1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 11 * Copyright(c) 2018 - 2020 Intel Corporation 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of version 2 of the GNU General Public License as 15 * published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * General Public License for more details. 21 * 22 * The full GNU General Public License is included in this distribution 23 * in the file called COPYING. 24 * 25 * Contact Information: 26 * Intel Linux Wireless <linuxwifi@intel.com> 27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 28 * 29 * BSD LICENSE 30 * 31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 34 * Copyright(c) 2018 - 2020 Intel Corporation 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name Intel Corporation nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 *****************************************************************************/ 63 #include <linux/etherdevice.h> 64 #include <linux/skbuff.h> 65 #include "iwl-trans.h" 66 #include "mvm.h" 67 #include "fw-api.h" 68 69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 70 { 71 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 72 u8 *data = skb->data; 73 74 /* Alignment concerns */ 75 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 76 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 77 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 78 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 79 80 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 81 data += sizeof(struct ieee80211_radiotap_he); 82 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 83 data += sizeof(struct ieee80211_radiotap_he_mu); 84 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 85 data += sizeof(struct ieee80211_radiotap_lsig); 86 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 87 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 88 89 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 90 } 91 92 return data; 93 } 94 95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 96 int queue, struct ieee80211_sta *sta) 97 { 98 struct iwl_mvm_sta *mvmsta; 99 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 100 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 101 struct iwl_mvm_key_pn *ptk_pn; 102 int res; 103 u8 tid, keyidx; 104 u8 pn[IEEE80211_CCMP_PN_LEN]; 105 u8 *extiv; 106 107 /* do PN checking */ 108 109 /* multicast and non-data only arrives on default queue */ 110 if (!ieee80211_is_data(hdr->frame_control) || 111 is_multicast_ether_addr(hdr->addr1)) 112 return 0; 113 114 /* do not check PN for open AP */ 115 if (!(stats->flag & RX_FLAG_DECRYPTED)) 116 return 0; 117 118 /* 119 * avoid checking for default queue - we don't want to replicate 120 * all the logic that's necessary for checking the PN on fragmented 121 * frames, leave that to mac80211 122 */ 123 if (queue == 0) 124 return 0; 125 126 /* if we are here - this for sure is either CCMP or GCMP */ 127 if (IS_ERR_OR_NULL(sta)) { 128 IWL_ERR(mvm, 129 "expected hw-decrypted unicast frame for station\n"); 130 return -1; 131 } 132 133 mvmsta = iwl_mvm_sta_from_mac80211(sta); 134 135 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 136 keyidx = extiv[3] >> 6; 137 138 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 139 if (!ptk_pn) 140 return -1; 141 142 if (ieee80211_is_data_qos(hdr->frame_control)) 143 tid = ieee80211_get_tid(hdr); 144 else 145 tid = 0; 146 147 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 148 if (tid >= IWL_MAX_TID_COUNT) 149 return -1; 150 151 /* load pn */ 152 pn[0] = extiv[7]; 153 pn[1] = extiv[6]; 154 pn[2] = extiv[5]; 155 pn[3] = extiv[4]; 156 pn[4] = extiv[1]; 157 pn[5] = extiv[0]; 158 159 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 160 if (res < 0) 161 return -1; 162 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 163 return -1; 164 165 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 166 stats->flag |= RX_FLAG_PN_VALIDATED; 167 168 return 0; 169 } 170 171 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 172 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 173 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 174 struct iwl_rx_cmd_buffer *rxb) 175 { 176 struct iwl_rx_packet *pkt = rxb_addr(rxb); 177 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 178 unsigned int headlen, fraglen, pad_len = 0; 179 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 180 181 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 182 len -= 2; 183 pad_len = 2; 184 } 185 186 /* If frame is small enough to fit in skb->head, pull it completely. 187 * If not, only pull ieee80211_hdr (including crypto if present, and 188 * an additional 8 bytes for SNAP/ethertype, see below) so that 189 * splice() or TCP coalesce are more efficient. 190 * 191 * Since, in addition, ieee80211_data_to_8023() always pull in at 192 * least 8 bytes (possibly more for mesh) we can do the same here 193 * to save the cost of doing it later. That still doesn't pull in 194 * the actual IP header since the typical case has a SNAP header. 195 * If the latter changes (there are efforts in the standards group 196 * to do so) we should revisit this and ieee80211_data_to_8023(). 197 */ 198 headlen = (len <= skb_tailroom(skb)) ? len : 199 hdrlen + crypt_len + 8; 200 201 /* The firmware may align the packet to DWORD. 202 * The padding is inserted after the IV. 203 * After copying the header + IV skip the padding if 204 * present before copying packet data. 205 */ 206 hdrlen += crypt_len; 207 208 if (WARN_ONCE(headlen < hdrlen, 209 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 210 hdrlen, len, crypt_len)) { 211 /* 212 * We warn and trace because we want to be able to see 213 * it in trace-cmd as well. 214 */ 215 IWL_DEBUG_RX(mvm, 216 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 217 hdrlen, len, crypt_len); 218 return -EINVAL; 219 } 220 221 skb_put_data(skb, hdr, hdrlen); 222 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 223 224 /* 225 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 226 * certain cases and starts the checksum after the SNAP. Check if 227 * this is the case - it's easier to just bail out to CHECKSUM_NONE 228 * in the cases the hardware didn't handle, since it's rare to see 229 * such packets, even though the hardware did calculate the checksum 230 * in this case, just starting after the MAC header instead. 231 */ 232 if (skb->ip_summed == CHECKSUM_COMPLETE) { 233 struct { 234 u8 hdr[6]; 235 __be16 type; 236 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 237 238 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 239 !ether_addr_equal(shdr->hdr, rfc1042_header) || 240 (shdr->type != htons(ETH_P_IP) && 241 shdr->type != htons(ETH_P_ARP) && 242 shdr->type != htons(ETH_P_IPV6) && 243 shdr->type != htons(ETH_P_8021Q) && 244 shdr->type != htons(ETH_P_PAE) && 245 shdr->type != htons(ETH_P_TDLS)))) 246 skb->ip_summed = CHECKSUM_NONE; 247 } 248 249 fraglen = len - headlen; 250 251 if (fraglen) { 252 int offset = (void *)hdr + headlen + pad_len - 253 rxb_addr(rxb) + rxb_offset(rxb); 254 255 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 256 fraglen, rxb->truesize); 257 } 258 259 return 0; 260 } 261 262 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 263 struct sk_buff *skb) 264 { 265 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 266 struct ieee80211_vendor_radiotap *radiotap; 267 const int size = sizeof(*radiotap) + sizeof(__le16); 268 269 if (!mvm->cur_aid) 270 return; 271 272 /* ensure alignment */ 273 BUILD_BUG_ON((size + 2) % 4); 274 275 radiotap = skb_put(skb, size + 2); 276 radiotap->align = 1; 277 /* Intel OUI */ 278 radiotap->oui[0] = 0xf6; 279 radiotap->oui[1] = 0x54; 280 radiotap->oui[2] = 0x25; 281 /* radiotap sniffer config sub-namespace */ 282 radiotap->subns = 1; 283 radiotap->present = 0x1; 284 radiotap->len = size - sizeof(*radiotap); 285 radiotap->pad = 2; 286 287 /* fill the data now */ 288 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 289 /* and clear the padding */ 290 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 291 292 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 293 } 294 295 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 296 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 297 struct napi_struct *napi, 298 struct sk_buff *skb, int queue, 299 struct ieee80211_sta *sta, 300 bool csi) 301 { 302 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 303 kfree_skb(skb); 304 else 305 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 306 } 307 308 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 309 struct ieee80211_rx_status *rx_status, 310 u32 rate_n_flags, int energy_a, 311 int energy_b) 312 { 313 int max_energy; 314 u32 rate_flags = rate_n_flags; 315 316 energy_a = energy_a ? -energy_a : S8_MIN; 317 energy_b = energy_b ? -energy_b : S8_MIN; 318 max_energy = max(energy_a, energy_b); 319 320 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 321 energy_a, energy_b, max_energy); 322 323 rx_status->signal = max_energy; 324 rx_status->chains = 325 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 326 rx_status->chain_signal[0] = energy_a; 327 rx_status->chain_signal[1] = energy_b; 328 rx_status->chain_signal[2] = S8_MIN; 329 } 330 331 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr, 332 struct ieee80211_rx_status *stats, u16 phy_info, 333 struct iwl_rx_mpdu_desc *desc, 334 u32 pkt_flags, int queue, u8 *crypt_len) 335 { 336 u32 status = le32_to_cpu(desc->status); 337 338 /* 339 * Drop UNKNOWN frames in aggregation, unless in monitor mode 340 * (where we don't have the keys). 