames that are in the reorder buffer to the stack */ 745 spin_lock_bh(&reorder_buf->lock); 746 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 747 ieee80211_sn_add(reorder_buf->head_sn, 748 reorder_buf->buf_size), 749 0); 750 spin_unlock_bh(&reorder_buf->lock); 751 del_timer_sync(&reorder_buf->reorder_timer); 752 753 out: 754 rcu_read_unlock(); 755 } 756 757 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 758 struct napi_struct *napi, 759 u8 baid, u16 nssn, int queue, 760 u32 flags) 761 { 762 struct ieee80211_sta *sta; 763 struct iwl_mvm_reorder_buffer *reorder_buf; 764 struct iwl_mvm_baid_data *ba_data; 765 u32 sta_id; 766 767 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 768 baid, nssn); 769 770 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 771 baid >= ARRAY_SIZE(mvm->baid_map))) 772 return; 773 774 rcu_read_lock(); 775 776 ba_data = rcu_dereference(mvm->baid_map[baid]); 777 if (!ba_data) { 778 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC), 779 "BAID %d not found in map\n", baid); 780 goto out; 781 } 782 783 /* pick any STA ID to find the pointer */ 784 sta_id = ffs(ba_data->sta_mask) - 1; 785 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 786 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 787 goto out; 788 789 reorder_buf = &ba_data->reorder_buf[queue]; 790 791 spin_lock_bh(&reorder_buf->lock); 792 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 793 reorder_buf, nssn, flags); 794 spin_unlock_bh(&reorder_buf->lock); 795 796 out: 797 rcu_read_unlock(); 798 } 799 800 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 801 struct napi_struct *napi, int queue, 802 const struct iwl_mvm_nssn_sync_data *data) 803 { 804 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 805 data->nssn, queue, 806 IWL_MVM_RELEASE_FROM_RSS_SYNC); 807 } 808 809 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 810 struct iwl_rx_cmd_buffer *rxb, int queue) 811 { 812 struct iwl_rx_packet *pkt = rxb_addr(rxb); 813 struct iwl_rxq_sync_notification *notif; 814 struct iwl_mvm_internal_rxq_notif *internal_notif; 815 u32 len = iwl_rx_packet_payload_len(pkt); 816 817 notif = (void *)pkt->data; 818 internal_notif = (void *)notif->payload; 819 820 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 821 "invalid notification size %d (%d)", 822 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 823 return; 824 len -= sizeof(*notif) + sizeof(*internal_notif); 825 826 if (internal_notif->sync && 827 mvm->queue_sync_cookie != internal_notif->cookie) { 828 WARN_ONCE(1, "Received expired RX queue sync message\n"); 829 return; 830 } 831 832 switch (internal_notif->type) { 833 case IWL_MVM_RXQ_EMPTY: 834 WARN_ONCE(len, "invalid empty notification size %d", len); 835 break; 836 case IWL_MVM_RXQ_NOTIF_DEL_BA: 837 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 838 "invalid delba notification size %d (%d)", 839 len, (int)sizeof(struct iwl_mvm_delba_data))) 840 break; 841 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 842 break; 843 case IWL_MVM_RXQ_NSSN_SYNC: 844 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 845 "invalid nssn sync notification size %d (%d)", 846 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 847 break; 848 iwl_mvm_nssn_sync(mvm, napi, queue, 849 (void *)internal_notif->data); 850 break; 851 default: 852 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 853 } 854 855 if (internal_notif->sync) { 856 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 857 "queue sync: queue %d responded a second time!\n", 858 queue); 859 if (READ_ONCE(mvm->queue_sync_state) == 0) 860 wake_up(&mvm->rx_sync_waitq); 861 } 862 } 863 864 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 865 struct ieee80211_sta *sta, int tid, 866 struct iwl_mvm_reorder_buffer *buffer, 867 u32 reorder, u32 gp2, int queue) 868 { 869 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 870 871 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 872 /* we have a new (A-)MPDU ... */ 873 874 /* 875 * reset counter to 0 if we didn't have any oldsn in 876 * the last A-MPDU (as detected by GP2 being identical) 877 */ 878 if (!buffer->consec_oldsn_prev_drop) 879 buffer->consec_oldsn_drops = 0; 880 881 /* either way, update our tracking state */ 882 buffer->consec_oldsn_ampdu_gp2 = gp2; 883 } else if (buffer->consec_oldsn_prev_drop) { 884 /* 885 * tracking state didn't change, and we had an old SN 886 * indication before - do nothing in this case, we 887 * already noted this one down and are waiting for the 888 * next A-MPDU (by GP2) 889 */ 890 return; 891 } 892 893 /* return unless this MPDU has old SN */ 894 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 895 return; 896 897 /* update state */ 898 buffer->consec_oldsn_prev_drop = 1; 899 buffer->consec_oldsn_drops++; 900 901 /* if limit is reached, send del BA and reset state */ 902 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 903 IWL_WARN(mvm, 904 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 905 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 906 sta->addr, queue, tid); 907 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 908 buffer->consec_oldsn_prev_drop = 0; 909 buffer->consec_oldsn_drops = 0; 910 } 911 } 912 913 /* 914 * Returns true if the MPDU was buffered\dropped, false if it should be passed 915 * to upper layer. 916 */ 917 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 918 struct napi_struct *napi, 919 int queue, 920 struct ieee80211_sta *sta, 921 struct sk_buff *skb, 922 struct iwl_rx_mpdu_desc *desc) 923 { 924 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 925 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 926 struct iwl_mvm_baid_data *baid_data; 927 struct iwl_mvm_reorder_buffer *buffer; 928 struct sk_buff *tail; 929 u32 reorder = le32_to_cpu(desc->reorder_data); 930 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 931 bool last_subframe = 932 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 933 u8 tid = ieee80211_get_tid(hdr); 934 u8 sub_frame_idx = desc->amsdu_info & 935 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 936 struct iwl_mvm_reorder_buf_entry *entries; 937 u32 sta_mask; 938 int index; 939 u16 nssn, sn; 940 u8 baid; 941 942 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 943 IWL_RX_MPDU_REORDER_BAID_SHIFT; 944 945 /* 946 * This also covers the case of receiving a Block Ack Request 947 * outside a BA session; we'll pass it to mac80211 and that 948 * then sends a delBA action frame. 949 * This also covers pure monitor mode, in which case we won't 950 * have any BA sessions. 951 */ 952 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 953 return false; 954 955 /* no sta yet */ 956 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 957 "Got valid BAID without a valid station assigned\n")) 958 return false; 959 960 /* not a data packet or a bar */ 961 if (!ieee80211_is_back_req(hdr->frame_control) && 962 (!ieee80211_is_data_qos(hdr->frame_control) || 963 is_multicast_ether_addr(hdr->addr1))) 964 return false; 965 966 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 967 return false; 968 969 baid_data = rcu_dereference(mvm->baid_map[baid]); 970 if (!baid_data) { 971 IWL_DEBUG_RX(mvm, 972 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 973 baid, reorder); 974 return false; 975 } 976 977 rcu_read_lock(); 978 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); 979 rcu_read_unlock(); 980 981 if (WARN(tid != baid_data->tid || 982 !(sta_mask & baid_data->sta_mask), 983 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", 984 baid, baid_data->sta_mask, baid_data->tid, sta_mask, tid)) 985 return false; 986 987 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 988 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 989 IWL_RX_MPDU_REORDER_SN_SHIFT; 990 991 buffer = &baid_data->reorder_buf[queue]; 992 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 993 994 spin_lock_bh(&buffer->lock); 995 996 if (!buffer->valid) { 997 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 998 spin_unlock_bh(&buffer->lock); 999 return false; 1000 } 1001 buffer->valid = true; 1002 } 1003 1004 if (ieee80211_is_back_req(hdr->frame_control)) { 1005 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1006 buffer, nssn, 0); 1007 goto drop; 1008 } 1009 1010 /* 1011 * If there was a significant jump in the nssn - adjust. 1012 * If the SN is smaller than the NSSN it might need to first go into 1013 * the reorder buffer, in which case we just release up to it and the 1014 * rest of the function will take care of storing it and releasing up to 1015 * the nssn. 1016 * This should not happen. This queue has been lagging and it should 1017 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1018 * and update the other queues. 