1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2015-2017 Intel Deutschland GmbH
6  */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 #include "time-sync.h"
13 
14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 				   int queue, struct ieee80211_sta *sta)
16 {
17 	struct iwl_mvm_sta *mvmsta;
18 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 	struct iwl_mvm_key_pn *ptk_pn;
21 	int res;
22 	u8 tid, keyidx;
23 	u8 pn[IEEE80211_CCMP_PN_LEN];
24 	u8 *extiv;
25 
26 	/* do PN checking */
27 
28 	/* multicast and non-data only arrives on default queue */
29 	if (!ieee80211_is_data(hdr->frame_control) ||
30 	    is_multicast_ether_addr(hdr->addr1))
31 		return 0;
32 
33 	/* do not check PN for open AP */
34 	if (!(stats->flag & RX_FLAG_DECRYPTED))
35 		return 0;
36 
37 	/*
38 	 * avoid checking for default queue - we don't want to replicate
39 	 * all the logic that's necessary for checking the PN on fragmented
40 	 * frames, leave that to mac80211
41 	 */
42 	if (queue == 0)
43 		return 0;
44 
45 	/* if we are here - this for sure is either CCMP or GCMP */
46 	if (IS_ERR_OR_NULL(sta)) {
47 		IWL_DEBUG_DROP(mvm,
48 			       "expected hw-decrypted unicast frame for station\n");
49 		return -1;
50 	}
51 
52 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
53 
54 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 	keyidx = extiv[3] >> 6;
56 
57 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 	if (!ptk_pn)
59 		return -1;
60 
61 	if (ieee80211_is_data_qos(hdr->frame_control))
62 		tid = ieee80211_get_tid(hdr);
63 	else
64 		tid = 0;
65 
66 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 	if (tid >= IWL_MAX_TID_COUNT)
68 		return -1;
69 
70 	/* load pn */
71 	pn[0] = extiv[7];
72 	pn[1] = extiv[6];
73 	pn[2] = extiv[5];
74 	pn[3] = extiv[4];
75 	pn[4] = extiv[1];
76 	pn[5] = extiv[0];
77 
78 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 	if (res < 0)
80 		return -1;
81 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 		return -1;
83 
84 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 	stats->flag |= RX_FLAG_PN_VALIDATED;
86 
87 	return 0;
88 }
89 
90 /* iwl_mvm_create_skb Adds the rxb to a new skb */
91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 			      struct iwl_rx_cmd_buffer *rxb)
94 {
95 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 	unsigned int headlen, fraglen, pad_len = 0;
98 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101 
102 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 		len -= 2;
104 		pad_len = 2;
105 	}
106 
107 	/*
108 	 * For non monitor interface strip the bytes the RADA might not have
109 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 	 * interface cannot exist with other interfaces, this removal is safe
111 	 * and sufficient, in monitor mode there's no decryption being done.
112 	 */
113 	if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 		len -= mic_crc_len;
115 
116 	/* If frame is small enough to fit in skb->head, pull it completely.
117 	 * If not, only pull ieee80211_hdr (including crypto if present, and
118 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 	 * splice() or TCP coalesce are more efficient.
120 	 *
121 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 	 * least 8 bytes (possibly more for mesh) we can do the same here
123 	 * to save the cost of doing it later. That still doesn't pull in
124 	 * the actual IP header since the typical case has a SNAP header.
125 	 * If the latter changes (there are efforts in the standards group
126 	 * to do so) we should revisit this and ieee80211_data_to_8023().
127 	 */
128 	headlen = (len <= skb_tailroom(skb)) ? len :
129 					       hdrlen + crypt_len + 8;
130 
131 	/* The firmware may align the packet to DWORD.
132 	 * The padding is inserted after the IV.
133 	 * After copying the header + IV skip the padding if
134 	 * present before copying packet data.
135 	 */
136 	hdrlen += crypt_len;
137 
138 	if (unlikely(headlen < hdrlen))
139 		return -EINVAL;
140 
141 	/* Since data doesn't move data while putting data on skb and that is
142 	 * the only way we use, data + len is the next place that hdr would be put
143 	 */
144 	skb_set_mac_header(skb, skb->len);
145 	skb_put_data(skb, hdr, hdrlen);
146 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147 
148 	/*
149 	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 	 * certain cases and starts the checksum after the SNAP. Check if
151 	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 	 * in the cases the hardware didn't handle, since it's rare to see
153 	 * such packets, even though the hardware did calculate the checksum
154 	 * in this case, just starting after the MAC header instead.
155 	 *
156 	 * Starting from Bz hardware, it calculates starting directly after
157 	 * the MAC header, so that matches mac80211's expectation.
158 	 */
159 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 		struct {
161 			u8 hdr[6];
162 			__be16 type;
163 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164 
165 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 			     (shdr->type != htons(ETH_P_IP) &&
168 			      shdr->type != htons(ETH_P_ARP) &&
169 			      shdr->type != htons(ETH_P_IPV6) &&
170 			      shdr->type != htons(ETH_P_8021Q) &&
171 			      shdr->type != htons(ETH_P_PAE) &&
172 			      shdr->type != htons(ETH_P_TDLS))))
173 			skb->ip_summed = CHECKSUM_NONE;
174 		else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 			/* mac80211 assumes full CSUM including SNAP header */
176 			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 	}
178 
179 	fraglen = len - headlen;
180 
181 	if (fraglen) {
182 		int offset = (u8 *)hdr + headlen + pad_len -
183 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184 
185 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 				fraglen, rxb->truesize);
187 	}
188 
189 	return 0;
190 }
191 
192 /* put a TLV on the skb and return data pointer
193  *
194  * Also pad to 4 the len and zero out all data part
195  */
196 static void *
197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198 {
199 	struct ieee80211_radiotap_tlv *tlv;
200 
201 	tlv = skb_put(skb, sizeof(*tlv));
202 	tlv->type = cpu_to_le16(type);
203 	tlv->len = cpu_to_le16(len);
204 	return skb_put_zero(skb, ALIGN(len, 4));
205 }
206 
207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 					    struct sk_buff *skb)
209 {
210 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 	struct ieee80211_radiotap_vendor_content *radiotap;
212 	const u16 vendor_data_len = sizeof(mvm->cur_aid);
213 
214 	if (!mvm->cur_aid)
215 		return;
216 
217 	radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 					    sizeof(*radiotap) + vendor_data_len);
220 
221 	/* Intel OUI */
222 	radiotap->oui[0] = 0xf6;
223 	radiotap->oui[1] = 0x54;
224 	radiotap->oui[2] = 0x25;
225 	/* radiotap sniffer config sub-namespace */
226 	radiotap->oui_subtype = 1;
227 	radiotap->vendor_type = 0;
228 
229 	/* fill the data now */
230 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231 
232 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233 }
234 
235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 					    struct napi_struct *napi,
238 					    struct sk_buff *skb, int queue,
239 					    struct ieee80211_sta *sta,
240 					    struct ieee80211_link_sta *link_sta)
241 {
242 	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
243 		kfree_skb(skb);
244 		return;
245 	}
246 
247 	if (sta && sta->valid_links && link_sta) {
248 		struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
249 
250 		rx_status->link_valid = 1;
251 		rx_status->link_id = link_sta->link_id;
252 	}
253 
254 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
255 }
256 
257 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
258 					struct ieee80211_rx_status *rx_status,
259 					u32 rate_n_flags, int energy_a,
260 					int energy_b)
261 {
262 	int max_energy;
263 	u32 rate_flags = rate_n_flags;
264 
265 	energy_a = energy_a ? -energy_a : S8_MIN;
266 	energy_b = energy_b ? -energy_b : S8_MIN;
267 	max_energy = max(energy_a, energy_b);
268 
269 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
270 			energy_a, energy_b, max_energy);
271 
272 	rx_status->signal = max_energy;
273 	rx_status->chains =
274 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
275 	rx_status->chain_signal[0] = energy_a;
276 	rx_status->chain_signal[1] = energy_b;
277 }
278 
279 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
280 				struct ieee80211_hdr *hdr,
281 				struct iwl_rx_mpdu_desc *desc,
282 				u32 status,
283 				struct ieee80211_rx_status *stats)
284 {
285 	struct iwl_mvm_sta *mvmsta;
286 	struct iwl_mvm_vif *mvmvif;
287 	u8 keyid;
288 	struct ieee80211_key_conf *key;
289 	u32 len = le16_to_cpu(desc->mpdu_len);
290 	const u8 *frame = (void *)hdr;
291 
292 	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
293 		return 0;
294 
295 	/*
296 	 * For non-beacon, we don't really care. But beacons may
297 	 * be filtered out, and we thus need the firmware's replay
298 	 * detection, otherwise beacons the firmware previously
299 	 * filtered could be replayed, or something like that, and
300 	 * it can filter a lot - though usually only if nothing has
301 	 * changed.
302 	 */
303 	if (!ieee80211_is_beacon(hdr->frame_control))
304 		return 0;
305 
306 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
307 	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
308 		return -1;
309 
310 	/* good cases */
311 	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
312 		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
313 		stats->flag |= RX_FLAG_DECRYPTED;
314 		return 0;
315 	}
316 
317 	if (!sta)
318 		return -1;
319 
320 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
321 
322 	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
323 
324 	/*
325 	 * both keys will have the same cipher and MIC length, use
326 	 * whichever one is available
327 	 */
328 	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
329 	if (!key) {
330 		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
331 		if (!key)
332 			return -1;
333 	}
334 
335 	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
336 		return -1;
337 
338 	/* get the real key ID */
339 	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
340 	/* and if that's the other key, look it up */
341 	if (keyid != key->keyidx) {
342 		/*
343 		 * shouldn't happen since firmware checked, but be safe
344 		 * in case the MIC length is wrong too, for example
345 		 */
346 		if (keyid != 6 && keyid != 7)
347 			return -1;
348 		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
349 		if (!key)
350 			return -1;
351 	}
352 
353 	/* Report status to mac80211 */
354 	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
355 		ieee80211_key_mic_failure(key);
356 	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
357 		ieee80211_key_replay(key);
358 
359 	return -1;
360 }
361 
362 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
363 			     struct ieee80211_hdr *hdr,
364 			     struct ieee80211_rx_status *stats, u16 phy_info,
365 			     struct iwl_rx_mpdu_desc *desc,
366 			     u32 pkt_flags, int queue, u8 *crypt_len)
367 {
368 	u32 status = le32_to_cpu(desc->status);
369 
370 	/*
371 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
372 	 * (where we don't have the keys).