341 * We limit this to aggregation because in TKIP this is a valid 342 * scenario, since we may not have the (correct) TTAK (phase 1 343 * key) in the firmware. 344 */ 345 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 346 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 347 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 348 return -1; 349 350 if (!ieee80211_has_protected(hdr->frame_control) || 351 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 352 IWL_RX_MPDU_STATUS_SEC_NONE) 353 return 0; 354 355 /* TODO: handle packets encrypted with unknown alg */ 356 357 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 358 case IWL_RX_MPDU_STATUS_SEC_CCM: 359 case IWL_RX_MPDU_STATUS_SEC_GCM: 360 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 361 /* alg is CCM: check MIC only */ 362 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 363 return -1; 364 365 stats->flag |= RX_FLAG_DECRYPTED; 366 if (pkt_flags & FH_RSCSR_RADA_EN) 367 stats->flag |= RX_FLAG_MIC_STRIPPED; 368 *crypt_len = IEEE80211_CCMP_HDR_LEN; 369 return 0; 370 case IWL_RX_MPDU_STATUS_SEC_TKIP: 371 /* Don't drop the frame and decrypt it in SW */ 372 if (!fw_has_api(&mvm->fw->ucode_capa, 373 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 374 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 375 return 0; 376 377 if (mvm->trans->trans_cfg->gen2 && 378 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 379 stats->flag |= RX_FLAG_MMIC_ERROR; 380 381 *crypt_len = IEEE80211_TKIP_IV_LEN; 382 /* fall through */ 383 case IWL_RX_MPDU_STATUS_SEC_WEP: 384 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 385 return -1; 386 387 stats->flag |= RX_FLAG_DECRYPTED; 388 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 389 IWL_RX_MPDU_STATUS_SEC_WEP) 390 *crypt_len = IEEE80211_WEP_IV_LEN; 391 392 if (pkt_flags & FH_RSCSR_RADA_EN) { 393 stats->flag |= RX_FLAG_ICV_STRIPPED; 394 if (mvm->trans->trans_cfg->gen2) 395 stats->flag |= RX_FLAG_MMIC_STRIPPED; 396 } 397 398 return 0; 399 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 400 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 401 return -1; 402 stats->flag |= RX_FLAG_DECRYPTED; 403 return 0; 404 default: 405 /* 406 * Sometimes we can get frames that were not decrypted 407 * because the firmware didn't have the keys yet. This can 408 * happen after connection where we can get multicast frames 409 * before the GTK is installed. 410 * Silently drop those frames. 411 * Also drop un-decrypted frames in monitor mode. 412 */ 413 if (!is_multicast_ether_addr(hdr->addr1) && 414 !mvm->monitor_on && net_ratelimit()) 415 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 416 } 417 418 return 0; 419 } 420 421 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 422 struct ieee80211_sta *sta, 423 struct sk_buff *skb, 424 struct iwl_rx_packet *pkt) 425 { 426 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 427 428 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 429 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 430 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 431 432 skb->ip_summed = CHECKSUM_COMPLETE; 433 skb->csum = csum_unfold(~(__force __sum16)hwsum); 434 } 435 } else { 436 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 437 struct iwl_mvm_vif *mvmvif; 438 u16 flags = le16_to_cpu(desc->l3l4_flags); 439 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 440 IWL_RX_L3_PROTO_POS); 441 442 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 443 444 if (mvmvif->features & NETIF_F_RXCSUM && 445 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 446 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 447 l3_prot == IWL_RX_L3_TYPE_IPV6 || 448 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 449 skb->ip_summed = CHECKSUM_UNNECESSARY; 450 } 451 } 452 453 /* 454 * returns true if a packet is a duplicate and should be dropped. 455 * Updates AMSDU PN tracking info 456 */ 457 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 458 struct ieee80211_rx_status *rx_status, 459 struct ieee80211_hdr *hdr, 460 struct iwl_rx_mpdu_desc *desc) 461 { 462 struct iwl_mvm_sta *mvm_sta; 463 struct iwl_mvm_rxq_dup_data *dup_data; 464 u8 tid, sub_frame_idx; 465 466 if (WARN_ON(IS_ERR_OR_NULL(sta))) 467 return false; 468 469 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 470 dup_data = &mvm_sta->dup_data[queue]; 471 472 /* 473 * Drop duplicate 802.11 retransmissions 474 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 475 */ 476 if (ieee80211_is_ctl(hdr->frame_control) || 477 ieee80211_is_qos_nullfunc(hdr->frame_control) || 478 is_multicast_ether_addr(hdr->addr1)) { 479 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 480 return false; 481 } 482 483 if (ieee80211_is_data_qos(hdr->frame_control)) 484 /* frame has qos control */ 485 tid = ieee80211_get_tid(hdr); 486 else 487 tid = IWL_MAX_TID_COUNT; 488 489 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 490 sub_frame_idx = desc->amsdu_info & 491 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 492 493 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 494 dup_data->last_seq[tid] == hdr->seq_ctrl && 495 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 496 return true; 497 498 /* Allow same PN as the first subframe for following sub frames */ 499 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 500 sub_frame_idx > dup_data->last_sub_frame[tid] && 501 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 502 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 503 504 dup_data->last_seq[tid] = hdr->seq_ctrl; 505 dup_data->last_sub_frame[tid] = sub_frame_idx; 506 507 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 508 509 return false; 510 } 511 512 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask, 513 const u8 *data, u32 count, bool async) 514 { 515 u8 buf[sizeof(struct iwl_rxq_sync_cmd) + 516 sizeof(struct iwl_mvm_rss_sync_notif)]; 517 struct iwl_rxq_sync_cmd *cmd = (void *)buf; 518 u32 data_size = sizeof(*cmd) + count; 519 int ret; 520 521 /* 522 * size must be a multiple of DWORD 523 * Ensure we don't overflow buf 524 */ 525 if (WARN_ON(count & 3 || 526 count > sizeof(struct iwl_mvm_rss_sync_notif))) 527 return -EINVAL; 528 529 cmd->rxq_mask = cpu_to_le32(rxq_mask); 530 cmd->count = cpu_to_le32(count); 531 cmd->flags = 0; 532 memcpy(cmd->payload, data, count); 533 534 ret = iwl_mvm_send_cmd_pdu(mvm, 535 WIDE_ID(DATA_PATH_GROUP, 536 TRIGGER_RX_QUEUES_NOTIF_CMD), 537 async ? CMD_ASYNC : 0, data_size, cmd); 538 539 return ret; 540 } 541 542 /* 543 * Returns true if sn2 - buffer_size < sn1 < sn2. 544 * To be used only in order to compare reorder buffer head with NSSN. 545 * We fully trust NSSN unless it is behind us due to reorder timeout. 546 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 547 */ 548 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 549 { 550 return ieee80211_sn_less(sn1, sn2) && 551 !ieee80211_sn_less(sn1, sn2 - buffer_size); 552 } 553 554 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 555 { 556 if (IWL_MVM_USE_NSSN_SYNC) { 557 struct iwl_mvm_rss_sync_notif notif = { 558 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC, 559 .metadata.sync = 0, 560 .nssn_sync.baid = baid, 561 .nssn_sync.nssn = nssn, 562 }; 563 564 iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if, 565 sizeof(notif)); 566 } 567 } 568 569 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 570 571 enum iwl_mvm_release_flags { 572 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 573 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 574 }; 575 576 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 577 struct ieee80211_sta *sta, 578 struct napi_struct *napi, 579 struct iwl_mvm_baid_data *baid_data, 580 struct iwl_mvm_reorder_buffer *reorder_buf, 581 u16 nssn, u32 flags) 582 { 583 struct iwl_mvm_reorder_buf_entry *entries = 584 &baid_data->entries[reorder_buf->queue * 585 baid_data->entries_per_queue]; 586 u16 ssn = reorder_buf->head_sn; 587 588 lockdep_assert_held(&reorder_buf->lock); 589 590 /* 591 * We keep the NSSN not too far behind, if we are sync'ing it and it 592 * is more than 2048 ahead of us, it must be behind us. Discard it. 593 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 594 * behind and this queue already processed packets. The next if 595 * would have caught cases where this queue would have processed less 596 * than 64 packets, but it may have processed more than 64 packets. 