1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <ilw@linux.intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *****************************************************************************/
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include "iwl-trans.h"
66 #include "mvm.h"
67 #include "fw-api.h"
68 
69 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
70 				   int queue, struct ieee80211_sta *sta)
71 {
72 	struct iwl_mvm_sta *mvmsta;
73 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
74 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
75 	struct iwl_mvm_key_pn *ptk_pn;
76 	int res;
77 	u8 tid, keyidx;
78 	u8 pn[IEEE80211_CCMP_PN_LEN];
79 	u8 *extiv;
80 
81 	/* do PN checking */
82 
83 	/* multicast and non-data only arrives on default queue */
84 	if (!ieee80211_is_data(hdr->frame_control) ||
85 	    is_multicast_ether_addr(hdr->addr1))
86 		return 0;
87 
88 	/* do not check PN for open AP */
89 	if (!(stats->flag & RX_FLAG_DECRYPTED))
90 		return 0;
91 
92 	/*
93 	 * avoid checking for default queue - we don't want to replicate
94 	 * all the logic that's necessary for checking the PN on fragmented
95 	 * frames, leave that to mac80211
96 	 */
97 	if (queue == 0)
98 		return 0;
99 
100 	/* if we are here - this for sure is either CCMP or GCMP */
101 	if (IS_ERR_OR_NULL(sta)) {
102 		IWL_ERR(mvm,
103 			"expected hw-decrypted unicast frame for station\n");
104 		return -1;
105 	}
106 
107 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
108 
109 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
110 	keyidx = extiv[3] >> 6;
111 
112 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
113 	if (!ptk_pn)
114 		return -1;
115 
116 	if (ieee80211_is_data_qos(hdr->frame_control))
117 		tid = ieee80211_get_tid(hdr);
118 	else
119 		tid = 0;
120 
121 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
122 	if (tid >= IWL_MAX_TID_COUNT)
123 		return -1;
124 
125 	/* load pn */
126 	pn[0] = extiv[7];
127 	pn[1] = extiv[6];
128 	pn[2] = extiv[5];
129 	pn[3] = extiv[4];
130 	pn[4] = extiv[1];
131 	pn[5] = extiv[0];
132 
133 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
134 	if (res < 0)
135 		return -1;
136 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
137 		return -1;
138 
139 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
140 	stats->flag |= RX_FLAG_PN_VALIDATED;
141 
142 	return 0;
143 }
144 
145 /* iwl_mvm_create_skb Adds the rxb to a new skb */
146 static void iwl_mvm_create_skb(struct sk_buff *skb, struct ieee80211_hdr *hdr,
147 			       u16 len, u8 crypt_len,
148 			       struct iwl_rx_cmd_buffer *rxb)
149 {
150 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
151 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
152 	unsigned int headlen, fraglen, pad_len = 0;
153 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
154 
155 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
156 		len -= 2;
157 		pad_len = 2;
158 	}
159 
160 	/* If frame is small enough to fit in skb->head, pull it completely.
161 	 * If not, only pull ieee80211_hdr (including crypto if present, and
162 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
163 	 * splice() or TCP coalesce are more efficient.
164 	 *
165 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
166 	 * least 8 bytes (possibly more for mesh) we can do the same here
167 	 * to save the cost of doing it later. That still doesn't pull in
168 	 * the actual IP header since the typical case has a SNAP header.
169 	 * If the latter changes (there are efforts in the standards group
170 	 * to do so) we should revisit this and ieee80211_data_to_8023().
171 	 */
172 	headlen = (len <= skb_tailroom(skb)) ? len :
173 					       hdrlen + crypt_len + 8;
174 
175 	/* The firmware may align the packet to DWORD.
176 	 * The padding is inserted after the IV.
177 	 * After copying the header + IV skip the padding if
178 	 * present before copying packet data.
179 	 */
180 	hdrlen += crypt_len;
181 	skb_put_data(skb, hdr, hdrlen);
182 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
183 
184 	fraglen = len - headlen;
185 
186 	if (fraglen) {
187 		int offset = (void *)hdr + headlen + pad_len -
188 			     rxb_addr(rxb) + rxb_offset(rxb);
189 
190 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
191 				fraglen, rxb->truesize);
192 	}
193 }
194 
195 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
196 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
197 					    struct napi_struct *napi,
198 					    struct sk_buff *skb, int queue,
199 					    struct ieee80211_sta *sta)
200 {
201 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
202 
203 	if (!(rx_status->flag & RX_FLAG_NO_PSDU) &&
204 	    iwl_mvm_check_pn(mvm, skb, queue, sta)) {
205 		kfree_skb(skb);
206 	} else {
207 		unsigned int radiotap_len = 0;
208 
209 		if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
210 			radiotap_len += sizeof(struct ieee80211_radiotap_he);
211 		if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
212 			radiotap_len += sizeof(struct ieee80211_radiotap_he_mu);
213 		__skb_push(skb, radiotap_len);
214 		ieee80211_rx_napi(mvm->hw, sta, skb, napi);
215 	}
216 }
217 
218 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
219 					struct ieee80211_rx_status *rx_status,
220 					u32 rate_n_flags, int energy_a,
221 					int energy_b)
222 {
223 	int max_energy;
224 	u32 rate_flags = rate_n_flags;
225 
226 	energy_a = energy_a ? -energy_a : S8_MIN;
227 	energy_b = energy_b ? -energy_b : S8_MIN;
228 	max_energy = max(energy_a, energy_b);
229 
230 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
231 			energy_a, energy_b, max_energy);
232 
233 	rx_status->signal = max_energy;
234 	rx_status->chains =
235 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
236 	rx_status->chain_signal[0] = energy_a;
237 	rx_status->chain_signal[1] = energy_b;
238 	rx_status->chain_signal[2] = S8_MIN;
239 }
240 
241 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
242 			     struct ieee80211_rx_status *stats, u16 phy_info,
243 			     struct iwl_rx_mpdu_desc *desc,
244 			     u32 pkt_flags, int queue, u8 *crypt_len)
245 {
246 	u16 status = le16_to_cpu(desc->status);
247 
248 	/*
249 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
250 	 * (where we don't have the keys).
251 	 * We limit this to aggregation because in TKIP this is a valid
252 	 * scenario, since we may not have the (correct) TTAK (phase 1
253 	 * key) in the firmware.