1019 */ 1020 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1021 buffer->buf_size) || 1022 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1023 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1024 1025 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1026 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1027 } 1028 1029 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1030 rx_status->device_timestamp, queue); 1031 1032 /* drop any oudated packets */ 1033 if (ieee80211_sn_less(sn, buffer->head_sn)) 1034 goto drop; 1035 1036 /* release immediately if allowed by nssn and no stored frames */ 1037 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1038 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1039 buffer->buf_size) && 1040 (!amsdu || last_subframe)) { 1041 /* 1042 * If we crossed the 2048 or 0 SN, notify all the 1043 * queues. This is done in order to avoid having a 1044 * head_sn that lags behind for too long. When that 1045 * happens, we can get to a situation where the head_sn 1046 * is within the interval [nssn - buf_size : nssn] 1047 * which will make us think that the nssn is a packet 1048 * that we already freed because of the reordering 1049 * buffer and we will ignore it. So maintain the 1050 * head_sn somewhat updated across all the queues: 1051 * when it crosses 0 and 2048. 1052 */ 1053 if (sn == 2048 || sn == 0) 1054 iwl_mvm_sync_nssn(mvm, baid, sn); 1055 buffer->head_sn = nssn; 1056 } 1057 /* No need to update AMSDU last SN - we are moving the head */ 1058 spin_unlock_bh(&buffer->lock); 1059 return false; 1060 } 1061 1062 /* 1063 * release immediately if there are no stored frames, and the sn is 1064 * equal to the head. 1065 * This can happen due to reorder timer, where NSSN is behind head_sn. 1066 * When we released everything, and we got the next frame in the 1067 * sequence, according to the NSSN we can't release immediately, 1068 * while technically there is no hole and we can move forward. 1069 */ 1070 if (!buffer->num_stored && sn == buffer->head_sn) { 1071 if (!amsdu || last_subframe) { 1072 if (sn == 2048 || sn == 0) 1073 iwl_mvm_sync_nssn(mvm, baid, sn); 1074 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1075 } 1076 /* No need to update AMSDU last SN - we are moving the head */ 1077 spin_unlock_bh(&buffer->lock); 1078 return false; 1079 } 1080 1081 index = sn % buffer->buf_size; 1082 1083 /* 1084 * Check if we already stored this frame 1085 * As AMSDU is either received or not as whole, logic is simple: 1086 * If we have frames in that position in the buffer and the last frame 1087 * originated from AMSDU had a different SN then it is a retransmission. 1088 * If it is the same SN then if the subframe index is incrementing it 1089 * is the same AMSDU - otherwise it is a retransmission. 1090 */ 1091 tail = skb_peek_tail(&entries[index].e.frames); 1092 if (tail && !amsdu) 1093 goto drop; 1094 else if (tail && (sn != buffer->last_amsdu || 1095 buffer->last_sub_index >= sub_frame_idx)) 1096 goto drop; 1097 1098 /* put in reorder buffer */ 1099 __skb_queue_tail(&entries[index].e.frames, skb); 1100 buffer->num_stored++; 1101 entries[index].e.reorder_time = jiffies; 1102 1103 if (amsdu) { 1104 buffer->last_amsdu = sn; 1105 buffer->last_sub_index = sub_frame_idx; 1106 } 1107 1108 /* 1109 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1110 * The reason is that NSSN advances on the first sub-frame, and may 1111 * cause the reorder buffer to advance before all the sub-frames arrive. 1112 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1113 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1114 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1115 * already ahead and it will be dropped. 1116 * If the last sub-frame is not on this queue - we will get frame 1117 * release notification with up to date NSSN. 1118 */ 1119 if (!amsdu || last_subframe) 1120 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1121 buffer, nssn, 1122 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1123 1124 spin_unlock_bh(&buffer->lock); 1125 return true; 1126 1127 drop: 1128 kfree_skb(skb); 1129 spin_unlock_bh(&buffer->lock); 1130 return true; 1131 } 1132 1133 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1134 u32 reorder_data, u8 baid) 1135 { 1136 unsigned long now = jiffies; 1137 unsigned long timeout; 1138 struct iwl_mvm_baid_data *data; 1139 1140 rcu_read_lock(); 1141 1142 data = rcu_dereference(mvm->baid_map[baid]); 1143 if (!data) { 1144 IWL_DEBUG_RX(mvm, 1145 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1146 baid, reorder_data); 1147 goto out; 1148 } 1149 1150 if (!data->timeout) 1151 goto out; 1152 1153 timeout = data->timeout; 1154 /* 1155 * Do not update last rx all the time to avoid cache bouncing 1156 * between the rx queues. 1157 * Update it every timeout. Worst case is the session will 1158 * expire after ~ 2 * timeout, which doesn't matter that much. 1159 */ 1160 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1161 /* Update is atomic */ 1162 data->last_rx = now; 1163 1164 out: 1165 rcu_read_unlock(); 1166 } 1167 1168 static void iwl_mvm_flip_address(u8 *addr) 1169 { 1170 int i; 1171 u8 mac_addr[ETH_ALEN]; 1172 1173 for (i = 0; i < ETH_ALEN; i++) 1174 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1175 ether_addr_copy(addr, mac_addr); 1176 } 1177 1178 struct iwl_mvm_rx_phy_data { 1179 enum iwl_rx_phy_info_type info_type; 1180 __le32 d0, d1, d2, d3, eht_d4, d5; 1181 __le16 d4; 1182 bool with_data; 1183 bool first_subframe; 1184 __le32 rx_vec[4]; 1185 1186 u32 rate_n_flags; 1187 u32 gp2_on_air_rise; 1188 u16 phy_info; 1189 u8 energy_a, energy_b; 1190 u8 channel; 1191 }; 1192 1193 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1194 struct iwl_mvm_rx_phy_data *phy_data, 1195 struct ieee80211_radiotap_he_mu *he_mu) 1196 { 1197 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1198 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1199 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1200 u32 rate_n_flags = phy_data->rate_n_flags; 1201 1202 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1203 he_mu->flags1 |= 1204 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1205 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1206 1207 he_mu->flags1 |= 1208 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1209 phy_data4), 1210 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1211 1212 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1213 phy_data2); 1214 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1215 phy_data3); 1216 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1217 phy_data2); 1218 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1219 phy_data3); 1220 } 1221 1222 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1223 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1224 he_mu->flags1 |= 1225 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1226 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1227 1228 he_mu->flags2 |= 1229 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1230 phy_data4), 1231 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1232 1233 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1234 phy_data2); 1235 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1236 phy_data3); 1237 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1238 phy_data2); 1239 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1240 phy_data3); 1241 } 1242 } 1243 1244 static void 1245 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1246 struct ieee80211_radiotap_he *he, 1247 struct ieee80211_radiotap_he_mu *he_mu, 1248 struct ieee80211_rx_status *rx_status) 1249 { 1250 /* 1251 * Unfortunately, we have to leave the mac80211 data 1252 * incorrect for the case that we receive an HE-MU 1253 * transmission and *don't* have the HE phy data (due 1254 * to the bits being used for TSF). This shouldn't 1255 * happen though as management frames where we need 1256 * the TSF/timers are not be transmitted in HE-MU. 1257 */ 1258 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1259 u32 rate_n_flags = phy_data->rate_n_flags; 1260 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1261 u8 offs = 0; 1262 1263 rx_status->bw = RATE_INFO_BW_HE_RU; 1264 1265 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1266 1267 switch (ru) { 1268 case 0 ... 36: 1269 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1270 offs = ru; 1271 break; 1272 case 37 ... 52: 1273 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1274 offs = ru - 37; 1275 break; 1276 case 53 ... 60: 1277 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1278 offs = ru - 53; 1279 break; 1280 case 61 ... 64: 1281 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1282 offs = ru - 61; 1283 break; 1284 case 65 ... 