597 */ 598 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 599 ieee80211_sn_less(nssn, ssn)) 600 goto set_timer; 601 602 /* ignore nssn smaller than head sn - this can happen due to timeout */ 603 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 604 goto set_timer; 605 606 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 607 int index = ssn % reorder_buf->buf_size; 608 struct sk_buff_head *skb_list = &entries[index].e.frames; 609 struct sk_buff *skb; 610 611 ssn = ieee80211_sn_inc(ssn); 612 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 613 (ssn == 2048 || ssn == 0)) 614 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 615 616 /* 617 * Empty the list. Will have more than one frame for A-MSDU. 618 * Empty list is valid as well since nssn indicates frames were 619 * received. 620 */ 621 while ((skb = __skb_dequeue(skb_list))) { 622 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 623 reorder_buf->queue, 624 sta, false); 625 reorder_buf->num_stored--; 626 } 627 } 628 reorder_buf->head_sn = nssn; 629 630 set_timer: 631 if (reorder_buf->num_stored && !reorder_buf->removed) { 632 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 633 634 while (skb_queue_empty(&entries[index].e.frames)) 635 index = (index + 1) % reorder_buf->buf_size; 636 /* modify timer to match next frame's expiration time */ 637 mod_timer(&reorder_buf->reorder_timer, 638 entries[index].e.reorder_time + 1 + 639 RX_REORDER_BUF_TIMEOUT_MQ); 640 } else { 641 del_timer(&reorder_buf->reorder_timer); 642 } 643 } 644 645 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 646 { 647 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 648 struct iwl_mvm_baid_data *baid_data = 649 iwl_mvm_baid_data_from_reorder_buf(buf); 650 struct iwl_mvm_reorder_buf_entry *entries = 651 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 652 int i; 653 u16 sn = 0, index = 0; 654 bool expired = false; 655 bool cont = false; 656 657 spin_lock(&buf->lock); 658 659 if (!buf->num_stored || buf->removed) { 660 spin_unlock(&buf->lock); 661 return; 662 } 663 664 for (i = 0; i < buf->buf_size ; i++) { 665 index = (buf->head_sn + i) % buf->buf_size; 666 667 if (skb_queue_empty(&entries[index].e.frames)) { 668 /* 669 * If there is a hole and the next frame didn't expire 670 * we want to break and not advance SN 671 */ 672 cont = false; 673 continue; 674 } 675 if (!cont && 676 !time_after(jiffies, entries[index].e.reorder_time + 677 RX_REORDER_BUF_TIMEOUT_MQ)) 678 break; 679 680 expired = true; 681 /* continue until next hole after this expired frames */ 682 cont = true; 683 sn = ieee80211_sn_add(buf->head_sn, i + 1); 684 } 685 686 if (expired) { 687 struct ieee80211_sta *sta; 688 struct iwl_mvm_sta *mvmsta; 689 u8 sta_id = baid_data->sta_id; 690 691 rcu_read_lock(); 692 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 693 mvmsta = iwl_mvm_sta_from_mac80211(sta); 694 695 /* SN is set to the last expired frame + 1 */ 696 IWL_DEBUG_HT(buf->mvm, 697 "Releasing expired frames for sta %u, sn %d\n", 698 sta_id, sn); 699 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 700 sta, baid_data->tid); 701 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 702 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 703 rcu_read_unlock(); 704 } else { 705 /* 706 * If no frame expired and there are stored frames, index is now 707 * pointing to the first unexpired frame - modify timer 708 * accordingly to this frame. 709 */ 710 mod_timer(&buf->reorder_timer, 711 entries[index].e.reorder_time + 712 1 + RX_REORDER_BUF_TIMEOUT_MQ); 713 } 714 spin_unlock(&buf->lock); 715 } 716 717 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 718 struct iwl_mvm_delba_data *data) 719 { 720 struct iwl_mvm_baid_data *ba_data; 721 struct ieee80211_sta *sta; 722 struct iwl_mvm_reorder_buffer *reorder_buf; 723 u8 baid = data->baid; 724 725 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 726 return; 727 728 rcu_read_lock(); 729 730 ba_data = rcu_dereference(mvm->baid_map[baid]); 731 if (WARN_ON_ONCE(!ba_data)) 732 goto out; 733 734 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 735 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 736 goto out; 737 738 reorder_buf = &ba_data->reorder_buf[queue]; 739 740 /* release all frames that are in the reorder buffer to the stack */ 741 spin_lock_bh(&reorder_buf->lock); 742 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 743 ieee80211_sn_add(reorder_buf->head_sn, 744 reorder_buf->buf_size), 745 0); 746 spin_unlock_bh(&reorder_buf->lock); 747 del_timer_sync(&reorder_buf->reorder_timer); 748 749 out: 750 rcu_read_unlock(); 751 } 752 753 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 754 struct napi_struct *napi, 755 u8 baid, u16 nssn, int queue, 756 u32 flags) 757 { 758 struct ieee80211_sta *sta; 759 struct iwl_mvm_reorder_buffer *reorder_buf; 760 struct iwl_mvm_baid_data *ba_data; 761 762 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 763 baid, nssn); 764 765 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 766 baid >= ARRAY_SIZE(mvm->baid_map))) 767 return; 768 769 rcu_read_lock(); 770 771 ba_data = rcu_dereference(mvm->baid_map[baid]); 772 if (WARN_ON_ONCE(!ba_data)) 773 goto out; 774 775 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 776 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 777 goto out; 778 779 reorder_buf = &ba_data->reorder_buf[queue]; 780 781 spin_lock_bh(&reorder_buf->lock); 782 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 783 reorder_buf, nssn, flags); 784 spin_unlock_bh(&reorder_buf->lock); 785 786 out: 787 rcu_read_unlock(); 788 } 789 790 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 791 struct napi_struct *napi, int queue, 792 const struct iwl_mvm_nssn_sync_data *data) 793 { 794 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 795 data->nssn, queue, 796 IWL_MVM_RELEASE_FROM_RSS_SYNC); 797 } 798 799 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 800 struct iwl_rx_cmd_buffer *rxb, int queue) 801 { 802 struct iwl_rx_packet *pkt = rxb_addr(rxb); 803 struct iwl_rxq_sync_notification *notif; 804 struct iwl_mvm_internal_rxq_notif *internal_notif; 805 806 notif = (void *)pkt->data; 807 internal_notif = (void *)notif->payload; 808 809 if (internal_notif->sync && 810 mvm->queue_sync_cookie != internal_notif->cookie) { 811 WARN_ONCE(1, "Received expired RX queue sync message\n"); 812 return; 813 } 814 815 switch (internal_notif->type) { 816 case IWL_MVM_RXQ_EMPTY: 817 break; 818 case IWL_MVM_RXQ_NOTIF_DEL_BA: 819 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 820 break; 821 case IWL_MVM_RXQ_NSSN_SYNC: 822 iwl_mvm_nssn_sync(mvm, napi, queue, 823 (void *)internal_notif->data); 824 break; 825 default: 826 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 827 } 828 829 if (internal_notif->sync && 830 !atomic_dec_return(&mvm->queue_sync_counter)) 831 wake_up(&mvm->rx_sync_waitq); 832 } 833 834 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 835 struct ieee80211_sta *sta, int tid, 836 struct iwl_mvm_reorder_buffer *buffer, 837 u32 reorder, u32 gp2, int queue) 838 { 839 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 840 841 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 842 /* we have a new (A-)MPDU ... */ 843 844 /* 845 * reset counter to 0 if we didn't have any oldsn in 846 * the last A-MPDU (as detected by GP2 being identical) 847 */ 848 if (!buffer->consec_oldsn_prev_drop) 849 buffer->consec_oldsn_drops = 0; 850 851 /* either way, update our tracking state */ 852 buffer->consec_oldsn_ampdu_gp2 = gp2; 853 } else if (buffer->consec_oldsn_prev_drop) { 854 /* 855 * tracking state didn't change, and we had an old SN 856 * indication before - do nothing in this case, we 857 * already noted this one down and are waiting for the 858 * next A-MPDU (by GP2) 859 */ 860 return; 861 } 862 863 /* return unless this MPDU has old SN */ 864 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 865 return; 866 867 /* update state */ 868 buffer->consec_oldsn_prev_drop = 1; 869 buffer->consec_oldsn_drops++; 870 871 /* if limit is reached, send del BA and reset state */ 872 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 873 IWL_WARN(mvm, 874 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 875 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 876 sta->addr, queue, tid); 877 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 878 buffer->consec_oldsn_prev_drop = 0; 879 buffer->consec_oldsn_drops = 0; 880 } 881 } 882 883 /* 884 * Returns true if the MPDU was buffered\dropped, false if it should be passed 885 * to upper layer. 