254 	 */
255 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
256 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
257 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
258 		return -1;
259 
260 	if (!ieee80211_has_protected(hdr->frame_control) ||
261 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
262 	    IWL_RX_MPDU_STATUS_SEC_NONE)
263 		return 0;
264 
265 	/* TODO: handle packets encrypted with unknown alg */
266 
267 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
268 	case IWL_RX_MPDU_STATUS_SEC_CCM:
269 	case IWL_RX_MPDU_STATUS_SEC_GCM:
270 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
271 		/* alg is CCM: check MIC only */
272 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
273 			return -1;
274 
275 		stats->flag |= RX_FLAG_DECRYPTED;
276 		if (pkt_flags & FH_RSCSR_RADA_EN)
277 			stats->flag |= RX_FLAG_MIC_STRIPPED;
278 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
279 		return 0;
280 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
281 		/* Don't drop the frame and decrypt it in SW */
282 		if (!fw_has_api(&mvm->fw->ucode_capa,
283 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
284 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
285 			return 0;
286 
287 		if (mvm->trans->cfg->gen2 &&
288 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
289 			stats->flag |= RX_FLAG_MMIC_ERROR;
290 
291 		*crypt_len = IEEE80211_TKIP_IV_LEN;
292 		/* fall through if TTAK OK */
293 	case IWL_RX_MPDU_STATUS_SEC_WEP:
294 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
295 			return -1;
296 
297 		stats->flag |= RX_FLAG_DECRYPTED;
298 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
299 				IWL_RX_MPDU_STATUS_SEC_WEP)
300 			*crypt_len = IEEE80211_WEP_IV_LEN;
301 
302 		if (pkt_flags & FH_RSCSR_RADA_EN) {
303 			stats->flag |= RX_FLAG_ICV_STRIPPED;
304 			if (mvm->trans->cfg->gen2)
305 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
306 		}
307 
308 		return 0;
309 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
310 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
311 			return -1;
312 		stats->flag |= RX_FLAG_DECRYPTED;
313 		return 0;
314 	default:
315 		/* Expected in monitor (not having the keys) */
316 		if (!mvm->monitor_on)
317 			IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
318 	}
319 
320 	return 0;
321 }
322 
323 static void iwl_mvm_rx_csum(struct ieee80211_sta *sta,
324 			    struct sk_buff *skb,
325 			    struct iwl_rx_mpdu_desc *desc)
326 {
327 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
328 	struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
329 	u16 flags = le16_to_cpu(desc->l3l4_flags);
330 	u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
331 			  IWL_RX_L3_PROTO_POS);
332 
333 	if (mvmvif->features & NETIF_F_RXCSUM &&
334 	    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
335 	    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
336 	     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
337 	     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
338 		skb->ip_summed = CHECKSUM_UNNECESSARY;
339 }
340 
341 /*
342  * returns true if a packet is a duplicate and should be dropped.
343  * Updates AMSDU PN tracking info
344  */
345 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
346 			   struct ieee80211_rx_status *rx_status,
347 			   struct ieee80211_hdr *hdr,
348 			   struct iwl_rx_mpdu_desc *desc)
349 {
350 	struct iwl_mvm_sta *mvm_sta;
351 	struct iwl_mvm_rxq_dup_data *dup_data;
352 	u8 tid, sub_frame_idx;
353 
354 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
355 		return false;
356 
357 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
358 	dup_data = &mvm_sta->dup_data[queue];
359 
360 	/*
361 	 * Drop duplicate 802.11 retransmissions
362 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
363 	 */
364 	if (ieee80211_is_ctl(hdr->frame_control) ||
365 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
366 	    is_multicast_ether_addr(hdr->addr1)) {
367 		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
368 		return false;
369 	}
370 
371 	if (ieee80211_is_data_qos(hdr->frame_control))
372 		/* frame has qos control */
373 		tid = ieee80211_get_tid(hdr);
374 	else
375 		tid = IWL_MAX_TID_COUNT;
376 
377 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
378 	sub_frame_idx = desc->amsdu_info &
379 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
380 
381 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
382 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
383 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
384 		return true;
385 
386 	/* Allow same PN as the first subframe for following sub frames */
387 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
388 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
389 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
390 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
391 
392 	dup_data->last_seq[tid] = hdr->seq_ctrl;
393 	dup_data->last_sub_frame[tid] = sub_frame_idx;
394 
395 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
396 
397 	return false;
398 }
399 
400 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
401 			    const u8 *data, u32 count)
402 {
403 	struct iwl_rxq_sync_cmd *cmd;
404 	u32 data_size = sizeof(*cmd) + count;
405 	int ret;
406 
407 	/* should be DWORD aligned */
408 	if (WARN_ON(count & 3 || count > IWL_MULTI_QUEUE_SYNC_MSG_MAX_SIZE))
409 		return -EINVAL;
410 
411 	cmd = kzalloc(data_size, GFP_KERNEL);
412 	if (!cmd)
413 		return -ENOMEM;
414 
415 	cmd->rxq_mask = cpu_to_le32(rxq_mask);
416 	cmd->count =  cpu_to_le32(count);
417 	cmd->flags = 0;
418 	memcpy(cmd->payload, data, count);
419 
420 	ret = iwl_mvm_send_cmd_pdu(mvm,
421 				   WIDE_ID(DATA_PATH_GROUP,
422 					   TRIGGER_RX_QUEUES_NOTIF_CMD),
423 				   0, data_size, cmd);
424 
425 	kfree(cmd);
426 	return ret;
427 }
428 
429 /*
430  * Returns true if sn2 - buffer_size < sn1 < sn2.
431  * To be used only in order to compare reorder buffer head with NSSN.
432  * We fully trust NSSN unless it is behind us due to reorder timeout.
433  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
434  */
435 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
436 {
437 	return ieee80211_sn_less(sn1, sn2) &&
438 	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
439 }
440 
441 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
442 
443 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
444 				   struct ieee80211_sta *sta,
445 				   struct napi_struct *napi,
446 				   struct iwl_mvm_baid_data *baid_data,
447 				   struct iwl_mvm_reorder_buffer *reorder_buf,
448 				   u16 nssn)
449 {
450 	struct iwl_mvm_reorder_buf_entry *entries =
451 		&baid_data->entries[reorder_buf->queue *
452 				    baid_data->entries_per_queue];
453 	u16 ssn = reorder_buf->head_sn;
454 
455 	lockdep_assert_held(&reorder_buf->lock);
456 
457 	/* ignore nssn smaller than head sn - this can happen due to timeout */
458 	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
459 		goto set_timer;
460 
461 	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
462 		int index = ssn % reorder_buf->buf_size;
463 		struct sk_buff_head *skb_list = &entries[index].e.frames;
464 		struct sk_buff *skb;
465 
466 		ssn = ieee80211_sn_inc(ssn);
467 
468 		/*
469 		 * Empty the list. Will have more than one frame for A-MSDU.