373 	 * We limit this to aggregation because in TKIP this is a valid
374 	 * scenario, since we may not have the (correct) TTAK (phase 1
375 	 * key) in the firmware.
376 	 */
377 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
378 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
379 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
380 		return -1;
381 
382 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
383 		     !ieee80211_has_protected(hdr->frame_control)))
384 		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
385 
386 	if (!ieee80211_has_protected(hdr->frame_control) ||
387 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
388 	    IWL_RX_MPDU_STATUS_SEC_NONE)
389 		return 0;
390 
391 	/* TODO: handle packets encrypted with unknown alg */
392 
393 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
394 	case IWL_RX_MPDU_STATUS_SEC_CCM:
395 	case IWL_RX_MPDU_STATUS_SEC_GCM:
396 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
397 		/* alg is CCM: check MIC only */
398 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
399 			return -1;
400 
401 		stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
402 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
403 		return 0;
404 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
405 		/* Don't drop the frame and decrypt it in SW */
406 		if (!fw_has_api(&mvm->fw->ucode_capa,
407 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
408 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
409 			return 0;
410 
411 		if (mvm->trans->trans_cfg->gen2 &&
412 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
413 			stats->flag |= RX_FLAG_MMIC_ERROR;
414 
415 		*crypt_len = IEEE80211_TKIP_IV_LEN;
416 		fallthrough;
417 	case IWL_RX_MPDU_STATUS_SEC_WEP:
418 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
419 			return -1;
420 
421 		stats->flag |= RX_FLAG_DECRYPTED;
422 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
423 				IWL_RX_MPDU_STATUS_SEC_WEP)
424 			*crypt_len = IEEE80211_WEP_IV_LEN;
425 
426 		if (pkt_flags & FH_RSCSR_RADA_EN) {
427 			stats->flag |= RX_FLAG_ICV_STRIPPED;
428 			if (mvm->trans->trans_cfg->gen2)
429 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
430 		}
431 
432 		return 0;
433 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
434 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
435 			return -1;
436 		stats->flag |= RX_FLAG_DECRYPTED;
437 		return 0;
438 	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
439 		break;
440 	default:
441 		/*
442 		 * Sometimes we can get frames that were not decrypted
443 		 * because the firmware didn't have the keys yet. This can
444 		 * happen after connection where we can get multicast frames
445 		 * before the GTK is installed.
446 		 * Silently drop those frames.
447 		 * Also drop un-decrypted frames in monitor mode.
448 		 */
449 		if (!is_multicast_ether_addr(hdr->addr1) &&
450 		    !mvm->monitor_on && net_ratelimit())
451 			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
452 	}
453 
454 	return 0;
455 }
456 
457 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
458 			    struct ieee80211_sta *sta,
459 			    struct sk_buff *skb,
460 			    struct iwl_rx_packet *pkt)
461 {
462 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
463 
464 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
465 		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
466 			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
467 
468 			skb->ip_summed = CHECKSUM_COMPLETE;
469 			skb->csum = csum_unfold(~(__force __sum16)hwsum);
470 		}
471 	} else {
472 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
473 		struct iwl_mvm_vif *mvmvif;
474 		u16 flags = le16_to_cpu(desc->l3l4_flags);
475 		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
476 				  IWL_RX_L3_PROTO_POS);
477 
478 		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
479 
480 		if (mvmvif->features & NETIF_F_RXCSUM &&
481 		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
482 		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
483 		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
484 		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
485 			skb->ip_summed = CHECKSUM_UNNECESSARY;
486 	}
487 }
488 
489 /*
490  * returns true if a packet is a duplicate or invalid tid and should be dropped.
491  * Updates AMSDU PN tracking info
492  */
493 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
494 			   struct ieee80211_rx_status *rx_status,
495 			   struct ieee80211_hdr *hdr,
496 			   struct iwl_rx_mpdu_desc *desc)
497 {
498 	struct iwl_mvm_sta *mvm_sta;
499 	struct iwl_mvm_rxq_dup_data *dup_data;
500 	u8 tid, sub_frame_idx;
501 
502 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
503 		return false;
504 
505 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
506 	dup_data = &mvm_sta->dup_data[queue];
507 
508 	/*
509 	 * Drop duplicate 802.11 retransmissions
510 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
511 	 */
512 	if (ieee80211_is_ctl(hdr->frame_control) ||
513 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
514 	    is_multicast_ether_addr(hdr->addr1)) {
515 		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
516 		return false;
517 	}
518 
519 	if (ieee80211_is_data_qos(hdr->frame_control)) {
520 		/* frame has qos control */
521 		tid = ieee80211_get_tid(hdr);
522 		if (tid >= IWL_MAX_TID_COUNT)
523 			return true;
524 	} else {
525 		tid = IWL_MAX_TID_COUNT;
526 	}
527 
528 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
529 	sub_frame_idx = desc->amsdu_info &
530 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
531 
532 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
533 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
534 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
535 		return true;
536 
537 	/* Allow same PN as the first subframe for following sub frames */
538 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
539 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
540 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
541 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
542 
543 	dup_data->last_seq[tid] = hdr->seq_ctrl;
544 	dup_data->last_sub_frame[tid] = sub_frame_idx;
545 
546 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
547 
548 	return false;
549 }
550 
551 /*
552  * Returns true if sn2 - buffer_size < sn1 < sn2.
553  * To be used only in order to compare reorder buffer head with NSSN.
554  * We fully trust NSSN unless it is behind us due to reorder timeout.
555  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
556  */
557 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
558 {
559 	return ieee80211_sn_less(sn1, sn2) &&
560 	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
561 }
562 
563 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
564 {
565 	if (IWL_MVM_USE_NSSN_SYNC) {
566 		struct iwl_mvm_nssn_sync_data notif = {
567 			.baid = baid,
568 			.nssn = nssn,
569 		};
570 
571 		iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
572 						&notif, sizeof(notif));
573 	}
574 }
575 
576 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
577 
578 enum iwl_mvm_release_flags {
579 	IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
580 	IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
581 };
582 
583 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
584 				   struct ieee80211_sta *sta,
585 				   struct napi_struct *napi,
586 				   struct iwl_mvm_baid_data *baid_data,
587 				   struct iwl_mvm_reorder_buffer *reorder_buf,
588 				   u16 nssn, u32 flags)
589 {
590 	struct iwl_mvm_reorder_buf_entry *entries =
591 		&baid_data->entries[reorder_buf->queue *
592 				    baid_data->entries_per_queue];
593 	u16 ssn = reorder_buf->head_sn;
594 
595 	lockdep_assert_held(&reorder_buf->lock);
596 
597 	/*
598 	 * We keep the NSSN not too far behind, if we are sync'ing it and it
599 	 * is more than 2048 ahead of us, it must be behind us. Discard it.
600 	 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
601 	 * behind and this queue already processed packets. The next if
602 	 * would have caught cases where this queue would have processed less
603 	 * than 64 packets, but it may have processed more than 64 packets.
604 	 */
605 	if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
606 	    ieee80211_sn_less(nssn, ssn))
607 		goto set_timer;
608 
609 	/* ignore nssn smaller than head sn - this can happen due to timeout */
610 	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
611 		goto set_timer;
612 
613 	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
614 		int index = ssn % reorder_buf->buf_size;
615 		struct sk_buff_head *skb_list = &entries[index].e.frames;
616 		struct sk_buff *skb;
617 
618 		ssn = ieee80211_sn_inc(ssn);
619 		if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
620 		    (ssn == 2048 || ssn == 0))
621 			iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
622 
623 		/*
624 		 * Empty the list. Will have more than one frame for A-MSDU.
625 		 * Empty list is valid as well since nssn indicates frames were
626 		 * received.