886 */ 887 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 888 struct napi_struct *napi, 889 int queue, 890 struct ieee80211_sta *sta, 891 struct sk_buff *skb, 892 struct iwl_rx_mpdu_desc *desc) 893 { 894 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 895 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 896 struct iwl_mvm_sta *mvm_sta; 897 struct iwl_mvm_baid_data *baid_data; 898 struct iwl_mvm_reorder_buffer *buffer; 899 struct sk_buff *tail; 900 u32 reorder = le32_to_cpu(desc->reorder_data); 901 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 902 bool last_subframe = 903 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 904 u8 tid = ieee80211_get_tid(hdr); 905 u8 sub_frame_idx = desc->amsdu_info & 906 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 907 struct iwl_mvm_reorder_buf_entry *entries; 908 int index; 909 u16 nssn, sn; 910 u8 baid; 911 912 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 913 IWL_RX_MPDU_REORDER_BAID_SHIFT; 914 915 /* 916 * This also covers the case of receiving a Block Ack Request 917 * outside a BA session; we'll pass it to mac80211 and that 918 * then sends a delBA action frame. 919 * This also covers pure monitor mode, in which case we won't 920 * have any BA sessions. 921 */ 922 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 923 return false; 924 925 /* no sta yet */ 926 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 927 "Got valid BAID without a valid station assigned\n")) 928 return false; 929 930 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 931 932 /* not a data packet or a bar */ 933 if (!ieee80211_is_back_req(hdr->frame_control) && 934 (!ieee80211_is_data_qos(hdr->frame_control) || 935 is_multicast_ether_addr(hdr->addr1))) 936 return false; 937 938 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 939 return false; 940 941 baid_data = rcu_dereference(mvm->baid_map[baid]); 942 if (!baid_data) { 943 IWL_DEBUG_RX(mvm, 944 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 945 baid, reorder); 946 return false; 947 } 948 949 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 950 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 951 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 952 tid)) 953 return false; 954 955 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 956 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 957 IWL_RX_MPDU_REORDER_SN_SHIFT; 958 959 buffer = &baid_data->reorder_buf[queue]; 960 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 961 962 spin_lock_bh(&buffer->lock); 963 964 if (!buffer->valid) { 965 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 966 spin_unlock_bh(&buffer->lock); 967 return false; 968 } 969 buffer->valid = true; 970 } 971 972 if (ieee80211_is_back_req(hdr->frame_control)) { 973 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 974 buffer, nssn, 0); 975 goto drop; 976 } 977 978 /* 979 * If there was a significant jump in the nssn - adjust. 980 * If the SN is smaller than the NSSN it might need to first go into 981 * the reorder buffer, in which case we just release up to it and the 982 * rest of the function will take care of storing it and releasing up to 983 * the nssn. 984 * This should not happen. This queue has been lagging and it should 985 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 986 * and update the other queues. 987 */ 988 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 989 buffer->buf_size) || 990 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 991 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 992 993 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 994 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 995 } 996 997 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 998 rx_status->device_timestamp, queue); 999 1000 /* drop any oudated packets */ 1001 if (ieee80211_sn_less(sn, buffer->head_sn)) 1002 goto drop; 1003 1004 /* release immediately if allowed by nssn and no stored frames */ 1005 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1006 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1007 buffer->buf_size) && 1008 (!amsdu || last_subframe)) { 1009 /* 1010 * If we crossed the 2048 or 0 SN, notify all the 1011 * queues. This is done in order to avoid having a 1012 * head_sn that lags behind for too long. When that 1013 * happens, we can get to a situation where the head_sn 1014 * is within the interval [nssn - buf_size : nssn] 1015 * which will make us think that the nssn is a packet 1016 * that we already freed because of the reordering 1017 * buffer and we will ignore it. So maintain the 1018 * head_sn somewhat updated across all the queues: 1019 * when it crosses 0 and 2048. 1020 */ 1021 if (sn == 2048 || sn == 0) 1022 iwl_mvm_sync_nssn(mvm, baid, sn); 1023 buffer->head_sn = nssn; 1024 } 1025 /* No need to update AMSDU last SN - we are moving the head */ 1026 spin_unlock_bh(&buffer->lock); 1027 return false; 1028 } 1029 1030 /* 1031 * release immediately if there are no stored frames, and the sn is 1032 * equal to the head. 1033 * This can happen due to reorder timer, where NSSN is behind head_sn. 1034 * When we released everything, and we got the next frame in the 1035 * sequence, according to the NSSN we can't release immediately, 1036 * while technically there is no hole and we can move forward. 1037 */ 1038 if (!buffer->num_stored && sn == buffer->head_sn) { 1039 if (!amsdu || last_subframe) { 1040 if (sn == 2048 || sn == 0) 1041 iwl_mvm_sync_nssn(mvm, baid, sn); 1042 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1043 } 1044 /* No need to update AMSDU last SN - we are moving the head */ 1045 spin_unlock_bh(&buffer->lock); 1046 return false; 1047 } 1048 1049 index = sn % buffer->buf_size; 1050 1051 /* 1052 * Check if we already stored this frame 1053 * As AMSDU is either received or not as whole, logic is simple: 1054 * If we have frames in that position in the buffer and the last frame 1055 * originated from AMSDU had a different SN then it is a retransmission. 1056 * If it is the same SN then if the subframe index is incrementing it 1057 * is the same AMSDU - otherwise it is a retransmission. 1058 */ 1059 tail = skb_peek_tail(&entries[index].e.frames); 1060 if (tail && !amsdu) 1061 goto drop; 1062 else if (tail && (sn != buffer->last_amsdu || 1063 buffer->last_sub_index >= sub_frame_idx)) 1064 goto drop; 1065 1066 /* put in reorder buffer */ 1067 __skb_queue_tail(&entries[index].e.frames, skb); 1068 buffer->num_stored++; 1069 entries[index].e.reorder_time = jiffies; 1070 1071 if (amsdu) { 1072 buffer->last_amsdu = sn; 1073 buffer->last_sub_index = sub_frame_idx; 1074 } 1075 1076 /* 1077 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1078 * The reason is that NSSN advances on the first sub-frame, and may 1079 * cause the reorder buffer to advance before all the sub-frames arrive. 1080 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1081 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1082 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1083 * already ahead and it will be dropped. 1084 * If the last sub-frame is not on this queue - we will get frame 1085 * release notification with up to date NSSN. 1086 */ 1087 if (!amsdu || last_subframe) 1088 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1089 buffer, nssn, 1090 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1091 1092 spin_unlock_bh(&buffer->lock); 1093 return true; 1094 1095 drop: 1096 kfree_skb(skb); 1097 spin_unlock_bh(&buffer->lock); 1098 return true; 1099 } 1100 1101 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1102 u32 reorder_data, u8 baid) 1103 { 1104 unsigned long now = jiffies; 1105 unsigned long timeout; 1106 struct iwl_mvm_baid_data *data; 1107 1108 rcu_read_lock(); 1109 1110 data = rcu_dereference(mvm->baid_map[baid]); 1111 if (!data) { 1112 IWL_DEBUG_RX(mvm, 1113 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1114 baid, reorder_data); 1115 goto out; 1116 } 1117 1118 if (!data->timeout) 1119 goto out; 1120 1121 timeout = data->timeout; 1122 /* 1123 * Do not update last rx all the time to avoid cache bouncing 1124 * between the rx queues. 