470 		 * Empty list is valid as well since nssn indicates frames were
471 		 * received.
472 		 */
473 		while ((skb = __skb_dequeue(skb_list))) {
474 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
475 							reorder_buf->queue,
476 							sta);
477 			reorder_buf->num_stored--;
478 		}
479 	}
480 	reorder_buf->head_sn = nssn;
481 
482 set_timer:
483 	if (reorder_buf->num_stored && !reorder_buf->removed) {
484 		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
485 
486 		while (skb_queue_empty(&entries[index].e.frames))
487 			index = (index + 1) % reorder_buf->buf_size;
488 		/* modify timer to match next frame's expiration time */
489 		mod_timer(&reorder_buf->reorder_timer,
490 			  entries[index].e.reorder_time + 1 +
491 			  RX_REORDER_BUF_TIMEOUT_MQ);
492 	} else {
493 		del_timer(&reorder_buf->reorder_timer);
494 	}
495 }
496 
497 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
498 {
499 	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
500 	struct iwl_mvm_baid_data *baid_data =
501 		iwl_mvm_baid_data_from_reorder_buf(buf);
502 	struct iwl_mvm_reorder_buf_entry *entries =
503 		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
504 	int i;
505 	u16 sn = 0, index = 0;
506 	bool expired = false;
507 	bool cont = false;
508 
509 	spin_lock(&buf->lock);
510 
511 	if (!buf->num_stored || buf->removed) {
512 		spin_unlock(&buf->lock);
513 		return;
514 	}
515 
516 	for (i = 0; i < buf->buf_size ; i++) {
517 		index = (buf->head_sn + i) % buf->buf_size;
518 
519 		if (skb_queue_empty(&entries[index].e.frames)) {
520 			/*
521 			 * If there is a hole and the next frame didn't expire
522 			 * we want to break and not advance SN
523 			 */
524 			cont = false;
525 			continue;
526 		}
527 		if (!cont &&
528 		    !time_after(jiffies, entries[index].e.reorder_time +
529 					 RX_REORDER_BUF_TIMEOUT_MQ))
530 			break;
531 
532 		expired = true;
533 		/* continue until next hole after this expired frames */
534 		cont = true;
535 		sn = ieee80211_sn_add(buf->head_sn, i + 1);
536 	}
537 
538 	if (expired) {
539 		struct ieee80211_sta *sta;
540 		struct iwl_mvm_sta *mvmsta;
541 		u8 sta_id = baid_data->sta_id;
542 
543 		rcu_read_lock();
544 		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
545 		mvmsta = iwl_mvm_sta_from_mac80211(sta);
546 
547 		/* SN is set to the last expired frame + 1 */
548 		IWL_DEBUG_HT(buf->mvm,
549 			     "Releasing expired frames for sta %u, sn %d\n",
550 			     sta_id, sn);
551 		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
552 						     sta, baid_data->tid);
553 		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, buf, sn);
554 		rcu_read_unlock();
555 	} else {
556 		/*
557 		 * If no frame expired and there are stored frames, index is now
558 		 * pointing to the first unexpired frame - modify timer
559 		 * accordingly to this frame.
560 		 */
561 		mod_timer(&buf->reorder_timer,
562 			  entries[index].e.reorder_time +
563 			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
564 	}
565 	spin_unlock(&buf->lock);
566 }
567 
568 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
569 			   struct iwl_mvm_delba_data *data)
570 {
571 	struct iwl_mvm_baid_data *ba_data;
572 	struct ieee80211_sta *sta;
573 	struct iwl_mvm_reorder_buffer *reorder_buf;
574 	u8 baid = data->baid;
575 
576 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
577 		return;
578 
579 	rcu_read_lock();
580 
581 	ba_data = rcu_dereference(mvm->baid_map[baid]);
582 	if (WARN_ON_ONCE(!ba_data))
583 		goto out;
584 
585 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
586 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
587 		goto out;
588 
589 	reorder_buf = &ba_data->reorder_buf[queue];
590 
591 	/* release all frames that are in the reorder buffer to the stack */
592 	spin_lock_bh(&reorder_buf->lock);
593 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
594 			       ieee80211_sn_add(reorder_buf->head_sn,
595 						reorder_buf->buf_size));
596 	spin_unlock_bh(&reorder_buf->lock);
597 	del_timer_sync(&reorder_buf->reorder_timer);
598 
599 out:
600 	rcu_read_unlock();
601 }
602 
603 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb,
604 			    int queue)
605 {
606 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
607 	struct iwl_rxq_sync_notification *notif;
608 	struct iwl_mvm_internal_rxq_notif *internal_notif;
609 
610 	notif = (void *)pkt->data;
611 	internal_notif = (void *)notif->payload;
612 
613 	if (internal_notif->sync &&
614 	    mvm->queue_sync_cookie != internal_notif->cookie) {
615 		WARN_ONCE(1, "Received expired RX queue sync message\n");
616 		return;
617 	}
618 
619 	switch (internal_notif->type) {
620 	case IWL_MVM_RXQ_EMPTY:
621 		break;
622 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
623 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
624 		break;
625 	default:
626 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
627 	}
628 
629 	if (internal_notif->sync &&
630 	    !atomic_dec_return(&mvm->queue_sync_counter))
631 		wake_up(&mvm->rx_sync_waitq);
632 }
633 
634 /*
635  * Returns true if the MPDU was buffered\dropped, false if it should be passed
636  * to upper layer.