627 		 */
628 		while ((skb = __skb_dequeue(skb_list))) {
629 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
630 							reorder_buf->queue,
631 							sta, NULL /* FIXME */);
632 			reorder_buf->num_stored--;
633 		}
634 	}
635 	reorder_buf->head_sn = nssn;
636 
637 set_timer:
638 	if (reorder_buf->num_stored && !reorder_buf->removed) {
639 		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
640 
641 		while (skb_queue_empty(&entries[index].e.frames))
642 			index = (index + 1) % reorder_buf->buf_size;
643 		/* modify timer to match next frame's expiration time */
644 		mod_timer(&reorder_buf->reorder_timer,
645 			  entries[index].e.reorder_time + 1 +
646 			  RX_REORDER_BUF_TIMEOUT_MQ);
647 	} else {
648 		del_timer(&reorder_buf->reorder_timer);
649 	}
650 }
651 
652 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
653 {
654 	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
655 	struct iwl_mvm_baid_data *baid_data =
656 		iwl_mvm_baid_data_from_reorder_buf(buf);
657 	struct iwl_mvm_reorder_buf_entry *entries =
658 		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
659 	int i;
660 	u16 sn = 0, index = 0;
661 	bool expired = false;
662 	bool cont = false;
663 
664 	spin_lock(&buf->lock);
665 
666 	if (!buf->num_stored || buf->removed) {
667 		spin_unlock(&buf->lock);
668 		return;
669 	}
670 
671 	for (i = 0; i < buf->buf_size ; i++) {
672 		index = (buf->head_sn + i) % buf->buf_size;
673 
674 		if (skb_queue_empty(&entries[index].e.frames)) {
675 			/*
676 			 * If there is a hole and the next frame didn't expire
677 			 * we want to break and not advance SN
678 			 */
679 			cont = false;
680 			continue;
681 		}
682 		if (!cont &&
683 		    !time_after(jiffies, entries[index].e.reorder_time +
684 					 RX_REORDER_BUF_TIMEOUT_MQ))
685 			break;
686 
687 		expired = true;
688 		/* continue until next hole after this expired frames */
689 		cont = true;
690 		sn = ieee80211_sn_add(buf->head_sn, i + 1);
691 	}
692 
693 	if (expired) {
694 		struct ieee80211_sta *sta;
695 		struct iwl_mvm_sta *mvmsta;
696 		u8 sta_id = ffs(baid_data->sta_mask) - 1;
697 
698 		rcu_read_lock();
699 		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
700 		if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) {
701 			rcu_read_unlock();
702 			goto out;
703 		}
704 
705 		mvmsta = iwl_mvm_sta_from_mac80211(sta);
706 
707 		/* SN is set to the last expired frame + 1 */
708 		IWL_DEBUG_HT(buf->mvm,
709 			     "Releasing expired frames for sta %u, sn %d\n",
710 			     sta_id, sn);
711 		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
712 						     sta, baid_data->tid);
713 		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
714 				       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
715 		rcu_read_unlock();
716 	} else {
717 		/*
718 		 * If no frame expired and there are stored frames, index is now
719 		 * pointing to the first unexpired frame - modify timer
720 		 * accordingly to this frame.
721 		 */
722 		mod_timer(&buf->reorder_timer,
723 			  entries[index].e.reorder_time +
724 			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
725 	}
726 
727 out:
728 	spin_unlock(&buf->lock);
729 }
730 
731 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
732 			   struct iwl_mvm_delba_data *data)
733 {
734 	struct iwl_mvm_baid_data *ba_data;
735 	struct ieee80211_sta *sta;
736 	struct iwl_mvm_reorder_buffer *reorder_buf;
737 	u8 baid = data->baid;
738 	u32 sta_id;
739 
740 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
741 		return;
742 
743 	rcu_read_lock();
744 
745 	ba_data = rcu_dereference(mvm->baid_map[baid]);
746 	if (WARN_ON_ONCE(!ba_data))
747 		goto out;
748 
749 	/* pick any STA ID to find the pointer */
750 	sta_id = ffs(ba_data->sta_mask) - 1;
751 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
752 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
753 		goto out;
754 
755 	reorder_buf = &ba_data->reorder_buf[queue];
756 
757 	/* release all frames that are in the reorder buffer to the stack */
758 	spin_lock_bh(&reorder_buf->lock);
759 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
760 			       ieee80211_sn_add(reorder_buf->head_sn,
761 						reorder_buf->buf_size),
762 			       0);
763 	spin_unlock_bh(&reorder_buf->lock);
764 	del_timer_sync(&reorder_buf->reorder_timer);
765 
766 out:
767 	rcu_read_unlock();
768 }
769 
770 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
771 					      struct napi_struct *napi,
772 					      u8 baid, u16 nssn, int queue,
773 					      u32 flags)
774 {
775 	struct ieee80211_sta *sta;
776 	struct iwl_mvm_reorder_buffer *reorder_buf;
777 	struct iwl_mvm_baid_data *ba_data;
778 	u32 sta_id;
779 
780 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
781 		     baid, nssn);
782 
783 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
784 			 baid >= ARRAY_SIZE(mvm->baid_map)))
785 		return;
786 
787 	rcu_read_lock();
788 
789 	ba_data = rcu_dereference(mvm->baid_map[baid]);
790 	if (!ba_data) {
791 		WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
792 		     "BAID %d not found in map\n", baid);
793 		goto out;
794 	}
795 
796 	/* pick any STA ID to find the pointer */
797 	sta_id = ffs(ba_data->sta_mask) - 1;
798 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
799 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
800 		goto out;
801 
802 	reorder_buf = &ba_data->reorder_buf[queue];
803 
804 	spin_lock_bh(&reorder_buf->lock);
805 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
806 			       reorder_buf, nssn, flags);
807 	spin_unlock_bh(&reorder_buf->lock);
808 
809 out:
810 	rcu_read_unlock();
811 }
812 
813 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
814 			      struct napi_struct *napi, int queue,
815 			      const struct iwl_mvm_nssn_sync_data *data)
816 {
817 	iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
818 					  data->nssn, queue,
819 					  IWL_MVM_RELEASE_FROM_RSS_SYNC);
820 }
821 
822 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
823 			    struct iwl_rx_cmd_buffer *rxb, int queue)
824 {
825 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
826 	struct iwl_rxq_sync_notification *notif;
827 	struct iwl_mvm_internal_rxq_notif *internal_notif;
828 	u32 len = iwl_rx_packet_payload_len(pkt);
829 
830 	notif = (void *)pkt->data;
831 	internal_notif = (void *)notif->payload;
832 
833 	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
834 		      "invalid notification size %d (%d)",
835 		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
836 		return;
837 	len -= sizeof(*notif) + sizeof(*internal_notif);
838 
839 	if (internal_notif->sync &&
840 	    mvm->queue_sync_cookie != internal_notif->cookie) {
841 		WARN_ONCE(1, "Received expired RX queue sync message\n");
842 		return;
843 	}
844 
845 	switch (internal_notif->type) {
846 	case IWL_MVM_RXQ_EMPTY:
847 		WARN_ONCE(len, "invalid empty notification size %d", len);
848 		break;
849 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
850 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
851 			      "invalid delba notification size %d (%d)",
852 			      len, (int)sizeof(struct iwl_mvm_delba_data)))
853 			break;
854 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
855 		break;
856 	case IWL_MVM_RXQ_NSSN_SYNC:
857 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
858 			      "invalid nssn sync notification size %d (%d)",
859 			      len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
860 			break;
861 		iwl_mvm_nssn_sync(mvm, napi, queue,
862 				  (void *)internal_notif->data);
863 		break;
864 	default:
865 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
866 	}
867 
868 	if (internal_notif->sync) {
869 		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
870 			  "queue sync: queue %d responded a second time!\n",
871 			  queue);
872 		if (READ_ONCE(mvm->queue_sync_state) == 0)
873 			wake_up(&mvm->rx_sync_waitq);
874 	}
875 }
876 
877 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
878 				     struct ieee80211_sta *sta, int tid,
879 				     struct iwl_mvm_reorder_buffer *buffer,
880 				     u32 reorder, u32 gp2, int queue)
881 {
882 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
883 
884 	if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
885 		/* we have a new (A-)MPDU ... */
886 
887 		/*
888 		 * reset counter to 0 if we didn't have any oldsn in
889 		 * the last A-MPDU (as detected by GP2 being identical)
890 		 */
891 		if (!buffer->consec_oldsn_prev_drop)
892 			buffer->consec_oldsn_drops = 0;
893 
894 		/* either way, update our tracking state */
895 		buffer->consec_oldsn_ampdu_gp2 = gp2;
896 	} else if (buffer->consec_oldsn_prev_drop) {
897 		/*
898 		 * tracking state didn't change, and we had an old SN
899 		 * indication before - do nothing in this case, we
900 		 * already noted this one down and are waiting for the
901 		 * next A-MPDU (by GP2)
902 		 */
903 		return;
904 	}
905 
906 	/* return unless this MPDU has old SN */
907 	if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
908 		return;
909 
910 	/* update state */
911 	buffer->consec_oldsn_prev_drop = 1;
912 	buffer->consec_oldsn_drops++;
913 
914 	/* if limit is reached, send del BA and reset state */
915 	if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
916 		IWL_WARN(mvm,
917 			 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
918 			 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
919 			 sta->addr, queue, tid);
920 		ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
921 		buffer->consec_oldsn_prev_drop = 0;
922 		buffer->consec_oldsn_drops = 0;
923 	}
924 }
925 
926 /*
927  * Returns true if the MPDU was buffered\dropped, false if it should be passed
928  * to upper layer.
929  */
930 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
931 			    struct napi_struct *napi,
932 			    int queue,
933 			    struct ieee80211_sta *sta,
934 			    struct sk_buff *skb,
935 			    struct iwl_rx_mpdu_desc *desc)
936 {
937 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
938 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
939 	struct iwl_mvm_baid_data *baid_data;
940 	struct iwl_mvm_reorder_buffer *buffer;
941 	struct sk_buff *tail;
942 	u32 reorder = le32_to_cpu(desc->reorder_data);
943 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
944 	bool last_subframe =
945 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
946 	u8 tid = ieee80211_get_tid(hdr);
947 	u8 sub_frame_idx = desc->amsdu_info &
948 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
949 	struct iwl_mvm_reorder_buf_entry *entries;
950 	u32 sta_mask;
951 	int index;
952 	u16 nssn, sn;
953 	u8 baid;
954 
955 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
956 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
957 
958 	/*
959 	 * This also covers the case of receiving a Block Ack Request
960 	 * outside a BA session; we'll pass it to mac80211 and that
961 	 * then sends a delBA action frame.
962 	 * This also covers pure monitor mode, in which case we won't
963 	 * have any BA sessions.