66: 1285 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1286 offs = ru - 65; 1287 break; 1288 case 67: 1289 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1290 break; 1291 case 68: 1292 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1293 break; 1294 } 1295 he->data2 |= le16_encode_bits(offs, 1296 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1297 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1298 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1299 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1300 he->data2 |= 1301 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1302 1303 #define CHECK_BW(bw) \ 1304 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1305 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1306 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1307 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1308 CHECK_BW(20); 1309 CHECK_BW(40); 1310 CHECK_BW(80); 1311 CHECK_BW(160); 1312 1313 if (he_mu) 1314 he_mu->flags2 |= 1315 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1316 rate_n_flags), 1317 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1318 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1319 he->data6 |= 1320 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1321 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1322 rate_n_flags), 1323 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1324 } 1325 1326 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1327 struct iwl_mvm_rx_phy_data *phy_data, 1328 struct ieee80211_radiotap_he *he, 1329 struct ieee80211_radiotap_he_mu *he_mu, 1330 struct ieee80211_rx_status *rx_status, 1331 int queue) 1332 { 1333 switch (phy_data->info_type) { 1334 case IWL_RX_PHY_INFO_TYPE_NONE: 1335 case IWL_RX_PHY_INFO_TYPE_CCK: 1336 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1337 case IWL_RX_PHY_INFO_TYPE_HT: 1338 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1339 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1340 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1341 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1342 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1343 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1344 return; 1345 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1346 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1347 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1348 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1349 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1350 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1351 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1352 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1353 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1354 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1355 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1356 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1357 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1358 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1359 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1360 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1361 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1362 fallthrough; 1363 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1364 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1365 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1366 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1367 /* HE common */ 1368 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1369 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1370 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1371 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1372 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1373 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1374 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1375 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1376 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1377 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1378 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1379 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1380 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1381 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1382 IWL_RX_PHY_DATA0_HE_UPLINK), 1383 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1384 } 1385 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1386 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1387 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1388 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1389 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1390 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1391 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1392 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1393 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1394 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1395 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1396 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1397 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1398 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1399 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1400 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1401 IWL_RX_PHY_DATA0_HE_DOPPLER), 1402 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1403 break; 1404 } 1405 1406 switch (phy_data->info_type) { 1407 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1408 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1409 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1410 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1411 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1412 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1413 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1414 break; 1415 default: 1416 /* nothing here */ 1417 break; 1418 } 1419 1420 switch (phy_data->info_type) { 1421 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1422 he_mu->flags1 |= 1423 le16_encode_bits(le16_get_bits(phy_data->d4, 1424 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1425 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1426 he_mu->flags1 |= 1427 le16_encode_bits(le16_get_bits(phy_data->d4, 1428 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1429 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1430 he_mu->flags2 |= 1431 le16_encode_bits(le16_get_bits(phy_data->d4, 1432 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1433 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1434 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1435 fallthrough; 1436 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1437 he_mu->flags2 |= 1438 le16_encode_bits(le32_get_bits(phy_data->d1, 1439 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1440 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1441 he_mu->flags2 |= 1442 le16_encode_bits(le32_get_bits(phy_data->d1, 1443 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1444 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1445 fallthrough; 1446 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1447 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1448 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1449 break; 1450 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1451 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1452 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1453 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1454 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1455 break; 1456 default: 1457 /* nothing */ 1458 break; 1459 } 1460 } 1461 1462 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 1463 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 1464 1465 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 1466 typeof(enc_bits) _enc_bits = enc_bits; \ 1467 typeof(usig) _usig = usig; \ 1468 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 1469 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 1470 } while (0) 1471 1472 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1473 eht->data[(rt_data)] |= \ 1474 (cpu_to_le32 \ 1475 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 1476 LE32_DEC_ENC(data ## fw_data, \ 1477 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 1478 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 1479 1480 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1481 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 1482 1483 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 1484 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 1485 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 1486 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 1487 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 1488 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 1489 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 1490 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 1491 1492 #define IWL_RX_RU_DATA_A1 2 1493 #define IWL_RX_RU_DATA_A2 2 1494 #define IWL_RX_RU_DATA_B1 2 1495 #define IWL_RX_RU_DATA_B2 3 1496 #define IWL_RX_RU_DATA_C1 3 1497 #define IWL_RX_RU_DATA_C2 3 1498 #define IWL_RX_RU_DATA_D1 4 1499 #define IWL_RX_RU_DATA_D2 4 1500 1501 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ 1502 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 1503 rt_ru, \ 