637  */
638 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
639 			    struct napi_struct *napi,
640 			    int queue,
641 			    struct ieee80211_sta *sta,
642 			    struct sk_buff *skb,
643 			    struct iwl_rx_mpdu_desc *desc)
644 {
645 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
646 	struct iwl_mvm_sta *mvm_sta;
647 	struct iwl_mvm_baid_data *baid_data;
648 	struct iwl_mvm_reorder_buffer *buffer;
649 	struct sk_buff *tail;
650 	u32 reorder = le32_to_cpu(desc->reorder_data);
651 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
652 	bool last_subframe =
653 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
654 	u8 tid = ieee80211_get_tid(hdr);
655 	u8 sub_frame_idx = desc->amsdu_info &
656 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
657 	struct iwl_mvm_reorder_buf_entry *entries;
658 	int index;
659 	u16 nssn, sn;
660 	u8 baid;
661 
662 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
663 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
664 
665 	/*
666 	 * This also covers the case of receiving a Block Ack Request
667 	 * outside a BA session; we'll pass it to mac80211 and that
668 	 * then sends a delBA action frame.
669 	 */
670 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
671 		return false;
672 
673 	/* no sta yet */
674 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
675 		      "Got valid BAID without a valid station assigned\n"))
676 		return false;
677 
678 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
679 
680 	/* not a data packet or a bar */
681 	if (!ieee80211_is_back_req(hdr->frame_control) &&
682 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
683 	     is_multicast_ether_addr(hdr->addr1)))
684 		return false;
685 
686 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
687 		return false;
688 
689 	baid_data = rcu_dereference(mvm->baid_map[baid]);
690 	if (!baid_data) {
691 		IWL_DEBUG_RX(mvm,
692 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
693 			      baid, reorder);
694 		return false;
695 	}
696 
697 	if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
698 		 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
699 		 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
700 		 tid))
701 		return false;
702 
703 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
704 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
705 		IWL_RX_MPDU_REORDER_SN_SHIFT;
706 
707 	buffer = &baid_data->reorder_buf[queue];
708 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
709 
710 	spin_lock_bh(&buffer->lock);
711 
712 	if (!buffer->valid) {
713 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
714 			spin_unlock_bh(&buffer->lock);
715 			return false;
716 		}
717 		buffer->valid = true;
718 	}
719 
720 	if (ieee80211_is_back_req(hdr->frame_control)) {
721 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, nssn);
722 		goto drop;
723 	}
724 
725 	/*
726 	 * If there was a significant jump in the nssn - adjust.
727 	 * If the SN is smaller than the NSSN it might need to first go into
728 	 * the reorder buffer, in which case we just release up to it and the
729 	 * rest of the function will take care of storing it and releasing up to
730 	 * the nssn
731 	 */
732 	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
733 				buffer->buf_size) ||
734 	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
735 		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
736 
737 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
738 				       min_sn);
739 	}
740 
741 	/* drop any oudated packets */
742 	if (ieee80211_sn_less(sn, buffer->head_sn))
743 		goto drop;
744 
745 	/* release immediately if allowed by nssn and no stored frames */
746 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
747 		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
748 				       buffer->buf_size) &&
749 		   (!amsdu || last_subframe))
750 			buffer->head_sn = nssn;
751 		/* No need to update AMSDU last SN - we are moving the head */
752 		spin_unlock_bh(&buffer->lock);
753 		return false;
754 	}
755 
756 	/*
757 	 * release immediately if there are no stored frames, and the sn is
758 	 * equal to the head.
759 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
760 	 * When we released everything, and we got the next frame in the
761 	 * sequence, according to the NSSN we can't release immediately,
762 	 * while technically there is no hole and we can move forward.
763 	 */
764 	if (!buffer->num_stored && sn == buffer->head_sn) {
765 		if (!amsdu || last_subframe)
766 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
767 		/* No need to update AMSDU last SN - we are moving the head */
768 		spin_unlock_bh(&buffer->lock);
769 		return false;
770 	}
771 
772 	index = sn % buffer->buf_size;
773 
774 	/*
775 	 * Check if we already stored this frame
776 	 * As AMSDU is either received or not as whole, logic is simple:
777 	 * If we have frames in that position in the buffer and the last frame
778 	 * originated from AMSDU had a different SN then it is a retransmission.
779 	 * If it is the same SN then if the subframe index is incrementing it
780 	 * is the same AMSDU - otherwise it is a retransmission.
781 	 */
782 	tail = skb_peek_tail(&entries[index].e.frames);
783 	if (tail && !amsdu)
784 		goto drop;
785 	else if (tail && (sn != buffer->last_amsdu ||
786 			  buffer->last_sub_index >= sub_frame_idx))
787 		goto drop;
788 
789 	/* put in reorder buffer */
790 	__skb_queue_tail(&entries[index].e.frames, skb);
791 	buffer->num_stored++;
792 	entries[index].e.reorder_time = jiffies;
793 
794 	if (amsdu) {
795 		buffer->last_amsdu = sn;
796 		buffer->last_sub_index = sub_frame_idx;
797 	}
798 
799 	/*
800 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
801 	 * The reason is that NSSN advances on the first sub-frame, and may
802 	 * cause the reorder buffer to advance before all the sub-frames arrive.
803 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
804 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
805 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
806 	 * already ahead and it will be dropped.
807 	 * If the last sub-frame is not on this queue - we will get frame
808 	 * release notification with up to date NSSN.
809 	 */
810 	if (!amsdu || last_subframe)
811 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, nssn);
812 
813 	spin_unlock_bh(&buffer->lock);
814 	return true;
815 
816 drop:
817 	kfree_skb(skb);
818 	spin_unlock_bh(&buffer->lock);
819 	return true;
820 }
821 
822 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
823 				    u32 reorder_data, u8 baid)
824 {
825 	unsigned long now = jiffies;
826 	unsigned long timeout;
827 	struct iwl_mvm_baid_data *data;
828 
829 	rcu_read_lock();
830 
831 	data = rcu_dereference(mvm->baid_map[baid]);
832 	if (!data) {
833 		IWL_DEBUG_RX(mvm,
834 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
835 			      baid, reorder_data);
836 		goto out;
837 	}
838 
839 	if (!data->timeout)
840 		goto out;
841 
842 	timeout = data->timeout;
843 	/*
844 	 * Do not update last rx all the time to avoid cache bouncing
845 	 * between the rx queues.
846 	 * Update it every timeout. Worst case is the session will
847 	 * expire after ~ 2 * timeout, which doesn't matter that much.