964 	 */
965 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
966 		return false;
967 
968 	/* no sta yet */
969 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
970 		      "Got valid BAID without a valid station assigned\n"))
971 		return false;
972 
973 	/* not a data packet or a bar */
974 	if (!ieee80211_is_back_req(hdr->frame_control) &&
975 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
976 	     is_multicast_ether_addr(hdr->addr1)))
977 		return false;
978 
979 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
980 		return false;
981 
982 	baid_data = rcu_dereference(mvm->baid_map[baid]);
983 	if (!baid_data) {
984 		IWL_DEBUG_RX(mvm,
985 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
986 			      baid, reorder);
987 		return false;
988 	}
989 
990 	rcu_read_lock();
991 	sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
992 	rcu_read_unlock();
993 
994 	if (IWL_FW_CHECK(mvm,
995 			 tid != baid_data->tid ||
996 			 !(sta_mask & baid_data->sta_mask),
997 			 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
998 			 baid, baid_data->sta_mask, baid_data->tid,
999 			 sta_mask, tid))
1000 		return false;
1001 
1002 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
1003 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
1004 		IWL_RX_MPDU_REORDER_SN_SHIFT;
1005 
1006 	buffer = &baid_data->reorder_buf[queue];
1007 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
1008 
1009 	spin_lock_bh(&buffer->lock);
1010 
1011 	if (!buffer->valid) {
1012 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1013 			spin_unlock_bh(&buffer->lock);
1014 			return false;
1015 		}
1016 		buffer->valid = true;
1017 	}
1018 
1019 	if (ieee80211_is_back_req(hdr->frame_control)) {
1020 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1021 				       buffer, nssn, 0);
1022 		goto drop;
1023 	}
1024 
1025 	/*
1026 	 * If there was a significant jump in the nssn - adjust.
1027 	 * If the SN is smaller than the NSSN it might need to first go into
1028 	 * the reorder buffer, in which case we just release up to it and the
1029 	 * rest of the function will take care of storing it and releasing up to
1030 	 * the nssn.
1031 	 * This should not happen. This queue has been lagging and it should
1032 	 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1033 	 * and update the other queues.
1034 	 */
1035 	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1036 				buffer->buf_size) ||
1037 	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1038 		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1039 
1040 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1041 				       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1042 	}
1043 
1044 	iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1045 				 rx_status->device_timestamp, queue);
1046 
1047 	/* drop any oudated packets */
1048 	if (ieee80211_sn_less(sn, buffer->head_sn))
1049 		goto drop;
1050 
1051 	/* release immediately if allowed by nssn and no stored frames */
1052 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1053 		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1054 				       buffer->buf_size) &&
1055 		   (!amsdu || last_subframe)) {
1056 			/*
1057 			 * If we crossed the 2048 or 0 SN, notify all the
1058 			 * queues. This is done in order to avoid having a
1059 			 * head_sn that lags behind for too long. When that
1060 			 * happens, we can get to a situation where the head_sn
1061 			 * is within the interval [nssn - buf_size : nssn]
1062 			 * which will make us think that the nssn is a packet
1063 			 * that we already freed because of the reordering
1064 			 * buffer and we will ignore it. So maintain the
1065 			 * head_sn somewhat updated across all the queues:
1066 			 * when it crosses 0 and 2048.
1067 			 */
1068 			if (sn == 2048 || sn == 0)
1069 				iwl_mvm_sync_nssn(mvm, baid, sn);
1070 			buffer->head_sn = nssn;
1071 		}
1072 		/* No need to update AMSDU last SN - we are moving the head */
1073 		spin_unlock_bh(&buffer->lock);
1074 		return false;
1075 	}
1076 
1077 	/*
1078 	 * release immediately if there are no stored frames, and the sn is
1079 	 * equal to the head.
1080 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
1081 	 * When we released everything, and we got the next frame in the
1082 	 * sequence, according to the NSSN we can't release immediately,
1083 	 * while technically there is no hole and we can move forward.
1084 	 */
1085 	if (!buffer->num_stored && sn == buffer->head_sn) {
1086 		if (!amsdu || last_subframe) {
1087 			if (sn == 2048 || sn == 0)
1088 				iwl_mvm_sync_nssn(mvm, baid, sn);
1089 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1090 		}
1091 		/* No need to update AMSDU last SN - we are moving the head */
1092 		spin_unlock_bh(&buffer->lock);
1093 		return false;
1094 	}
1095 
1096 	index = sn % buffer->buf_size;
1097 
1098 	/*
1099 	 * Check if we already stored this frame
1100 	 * As AMSDU is either received or not as whole, logic is simple:
1101 	 * If we have frames in that position in the buffer and the last frame
1102 	 * originated from AMSDU had a different SN then it is a retransmission.
1103 	 * If it is the same SN then if the subframe index is incrementing it
1104 	 * is the same AMSDU - otherwise it is a retransmission.
1105 	 */
1106 	tail = skb_peek_tail(&entries[index].e.frames);
1107 	if (tail && !amsdu)
1108 		goto drop;
1109 	else if (tail && (sn != buffer->last_amsdu ||
1110 			  buffer->last_sub_index >= sub_frame_idx))
1111 		goto drop;
1112 
1113 	/* put in reorder buffer */
1114 	__skb_queue_tail(&entries[index].e.frames, skb);
1115 	buffer->num_stored++;
1116 	entries[index].e.reorder_time = jiffies;
1117 
1118 	if (amsdu) {
1119 		buffer->last_amsdu = sn;
1120 		buffer->last_sub_index = sub_frame_idx;
1121 	}
1122 
1123 	/*
1124 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1125 	 * The reason is that NSSN advances on the first sub-frame, and may
1126 	 * cause the reorder buffer to advance before all the sub-frames arrive.
1127 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1128 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1129 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1130 	 * already ahead and it will be dropped.
1131 	 * If the last sub-frame is not on this queue - we will get frame
1132 	 * release notification with up to date NSSN.
1133 	 */
1134 	if (!amsdu || last_subframe)
1135 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1136 				       buffer, nssn,
1137 				       IWL_MVM_RELEASE_SEND_RSS_SYNC);
1138 
1139 	spin_unlock_bh(&buffer->lock);
1140 	return true;
1141 
1142 drop:
1143 	kfree_skb(skb);
1144 	spin_unlock_bh(&buffer->lock);
1145 	return true;
1146 }
1147 
1148 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1149 				    u32 reorder_data, u8 baid)
1150 {
1151 	unsigned long now = jiffies;
1152 	unsigned long timeout;
1153 	struct iwl_mvm_baid_data *data;
1154 
1155 	rcu_read_lock();
1156 
1157 	data = rcu_dereference(mvm->baid_map[baid]);
1158 	if (!data) {
1159 		IWL_DEBUG_RX(mvm,
1160 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1161 			      baid, reorder_data);
1162 		goto out;
1163 	}
1164 
1165 	if (!data->timeout)
1166 		goto out;
1167 
1168 	timeout = data->timeout;
1169 	/*
1170 	 * Do not update last rx all the time to avoid cache bouncing
1171 	 * between the rx queues.
1172 	 * Update it every timeout. Worst case is the session will
1173 	 * expire after ~ 2 * timeout, which doesn't matter that much.
1174 	 */
1175 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1176 		/* Update is atomic */
1177 		data->last_rx = now;
1178 
1179 out:
1180 	rcu_read_unlock();
1181 }
1182 
1183 static void iwl_mvm_flip_address(u8 *addr)
1184 {
1185 	int i;
1186 	u8 mac_addr[ETH_ALEN];
1187 
1188 	for (i = 0; i < ETH_ALEN; i++)
1189 		mac_addr[i] = addr[ETH_ALEN - i - 1];
1190 	ether_addr_copy(addr, mac_addr);
1191 }
1192 
1193 struct iwl_mvm_rx_phy_data {
1194 	enum iwl_rx_phy_info_type info_type;
1195 	__le32 d0, d1, d2, d3, eht_d4, d5;
1196 	__le16 d4;
1197 	bool with_data;
1198 	bool first_subframe;
1199 	__le32 rx_vec[4];
1200 
1201 	u32 rate_n_flags;
1202 	u32 gp2_on_air_rise;
1203 	u16 phy_info;
1204 	u8 energy_a, energy_b;
1205 	u8 channel;
1206 };
1207 
1208 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1209 				     struct iwl_mvm_rx_phy_data *phy_data,
1210 				     struct ieee80211_radiotap_he_mu *he_mu)
1211 {
1212 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
1213 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
1214 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
1215 	u32 rate_n_flags = phy_data->rate_n_flags;
1216 
1217 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1218 		he_mu->flags1 |=
1219 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1220 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1221 
1222 		he_mu->flags1 |=
1223 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1224 						   phy_data4),
1225 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1226 
1227 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1228 					     phy_data2);
1229 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1230 					     phy_data3);
1231 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1232 					     phy_data2);
1233 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1234 					     phy_data3);
1235 	}
1236 
1237 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1238 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1239 		he_mu->flags1 |=
1240 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1241 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1242 
1243 		he_mu->flags2 |=
1244 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1245 						   phy_data4),
1246 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1247 
1248 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1249 					     phy_data2);
1250 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1251 					     phy_data3);
1252 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1253 					     phy_data2);
1254 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1255 					     phy_data3);
1256 	}
1257 }
1258 
1259 static void
1260 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1261 			       struct ieee80211_radiotap_he *he,
1262 			       struct ieee80211_radiotap_he_mu *he_mu,
1263 			       struct ieee80211_rx_status *rx_status)
1264 {
1265 	/*
1266 	 * Unfortunately, we have to leave the mac80211 data
1267 	 * incorrect for the case that we receive an HE-MU
1268 	 * transmission and *don't* have the HE phy data (due
1269 	 * to the bits being used for TSF). This shouldn't
1270 	 * happen though as management frames where we need
1271 	 * the TSF/timers are not be transmitted in HE-MU.