1125 * Update it every timeout. Worst case is the session will 1126 * expire after ~ 2 * timeout, which doesn't matter that much. 1127 */ 1128 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1129 /* Update is atomic */ 1130 data->last_rx = now; 1131 1132 out: 1133 rcu_read_unlock(); 1134 } 1135 1136 static void iwl_mvm_flip_address(u8 *addr) 1137 { 1138 int i; 1139 u8 mac_addr[ETH_ALEN]; 1140 1141 for (i = 0; i < ETH_ALEN; i++) 1142 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1143 ether_addr_copy(addr, mac_addr); 1144 } 1145 1146 struct iwl_mvm_rx_phy_data { 1147 enum iwl_rx_phy_info_type info_type; 1148 __le32 d0, d1, d2, d3; 1149 __le16 d4; 1150 }; 1151 1152 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1153 struct iwl_mvm_rx_phy_data *phy_data, 1154 u32 rate_n_flags, 1155 struct ieee80211_radiotap_he_mu *he_mu) 1156 { 1157 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1158 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1159 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1160 1161 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1162 he_mu->flags1 |= 1163 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1164 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1165 1166 he_mu->flags1 |= 1167 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1168 phy_data4), 1169 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1170 1171 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1172 phy_data2); 1173 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1174 phy_data3); 1175 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1176 phy_data2); 1177 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1178 phy_data3); 1179 } 1180 1181 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1182 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { 1183 he_mu->flags1 |= 1184 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1185 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1186 1187 he_mu->flags2 |= 1188 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1189 phy_data4), 1190 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1191 1192 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1193 phy_data2); 1194 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1195 phy_data3); 1196 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1197 phy_data2); 1198 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1199 phy_data3); 1200 } 1201 } 1202 1203 static void 1204 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1205 u32 rate_n_flags, 1206 struct ieee80211_radiotap_he *he, 1207 struct ieee80211_radiotap_he_mu *he_mu, 1208 struct ieee80211_rx_status *rx_status) 1209 { 1210 /* 1211 * Unfortunately, we have to leave the mac80211 data 1212 * incorrect for the case that we receive an HE-MU 1213 * transmission and *don't* have the HE phy data (due 1214 * to the bits being used for TSF). This shouldn't 1215 * happen though as management frames where we need 1216 * the TSF/timers are not be transmitted in HE-MU. 1217 */ 1218 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1219 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1220 u8 offs = 0; 1221 1222 rx_status->bw = RATE_INFO_BW_HE_RU; 1223 1224 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1225 1226 switch (ru) { 1227 case 0 ... 36: 1228 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1229 offs = ru; 1230 break; 1231 case 37 ... 52: 1232 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1233 offs = ru - 37; 1234 break; 1235 case 53 ... 60: 1236 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1237 offs = ru - 53; 1238 break; 1239 case 61 ... 64: 1240 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1241 offs = ru - 61; 1242 break; 1243 case 65 ... 66: 1244 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1245 offs = ru - 65; 1246 break; 1247 case 67: 1248 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1249 break; 1250 case 68: 1251 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1252 break; 1253 } 1254 he->data2 |= le16_encode_bits(offs, 1255 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1256 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1257 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1258 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1259 he->data2 |= 1260 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1261 1262 #define CHECK_BW(bw) \ 1263 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1264 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1265 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1266 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1267 CHECK_BW(20); 1268 CHECK_BW(40); 1269 CHECK_BW(80); 1270 CHECK_BW(160); 1271 1272 if (he_mu) 1273 he_mu->flags2 |= 1274 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1275 rate_n_flags), 1276 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1277 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 1278 he->data6 |= 1279 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1280 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1281 rate_n_flags), 1282 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1283 } 1284 1285 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1286 struct iwl_mvm_rx_phy_data *phy_data, 1287 struct ieee80211_radiotap_he *he, 1288 struct ieee80211_radiotap_he_mu *he_mu, 1289 struct ieee80211_rx_status *rx_status, 1290 u32 rate_n_flags, int queue) 1291 { 1292 switch (phy_data->info_type) { 1293 case IWL_RX_PHY_INFO_TYPE_NONE: 1294 case IWL_RX_PHY_INFO_TYPE_CCK: 1295 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1296 case IWL_RX_PHY_INFO_TYPE_HT: 1297 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1298 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1299 return; 1300 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1301 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1302 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1303 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1304 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1305 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1306 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1307 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1308 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1309 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1310 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1311 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1312 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1313 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1314 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1315 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1316 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1317 /* fall through */ 1318 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1319 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1320 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1321 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1322 /* HE common */ 1323 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1324 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1325 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1326 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1327 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1328 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1329 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1330 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1331 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1332 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1333 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1334 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1335 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1336 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1337 IWL_RX_PHY_DATA0_HE_UPLINK), 1338 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1339 } 1340 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1341 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1342 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1343 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1344 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1345 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1346 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1347 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1348 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1349 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1350 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1351 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1352 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1353 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1354 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1355 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1356 IWL_RX_PHY_DATA0_HE_DOPPLER), 1357 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1358 break; 1359 } 1360 1361 switch (phy_data->info_type) { 1362 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1363 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1364 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1365 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1366 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1367 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1368 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1369 break; 1370 default: 1371 /* nothing here */ 1372 break; 1373 } 1374 1375 switch (phy_data->info_type) { 1376 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1377 he_mu->flags1 |= 1378 