1504 IWL_RX_RU_DATA_ ## fw_ru, \ 1505 fw_ru) 1506 1507 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, 1508 struct iwl_mvm_rx_phy_data *phy_data, 1509 struct ieee80211_rx_status *rx_status, 1510 struct ieee80211_radiotap_eht *eht, 1511 struct ieee80211_radiotap_eht_usig *usig) 1512 { 1513 if (phy_data->with_data) { 1514 __le32 data1 = phy_data->d1; 1515 __le32 data2 = phy_data->d2; 1516 __le32 data3 = phy_data->d3; 1517 __le32 data4 = phy_data->eht_d4; 1518 __le32 data5 = phy_data->d5; 1519 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 1520 1521 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1522 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1523 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1524 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1525 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 1526 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1527 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, 1528 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 1529 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1530 IWL_MVM_ENC_USIG_VALUE_MASK 1531 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 1532 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1533 1534 eht->user_info[0] |= 1535 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 1536 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 1537 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 1538 1539 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 1540 eht->data[7] |= LE32_DEC_ENC 1541 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 1542 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 1543 1544 /* 1545 * Hardware labels the content channels/RU allocation values 1546 * as follows: 1547 * Content Channel 1 Content Channel 2 1548 * 20 MHz: A1 1549 * 40 MHz: A1 B1 1550 * 80 MHz: A1 C1 B1 D1 1551 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 1552 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 1553 * 1554 * However firmware can only give us A1-D2, so the higher 1555 * frequencies are missing. 1556 */ 1557 1558 switch (phy_bw) { 1559 case RATE_MCS_CHAN_WIDTH_320: 1560 /* additional values are missing in RX metadata */ 1561 case RATE_MCS_CHAN_WIDTH_160: 1562 /* content channel 1 */ 1563 IWL_MVM_ENC_EHT_RU(1_2_1, A2); 1564 IWL_MVM_ENC_EHT_RU(1_2_2, C2); 1565 /* content channel 2 */ 1566 IWL_MVM_ENC_EHT_RU(2_2_1, B2); 1567 IWL_MVM_ENC_EHT_RU(2_2_2, D2); 1568 fallthrough; 1569 case RATE_MCS_CHAN_WIDTH_80: 1570 /* content channel 1 */ 1571 IWL_MVM_ENC_EHT_RU(1_1_2, C1); 1572 /* content channel 2 */ 1573 IWL_MVM_ENC_EHT_RU(2_1_2, D1); 1574 fallthrough; 1575 case RATE_MCS_CHAN_WIDTH_40: 1576 /* content channel 2 */ 1577 IWL_MVM_ENC_EHT_RU(2_1_1, B1); 1578 fallthrough; 1579 case RATE_MCS_CHAN_WIDTH_20: 1580 IWL_MVM_ENC_EHT_RU(1_1_1, A1); 1581 break; 1582 } 1583 } else { 1584 __le32 usig_a1 = phy_data->rx_vec[0]; 1585 __le32 usig_a2 = phy_data->rx_vec[1]; 1586 1587 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1588 IWL_RX_USIG_A1_DISREGARD, 1589 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 1590 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1591 IWL_RX_USIG_A1_VALIDATE, 1592 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 1593 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1594 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1595 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1596 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1597 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1598 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 1599 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1600 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 1601 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1602 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1603 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 1604 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 1605 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1606 IWL_RX_USIG_A2_EHT_SIG_MCS, 1607 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1608 IWL_MVM_ENC_USIG_VALUE_MASK 1609 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 1610 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1611 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1612 IWL_RX_USIG_A2_EHT_CRC_OK, 1613 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 1614 } 1615 } 1616 1617 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, 1618 struct iwl_mvm_rx_phy_data *phy_data, 1619 struct ieee80211_rx_status *rx_status, 1620 struct ieee80211_radiotap_eht *eht, 1621 struct ieee80211_radiotap_eht_usig *usig) 1622 { 1623 if (phy_data->with_data) { 1624 __le32 data5 = phy_data->d5; 1625 1626 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1627 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1628 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1629 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1630 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 1631 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1632 1633 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1634 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 1635 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1636 } else { 1637 __le32 usig_a1 = phy_data->rx_vec[0]; 1638 __le32 usig_a2 = phy_data->rx_vec[1]; 1639 1640 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1641 IWL_RX_USIG_A1_DISREGARD, 1642 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 1643 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1644 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1645 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1646 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1647 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1648 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 1649 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1650 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 1651 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1652 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1653 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 1654 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1655 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1656 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 1657 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 1658 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1659 IWL_RX_USIG_A2_EHT_CRC_OK, 1660 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 1661 } 1662 } 1663 1664 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, 1665 struct ieee80211_rx_status *rx_status, 1666 struct ieee80211_radiotap_eht *eht) 1667 { 1668 u32 ru = le32_get_bits(eht->data[8], 1669 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1670 enum nl80211_eht_ru_alloc nl_ru; 1671 1672 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 1673 * in an EHT variant User Info field 1674 */ 1675 1676 switch (ru) { 1677 case 0 ... 36: 1678 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 1679 break; 1680 case 37 ... 52: 1681 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 1682 break; 1683 case 53 ... 60: 1684 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 1685 break; 1686 case 61 ... 64: 1687 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 1688 break; 1689 case 65 ... 66: 1690 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 1691 break; 1692 case 67: 1693 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 1694 break; 1695 case 68: 1696 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 1697 break; 1698 case 69: 1699 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 1700 break; 1701 case 70 ... 81: 1702 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 1703 break; 1704 case 82 ... 89: 1705 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 1706 break; 1707 case 90 ... 93: 1708 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 1709 break; 1710 case 94 ... 95: 1711 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 1712 break; 1713 case 96 ... 99: 1714 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 1715 break; 1716 case 100 ... 103: 1717 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 1718 break; 1719 case 104: 1720 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 1721 break; 1722 case 105 ... 