1272 	 */
1273 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1274 	u32 rate_n_flags = phy_data->rate_n_flags;
1275 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1276 	u8 offs = 0;
1277 
1278 	rx_status->bw = RATE_INFO_BW_HE_RU;
1279 
1280 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1281 
1282 	switch (ru) {
1283 	case 0 ... 36:
1284 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1285 		offs = ru;
1286 		break;
1287 	case 37 ... 52:
1288 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1289 		offs = ru - 37;
1290 		break;
1291 	case 53 ... 60:
1292 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1293 		offs = ru - 53;
1294 		break;
1295 	case 61 ... 64:
1296 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1297 		offs = ru - 61;
1298 		break;
1299 	case 65 ... 66:
1300 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1301 		offs = ru - 65;
1302 		break;
1303 	case 67:
1304 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1305 		break;
1306 	case 68:
1307 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1308 		break;
1309 	}
1310 	he->data2 |= le16_encode_bits(offs,
1311 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1312 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1313 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1314 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1315 		he->data2 |=
1316 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1317 
1318 #define CHECK_BW(bw) \
1319 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1320 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1321 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1322 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1323 	CHECK_BW(20);
1324 	CHECK_BW(40);
1325 	CHECK_BW(80);
1326 	CHECK_BW(160);
1327 
1328 	if (he_mu)
1329 		he_mu->flags2 |=
1330 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1331 						   rate_n_flags),
1332 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1333 	else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1334 		he->data6 |=
1335 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1336 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1337 						   rate_n_flags),
1338 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1339 }
1340 
1341 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1342 				       struct iwl_mvm_rx_phy_data *phy_data,
1343 				       struct ieee80211_radiotap_he *he,
1344 				       struct ieee80211_radiotap_he_mu *he_mu,
1345 				       struct ieee80211_rx_status *rx_status,
1346 				       int queue)
1347 {
1348 	switch (phy_data->info_type) {
1349 	case IWL_RX_PHY_INFO_TYPE_NONE:
1350 	case IWL_RX_PHY_INFO_TYPE_CCK:
1351 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1352 	case IWL_RX_PHY_INFO_TYPE_HT:
1353 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1354 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1355 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1356 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1357 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1358 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1359 		return;
1360 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1361 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1362 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1363 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1364 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1365 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1366 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1367 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1368 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1369 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1370 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1371 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1372 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1373 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1374 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1375 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1376 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1377 		fallthrough;
1378 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1379 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1380 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1381 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1382 		/* HE common */
1383 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1384 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1385 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1386 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1387 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1388 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1389 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1390 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1391 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1392 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1393 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1394 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1395 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1396 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1397 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1398 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1399 		}
1400 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1401 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1402 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1403 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1404 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1405 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1406 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1407 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1408 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1409 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1410 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1411 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1412 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1413 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1414 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1415 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1416 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1417 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1418 		break;
1419 	}
1420 
1421 	switch (phy_data->info_type) {
1422 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1423 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1424 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1425 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1426 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1427 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1428 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1429 		break;
1430 	default:
1431 		/* nothing here */
1432 		break;
1433 	}
1434 
1435 	switch (phy_data->info_type) {
1436 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1437 		he_mu->flags1 |=
1438 			le16_encode_bits(le16_get_bits(phy_data->d4,
1439 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1440 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1441 		he_mu->flags1 |=
1442 			le16_encode_bits(le16_get_bits(phy_data->d4,
1443 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1444 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1445 		he_mu->flags2 |=
1446 			le16_encode_bits(le16_get_bits(phy_data->d4,
1447 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1448 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1449 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1450 		fallthrough;
1451 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1452 		he_mu->flags2 |=
1453 			le16_encode_bits(le32_get_bits(phy_data->d1,
1454 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1455 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1456 		he_mu->flags2 |=
1457 			le16_encode_bits(le32_get_bits(phy_data->d1,
1458 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1459 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1460 		fallthrough;
1461 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1462 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1463 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1464 		break;
1465 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1466 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1467 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1468 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1469 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1470 		break;
1471 	default:
1472 		/* nothing */
1473 		break;
1474 	}
1475 }
1476 
1477 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1478 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1479 
1480 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1481 	typeof(enc_bits) _enc_bits = enc_bits; \
1482 	typeof(usig) _usig = usig; \
1483 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1484 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1485 } while (0)
1486 
1487 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1488 	eht->data[(rt_data)] |= \
1489 		(cpu_to_le32 \
1490 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1491 		 LE32_DEC_ENC(data ## fw_data, \
1492 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1493 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1494 
1495 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1496 	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1497 
1498 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1499 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1500 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1501 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1502 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1503 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1504 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1505 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1506 
1507 #define IWL_RX_RU_DATA_A1			2
1508 #define IWL_RX_RU_DATA_A2			2
1509 #define IWL_RX_RU_DATA_B1			2
1510 #define IWL_RX_RU_DATA_B2			3
1511 #define IWL_RX_RU_DATA_C1			3
1512 #define IWL_RX_RU_DATA_C2			3
1513 #define IWL_RX_RU_DATA_D1			4
1514 #define IWL_RX_RU_DATA_D2			4
1515 
1516 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1517 	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1518 			    rt_ru,					\
1519 			    IWL_RX_RU_DATA_ ## fw_ru,			\
1520 			    fw_ru)
1521 
1522 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1523 				      struct iwl_mvm_rx_phy_data *phy_data,
1524 				      struct ieee80211_rx_status *rx_status,
1525 				      struct ieee80211_radiotap_eht *eht,
1526 				      struct ieee80211_radiotap_eht_usig *usig)
1527 {
1528 	if (phy_data->with_data) {
1529 		__le32 data1 = phy_data->d1;
1530 		__le32 data2 = phy_data->d2;
1531 		__le32 data3 = phy_data->d3;
1532 		__le32 data4 = phy_data->eht_d4;
1533 		__le32 data5 = phy_data->d5;
1534 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1535 
1536 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1537 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1538 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1539 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1540 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1541 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1542 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1543 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1544 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1545 		IWL_MVM_ENC_USIG_VALUE_MASK
1546 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1547 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1548 
1549 		eht->user_info[0] |=
1550 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1551 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1552 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1553 
1554 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1555 		eht->data[7] |= LE32_DEC_ENC
1556 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1557 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1558 
1559 		/*
1560 		 * Hardware labels the content channels/RU allocation values
1561 		 * as follows:
1562 		 *           Content Channel 1		Content Channel 2
1563 		 *   20 MHz: A1
1564 		 *   40 MHz: A1				B1
1565 		 *   80 MHz: A1 C1			B1 D1
1566 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1567 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1568 		 *
1569 		 * However firmware can only give us A1-D2, so the higher
1570 		 * frequencies are missing.
1571 		 */
1572 
1573 		switch (phy_bw) {
1574 		case RATE_MCS_CHAN_WIDTH_320:
1575 			/* additional values are missing in RX metadata */
1576 		case RATE_MCS_CHAN_WIDTH_160:
1577 			/* content channel 1 */
1578 			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1579 			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1580 			/* content channel 2 */
1581 			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1582 			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1583 			fallthrough;
1584 		case RATE_MCS_CHAN_WIDTH_80:
1585 			/* content channel 1 */
1586 			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1587 			/* content channel 2 */
1588 			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1589 			fallthrough;
1590 		case RATE_MCS_CHAN_WIDTH_40:
1591 			/* content channel 2 */
1592 			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1593 			fallthrough;
1594 		case RATE_MCS_CHAN_WIDTH_20:
1595 			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1596 			break;
1597 		}
1598 	} else {
1599 		__le32 usig_a1 = phy_data->rx_vec[0];
1600 		__le32 usig_a2 = phy_data->rx_vec[1];
1601 
1602 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1603 					    IWL_RX_USIG_A1_DISREGARD,
1604 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1605 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1606 					    IWL_RX_USIG_A1_VALIDATE,
1607 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1608 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1609 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1610 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1611 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1612 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1613 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1614 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1615 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1616 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1617 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1618 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1619 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1620 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1621 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1622 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1623 		IWL_MVM_ENC_USIG_VALUE_MASK
1624 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1625 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1626 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1627 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1628 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1629 	}
1630 }
1631 