848 	 */
849 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
850 		/* Update is atomic */
851 		data->last_rx = now;
852 
853 out:
854 	rcu_read_unlock();
855 }
856 
857 static void iwl_mvm_flip_address(u8 *addr)
858 {
859 	int i;
860 	u8 mac_addr[ETH_ALEN];
861 
862 	for (i = 0; i < ETH_ALEN; i++)
863 		mac_addr[i] = addr[ETH_ALEN - i - 1];
864 	ether_addr_copy(addr, mac_addr);
865 }
866 
867 struct iwl_mvm_rx_phy_data {
868 	enum iwl_rx_phy_info_type info_type;
869 	__le32 d0, d1, d2, d3;
870 	__le16 d4;
871 };
872 
873 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
874 				     struct iwl_mvm_rx_phy_data *phy_data,
875 				     u32 rate_n_flags,
876 				     struct ieee80211_radiotap_he_mu *he_mu)
877 {
878 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
879 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
880 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
881 
882 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
883 		he_mu->flags1 |=
884 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
885 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
886 
887 		he_mu->flags1 |=
888 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
889 						   phy_data4),
890 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
891 
892 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
893 					     phy_data2);
894 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
895 					     phy_data3);
896 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
897 					     phy_data2);
898 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
899 					     phy_data3);
900 	}
901 
902 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
903 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
904 		he_mu->flags1 |=
905 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
906 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
907 
908 		he_mu->flags2 |=
909 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
910 						   phy_data4),
911 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
912 
913 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
914 					     phy_data2);
915 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
916 					     phy_data3);
917 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
918 					     phy_data2);
919 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
920 					     phy_data3);
921 	}
922 }
923 
924 static void
925 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
926 			       u32 rate_n_flags,
927 			       struct ieee80211_radiotap_he *he,
928 			       struct ieee80211_radiotap_he_mu *he_mu,
929 			       struct ieee80211_rx_status *rx_status)
930 {
931 	/*
932 	 * Unfortunately, we have to leave the mac80211 data
933 	 * incorrect for the case that we receive an HE-MU
934 	 * transmission and *don't* have the HE phy data (due
935 	 * to the bits being used for TSF). This shouldn't
936 	 * happen though as management frames where we need
937 	 * the TSF/timers are not be transmitted in HE-MU.
938 	 */
939 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
940 	u8 offs = 0;
941 
942 	rx_status->bw = RATE_INFO_BW_HE_RU;
943 
944 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
945 
946 	switch (ru) {
947 	case 0 ... 36:
948 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
949 		offs = ru;
950 		break;
951 	case 37 ... 52:
952 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
953 		offs = ru - 37;
954 		break;
955 	case 53 ... 60:
956 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
957 		offs = ru - 53;
958 		break;
959 	case 61 ... 64:
960 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
961 		offs = ru - 61;
962 		break;
963 	case 65 ... 66:
964 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
965 		offs = ru - 65;
966 		break;
967 	case 67:
968 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
969 		break;
970 	case 68:
971 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
972 		break;
973 	}
974 	he->data2 |= le16_encode_bits(offs,
975 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
976 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
977 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
978 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
979 		he->data2 |=
980 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
981 
982 	if (he_mu) {
983 #define CHECK_BW(bw) \
984 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
985 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
986 		CHECK_BW(20);
987 		CHECK_BW(40);
988 		CHECK_BW(80);
989 		CHECK_BW(160);
990 		he_mu->flags2 |=
991 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
992 						   rate_n_flags),
993 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
994 	}
995 }
996 
997 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
998 				       struct iwl_mvm_rx_phy_data *phy_data,
999 				       struct ieee80211_radiotap_he *he,
1000 				       struct ieee80211_radiotap_he_mu *he_mu,
1001 				       struct ieee80211_rx_status *rx_status,
1002 				       u32 rate_n_flags, int queue)
1003 {
1004 	switch (phy_data->info_type) {
1005 	case IWL_RX_PHY_INFO_TYPE_NONE:
1006 	case IWL_RX_PHY_INFO_TYPE_CCK:
1007 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1008 	case IWL_RX_PHY_INFO_TYPE_HT:
1009 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1010 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1011 		return;
1012 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1013 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1014 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1015 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1016 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1017 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1018 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1019 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1020 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1021 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1022 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1023 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1024 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1025 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1026 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1027 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1028 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1029 		/* fall through */
1030 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1031 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1032 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1033 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1034 		/* HE common */
1035 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1036 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1037 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1038 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1039 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1040 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1041 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1042 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1043 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1044 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1045 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1046 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1047 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1048 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1049 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1050 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1051 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1052 		}
1053 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1054 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1055 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1056 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1057 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1058 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1059 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1060 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1061 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1062 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1063 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1064 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1065 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1066 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1067 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1068 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1069 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1070 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1071 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1072 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1073 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1074 		break;
1075 	}
1076 
1077 	switch (phy_data->info_type) {
1078 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1079 		he_mu->flags1 |=
1080 			le16_encode_bits(le16_get_bits(phy_data->d4,
1081 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1082 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1083 		he_mu->flags1 |=
1084 			le16_encode_bits(le16_get_bits(phy_data->d4,
1085 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1086 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1087 		he_mu->flags2 |=
1088 			le16_encode_bits(le16_get_bits(phy_data->d4,
1089 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1090 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1091 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1092 		/* fall through */
1093 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1094 		he_mu->flags2 |=
1095 			le16_encode_bits(le32_get_bits(phy_data->d1,
1096 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1097 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1098 		he_mu->flags2 |=
1099 			le16_encode_bits(le32_get_bits(phy_data->d1,
1100 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1101 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1102 		/* fall through */