106: 1723 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 1724 break; 1725 default: 1726 return; 1727 } 1728 1729 rx_status->bw = RATE_INFO_BW_EHT_RU; 1730 rx_status->eht.ru = nl_ru; 1731 } 1732 1733 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, 1734 struct iwl_mvm_rx_phy_data *phy_data, 1735 struct ieee80211_rx_status *rx_status, 1736 struct ieee80211_radiotap_eht *eht, 1737 struct ieee80211_radiotap_eht_usig *usig) 1738 1739 { 1740 __le32 data0 = phy_data->d0; 1741 __le32 data1 = phy_data->d1; 1742 __le32 usig_a1 = phy_data->rx_vec[0]; 1743 u8 info_type = phy_data->info_type; 1744 1745 /* Not in EHT range */ 1746 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 1747 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 1748 return; 1749 1750 usig->common |= cpu_to_le32 1751 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 1752 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 1753 if (phy_data->with_data) { 1754 usig->common |= LE32_DEC_ENC(data0, 1755 IWL_RX_PHY_DATA0_EHT_UPLINK, 1756 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1757 usig->common |= LE32_DEC_ENC(data0, 1758 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 1759 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1760 } else { 1761 usig->common |= LE32_DEC_ENC(usig_a1, 1762 IWL_RX_USIG_A1_UL_FLAG, 1763 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1764 usig->common |= LE32_DEC_ENC(usig_a1, 1765 IWL_RX_USIG_A1_BSS_COLOR, 1766 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1767 } 1768 1769 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 1770 eht->data[0] |= LE32_DEC_ENC(data0, 1771 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 1772 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 1773 1774 /* All RU allocating size/index is in TB format */ 1775 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 1776 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 1777 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 1778 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_B0, 1779 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 1780 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_B1_B7_ALLOC, 1781 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1782 1783 iwl_mvm_decode_eht_ru(mvm, rx_status, eht); 1784 1785 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 1786 * which is on only in case of monitor mode so no need to check monitor 1787 * mode 1788 */ 1789 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 1790 eht->data[1] |= 1791 le32_encode_bits(mvm->monitor_p80, 1792 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 1793 1794 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 1795 if (phy_data->with_data) 1796 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 1797 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1798 else 1799 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 1800 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1801 1802 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 1803 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 1804 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 1805 1806 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 1807 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 1808 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 1809 1810 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 1811 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 1812 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 1813 1814 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 1815 1816 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 1817 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 1818 1819 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 1820 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 1821 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 1822 1823 /* 1824 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 1825 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 1826 */ 1827 1828 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 1829 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 1830 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 1831 1832 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 1833 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 1834 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); 1835 1836 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 1837 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 1838 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); 1839 } 1840 1841 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, 1842 struct iwl_mvm_rx_phy_data *phy_data, 1843 int queue) 1844 { 1845 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1846 1847 struct ieee80211_radiotap_eht *eht; 1848 struct ieee80211_radiotap_eht_usig *usig; 1849 size_t eht_len = sizeof(*eht); 1850 1851 u32 rate_n_flags = phy_data->rate_n_flags; 1852 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1853 /* EHT and HE have the same valus for LTF */ 1854 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1855 u16 phy_info = phy_data->phy_info; 1856 u32 bw; 1857 1858 /* u32 for 1 user_info */ 1859 if (phy_data->with_data) 1860 eht_len += sizeof(u32); 1861 1862 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1863 1864 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1865 sizeof(*usig)); 1866 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1867 usig->common |= 1868 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1869 1870 /* specific handling for 320MHz */ 1871 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); 1872 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1873 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, 1874 le32_to_cpu(phy_data->d0)); 1875 1876 usig->common |= cpu_to_le32 1877 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1878 1879 /* report the AMPDU-EOF bit on single frames */ 1880 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1881 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1882 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1883 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1884 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1885 } 1886 1887 /* update aggregation data for monitor sake on default queue */ 1888 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1889 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1890 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1891 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1892 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1893 } 1894 1895 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1896 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); 1897 1898 #define CHECK_TYPE(F) \ 1899 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1900 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1901 1902 CHECK_TYPE(SU); 1903 CHECK_TYPE(EXT_SU); 1904 CHECK_TYPE(MU); 1905 CHECK_TYPE(TRIG); 1906 1907 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { 1908 case 0: 1909 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1910 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1911 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1912 } else { 1913 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1914 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1915 } 1916 break; 1917 case 1: 1918 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1919 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1920 break; 1921 case 2: 1922 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1923 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1924 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1925 else 1926 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1927 break; 1928 case 3: 1929 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1930 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1931 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1932 } 1933 break; 1934 default: 1935 /* nothing here */ 1936 break; 1937 } 1938 1939 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1940 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1941 eht->data[0] |= cpu_to_le32 1942 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1943 ltf) | 1944 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1945 rx_status->eht.gi)); 1946 } 1947 1948 1949 if (!phy_data->with_data) { 1950 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1951 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 1952 eht->data[7] |= 1953 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 1954 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 1955 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 1956 if (rate_n_flags & RATE_MCS_BF_MSK) 1957 eht->data[7] |= 1958 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 1959 } else { 1960 eht->user_info[0] |= 1961 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 1962 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 1963 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 1964 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 1965 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 1966 1967 if (rate_n_flags & RATE_MCS_BF_MSK) 1968 eht->user_info[0] |= 1969 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 1970 1971 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1972 eht->user_info[0] |= 1973 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 1974 1975 eht->user_info[0] |= cpu_to_le32 1976 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 1977 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, 