le16_encode_bits(le16_get_bits(phy_data->d4, 1379 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1380 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1381 he_mu->flags1 |= 1382 le16_encode_bits(le16_get_bits(phy_data->d4, 1383 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1384 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1385 he_mu->flags2 |= 1386 le16_encode_bits(le16_get_bits(phy_data->d4, 1387 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1388 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1389 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1390 /* fall through */ 1391 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1392 he_mu->flags2 |= 1393 le16_encode_bits(le32_get_bits(phy_data->d1, 1394 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1395 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1396 he_mu->flags2 |= 1397 le16_encode_bits(le32_get_bits(phy_data->d1, 1398 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1399 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1400 /* fall through */ 1401 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1402 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1403 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1404 he, he_mu, rx_status); 1405 break; 1406 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1407 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1408 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1409 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1410 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1411 break; 1412 default: 1413 /* nothing */ 1414 break; 1415 } 1416 } 1417 1418 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1419 struct iwl_mvm_rx_phy_data *phy_data, 1420 u32 rate_n_flags, u16 phy_info, int queue) 1421 { 1422 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1423 struct ieee80211_radiotap_he *he = NULL; 1424 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1425 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1426 u8 stbc, ltf; 1427 static const struct ieee80211_radiotap_he known = { 1428 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1429 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1430 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1431 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1432 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1433 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1434 }; 1435 static const struct ieee80211_radiotap_he_mu mu_known = { 1436 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1437 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1438 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1439 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1440 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1441 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1442 }; 1443 1444 he = skb_put_data(skb, &known, sizeof(known)); 1445 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1446 1447 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1448 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1449 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1450 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1451 } 1452 1453 /* report the AMPDU-EOF bit on single frames */ 1454 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1455 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1456 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1457 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1458 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1459 } 1460 1461 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1462 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1463 rate_n_flags, queue); 1464 1465 /* update aggregation data for monitor sake on default queue */ 1466 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1467 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1468 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1469 1470 /* toggle is switched whenever new aggregation starts */ 1471 if (toggle_bit != mvm->ampdu_toggle) { 1472 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1473 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1474 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1475 } 1476 } 1477 1478 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1479 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1480 rx_status->bw = RATE_INFO_BW_HE_RU; 1481 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1482 } 1483 1484 /* actually data is filled in mac80211 */ 1485 if (he_type == RATE_MCS_HE_TYPE_SU || 1486 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1487 he->data1 |= 1488 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1489 1490 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1491 rx_status->nss = 1492 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1493 RATE_VHT_MCS_NSS_POS) + 1; 1494 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1495 rx_status->encoding = RX_ENC_HE; 1496 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1497 if (rate_n_flags & RATE_MCS_BF_MSK) 1498 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1499 1500 rx_status->he_dcm = 1501 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1502 1503 #define CHECK_TYPE(F) \ 1504 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1505 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1506 1507 CHECK_TYPE(SU); 1508 CHECK_TYPE(EXT_SU); 1509 CHECK_TYPE(MU); 1510 CHECK_TYPE(TRIG); 1511 1512 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1513 1514 if (rate_n_flags & RATE_MCS_BF_MSK) 1515 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1516 1517 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1518 RATE_MCS_HE_GI_LTF_POS) { 1519 case 0: 1520 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1521 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1522 else 1523 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1524 if (he_type == RATE_MCS_HE_TYPE_MU) 1525 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1526 else 1527 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1528 break; 1529 case 1: 1530 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1531 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1532 else 1533 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1534 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1535 break; 1536 case 2: 1537 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1538 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1539 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1540 } else { 1541 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1542 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1543 } 1544 break; 1545 case 3: 1546 if ((he_type == RATE_MCS_HE_TYPE_SU || 1547 he_type == RATE_MCS_HE_TYPE_EXT_SU) && 1548 rate_n_flags & RATE_MCS_SGI_MSK) 1549 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1550 else 1551 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1552 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1553 break; 1554 } 1555 1556 he->data5 |= le16_encode_bits(ltf, 1557 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1558 } 1559 1560 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1561 struct iwl_mvm_rx_phy_data *phy_data) 1562 { 1563 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1564 struct ieee80211_radiotap_lsig *lsig; 1565 1566 switch (phy_data->info_type) { 1567 case IWL_RX_PHY_INFO_TYPE_HT: 1568 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1569 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1570 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1571 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1572 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1573 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1574 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1575 lsig = skb_put(skb, sizeof(*lsig)); 1576 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1577 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1578 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1579 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1580 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1581 break; 1582 default: 1583 break; 1584 } 1585 } 1586 1587 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1588 { 1589 switch (phy_band) { 1590 case PHY_BAND_24: 1591 return NL80211_BAND_2GHZ; 1592 case PHY_BAND_5: 1593 return NL80211_BAND_5GHZ; 1594 default: 1595 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1596 return NL80211_BAND_5GHZ; 1597 } 1598 } 1599 1600 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1601 struct iwl_rx_cmd_buffer *rxb, int queue) 1602 { 1603 struct ieee80211_rx_status *rx_status; 1604 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1605 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1606 