1103 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1104 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1105 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1106 					       he, he_mu, rx_status);
1107 		break;
1108 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1109 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1110 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1111 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1112 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1113 		break;
1114 	default:
1115 		/* nothing */
1116 		break;
1117 	}
1118 }
1119 
1120 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1121 			  struct iwl_mvm_rx_phy_data *phy_data,
1122 			  u32 rate_n_flags, u16 phy_info, int queue)
1123 {
1124 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1125 	struct ieee80211_radiotap_he *he = NULL;
1126 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1127 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1128 	u8 stbc, ltf;
1129 	static const struct ieee80211_radiotap_he known = {
1130 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1131 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1132 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1133 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1134 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1135 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1136 	};
1137 	static const struct ieee80211_radiotap_he_mu mu_known = {
1138 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1139 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1140 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1141 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1142 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1143 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1144 	};
1145 	unsigned int radiotap_len = 0;
1146 
1147 	he = skb_put_data(skb, &known, sizeof(known));
1148 	radiotap_len += sizeof(known);
1149 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1150 
1151 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1152 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1153 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1154 		radiotap_len += sizeof(mu_known);
1155 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1156 	}
1157 
1158 	/* temporarily hide the radiotap data */
1159 	__skb_pull(skb, radiotap_len);
1160 
1161 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_SU) {
1162 		/* report the AMPDU-EOF bit on single frames */
1163 		if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1164 			rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1165 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1166 			if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1167 				rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1168 		}
1169 	}
1170 
1171 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1172 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1173 					   rate_n_flags, queue);
1174 
1175 	/* update aggregation data for monitor sake on default queue */
1176 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1177 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1178 		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1179 
1180 		/* toggle is switched whenever new aggregation starts */
1181 		if (toggle_bit != mvm->ampdu_toggle &&
1182 		    (he_type == RATE_MCS_HE_TYPE_MU ||
1183 		     he_type == RATE_MCS_HE_TYPE_SU)) {
1184 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1185 			if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1186 				rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1187 		}
1188 	}
1189 
1190 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1191 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1192 		rx_status->bw = RATE_INFO_BW_HE_RU;
1193 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1194 	}
1195 
1196 	/* actually data is filled in mac80211 */
1197 	if (he_type == RATE_MCS_HE_TYPE_SU ||
1198 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1199 		he->data1 |=
1200 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1201 
1202 	stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1203 	rx_status->nss =
1204 		((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1205 					RATE_VHT_MCS_NSS_POS) + 1;
1206 	rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1207 	rx_status->encoding = RX_ENC_HE;
1208 	rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1209 	if (rate_n_flags & RATE_MCS_BF_MSK)
1210 		rx_status->enc_flags |= RX_ENC_FLAG_BF;
1211 
1212 	rx_status->he_dcm =
1213 		!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1214 
1215 #define CHECK_TYPE(F)							\
1216 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1217 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1218 
1219 	CHECK_TYPE(SU);
1220 	CHECK_TYPE(EXT_SU);
1221 	CHECK_TYPE(MU);
1222 	CHECK_TYPE(TRIG);
1223 
1224 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1225 
1226 	if (rate_n_flags & RATE_MCS_BF_MSK)
1227 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1228 
1229 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1230 		RATE_MCS_HE_GI_LTF_POS) {
1231 	case 0:
1232 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1233 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1234 		else
1235 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1236 		if (he_type == RATE_MCS_HE_TYPE_MU)
1237 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1238 		else
1239 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1240 		break;
1241 	case 1:
1242 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1243 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1244 		else
1245 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1246 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1247 		break;
1248 	case 2:
1249 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1250 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1251 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1252 		} else {
1253 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1254 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1255 		}
1256 		break;
1257 	case 3:
1258 		if ((he_type == RATE_MCS_HE_TYPE_SU ||
1259 		     he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1260 		    rate_n_flags & RATE_MCS_SGI_MSK)
1261 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1262 		else
1263 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1264 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1265 		break;
1266 	}
1267 
1268 	he->data5 |= le16_encode_bits(ltf,
1269 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1270 }
1271 
1272 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1273 				struct iwl_mvm_rx_phy_data *phy_data)
1274 {
1275 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1276 	struct ieee80211_radiotap_lsig *lsig;
1277 
1278 	switch (phy_data->info_type) {
1279 	case IWL_RX_PHY_INFO_TYPE_HT:
1280 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1281 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1282 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1283 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1284 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1285 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1286 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1287 		lsig = skb_put(skb, sizeof(*lsig));
1288 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1289 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1290 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1291 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1292 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1293 		break;
1294 	default:
1295 		break;
1296 	}
1297 }
1298 
1299 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1300 			struct iwl_rx_cmd_buffer *rxb, int queue)
1301 {
1302 	struct ieee80211_rx_status *rx_status;
1303 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1304 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1305 	struct ieee80211_hdr *hdr;
1306 	u32 len = le16_to_cpu(desc->mpdu_len);
1307 	u32 rate_n_flags, gp2_on_air_rise;
1308 	u16 phy_info = le16_to_cpu(desc->phy_info);
1309 	struct ieee80211_sta *sta = NULL;
1310 	struct sk_buff *skb;
1311 	u8 crypt_len = 0, channel, energy_a, energy_b;
1312 	size_t desc_size;
1313 	struct iwl_mvm_rx_phy_data phy_data = {
1314 		.d4 = desc->phy_data4,
1315 		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1316 	};
1317 
1318 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1319 		return;
1320 
1321 	if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
1322 		rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1323 		channel = desc->v3.channel;
1324 		gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1325 		energy_a = desc->v3.energy_a;
1326 		energy_b = desc->v3.energy_b;
1327 		desc_size = sizeof(*desc);
1328 
1329 		phy_data.d0 = desc->v3.phy_data0;
1330 		phy_data.d1 = desc->v3.phy_data1;
1331 		phy_data.d2 = desc->v3.phy_data2;
1332 		phy_data.d3 = desc->v3.phy_data3;
1333 	} else {
1334 		rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1335 		channel = desc->v1.channel;
1336 		gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1337 		energy_a = desc->v1.energy_a;
1338 		energy_b = desc->v1.energy_b;
1339 		desc_size = IWL_RX_DESC_SIZE_V1;
1340 
1341 		phy_data.d0 = desc->v1.phy_data0;
1342 		phy_data.d1 = desc->v1.phy_data1;
1343 		phy_data.d2 = desc->v1.phy_data2;
1344 		phy_data.d3 = desc->v1.phy_data3;
1345 	}
1346 
1347 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1348 		phy_data.info_type =
1349 			le32_get_bits(phy_data.d1,
1350 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1351 
1352 	hdr = (void *)(pkt->data + desc_size);
1353 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1354 	 * ieee80211_hdr pulled.
1355 	 */
1356 	skb = alloc_skb(128, GFP_ATOMIC);
1357 	if (!skb) {
1358 		IWL_ERR(mvm, "alloc_skb failed\n");
1359 		return;
1360 	}
1361 
1362 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1363 		/*
1364 		 * If the device inserted padding it means that (it thought)
1365 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
1366 		 * this case, reserve two bytes at the start of the SKB to
1367 		 * align the payload properly in case we end up copying it.