1978 rate_n_flags)) | 1979 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 1980 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); 1981 } 1982 } 1983 1984 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1985 struct iwl_mvm_rx_phy_data *phy_data, 1986 int queue) 1987 { 1988 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1989 struct ieee80211_radiotap_he *he = NULL; 1990 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1991 u32 rate_n_flags = phy_data->rate_n_flags; 1992 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1993 u8 ltf; 1994 static const struct ieee80211_radiotap_he known = { 1995 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1996 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1997 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1998 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1999 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 2000 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 2001 }; 2002 static const struct ieee80211_radiotap_he_mu mu_known = { 2003 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 2004 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 2005 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 2006 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 2007 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 2008 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 2009 }; 2010 u16 phy_info = phy_data->phy_info; 2011 2012 he = skb_put_data(skb, &known, sizeof(known)); 2013 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 2014 2015 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 2016 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 2017 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 2018 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 2019 } 2020 2021 /* report the AMPDU-EOF bit on single frames */ 2022 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2023 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2024 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2025 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 2026 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2027 } 2028 2029 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2030 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 2031 queue); 2032 2033 /* update aggregation data for monitor sake on default queue */ 2034 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 2035 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 2036 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2037 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 2038 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2039 } 2040 2041 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 2042 rate_n_flags & RATE_MCS_HE_106T_MSK) { 2043 rx_status->bw = RATE_INFO_BW_HE_RU; 2044 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 2045 } 2046 2047 /* actually data is filled in mac80211 */ 2048 if (he_type == RATE_MCS_HE_TYPE_SU || 2049 he_type == RATE_MCS_HE_TYPE_EXT_SU) 2050 he->data1 |= 2051 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 2052 2053 #define CHECK_TYPE(F) \ 2054 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 2055 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 2056 2057 CHECK_TYPE(SU); 2058 CHECK_TYPE(EXT_SU); 2059 CHECK_TYPE(MU); 2060 CHECK_TYPE(TRIG); 2061 2062 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 2063 2064 if (rate_n_flags & RATE_MCS_BF_MSK) 2065 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 2066 2067 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 2068 RATE_MCS_HE_GI_LTF_POS) { 2069 case 0: 2070 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2071 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2072 else 2073 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2074 if (he_type == RATE_MCS_HE_TYPE_MU) 2075 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2076 else 2077 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 2078 break; 2079 case 1: 2080 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2081 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2082 else 2083 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2084 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2085 break; 2086 case 2: 2087 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 2088 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2089 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2090 } else { 2091 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2092 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2093 } 2094 break; 2095 case 3: 2096 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2097 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2098 break; 2099 case 4: 2100 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2101 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2102 break; 2103 default: 2104 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 2105 } 2106 2107 he->data5 |= le16_encode_bits(ltf, 2108 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 2109 } 2110 2111 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 2112 struct iwl_mvm_rx_phy_data *phy_data) 2113 { 2114 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2115 struct ieee80211_radiotap_lsig *lsig; 2116 2117 switch (phy_data->info_type) { 2118 case IWL_RX_PHY_INFO_TYPE_HT: 2119 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 2120 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 2121 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 2122 case IWL_RX_PHY_INFO_TYPE_HE_SU: 2123 case IWL_RX_PHY_INFO_TYPE_HE_MU: 2124 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 2125 case IWL_RX_PHY_INFO_TYPE_HE_TB: 2126 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 2127 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 2128 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 2129 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 2130 lsig = skb_put(skb, sizeof(*lsig)); 2131 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 2132 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 2133 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 2134 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 2135 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 2136 break; 2137 default: 2138 break; 2139 } 2140 } 2141 2142 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 2143 { 2144 switch (phy_band) { 2145 case PHY_BAND_24: 2146 return NL80211_BAND_2GHZ; 2147 case PHY_BAND_5: 2148 return NL80211_BAND_5GHZ; 2149 case PHY_BAND_6: 2150 return NL80211_BAND_6GHZ; 2151 default: 2152 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 2153 return NL80211_BAND_5GHZ; 2154 } 2155 } 2156 2157 struct iwl_rx_sta_csa { 2158 bool all_sta_unblocked; 2159 struct ieee80211_vif *vif; 2160 }; 2161 2162 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 2163 { 2164 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2165 struct iwl_rx_sta_csa *rx_sta_csa = data; 2166 2167 if (mvmsta->vif != rx_sta_csa->vif) 2168 return; 2169 2170 if (mvmsta->disable_tx) 2171 rx_sta_csa->all_sta_unblocked = false; 2172 } 2173 2174 /* 2175 * Note: requires also rx_status->band to be prefilled, as well 2176 * as phy_data (apart from phy_data->info_type) 2177 */ 2178 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 2179 struct sk_buff *skb, 2180 struct iwl_mvm_rx_phy_data *phy_data, 2181 int queue) 2182 { 2183 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2184 u32 rate_n_flags = phy_data->rate_n_flags; 2185 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 2186 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2187 bool is_sgi; 2188 2189 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 2190 2191 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2192 phy_data->info_type = 2193 le32_get_bits(phy_data->d1, 2194 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 2195 2196 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2197 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2198 case RATE_MCS_CHAN_WIDTH_20: 2199 break; 2200 case RATE_MCS_CHAN_WIDTH_40: 2201 rx_status->bw = RATE_INFO_BW_40; 2202 break; 2203 case RATE_MCS_CHAN_WIDTH_80: 2204 rx_status->bw = RATE_INFO_BW_80; 2205 break; 2206 case RATE_MCS_CHAN_WIDTH_160: 2207 rx_status->bw = RATE_INFO_BW_160; 2208 break; 2209 case RATE_MCS_CHAN_WIDTH_320: 2210 rx_status->bw = RATE_INFO_BW_320; 2211 break; 2212 } 2213 2214 /* must be before L-SIG data */ 2215 if (format == RATE_MCS_HE_MSK) 2216 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 2217 2218 iwl_mvm_decode_lsig(skb, phy_data); 2219 2220 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 2221 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 2222 rx_status->band); 2223 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, 2224 phy_data->energy_a, phy_data->energy_b); 2225 2226 /* using TLV format and must be after all fixed len fields */ 2227 if (format == RATE_MCS_EHT_MSK) 2228 iwl_mvm_rx_eht(mvm, skb, phy_data, queue); 2229 2230 if (unlikely(mvm->monitor_on)) 2231 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 2232 2233 is_sgi = format == RATE_MCS_HE_MSK ? 