1632 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1633 				      struct iwl_mvm_rx_phy_data *phy_data,
1634 				      struct ieee80211_rx_status *rx_status,
1635 				      struct ieee80211_radiotap_eht *eht,
1636 				      struct ieee80211_radiotap_eht_usig *usig)
1637 {
1638 	if (phy_data->with_data) {
1639 		__le32 data5 = phy_data->d5;
1640 
1641 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1642 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1643 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1644 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1645 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1646 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1647 
1648 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1649 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1650 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1651 	} else {
1652 		__le32 usig_a1 = phy_data->rx_vec[0];
1653 		__le32 usig_a2 = phy_data->rx_vec[1];
1654 
1655 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1656 					    IWL_RX_USIG_A1_DISREGARD,
1657 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1658 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1659 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1660 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1661 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1662 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1663 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1664 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1665 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1666 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1667 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1668 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1669 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1670 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1671 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1672 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1673 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1674 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1675 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1676 	}
1677 }
1678 
1679 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1680 				  struct ieee80211_rx_status *rx_status,
1681 				  struct ieee80211_radiotap_eht *eht)
1682 {
1683 	u32 ru = le32_get_bits(eht->data[8],
1684 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1685 	enum nl80211_eht_ru_alloc nl_ru;
1686 
1687 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1688 	 * in an EHT variant User Info field
1689 	 */
1690 
1691 	switch (ru) {
1692 	case 0 ... 36:
1693 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1694 		break;
1695 	case 37 ... 52:
1696 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1697 		break;
1698 	case 53 ... 60:
1699 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1700 		break;
1701 	case 61 ... 64:
1702 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1703 		break;
1704 	case 65 ... 66:
1705 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1706 		break;
1707 	case 67:
1708 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1709 		break;
1710 	case 68:
1711 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1712 		break;
1713 	case 69:
1714 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1715 		break;
1716 	case 70 ... 81:
1717 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1718 		break;
1719 	case 82 ... 89:
1720 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1721 		break;
1722 	case 90 ... 93:
1723 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1724 		break;
1725 	case 94 ... 95:
1726 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1727 		break;
1728 	case 96 ... 99:
1729 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1730 		break;
1731 	case 100 ... 103:
1732 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1733 		break;
1734 	case 104:
1735 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1736 		break;
1737 	case 105 ... 106:
1738 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1739 		break;
1740 	default:
1741 		return;
1742 	}
1743 
1744 	rx_status->bw = RATE_INFO_BW_EHT_RU;
1745 	rx_status->eht.ru = nl_ru;
1746 }
1747 
1748 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1749 					struct iwl_mvm_rx_phy_data *phy_data,
1750 					struct ieee80211_rx_status *rx_status,
1751 					struct ieee80211_radiotap_eht *eht,
1752 					struct ieee80211_radiotap_eht_usig *usig)
1753 
1754 {
1755 	__le32 data0 = phy_data->d0;
1756 	__le32 data1 = phy_data->d1;
1757 	__le32 usig_a1 = phy_data->rx_vec[0];
1758 	u8 info_type = phy_data->info_type;
1759 
1760 	/* Not in EHT range */
1761 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1762 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1763 		return;
1764 
1765 	usig->common |= cpu_to_le32
1766 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1767 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1768 	if (phy_data->with_data) {
1769 		usig->common |= LE32_DEC_ENC(data0,
1770 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1771 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1772 		usig->common |= LE32_DEC_ENC(data0,
1773 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1774 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1775 	} else {
1776 		usig->common |= LE32_DEC_ENC(usig_a1,
1777 					     IWL_RX_USIG_A1_UL_FLAG,
1778 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1779 		usig->common |= LE32_DEC_ENC(usig_a1,
1780 					     IWL_RX_USIG_A1_BSS_COLOR,
1781 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1782 	}
1783 
1784 	if (fw_has_capa(&mvm->fw->ucode_capa,
1785 			IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1786 		usig->common |=
1787 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1788 		usig->common |=
1789 			LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1790 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1791 	}
1792 
1793 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1794 	eht->data[0] |= LE32_DEC_ENC(data0,
1795 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1796 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1797 
1798 	/* All RU allocating size/index is in TB format */
1799 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1800 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1801 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1802 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1803 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1804 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1805 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1806 
1807 	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1808 
1809 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1810 	 * which is on only in case of monitor mode so no need to check monitor
1811 	 * mode
1812 	 */
1813 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1814 	eht->data[1] |=
1815 		le32_encode_bits(mvm->monitor_p80,
1816 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1817 
1818 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1819 	if (phy_data->with_data)
1820 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1821 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1822 	else
1823 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1824 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1825 
1826 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1827 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1828 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1829 
1830 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1831 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1832 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1833 
1834 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1835 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1836 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1837 
1838 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1839 
1840 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1841 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1842 
1843 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1844 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1845 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1846 
1847 	/*
1848 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1849 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1850 	 */
1851 
1852 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1853 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1854 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1855 
1856 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1857 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1858 		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1859 
1860 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1861 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1862 		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1863 }
1864 
1865 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1866 			   struct iwl_mvm_rx_phy_data *phy_data,
1867 			   int queue)
1868 {
1869 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1870 
1871 	struct ieee80211_radiotap_eht *eht;
1872 	struct ieee80211_radiotap_eht_usig *usig;
1873 	size_t eht_len = sizeof(*eht);
1874 
1875 	u32 rate_n_flags = phy_data->rate_n_flags;
1876 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1877 	/* EHT and HE have the same valus for LTF */
1878 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1879 	u16 phy_info = phy_data->phy_info;
1880 	u32 bw;
1881 
1882 	/* u32 for 1 user_info */
1883 	if (phy_data->with_data)
1884 		eht_len += sizeof(u32);
1885 
1886 	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1887 
1888 	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1889 					sizeof(*usig));
1890 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1891 	usig->common |=
1892 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1893 
1894 	/* specific handling for 320MHz */
1895 	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1896 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1897 		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1898 				le32_to_cpu(phy_data->d0));
1899 
1900 	usig->common |= cpu_to_le32
1901 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1902 
1903 	/* report the AMPDU-EOF bit on single frames */
1904 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1905 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1906 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1907 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1908 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1909 	}
1910 
1911 	/* update aggregation data for monitor sake on default queue */
1912 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1913 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1914 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1915 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1916 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1917 	}
1918 
1919 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1920 		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1921 
1922 #define CHECK_TYPE(F)							\
1923 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1924 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1925 
1926 	CHECK_TYPE(SU);
1927 	CHECK_TYPE(EXT_SU);
1928 	CHECK_TYPE(MU);
1929 	CHECK_TYPE(TRIG);
1930 
1931 	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1932 	case 0:
1933 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1934 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1935 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1936 		} else {
1937 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1938 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1939 		}
1940 		break;
1941 	case 1:
1942 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1943 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1944 		break;
1945 	case 2:
1946 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1947 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1948 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1949 		else
1950 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1951 		break;
1952 	case 3:
1953 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1954 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1955 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1956 		}
1957 		break;
1958 	default:
1959 		/* nothing here */
1960 		break;
1961 	}
1962 
1963 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1964 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1965 		eht->data[0] |= cpu_to_le32
1966 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1967 				    ltf) |
1968 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1969 				    rx_status->eht.gi));
1970 	}
1971 
1972 
1973 	if (!phy_data->with_data) {
1974 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1975 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1976 		eht->data[7] |=
1977 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1978 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1979 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1980 		if (rate_n_flags & RATE_MCS_BF_MSK)
1981 			eht->data[7] |=
1982 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1983 	} else {
1984 		eht->user_info[0] |=
1985 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1986 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1987 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1988 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1989 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1990 
1991 		if (rate_n_flags & RATE_MCS_BF_MSK)
1992 			eht->user_info[0] |=
1993 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1994 
1995 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1996 			eht->user_info[0] |=
1997 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1998 
1999 		eht->user_info[0] |= cpu_to_le32
2000 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
2001 				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
2002 					      rate_n_flags)) |
2003 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
2004 				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
2005 	}
2006 }
2007 
2008 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
2009 			  struct iwl_mvm_rx_phy_data *phy_data,
2010 			  int queue)
2011 {
2012 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2013 	struct ieee80211_radiotap_he *he = NULL;
2014 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
2015 	u32 rate_n_flags = phy_data->rate_n_flags;
2016 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
2017 	u8 ltf;
2018 	static const struct ieee80211_radiotap_he known = {
2019 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
2020 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
2021 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
2022 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
2023 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
2024 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
2025 	};
2026 	static const struct ieee80211_radiotap_he_mu mu_known = {
2027 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