1368 		 */
1369 		skb_reserve(skb, 2);
1370 	}
1371 
1372 	rx_status = IEEE80211_SKB_RXCB(skb);
1373 
1374 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1375 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1376 	case RATE_MCS_CHAN_WIDTH_20:
1377 		break;
1378 	case RATE_MCS_CHAN_WIDTH_40:
1379 		rx_status->bw = RATE_INFO_BW_40;
1380 		break;
1381 	case RATE_MCS_CHAN_WIDTH_80:
1382 		rx_status->bw = RATE_INFO_BW_80;
1383 		break;
1384 	case RATE_MCS_CHAN_WIDTH_160:
1385 		rx_status->bw = RATE_INFO_BW_160;
1386 		break;
1387 	}
1388 
1389 	if (rate_n_flags & RATE_MCS_HE_MSK)
1390 		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1391 			      phy_info, queue);
1392 
1393 	iwl_mvm_decode_lsig(skb, &phy_data);
1394 
1395 	rx_status = IEEE80211_SKB_RXCB(skb);
1396 
1397 	if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1398 			      le32_to_cpu(pkt->len_n_flags), queue,
1399 			      &crypt_len)) {
1400 		kfree_skb(skb);
1401 		return;
1402 	}
1403 
1404 	/*
1405 	 * Keep packets with CRC errors (and with overrun) for monitor mode
1406 	 * (otherwise the firmware discards them) but mark them as bad.
1407 	 */
1408 	if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1409 	    !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1410 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1411 			     le16_to_cpu(desc->status));
1412 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1413 	}
1414 	/* set the preamble flag if appropriate */
1415 	if (phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1416 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1417 
1418 	if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1419 		u64 tsf_on_air_rise;
1420 
1421 		if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1422 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1423 		else
1424 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1425 
1426 		rx_status->mactime = tsf_on_air_rise;
1427 		/* TSF as indicated by the firmware is at INA time */
1428 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1429 	}
1430 
1431 	rx_status->device_timestamp = gp2_on_air_rise;
1432 	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1433 		NL80211_BAND_2GHZ;
1434 	rx_status->freq = ieee80211_channel_to_frequency(channel,
1435 							 rx_status->band);
1436 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1437 				    energy_b);
1438 
1439 	/* update aggregation data for monitor sake on default queue */
1440 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1441 		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1442 
1443 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1444 		rx_status->ampdu_reference = mvm->ampdu_ref;
1445 		/* toggle is switched whenever new aggregation starts */
1446 		if (toggle_bit != mvm->ampdu_toggle) {
1447 			mvm->ampdu_ref++;
1448 			mvm->ampdu_toggle = toggle_bit;
1449 		}
1450 	}
1451 
1452 	rcu_read_lock();
1453 
1454 	if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1455 		u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
1456 
1457 		if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
1458 			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1459 			if (IS_ERR(sta))
1460 				sta = NULL;
1461 		}
1462 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
1463 		/*
1464 		 * This is fine since we prevent two stations with the same
1465 		 * address from being added.
1466 		 */
1467 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1468 	}
1469 
1470 	if (sta) {
1471 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1472 		struct ieee80211_vif *tx_blocked_vif =
1473 			rcu_dereference(mvm->csa_tx_blocked_vif);
1474 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1475 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
1476 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
1477 		struct iwl_fw_dbg_trigger_tlv *trig;
1478 		struct ieee80211_vif *vif = mvmsta->vif;
1479 
1480 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1481 		    !is_multicast_ether_addr(hdr->addr1) &&
1482 		    ieee80211_is_data(hdr->frame_control) &&
1483 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1484 			schedule_delayed_work(&mvm->tcm.work, 0);
1485 
1486 		/*
1487 		 * We have tx blocked stations (with CS bit). If we heard
1488 		 * frames from a blocked station on a new channel we can
1489 		 * TX to it again.
1490 		 */
1491 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1492 			struct iwl_mvm_vif *mvmvif =
1493 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1494 
1495 			if (mvmvif->csa_target_freq == rx_status->freq)
1496 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1497 								 false);
1498 		}
1499 
1500 		rs_update_last_rssi(mvm, mvmsta, rx_status);
1501 
1502 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1503 					     ieee80211_vif_to_wdev(vif),
1504 					     FW_DBG_TRIGGER_RSSI);
1505 
1506 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1507 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1508 			s32 rssi;
1509 
1510 			rssi_trig = (void *)trig->data;
1511 			rssi = le32_to_cpu(rssi_trig->rssi);
1512 
1513 			if (rx_status->signal < rssi)
1514 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1515 							NULL);
1516 		}
1517 
1518 		if (ieee80211_is_data(hdr->frame_control))
1519 			iwl_mvm_rx_csum(sta, skb, desc);
1520 
1521 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1522 			kfree_skb(skb);
1523 			goto out;
1524 		}
1525 
1526 		/*
1527 		 * Our hardware de-aggregates AMSDUs but copies the mac header
1528 		 * as it to the de-aggregated MPDUs. We need to turn off the
1529 		 * AMSDU bit in the QoS control ourselves.