struct ieee80211_hdr *hdr; 1607 u32 len = le16_to_cpu(desc->mpdu_len); 1608 u32 rate_n_flags, gp2_on_air_rise; 1609 u16 phy_info = le16_to_cpu(desc->phy_info); 1610 struct ieee80211_sta *sta = NULL; 1611 struct sk_buff *skb; 1612 u8 crypt_len = 0, channel, energy_a, energy_b; 1613 size_t desc_size; 1614 struct iwl_mvm_rx_phy_data phy_data = { 1615 .d4 = desc->phy_data4, 1616 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1617 }; 1618 bool csi = false; 1619 1620 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1621 return; 1622 1623 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1624 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1625 channel = desc->v3.channel; 1626 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1627 energy_a = desc->v3.energy_a; 1628 energy_b = desc->v3.energy_b; 1629 desc_size = sizeof(*desc); 1630 1631 phy_data.d0 = desc->v3.phy_data0; 1632 phy_data.d1 = desc->v3.phy_data1; 1633 phy_data.d2 = desc->v3.phy_data2; 1634 phy_data.d3 = desc->v3.phy_data3; 1635 } else { 1636 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1637 channel = desc->v1.channel; 1638 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1639 energy_a = desc->v1.energy_a; 1640 energy_b = desc->v1.energy_b; 1641 desc_size = IWL_RX_DESC_SIZE_V1; 1642 1643 phy_data.d0 = desc->v1.phy_data0; 1644 phy_data.d1 = desc->v1.phy_data1; 1645 phy_data.d2 = desc->v1.phy_data2; 1646 phy_data.d3 = desc->v1.phy_data3; 1647 } 1648 1649 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1650 phy_data.info_type = 1651 le32_get_bits(phy_data.d1, 1652 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1653 1654 hdr = (void *)(pkt->data + desc_size); 1655 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1656 * ieee80211_hdr pulled. 1657 */ 1658 skb = alloc_skb(128, GFP_ATOMIC); 1659 if (!skb) { 1660 IWL_ERR(mvm, "alloc_skb failed\n"); 1661 return; 1662 } 1663 1664 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1665 /* 1666 * If the device inserted padding it means that (it thought) 1667 * the 802.11 header wasn't a multiple of 4 bytes long. In 1668 * this case, reserve two bytes at the start of the SKB to 1669 * align the payload properly in case we end up copying it. 1670 */ 1671 skb_reserve(skb, 2); 1672 } 1673 1674 rx_status = IEEE80211_SKB_RXCB(skb); 1675 1676 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1677 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1678 case RATE_MCS_CHAN_WIDTH_20: 1679 break; 1680 case RATE_MCS_CHAN_WIDTH_40: 1681 rx_status->bw = RATE_INFO_BW_40; 1682 break; 1683 case RATE_MCS_CHAN_WIDTH_80: 1684 rx_status->bw = RATE_INFO_BW_80; 1685 break; 1686 case RATE_MCS_CHAN_WIDTH_160: 1687 rx_status->bw = RATE_INFO_BW_160; 1688 break; 1689 } 1690 1691 if (rate_n_flags & RATE_MCS_HE_MSK) 1692 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1693 phy_info, queue); 1694 1695 iwl_mvm_decode_lsig(skb, &phy_data); 1696 1697 rx_status = IEEE80211_SKB_RXCB(skb); 1698 1699 if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc, 1700 le32_to_cpu(pkt->len_n_flags), queue, 1701 &crypt_len)) { 1702 kfree_skb(skb); 1703 return; 1704 } 1705 1706 /* 1707 * Keep packets with CRC errors (and with overrun) for monitor mode 1708 * (otherwise the firmware discards them) but mark them as bad. 1709 */ 1710 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1711 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1712 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1713 le32_to_cpu(desc->status)); 1714 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1715 } 1716 /* set the preamble flag if appropriate */ 1717 if (rate_n_flags & RATE_MCS_CCK_MSK && 1718 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1719 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1720 1721 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1722 u64 tsf_on_air_rise; 1723 1724 if (mvm->trans->trans_cfg->device_family >= 1725 IWL_DEVICE_FAMILY_AX210) 1726 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1727 else 1728 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1729 1730 rx_status->mactime = tsf_on_air_rise; 1731 /* TSF as indicated by the firmware is at INA time */ 1732 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1733 } 1734 1735 rx_status->device_timestamp = gp2_on_air_rise; 1736 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1737 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1738 1739 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1740 } else { 1741 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1742 NL80211_BAND_2GHZ; 1743 } 1744 rx_status->freq = ieee80211_channel_to_frequency(channel, 1745 rx_status->band); 1746 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1747 energy_b); 1748 1749 /* update aggregation data for monitor sake on default queue */ 1750 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1751 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1752 1753 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1754 /* 1755 * Toggle is switched whenever new aggregation starts. Make 1756 * sure ampdu_reference is never 0 so we can later use it to 1757 * see if the frame was really part of an A-MPDU or not. 1758 */ 1759 if (toggle_bit != mvm->ampdu_toggle) { 1760 mvm->ampdu_ref++; 1761 if (mvm->ampdu_ref == 0) 1762 mvm->ampdu_ref++; 1763 mvm->ampdu_toggle = toggle_bit; 1764 } 1765 rx_status->ampdu_reference = mvm->ampdu_ref; 1766 } 1767 1768 if (unlikely(mvm->monitor_on)) 1769 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1770 1771 rcu_read_lock(); 1772 1773 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1774 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 1775 1776 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 1777 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1778 if (IS_ERR(sta)) 1779 sta = NULL; 1780 } 1781 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1782 /* 1783 * This is fine since we prevent two stations with the same 1784 * address from being added. 1785 */ 1786 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1787 } 1788 1789 if (sta) { 1790 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1791 struct ieee80211_vif *tx_blocked_vif = 1792 rcu_dereference(mvm->csa_tx_blocked_vif); 1793 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1794 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1795 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1796 struct iwl_fw_dbg_trigger_tlv *trig; 1797 struct ieee80211_vif *vif = mvmsta->vif; 1798 1799 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1800 !is_multicast_ether_addr(hdr->addr1) && 1801 ieee80211_is_data(hdr->frame_control) && 1802 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1803 schedule_delayed_work(&mvm->tcm.work, 0); 1804 1805 /* 1806 * We have tx blocked stations (with CS bit). If we heard 1807 * frames from a blocked station on a new channel we can 1808 * TX to it again. 1809 */ 1810 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1811 struct iwl_mvm_vif *mvmvif = 1812 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1813 1814 if (mvmvif->csa_target_freq == rx_status->freq) 1815 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1816 false); 1817 } 1818 1819 rs_update_last_rssi(mvm, mvmsta, rx_status); 1820 1821 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1822 ieee80211_vif_to_wdev(vif), 1823 FW_DBG_TRIGGER_RSSI); 1824 1825 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1826 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1827 s32 rssi; 1828 1829 rssi_trig = (void *)trig->data; 1830 rssi = le32_to_cpu(rssi_trig->rssi); 1831 1832 if (rx_status->signal < rssi) 1833 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1834 NULL); 1835 } 1836 1837 if (ieee80211_is_data(hdr->frame_control)) 1838 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 1839 1840 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1841 kfree_skb(skb); 1842 goto out; 1843 } 1844 1845 /* 1846 * Our hardware de-aggregates AMSDUs but copies the mac header 1847 * as it to the de-aggregated MPDUs. We need to turn off the 1848 * AMSDU bit in the QoS control ourselves. 