2028 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
2029 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
2030 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
2031 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
2032 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
2033 	};
2034 	u16 phy_info = phy_data->phy_info;
2035 
2036 	he = skb_put_data(skb, &known, sizeof(known));
2037 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
2038 
2039 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
2040 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
2041 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
2042 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
2043 	}
2044 
2045 	/* report the AMPDU-EOF bit on single frames */
2046 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2047 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2048 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2049 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
2050 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2051 	}
2052 
2053 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2054 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
2055 					   queue);
2056 
2057 	/* update aggregation data for monitor sake on default queue */
2058 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
2059 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
2060 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2061 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
2062 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2063 	}
2064 
2065 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
2066 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
2067 		rx_status->bw = RATE_INFO_BW_HE_RU;
2068 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
2069 	}
2070 
2071 	/* actually data is filled in mac80211 */
2072 	if (he_type == RATE_MCS_HE_TYPE_SU ||
2073 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
2074 		he->data1 |=
2075 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
2076 
2077 #define CHECK_TYPE(F)							\
2078 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
2079 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
2080 
2081 	CHECK_TYPE(SU);
2082 	CHECK_TYPE(EXT_SU);
2083 	CHECK_TYPE(MU);
2084 	CHECK_TYPE(TRIG);
2085 
2086 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
2087 
2088 	if (rate_n_flags & RATE_MCS_BF_MSK)
2089 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
2090 
2091 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
2092 		RATE_MCS_HE_GI_LTF_POS) {
2093 	case 0:
2094 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2095 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2096 		else
2097 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2098 		if (he_type == RATE_MCS_HE_TYPE_MU)
2099 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2100 		else
2101 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
2102 		break;
2103 	case 1:
2104 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2105 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2106 		else
2107 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2108 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2109 		break;
2110 	case 2:
2111 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
2112 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2113 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2114 		} else {
2115 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2116 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2117 		}
2118 		break;
2119 	case 3:
2120 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2121 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2122 		break;
2123 	case 4:
2124 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2125 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2126 		break;
2127 	default:
2128 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
2129 	}
2130 
2131 	he->data5 |= le16_encode_bits(ltf,
2132 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
2133 }
2134 
2135 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
2136 				struct iwl_mvm_rx_phy_data *phy_data)
2137 {
2138 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2139 	struct ieee80211_radiotap_lsig *lsig;
2140 
2141 	switch (phy_data->info_type) {
2142 	case IWL_RX_PHY_INFO_TYPE_HT:
2143 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
2144 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
2145 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
2146 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
2147 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
2148 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
2149 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
2150 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
2151 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
2152 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
2153 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
2154 		lsig = skb_put(skb, sizeof(*lsig));
2155 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
2156 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
2157 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
2158 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
2159 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
2160 		break;
2161 	default:
2162 		break;
2163 	}
2164 }
2165 
2166 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
2167 {
2168 	switch (phy_band) {
2169 	case PHY_BAND_24:
2170 		return NL80211_BAND_2GHZ;
2171 	case PHY_BAND_5:
2172 		return NL80211_BAND_5GHZ;
2173 	case PHY_BAND_6:
2174 		return NL80211_BAND_6GHZ;
2175 	default:
2176 		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
2177 		return NL80211_BAND_5GHZ;
2178 	}
2179 }
2180 
2181 struct iwl_rx_sta_csa {
2182 	bool all_sta_unblocked;
2183 	struct ieee80211_vif *vif;
2184 };
2185 
2186 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
2187 {
2188 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2189 	struct iwl_rx_sta_csa *rx_sta_csa = data;
2190 
2191 	if (mvmsta->vif != rx_sta_csa->vif)
2192 		return;
2193 
2194 	if (mvmsta->disable_tx)
2195 		rx_sta_csa->all_sta_unblocked = false;
2196 }
2197 
2198 /*
2199  * Note: requires also rx_status->band to be prefilled, as well
2200  * as phy_data (apart from phy_data->info_type)
2201  */
2202 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
2203 				   struct sk_buff *skb,
2204 				   struct iwl_mvm_rx_phy_data *phy_data,
2205 				   int queue)
2206 {
2207 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2208 	u32 rate_n_flags = phy_data->rate_n_flags;
2209 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
2210 	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2211 	bool is_sgi;
2212 
2213 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
2214 
2215 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2216 		phy_data->info_type =
2217 			le32_get_bits(phy_data->d1,
2218 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
2219 
2220 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2221 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2222 	case RATE_MCS_CHAN_WIDTH_20:
2223 		break;
2224 	case RATE_MCS_CHAN_WIDTH_40:
2225 		rx_status->bw = RATE_INFO_BW_40;
2226 		break;
2227 	case RATE_MCS_CHAN_WIDTH_80:
2228 		rx_status->bw = RATE_INFO_BW_80;
2229 		break;
2230 	case RATE_MCS_CHAN_WIDTH_160:
2231 		rx_status->bw = RATE_INFO_BW_160;
2232 		break;
2233 	case RATE_MCS_CHAN_WIDTH_320:
2234 		rx_status->bw = RATE_INFO_BW_320;
2235 		break;
2236 	}
2237 
2238 	/* must be before L-SIG data */
2239 	if (format == RATE_MCS_HE_MSK)
2240 		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
2241 
2242 	iwl_mvm_decode_lsig(skb, phy_data);
2243 
2244 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
2245 	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
2246 							 rx_status->band);
2247 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
2248 				    phy_data->energy_a, phy_data->energy_b);
2249 
2250 	/* using TLV format and must be after all fixed len fields */
2251 	if (format == RATE_MCS_EHT_MSK)
2252 		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
2253 
2254 	if (unlikely(mvm->monitor_on))
2255 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
2256 
2257 	is_sgi = format == RATE_MCS_HE_MSK ?
2258 		iwl_he_is_sgi(rate_n_flags) :
2259 		rate_n_flags & RATE_MCS_SGI_MSK;
2260 
2261 	if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
2262 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2263 
2264 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
2265 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2266 
2267 	switch (format) {
2268 	case RATE_MCS_VHT_MSK:
2269 		rx_status->encoding = RX_ENC_VHT;
2270 		break;
2271 	case RATE_MCS_HE_MSK:
2272 		rx_status->encoding = RX_ENC_HE;
2273 		rx_status->he_dcm =
2274 			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2275 		break;
2276 	case RATE_MCS_EHT_MSK:
2277 		rx_status->encoding = RX_ENC_EHT;
2278 		break;
2279 	}
2280 
2281 	switch (format) {
2282 	case RATE_MCS_HT_MSK:
2283 		rx_status->encoding = RX_ENC_HT;
2284 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2285 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2286 		break;
2287 	case RATE_MCS_VHT_MSK:
2288 	case RATE_MCS_HE_MSK:
2289 	case RATE_MCS_EHT_MSK:
2290 		rx_status->nss =
2291 			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2292 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2293 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2294 		break;
2295 	default: {
2296 		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2297 								 rx_status->band);
2298 
2299 		rx_status->rate_idx = rate;
2300 
2301 		if ((rate < 0 || rate > 0xFF)) {
2302 			rx_status->rate_idx = 0;
2303 			if (net_ratelimit())
2304 				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2305 					rate_n_flags, rx_status->band);
2306 		}
2307 
2308 		break;
2309 		}
2310 	}
2311 }
2312 
2313 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2314 			struct iwl_rx_cmd_buffer *rxb, int queue)
2315 {
2316 	struct ieee80211_rx_status *rx_status;
2317 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2318 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2319 	struct ieee80211_hdr *hdr;
2320 	u32 len;
2321 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2322 	struct ieee80211_sta *sta = NULL;
2323 	struct ieee80211_link_sta *link_sta = NULL;
2324 	struct sk_buff *skb;
2325 	u8 crypt_len = 0;
2326 	size_t desc_size;
2327 	struct iwl_mvm_rx_phy_data phy_data = {};
2328 	u32 format;
2329 
2330 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2331 		return;
2332 
2333 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2334 		desc_size = sizeof(*desc);
2335 	else
2336 		desc_size = IWL_RX_DESC_SIZE_V1;
2337 
2338 	if (unlikely(pkt_len < desc_size)) {
2339 		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2340 		return;
2341 	}
2342 
2343 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2344 		phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2345 		phy_data.channel = desc->v3.channel;
2346 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2347 		phy_data.energy_a = desc->v3.energy_a;
2348 		phy_data.energy_b = desc->v3.energy_b;
2349 
2350 		phy_data.d0 = desc->v3.phy_data0;
2351 		phy_data.d1 = desc->v3.phy_data1;
2352 		phy_data.d2 = desc->v3.phy_data2;
2353 		phy_data.d3 = desc->v3.phy_data3;
2354 		phy_data.eht_d4 = desc->phy_eht_data4;
2355 		phy_data.d5 = desc->v3.phy_data5;
2356 	} else {
2357 		phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2358 		phy_data.channel = desc->v1.channel;
2359 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2360 		phy_data.energy_a = desc->v1.energy_a;
2361 		phy_data.energy_b = desc->v1.energy_b;
2362 
2363 		phy_data.d0 = desc->v1.phy_data0;
2364 		phy_data.d1 = desc->v1.phy_data1;
2365 		phy_data.d2 = desc->v1.phy_data2;
2366 		phy_data.d3 = desc->v1.phy_data3;
2367 	}
2368 
2369 	if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2370 				    REPLY_RX_MPDU_CMD, 0) < 4) {
2371 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2372 		IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2373 			       phy_data.rate_n_flags);
2374 	}
2375 
2376 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2377 
2378 	len = le16_to_cpu(desc->mpdu_len);
2379 
2380 	if (unlikely(len + desc_size > pkt_len)) {
2381 		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2382 		return;
2383 	}
2384 
2385 	phy_data.with_data = true;
2386 	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2387 	phy_data.d4 = desc->phy_data4;
2388 
2389 	hdr = (void *)(pkt->data + desc_size);
2390 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2391 	 * ieee80211_hdr pulled.
2392 	 */
2393 	skb = alloc_skb(128, GFP_ATOMIC);
2394 	if (!skb) {
2395 		IWL_ERR(mvm, "alloc_skb failed\n");
2396 		return;
2397 	}
2398 
2399 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2400 		/*
2401 		 * If the device inserted padding it means that (it thought)
2402 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2403 		 * this case, reserve two bytes at the start of the SKB to
2404 		 * align the payload properly in case we end up copying it.
2405 		 */
2406 		skb_reserve(skb, 2);
2407 	}
2408 
2409 	rx_status = IEEE80211_SKB_RXCB(skb);
2410 
2411 	/*
2412 	 * Keep packets with CRC errors (and with overrun) for monitor mode
2413 	 * (otherwise the firmware discards them) but mark them as bad.
2414 	 */
2415 	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2416 	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2417 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2418 			     le32_to_cpu(desc->status));
2419 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2420 	}
2421 
2422 	/* set the preamble flag if appropriate */
2423 	if (format == RATE_MCS_CCK_MSK &&
2424 	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2425 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2426 
2427 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2428 		u64 tsf_on_air_rise;
2429 
2430 		if (mvm->trans->trans_cfg->device_family >=
2431 		    IWL_DEVICE_FAMILY_AX210)
2432 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2433 		else
2434 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2435 
2436 		rx_status->mactime = tsf_on_air_rise;
2437 		/* TSF as indicated by the firmware is at INA time */
2438 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2439 	}
2440 
2441 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2442 		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2443 
2444 		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2445 	} else {
2446 		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2447 			NL80211_BAND_2GHZ;
2448 	}
2449 
2450 	/* update aggregation data for monitor sake on default queue */
2451 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2452 		bool toggle_bit;
2453 
2454 		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2455 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2456 		/*
2457 		 * Toggle is switched whenever new aggregation starts. Make
2458 		 * sure ampdu_reference is never 0 so we can later use it to
2459 		 * see if the frame was really part of an A-MPDU or not.