1530 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
1531 		 */
1532 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1533 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1534 			u8 *qc = ieee80211_get_qos_ctl(hdr);
1535 
1536 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1537 
1538 			if (mvm->trans->cfg->device_family ==
1539 			    IWL_DEVICE_FAMILY_9000) {
1540 				iwl_mvm_flip_address(hdr->addr3);
1541 
1542 				if (ieee80211_has_a4(hdr->frame_control))
1543 					iwl_mvm_flip_address(hdr->addr4);
1544 			}
1545 		}
1546 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1547 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
1548 
1549 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1550 		}
1551 	}
1552 
1553 	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1554 	    rate_n_flags & RATE_MCS_SGI_MSK)
1555 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1556 	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1557 		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1558 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1559 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1560 	if (rate_n_flags & RATE_MCS_HT_MSK) {
1561 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1562 				RATE_MCS_STBC_POS;
1563 		rx_status->encoding = RX_ENC_HT;
1564 		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1565 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1566 	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1567 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1568 				RATE_MCS_STBC_POS;
1569 		rx_status->nss =
1570 			((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1571 						RATE_VHT_MCS_NSS_POS) + 1;
1572 		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1573 		rx_status->encoding = RX_ENC_VHT;
1574 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1575 		if (rate_n_flags & RATE_MCS_BF_MSK)
1576 			rx_status->enc_flags |= RX_ENC_FLAG_BF;
1577 	} else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1578 		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1579 							       rx_status->band);
1580 
1581 		if (WARN(rate < 0 || rate > 0xFF,
1582 			 "Invalid rate flags 0x%x, band %d,\n",
1583 			 rate_n_flags, rx_status->band)) {
1584 			kfree_skb(skb);
1585 			goto out;
1586 		}
1587 		rx_status->rate_idx = rate;
1588 	}
1589 
1590 	/* management stuff on default queue */
1591 	if (!queue) {
1592 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1593 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
1594 			     mvm->sched_scan_pass_all ==
1595 			     SCHED_SCAN_PASS_ALL_ENABLED))
1596 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1597 
1598 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1599 			     ieee80211_is_probe_resp(hdr->frame_control)))
1600 			rx_status->boottime_ns = ktime_get_boot_ns();
1601 	}
1602 
1603 	iwl_mvm_create_skb(skb, hdr, len, crypt_len, rxb);
1604 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1605 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta);
1606 out:
1607 	rcu_read_unlock();
1608 }
1609 
1610 void iwl_mvm_rx_monitor_ndp(struct iwl_mvm *mvm, struct napi_struct *napi,
1611 			    struct iwl_rx_cmd_buffer *rxb, int queue)
1612 {
1613 	struct ieee80211_rx_status *rx_status;
1614 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1615 	struct iwl_rx_no_data *desc = (void *)pkt->data;
1616 	u32 rate_n_flags = le32_to_cpu(desc->rate);
1617 	u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1618 	u32 rssi = le32_to_cpu(desc->rssi);
1619 	u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1620 	u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1621 	struct ieee80211_sta *sta = NULL;
1622 	struct sk_buff *skb;
1623 	u8 channel, energy_a, energy_b;
1624 	struct iwl_mvm_rx_phy_data phy_data = {
1625 		.d0 = desc->phy_info[0],
1626 		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1627 	};
1628 
1629 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1630 		return;
1631 
1632 	/* Currently only NDP type is supported */
1633 	if (info_type != RX_NO_DATA_INFO_TYPE_NDP)
1634 		return;
1635 
1636 	energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1637 	energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1638 	channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1639 
1640 	phy_data.info_type =
1641 		le32_get_bits(desc->phy_info[1],
1642 			      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1643 
1644 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1645 	 * ieee80211_hdr pulled.
1646 	 */
1647 	skb = alloc_skb(128, GFP_ATOMIC);
1648 	if (!skb) {
1649 		IWL_ERR(mvm, "alloc_skb failed\n");
1650 		return;
1651 	}
1652 
1653 	rx_status = IEEE80211_SKB_RXCB(skb);
1654 
1655 	/* 0-length PSDU */
1656 	rx_status->flag |= RX_FLAG_NO_PSDU;
1657 	/* currently this is the only type for which we get this notif */
1658 	rx_status->zero_length_psdu_type =
1659 		IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
1660 
1661 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1662 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1663 	case RATE_MCS_CHAN_WIDTH_20:
1664 		break;
1665 	case RATE_MCS_CHAN_WIDTH_40:
1666 		rx_status->bw = RATE_INFO_BW_40;
1667 		break;
1668 	case RATE_MCS_CHAN_WIDTH_80:
1669 		rx_status->bw = RATE_INFO_BW_80;
1670 		break;
1671 	case RATE_MCS_CHAN_WIDTH_160:
1672 		rx_status->bw = RATE_INFO_BW_160;
1673 		break;
1674 	}
1675 
1676 	if (rate_n_flags & RATE_MCS_HE_MSK)
1677 		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1678 			      phy_info, queue);
1679 
1680 	iwl_mvm_decode_lsig(skb, &phy_data);
1681 
1682 	rx_status->device_timestamp = gp2_on_air_rise;
1683 	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1684 		NL80211_BAND_2GHZ;
1685 	rx_status->freq = ieee80211_channel_to_frequency(channel,
1686 							 rx_status->band);
1687 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1688 				    energy_b);
1689 
1690 	rcu_read_lock();
1691 
1692 	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1693 	    rate_n_flags & RATE_MCS_SGI_MSK)
1694 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1695 	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1696 		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1697 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1698 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1699 	if (rate_n_flags & RATE_MCS_HT_MSK) {
1700 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1701 				RATE_MCS_STBC_POS;
1702 		rx_status->encoding = RX_ENC_HT;
1703 		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1704 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1705 	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1706 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1707 				RATE_MCS_STBC_POS;
1708 		rx_status->nss =
1709 			((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1710 						RATE_VHT_MCS_NSS_POS) + 1;
1711 		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1712 		rx_status->encoding = RX_ENC_VHT;
1713 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1714 		if (rate_n_flags & RATE_MCS_BF_MSK)
1715 			rx_status->enc_flags |= RX_ENC_FLAG_BF;
1716 	} else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1717 		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1718 							       rx_status->band);
1719 
1720 		if (WARN(rate < 0 || rate > 0xFF,
1721 			 "Invalid rate flags 0x%x, band %d,\n",
1722 			 rate_n_flags, rx_status->band)) {
1723 			kfree_skb(skb);
1724 			goto out;
1725 		}
1726 		rx_status->rate_idx = rate;
1727 	}
1728 
1729 	iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta);
1730 out:
1731 	rcu_read_unlock();
1732 }
1733 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
1734 			      struct iwl_rx_cmd_buffer *rxb, int queue)
1735 {
1736 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1737 	struct iwl_frame_release *release = (void *)pkt->data;
1738 	struct ieee80211_sta *sta;
1739 	struct iwl_mvm_reorder_buffer *reorder_buf;
1740 	struct iwl_mvm_baid_data *ba_data;
1741 
1742 	int baid = release->baid;
1743 
1744 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
1745 		     release->baid, le16_to_cpu(release->nssn));
1746 
1747 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID))
1748 		return;
1749 
1750 	rcu_read_lock();
1751 
1752 	ba_data = rcu_dereference(mvm->baid_map[baid]);
1753 	if (WARN_ON_ONCE(!ba_data))
1754 		goto out;
1755 
1756 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
1757 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
1758 		goto out;
1759 
1760 	reorder_buf = &ba_data->reorder_buf[queue];
1761 
1762 	spin_lock_bh(&reorder_buf->lock);
1763 	iwl_mvm_release_frames(mvm, sta, napi, ba_data, reorder_buf,
1764 			       le16_to_cpu(release->nssn));
1765 	spin_unlock_bh(&reorder_buf->lock);
1766 
1767 out:
1768 	rcu_read_unlock();
1769 }
1770