2234 iwl_he_is_sgi(rate_n_flags) : 2235 rate_n_flags & RATE_MCS_SGI_MSK; 2236 2237 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 2238 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2239 2240 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2241 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2242 2243 switch (format) { 2244 case RATE_MCS_VHT_MSK: 2245 rx_status->encoding = RX_ENC_VHT; 2246 break; 2247 case RATE_MCS_HE_MSK: 2248 rx_status->encoding = RX_ENC_HE; 2249 rx_status->he_dcm = 2250 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 2251 break; 2252 case RATE_MCS_EHT_MSK: 2253 rx_status->encoding = RX_ENC_EHT; 2254 break; 2255 } 2256 2257 switch (format) { 2258 case RATE_MCS_HT_MSK: 2259 rx_status->encoding = RX_ENC_HT; 2260 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2261 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2262 break; 2263 case RATE_MCS_VHT_MSK: 2264 case RATE_MCS_HE_MSK: 2265 case RATE_MCS_EHT_MSK: 2266 rx_status->nss = 2267 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 2268 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2269 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2270 break; 2271 default: { 2272 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2273 rx_status->band); 2274 2275 rx_status->rate_idx = rate; 2276 2277 if ((rate < 0 || rate > 0xFF)) { 2278 rx_status->rate_idx = 0; 2279 if (net_ratelimit()) 2280 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 2281 rate_n_flags, rx_status->band); 2282 } 2283 2284 break; 2285 } 2286 } 2287 } 2288 2289 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 2290 struct iwl_rx_cmd_buffer *rxb, int queue) 2291 { 2292 struct ieee80211_rx_status *rx_status; 2293 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2294 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 2295 struct ieee80211_hdr *hdr; 2296 u32 len; 2297 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2298 struct ieee80211_sta *sta = NULL; 2299 struct ieee80211_link_sta *link_sta = NULL; 2300 struct sk_buff *skb; 2301 u8 crypt_len = 0; 2302 size_t desc_size; 2303 struct iwl_mvm_rx_phy_data phy_data = {}; 2304 u32 format; 2305 2306 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2307 return; 2308 2309 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 2310 desc_size = sizeof(*desc); 2311 else 2312 desc_size = IWL_RX_DESC_SIZE_V1; 2313 2314 if (unlikely(pkt_len < desc_size)) { 2315 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 2316 return; 2317 } 2318 2319 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 2320 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 2321 phy_data.channel = desc->v3.channel; 2322 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 2323 phy_data.energy_a = desc->v3.energy_a; 2324 phy_data.energy_b = desc->v3.energy_b; 2325 2326 phy_data.d0 = desc->v3.phy_data0; 2327 phy_data.d1 = desc->v3.phy_data1; 2328 phy_data.d2 = desc->v3.phy_data2; 2329 phy_data.d3 = desc->v3.phy_data3; 2330 phy_data.eht_d4 = desc->phy_eht_data4; 2331 phy_data.d5 = desc->v3.phy_data5; 2332 } else { 2333 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 2334 phy_data.channel = desc->v1.channel; 2335 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 2336 phy_data.energy_a = desc->v1.energy_a; 2337 phy_data.energy_b = desc->v1.energy_b; 2338 2339 phy_data.d0 = desc->v1.phy_data0; 2340 phy_data.d1 = desc->v1.phy_data1; 2341 phy_data.d2 = desc->v1.phy_data2; 2342 phy_data.d3 = desc->v1.phy_data3; 2343 } 2344 2345 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 2346 REPLY_RX_MPDU_CMD, 0) < 4) { 2347 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2348 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 2349 phy_data.rate_n_flags); 2350 } 2351 2352 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2353 2354 len = le16_to_cpu(desc->mpdu_len); 2355 2356 if (unlikely(len + desc_size > pkt_len)) { 2357 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 2358 return; 2359 } 2360 2361 phy_data.with_data = true; 2362 phy_data.phy_info = le16_to_cpu(desc->phy_info); 2363 phy_data.d4 = desc->phy_data4; 2364 2365 hdr = (void *)(pkt->data + desc_size); 2366 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2367 * ieee80211_hdr pulled. 2368 */ 2369 skb = alloc_skb(128, GFP_ATOMIC); 2370 if (!skb) { 2371 IWL_ERR(mvm, "alloc_skb failed\n"); 2372 return; 2373 } 2374 2375 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 2376 /* 2377 * If the device inserted padding it means that (it thought) 2378 * the 802.11 header wasn't a multiple of 4 bytes long. In 2379 * this case, reserve two bytes at the start of the SKB to 2380 * align the payload properly in case we end up copying it. 2381 */ 2382 skb_reserve(skb, 2); 2383 } 2384 2385 rx_status = IEEE80211_SKB_RXCB(skb); 2386 2387 /* 2388 * Keep packets with CRC errors (and with overrun) for monitor mode 2389 * (otherwise the firmware discards them) but mark them as bad. 2390 */ 2391 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 2392 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 2393 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 2394 le32_to_cpu(desc->status)); 2395 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2396 } 2397 2398 /* set the preamble flag if appropriate */ 2399 if (format == RATE_MCS_CCK_MSK && 2400 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 2401 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 2402 2403 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 2404 u64 tsf_on_air_rise; 2405 2406 if (mvm->trans->trans_cfg->device_family >= 2407 IWL_DEVICE_FAMILY_AX210) 2408 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 2409 else 2410 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 2411 2412 rx_status->mactime = tsf_on_air_rise; 2413 /* TSF as indicated by the firmware is at INA time */ 2414 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 2415 } 2416 2417 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 2418 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 2419 2420 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 2421 } else { 2422 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2423 NL80211_BAND_2GHZ; 2424 } 2425 2426 /* update aggregation data for monitor sake on default queue */ 2427 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2428 bool toggle_bit; 2429 2430 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 2431 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2432 /* 2433 * Toggle is switched whenever new aggregation starts. Make 2434 * sure ampdu_reference is never 0 so we can later use it to 2435 * see if the frame was really part of an A-MPDU or not. 2436 */ 2437 if (toggle_bit != mvm->ampdu_toggle) { 2438 mvm->ampdu_ref++; 2439 if (mvm->ampdu_ref == 0) 2440 mvm->ampdu_ref++; 2441 mvm->ampdu_toggle = toggle_bit; 2442 phy_data.first_subframe = true; 2443 } 2444 rx_status->ampdu_reference = mvm->ampdu_ref; 2445 } 2446 2447 rcu_read_lock(); 2448 2449 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 2450 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 2451 2452 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 2453 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 2454 if (IS_ERR(sta)) 2455 sta = NULL; 2456 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]); 2457 } 2458 } else if (!is_multicast_ether_addr(hdr->addr2)) { 2459 /* 2460 * This is fine since we prevent two stations with the same 2461 * address from being added. 2462 */ 2463 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 2464 } 2465 2466 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 2467 le32_to_cpu(pkt->len_n_flags), queue, 2468 &crypt_len)) { 2469 kfree_skb(skb); 2470 goto out; 2471 } 2472 2473 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2474 2475 if (sta) { 2476 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2477 struct ieee80211_vif *tx_blocked_vif = 2478 rcu_dereference(mvm->csa_tx_blocked_vif); 2479 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 2480 IWL_RX_MPDU_REORDER_BAID_MASK) >> 2481 IWL_RX_MPDU_REORDER_BAID_SHIFT); 2482 struct iwl_fw_dbg_trigger_tlv *trig; 2483 struct ieee80211_vif *vif = mvmsta->vif; 2484 2485 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 2486 !is_multicast_ether_addr(hdr->addr1) && 2487 ieee80211_is_data(hdr->frame_control) && 2488 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 2489 schedule_delayed_work(&mvm->tcm.work, 0); 2490 2491 /* 2492 * We have tx blocked stations (with CS bit). If we heard 2493 * frames from a blocked station on a new channel we can 2494 * TX to it again. 