2460 		 */
2461 		if (toggle_bit != mvm->ampdu_toggle) {
2462 			mvm->ampdu_ref++;
2463 			if (mvm->ampdu_ref == 0)
2464 				mvm->ampdu_ref++;
2465 			mvm->ampdu_toggle = toggle_bit;
2466 			phy_data.first_subframe = true;
2467 		}
2468 		rx_status->ampdu_reference = mvm->ampdu_ref;
2469 	}
2470 
2471 	rcu_read_lock();
2472 
2473 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2474 		u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2475 
2476 		if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2477 			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2478 			if (IS_ERR(sta))
2479 				sta = NULL;
2480 			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2481 		}
2482 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2483 		/*
2484 		 * This is fine since we prevent two stations with the same
2485 		 * address from being added.
2486 		 */
2487 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2488 	}
2489 
2490 	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2491 			      le32_to_cpu(pkt->len_n_flags), queue,
2492 			      &crypt_len)) {
2493 		kfree_skb(skb);
2494 		goto out;
2495 	}
2496 
2497 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2498 
2499 	if (sta) {
2500 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2501 		struct ieee80211_vif *tx_blocked_vif =
2502 			rcu_dereference(mvm->csa_tx_blocked_vif);
2503 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2504 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2505 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2506 		struct iwl_fw_dbg_trigger_tlv *trig;
2507 		struct ieee80211_vif *vif = mvmsta->vif;
2508 
2509 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2510 		    !is_multicast_ether_addr(hdr->addr1) &&
2511 		    ieee80211_is_data(hdr->frame_control) &&
2512 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2513 			schedule_delayed_work(&mvm->tcm.work, 0);
2514 
2515 		/*
2516 		 * We have tx blocked stations (with CS bit). If we heard
2517 		 * frames from a blocked station on a new channel we can
2518 		 * TX to it again.
2519 		 */
2520 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2521 			struct iwl_mvm_vif *mvmvif =
2522 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2523 			struct iwl_rx_sta_csa rx_sta_csa = {
2524 				.all_sta_unblocked = true,
2525 				.vif = tx_blocked_vif,
2526 			};
2527 
2528 			if (mvmvif->csa_target_freq == rx_status->freq)
2529 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2530 								 false);
2531 			ieee80211_iterate_stations_atomic(mvm->hw,
2532 							  iwl_mvm_rx_get_sta_block_tx,
2533 							  &rx_sta_csa);
2534 
2535 			if (rx_sta_csa.all_sta_unblocked) {
2536 				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2537 				/* Unblock BCAST / MCAST station */
2538 				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2539 				cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2540 			}
2541 		}
2542 
2543 		rs_update_last_rssi(mvm, mvmsta, rx_status);
2544 
2545 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2546 					     ieee80211_vif_to_wdev(vif),
2547 					     FW_DBG_TRIGGER_RSSI);
2548 
2549 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2550 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2551 			s32 rssi;
2552 
2553 			rssi_trig = (void *)trig->data;
2554 			rssi = le32_to_cpu(rssi_trig->rssi);
2555 
2556 			if (rx_status->signal < rssi)
2557 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2558 							NULL);
2559 		}
2560 
2561 		if (ieee80211_is_data(hdr->frame_control))
2562 			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2563 
2564 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2565 			kfree_skb(skb);
2566 			goto out;
2567 		}
2568 
2569 		/*
2570 		 * Our hardware de-aggregates AMSDUs but copies the mac header
2571 		 * as it to the de-aggregated MPDUs. We need to turn off the
2572 		 * AMSDU bit in the QoS control ourselves.
2573 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2574 		 */
2575 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2576 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2577 			u8 *qc = ieee80211_get_qos_ctl(hdr);
2578 
2579 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2580 
2581 			if (mvm->trans->trans_cfg->device_family ==
2582 			    IWL_DEVICE_FAMILY_9000) {
2583 				iwl_mvm_flip_address(hdr->addr3);
2584 
2585 				if (ieee80211_has_a4(hdr->frame_control))
2586 					iwl_mvm_flip_address(hdr->addr4);
2587 			}
2588 		}
2589 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2590 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2591 
2592 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2593 		}
2594 	}
2595 
2596 	/* management stuff on default queue */
2597 	if (!queue) {
2598 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2599 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2600 			     mvm->sched_scan_pass_all ==
2601 			     SCHED_SCAN_PASS_ALL_ENABLED))
2602 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2603 
2604 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2605 			     ieee80211_is_probe_resp(hdr->frame_control)))
2606 			rx_status->boottime_ns = ktime_get_boottime_ns();
2607 	}
2608 
2609 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2610 		kfree_skb(skb);
2611 		goto out;
2612 	}
2613 
2614 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2615 	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2616 	    likely(!iwl_mvm_mei_filter_scan(mvm, skb)))
2617 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2618 						link_sta);
2619 out:
2620 	rcu_read_unlock();
2621 }
2622 
2623 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2624 				struct iwl_rx_cmd_buffer *rxb, int queue)
2625 {
2626 	struct ieee80211_rx_status *rx_status;
2627 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2628 	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2629 	u32 rssi;
2630 	u32 info_type;
2631 	struct ieee80211_sta *sta = NULL;
2632 	struct sk_buff *skb;
2633 	struct iwl_mvm_rx_phy_data phy_data;
2634 	u32 format;
2635 
2636 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2637 		return;
2638 
2639 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2640 		return;
2641 
2642 	rssi = le32_to_cpu(desc->rssi);
2643 	info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2644 	phy_data.d0 = desc->phy_info[0];
2645 	phy_data.d1 = desc->phy_info[1];
2646 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2647 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2648 	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2649 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2650 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2651 	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2652 	phy_data.with_data = false;
2653 	phy_data.rx_vec[0] = desc->rx_vec[0];
2654 	phy_data.rx_vec[1] = desc->rx_vec[1];
2655 
2656 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2657 				    RX_NO_DATA_NOTIF, 0) < 2) {
2658 		IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2659 			       phy_data.rate_n_flags);
2660 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2661 		IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2662 			       phy_data.rate_n_flags);
2663 	}
2664 
2665 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2666 
2667 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2668 				    RX_NO_DATA_NOTIF, 0) >= 3) {
2669 		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2670 		    sizeof(struct iwl_rx_no_data_ver_3)))
2671 		/* invalid len for ver 3 */
2672 			return;
2673 		phy_data.rx_vec[2] = desc->rx_vec[2];
2674 		phy_data.rx_vec[3] = desc->rx_vec[3];
2675 	} else {
2676 		if (format == RATE_MCS_EHT_MSK)
2677 			/* no support for EHT before version 3 API */
2678 			return;
2679 	}
2680 
2681 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2682 	 * ieee80211_hdr pulled.
2683 	 */
2684 	skb = alloc_skb(128, GFP_ATOMIC);
2685 	if (!skb) {
2686 		IWL_ERR(mvm, "alloc_skb failed\n");
2687 		return;
2688 	}
2689 
2690 	rx_status = IEEE80211_SKB_RXCB(skb);
2691 
2692 	/* 0-length PSDU */
2693 	rx_status->flag |= RX_FLAG_NO_PSDU;
2694 
2695 	switch (info_type) {
2696 	case RX_NO_DATA_INFO_TYPE_NDP:
2697 		rx_status->zero_length_psdu_type =
2698 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2699 		break;
2700 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2701 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2702 		rx_status->zero_length_psdu_type =
2703 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2704 		break;
2705 	default:
2706 		rx_status->zero_length_psdu_type =
2707 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2708 		break;
2709 	}
2710 
2711 	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2712 		NL80211_BAND_2GHZ;
2713 
2714 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2715 
2716 	/* no more radio tap info should be put after this point.
2717 	 *
2718 	 * We mark it as mac header, for upper layers to know where
2719 	 * all radio tap header ends.
2720 	 */
2721 	skb_reset_mac_header(skb);
2722 
2723 	/*
2724 	 * Override the nss from the rx_vec since the rate_n_flags has
2725 	 * only 2 bits for the nss which gives a max of 4 ss but there
2726 	 * may be up to 8 spatial streams.
2727 	 */
2728 	switch (format) {
2729 	case RATE_MCS_VHT_MSK:
2730 		rx_status->nss =
2731 			le32_get_bits(desc->rx_vec[0],
2732 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2733 		break;
2734 	case RATE_MCS_HE_MSK:
2735 		rx_status->nss =
2736 			le32_get_bits(desc->rx_vec[0],
2737 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2738 		break;
2739 	case RATE_MCS_EHT_MSK:
2740 		rx_status->nss =
2741 			le32_get_bits(desc->rx_vec[2],
2742 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2743 	}
2744 
2745 	rcu_read_lock();
2746 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2747 	rcu_read_unlock();
2748 }
2749 
2750 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2751 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2752 {
2753 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2754 	struct iwl_frame_release *release = (void *)pkt->data;
2755 
2756 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2757 		return;
2758 
2759 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2760 					  le16_to_cpu(release->nssn),
2761 					  queue, 0);
2762 }
2763 
2764 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2765 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2766 {
2767 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2768 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2769 	unsigned int baid = le32_get_bits(release->ba_info,
2770 					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2771 	unsigned int nssn = le32_get_bits(release->ba_info,
2772 					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2773 	unsigned int sta_id = le32_get_bits(release->sta_tid,
2774 					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2775 	unsigned int tid = le32_get_bits(release->sta_tid,
2776 					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2777 	struct iwl_mvm_baid_data *baid_data;
2778 
2779 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2780 		return;
2781 
2782 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2783 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2784 		return;
2785 
2786 	rcu_read_lock();
2787 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2788 	if (!baid_data) {
2789 		IWL_DEBUG_RX(mvm,
2790 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2791 			      baid);
2792 		goto out;
2793 	}
2794 
2795 	if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2796 		 !(baid_data->sta_mask & BIT(sta_id)),
2797 		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2798 		 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2799 		 tid))
2800 		goto out;
2801 
2802 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2803 out:
2804 	rcu_read_unlock();
2805 }
2806