1849 * In addition, HW reverses addr3 and addr4 - reverse it back. 1850 */ 1851 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1852 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1853 u8 *qc = ieee80211_get_qos_ctl(hdr); 1854 1855 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1856 1857 if (mvm->trans->trans_cfg->device_family == 1858 IWL_DEVICE_FAMILY_9000) { 1859 iwl_mvm_flip_address(hdr->addr3); 1860 1861 if (ieee80211_has_a4(hdr->frame_control)) 1862 iwl_mvm_flip_address(hdr->addr4); 1863 } 1864 } 1865 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1866 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1867 1868 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1869 } 1870 } 1871 1872 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1873 rate_n_flags & RATE_MCS_SGI_MSK) 1874 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1875 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1876 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1877 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1878 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1879 if (rate_n_flags & RATE_MCS_HT_MSK) { 1880 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1881 RATE_MCS_STBC_POS; 1882 rx_status->encoding = RX_ENC_HT; 1883 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1884 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1885 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 1886 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1887 RATE_MCS_STBC_POS; 1888 rx_status->nss = 1889 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1890 RATE_VHT_MCS_NSS_POS) + 1; 1891 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1892 rx_status->encoding = RX_ENC_VHT; 1893 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1894 if (rate_n_flags & RATE_MCS_BF_MSK) 1895 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1896 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) { 1897 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 1898 rx_status->band); 1899 1900 if (WARN(rate < 0 || rate > 0xFF, 1901 "Invalid rate flags 0x%x, band %d,\n", 1902 rate_n_flags, rx_status->band)) { 1903 kfree_skb(skb); 1904 goto out; 1905 } 1906 rx_status->rate_idx = rate; 1907 } 1908 1909 /* management stuff on default queue */ 1910 if (!queue) { 1911 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 1912 ieee80211_is_probe_resp(hdr->frame_control)) && 1913 mvm->sched_scan_pass_all == 1914 SCHED_SCAN_PASS_ALL_ENABLED)) 1915 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 1916 1917 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 1918 ieee80211_is_probe_resp(hdr->frame_control))) 1919 rx_status->boottime_ns = ktime_get_boottime_ns(); 1920 } 1921 1922 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 1923 kfree_skb(skb); 1924 goto out; 1925 } 1926 1927 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 1928 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 1929 sta, csi); 1930 out: 1931 rcu_read_unlock(); 1932 } 1933 1934 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 1935 struct iwl_rx_cmd_buffer *rxb, int queue) 1936 { 1937 struct ieee80211_rx_status *rx_status; 1938 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1939 struct iwl_rx_no_data *desc = (void *)pkt->data; 1940 u32 rate_n_flags = le32_to_cpu(desc->rate); 1941 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 1942 u32 rssi = le32_to_cpu(desc->rssi); 1943 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 1944 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 1945 struct ieee80211_sta *sta = NULL; 1946 struct sk_buff *skb; 1947 u8 channel, energy_a, energy_b; 1948 struct iwl_mvm_rx_phy_data phy_data = { 1949 .d0 = desc->phy_info[0], 1950 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1951 }; 1952 1953 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1954 return; 1955 1956 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 1957 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 1958 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 1959 1960 phy_data.info_type = 1961 le32_get_bits(desc->phy_info[1], 1962 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1963 1964 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1965 * ieee80211_hdr pulled. 1966 */ 1967 skb = alloc_skb(128, GFP_ATOMIC); 1968 if (!skb) { 1969 IWL_ERR(mvm, "alloc_skb failed\n"); 1970 return; 1971 } 1972 1973 rx_status = IEEE80211_SKB_RXCB(skb); 1974 1975 /* 0-length PSDU */ 1976 rx_status->flag |= RX_FLAG_NO_PSDU; 1977 1978 switch (info_type) { 1979 case RX_NO_DATA_INFO_TYPE_NDP: 1980 rx_status->zero_length_psdu_type = 1981 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 1982 break; 1983 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 1984 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 1985 rx_status->zero_length_psdu_type = 1986 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 1987 break; 1988 default: 1989 rx_status->zero_length_psdu_type = 1990 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 1991 break; 1992 } 1993 1994 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1995 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1996 case RATE_MCS_CHAN_WIDTH_20: 1997 break; 1998 case RATE_MCS_CHAN_WIDTH_40: 1999 rx_status->bw = RATE_INFO_BW_40; 2000 break; 2001 case RATE_MCS_CHAN_WIDTH_80: 2002 rx_status->bw = RATE_INFO_BW_80; 2003 break; 2004 case RATE_MCS_CHAN_WIDTH_160: 2005 rx_status->bw = RATE_INFO_BW_160; 2006 break; 2007 } 2008 2009 if (rate_n_flags & RATE_MCS_HE_MSK) 2010 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 2011 phy_info, queue); 2012 2013 iwl_mvm_decode_lsig(skb, &phy_data); 2014 2015 rx_status->device_timestamp = gp2_on_air_rise; 2016 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 2017 NL80211_BAND_2GHZ; 2018 rx_status->freq = ieee80211_channel_to_frequency(channel, 2019 rx_status->band); 2020 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 2021 energy_b); 2022 2023 rcu_read_lock(); 2024 2025 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 2026 rate_n_flags & RATE_MCS_SGI_MSK) 2027 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2028 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 2029 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 2030 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2031 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2032 if (rate_n_flags & RATE_MCS_HT_MSK) { 2033 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2034 RATE_MCS_STBC_POS; 2035 rx_status->encoding = RX_ENC_HT; 2036 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 2037 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2038 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 2039 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2040 RATE_MCS_STBC_POS; 2041 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 2042 rx_status->encoding = RX_ENC_VHT; 2043 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2044 if (rate_n_flags & RATE_MCS_BF_MSK) 2045 rx_status->enc_flags |= RX_ENC_FLAG_BF; 2046 /* 2047 * take the nss from the rx_vec since the rate_n_flags has 2048 * only 2 bits for the nss which gives a max of 4 ss but 2049 * there may be up to 8 spatial streams 2050 */ 2051 rx_status->nss = 2052 le32_get_bits(desc->rx_vec[0], 2053 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2054 } else if (rate_n_flags & RATE_MCS_HE_MSK) { 2055 rx_status->nss = 2056 le32_get_bits(desc->rx_vec[0], 2057 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2058 } else { 2059 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 2060 rx_status->band); 2061 2062 if (WARN(rate < 0 || rate > 0xFF, 2063 "Invalid rate flags 0x%x, band %d,\n", 2064 rate_n_flags, rx_status->band)) { 2065 kfree_skb(skb); 2066 goto out; 2067 } 2068 rx_status->rate_idx = rate; 2069 } 2070 2071 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2072 out: 2073 rcu_read_unlock(); 2074 } 2075 2076 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2077 struct iwl_rx_cmd_buffer *rxb, int queue) 2078 { 2079 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2080 struct iwl_frame_release *release = (void *)pkt->data; 2081 2082 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2083 le16_to_cpu(release->nssn), 2084 queue, 0); 2085 } 2086 2087 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2088 struct iwl_rx_cmd_buffer *rxb, int queue) 2089 { 2090 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2091 struct iwl_bar_frame_release *release = (void *)pkt->data; 2092 unsigned int baid = le32_get_bits(release->ba_info, 2093 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2094 unsigned int nssn = le32_get_bits(release->ba_info, 2095 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2096 unsigned int sta_id = le32_get_bits(release->sta_tid, 2097 IWL_BAR_FRAME_RELEASE_STA_MASK); 2098 unsigned int tid = le32_get_bits(release->sta_tid, 2099 IWL_BAR_FRAME_RELEASE_TID_MASK); 2100 struct iwl_mvm_baid_data *baid_data; 2101 2102 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2103 baid >= ARRAY_SIZE(mvm->baid_map))) 2104 return; 2105 2106 rcu_read_lock(); 2107 baid_data = rcu_dereference(mvm->baid_map[baid]); 2108 if (!baid_data) { 2109 IWL_DEBUG_RX(mvm, 2110 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2111 baid); 2112 goto out; 2113 } 2114 2115 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2116 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2117 baid, baid_data->sta_id, baid_data->tid, sta_id, 2118 tid)) 2119 goto out; 2120 2121 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2122 out: 2123 rcu_read_unlock(); 2124 } 2125