2495 */ 2496 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 2497 struct iwl_mvm_vif *mvmvif = 2498 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 2499 struct iwl_rx_sta_csa rx_sta_csa = { 2500 .all_sta_unblocked = true, 2501 .vif = tx_blocked_vif, 2502 }; 2503 2504 if (mvmvif->csa_target_freq == rx_status->freq) 2505 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 2506 false); 2507 ieee80211_iterate_stations_atomic(mvm->hw, 2508 iwl_mvm_rx_get_sta_block_tx, 2509 &rx_sta_csa); 2510 2511 if (rx_sta_csa.all_sta_unblocked) { 2512 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 2513 /* Unblock BCAST / MCAST station */ 2514 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 2515 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork); 2516 } 2517 } 2518 2519 rs_update_last_rssi(mvm, mvmsta, rx_status); 2520 2521 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 2522 ieee80211_vif_to_wdev(vif), 2523 FW_DBG_TRIGGER_RSSI); 2524 2525 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 2526 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 2527 s32 rssi; 2528 2529 rssi_trig = (void *)trig->data; 2530 rssi = le32_to_cpu(rssi_trig->rssi); 2531 2532 if (rx_status->signal < rssi) 2533 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 2534 NULL); 2535 } 2536 2537 if (ieee80211_is_data(hdr->frame_control)) 2538 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 2539 2540 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 2541 kfree_skb(skb); 2542 goto out; 2543 } 2544 2545 /* 2546 * Our hardware de-aggregates AMSDUs but copies the mac header 2547 * as it to the de-aggregated MPDUs. We need to turn off the 2548 * AMSDU bit in the QoS control ourselves. 2549 * In addition, HW reverses addr3 and addr4 - reverse it back. 2550 */ 2551 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2552 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2553 u8 *qc = ieee80211_get_qos_ctl(hdr); 2554 2555 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2556 2557 if (mvm->trans->trans_cfg->device_family == 2558 IWL_DEVICE_FAMILY_9000) { 2559 iwl_mvm_flip_address(hdr->addr3); 2560 2561 if (ieee80211_has_a4(hdr->frame_control)) 2562 iwl_mvm_flip_address(hdr->addr4); 2563 } 2564 } 2565 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2566 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2567 2568 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2569 } 2570 } 2571 2572 /* management stuff on default queue */ 2573 if (!queue) { 2574 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2575 ieee80211_is_probe_resp(hdr->frame_control)) && 2576 mvm->sched_scan_pass_all == 2577 SCHED_SCAN_PASS_ALL_ENABLED)) 2578 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2579 2580 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2581 ieee80211_is_probe_resp(hdr->frame_control))) 2582 rx_status->boottime_ns = ktime_get_boottime_ns(); 2583 } 2584 2585 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2586 kfree_skb(skb); 2587 goto out; 2588 } 2589 2590 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && 2591 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && 2592 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) 2593 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta, 2594 link_sta); 2595 out: 2596 rcu_read_unlock(); 2597 } 2598 2599 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2600 struct iwl_rx_cmd_buffer *rxb, int queue) 2601 { 2602 struct ieee80211_rx_status *rx_status; 2603 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2604 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2605 u32 rssi; 2606 u32 info_type; 2607 struct ieee80211_sta *sta = NULL; 2608 struct sk_buff *skb; 2609 struct iwl_mvm_rx_phy_data phy_data; 2610 u32 format; 2611 2612 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2613 return; 2614 2615 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2616 return; 2617 2618 rssi = le32_to_cpu(desc->rssi); 2619 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2620 phy_data.d0 = desc->phy_info[0]; 2621 phy_data.d1 = desc->phy_info[1]; 2622 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2623 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2624 phy_data.rate_n_flags = le32_to_cpu(desc->rate); 2625 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2626 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2627 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2628 phy_data.with_data = false; 2629 2630 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2631 RX_NO_DATA_NOTIF, 0) < 2) { 2632 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2633 phy_data.rate_n_flags); 2634 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2635 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2636 phy_data.rate_n_flags); 2637 } 2638 2639 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2640 2641 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2642 RX_NO_DATA_NOTIF, 0) >= 3) { 2643 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2644 sizeof(struct iwl_rx_no_data_ver_3))) 2645 /* invalid len for ver 3 */ 2646 return; 2647 memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec)); 2648 } else { 2649 if (format == RATE_MCS_EHT_MSK) 2650 /* no support for EHT before version 3 API */ 2651 return; 2652 } 2653 2654 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2655 * ieee80211_hdr pulled. 2656 */ 2657 skb = alloc_skb(128, GFP_ATOMIC); 2658 if (!skb) { 2659 IWL_ERR(mvm, "alloc_skb failed\n"); 2660 return; 2661 } 2662 2663 rx_status = IEEE80211_SKB_RXCB(skb); 2664 2665 /* 0-length PSDU */ 2666 rx_status->flag |= RX_FLAG_NO_PSDU; 2667 2668 switch (info_type) { 2669 case RX_NO_DATA_INFO_TYPE_NDP: 2670 rx_status->zero_length_psdu_type = 2671 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2672 break; 2673 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2674 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2675 rx_status->zero_length_psdu_type = 2676 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2677 break; 2678 default: 2679 rx_status->zero_length_psdu_type = 2680 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2681 break; 2682 } 2683 2684 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2685 NL80211_BAND_2GHZ; 2686 2687 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2688 2689 /* no more radio tap info should be put after this point. 2690 * 2691 * We mark it as mac header, for upper layers to know where 2692 * all radio tap header ends. 2693 */ 2694 skb_reset_mac_header(skb); 2695 2696 /* 2697 * Override the nss from the rx_vec since the rate_n_flags has 2698 * only 2 bits for the nss which gives a max of 4 ss but there 2699 * may be up to 8 spatial streams. 2700 */ 2701 switch (format) { 2702 case RATE_MCS_VHT_MSK: 2703 rx_status->nss = 2704 le32_get_bits(desc->rx_vec[0], 2705 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2706 break; 2707 case RATE_MCS_HE_MSK: 2708 rx_status->nss = 2709 le32_get_bits(desc->rx_vec[0], 2710 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2711 break; 2712 case RATE_MCS_EHT_MSK: 2713 rx_status->nss = 2714 le32_get_bits(desc->rx_vec[2], 2715 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2716 } 2717 2718 rcu_read_lock(); 2719 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2720 rcu_read_unlock(); 2721 } 2722 2723 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2724 struct iwl_rx_cmd_buffer *rxb, int queue) 2725 { 2726 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2727 struct iwl_frame_release *release = (void *)pkt->data; 2728 2729 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2730 return; 2731 2732 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2733 le16_to_cpu(release->nssn), 2734 queue, 0); 2735 } 2736 2737 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2738 struct iwl_rx_cmd_buffer *rxb, int queue) 2739 { 2740 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2741 struct iwl_bar_frame_release *release = (void *)pkt->data; 2742 unsigned int baid = le32_get_bits(release->ba_info, 2743 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2744 unsigned int nssn = le32_get_bits(release->ba_info, 2745 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2746 unsigned int sta_id = le32_get_bits(release->sta_tid, 2747 IWL_BAR_FRAME_RELEASE_STA_MASK); 2748 unsigned int tid = le32_get_bits(release->sta_tid, 2749 IWL_BAR_FRAME_RELEASE_TID_MASK); 2750 struct iwl_mvm_baid_data *baid_data; 2751 2752 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2753 return; 2754 2755 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2756 baid >= ARRAY_SIZE(mvm->baid_map))) 2757 return; 2758 2759 rcu_read_lock(); 2760 baid_data = rcu_dereference(mvm->baid_map[baid]); 2761 if (!baid_data) { 2762 IWL_DEBUG_RX(mvm, 2763 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2764 baid); 2765 goto out; 2766 } 2767 2768 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX || 2769 !(baid_data->sta_mask & BIT(sta_id)), 2770 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", 2771 baid, baid_data->sta_mask, baid_data->tid, sta_id, 2772 tid)) 2773 goto out; 2774 2775 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2776 out: 2777 rcu_read_unlock(); 2778 } 2779