1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2015-2017 Intel Deutschland GmbH
6  */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 #include "time-sync.h"
13 
14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 				   int queue, struct ieee80211_sta *sta)
16 {
17 	struct iwl_mvm_sta *mvmsta;
18 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 	struct iwl_mvm_key_pn *ptk_pn;
21 	int res;
22 	u8 tid, keyidx;
23 	u8 pn[IEEE80211_CCMP_PN_LEN];
24 	u8 *extiv;
25 
26 	/* do PN checking */
27 
28 	/* multicast and non-data only arrives on default queue */
29 	if (!ieee80211_is_data(hdr->frame_control) ||
30 	    is_multicast_ether_addr(hdr->addr1))
31 		return 0;
32 
33 	/* do not check PN for open AP */
34 	if (!(stats->flag & RX_FLAG_DECRYPTED))
35 		return 0;
36 
37 	/*
38 	 * avoid checking for default queue - we don't want to replicate
39 	 * all the logic that's necessary for checking the PN on fragmented
40 	 * frames, leave that to mac80211
41 	 */
42 	if (queue == 0)
43 		return 0;
44 
45 	/* if we are here - this for sure is either CCMP or GCMP */
46 	if (IS_ERR_OR_NULL(sta)) {
47 		IWL_DEBUG_DROP(mvm,
48 			       "expected hw-decrypted unicast frame for station\n");
49 		return -1;
50 	}
51 
52 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
53 
54 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 	keyidx = extiv[3] >> 6;
56 
57 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 	if (!ptk_pn)
59 		return -1;
60 
61 	if (ieee80211_is_data_qos(hdr->frame_control))
62 		tid = ieee80211_get_tid(hdr);
63 	else
64 		tid = 0;
65 
66 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 	if (tid >= IWL_MAX_TID_COUNT)
68 		return -1;
69 
70 	/* load pn */
71 	pn[0] = extiv[7];
72 	pn[1] = extiv[6];
73 	pn[2] = extiv[5];
74 	pn[3] = extiv[4];
75 	pn[4] = extiv[1];
76 	pn[5] = extiv[0];
77 
78 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 	if (res < 0)
80 		return -1;
81 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 		return -1;
83 
84 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 	stats->flag |= RX_FLAG_PN_VALIDATED;
86 
87 	return 0;
88 }
89 
90 /* iwl_mvm_create_skb Adds the rxb to a new skb */
91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 			      struct iwl_rx_cmd_buffer *rxb)
94 {
95 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 	unsigned int headlen, fraglen, pad_len = 0;
98 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101 
102 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 		len -= 2;
104 		pad_len = 2;
105 	}
106 
107 	/*
108 	 * For non monitor interface strip the bytes the RADA might not have
109 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 	 * interface cannot exist with other interfaces, this removal is safe
111 	 * and sufficient, in monitor mode there's no decryption being done.
112 	 */
113 	if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 		len -= mic_crc_len;
115 
116 	/* If frame is small enough to fit in skb->head, pull it completely.
117 	 * If not, only pull ieee80211_hdr (including crypto if present, and
118 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 	 * splice() or TCP coalesce are more efficient.
120 	 *
121 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 	 * least 8 bytes (possibly more for mesh) we can do the same here
123 	 * to save the cost of doing it later. That still doesn't pull in
124 	 * the actual IP header since the typical case has a SNAP header.
125 	 * If the latter changes (there are efforts in the standards group
126 	 * to do so) we should revisit this and ieee80211_data_to_8023().
127 	 */
128 	headlen = (len <= skb_tailroom(skb)) ? len :
129 					       hdrlen + crypt_len + 8;
130 
131 	/* The firmware may align the packet to DWORD.
132 	 * The padding is inserted after the IV.
133 	 * After copying the header + IV skip the padding if
134 	 * present before copying packet data.
135 	 */
136 	hdrlen += crypt_len;
137 
138 	if (unlikely(headlen < hdrlen))
139 		return -EINVAL;
140 
141 	/* Since data doesn't move data while putting data on skb and that is
142 	 * the only way we use, data + len is the next place that hdr would be put
143 	 */
144 	skb_set_mac_header(skb, skb->len);
145 	skb_put_data(skb, hdr, hdrlen);
146 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147 
148 	/*
149 	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 	 * certain cases and starts the checksum after the SNAP. Check if
151 	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 	 * in the cases the hardware didn't handle, since it's rare to see
153 	 * such packets, even though the hardware did calculate the checksum
154 	 * in this case, just starting after the MAC header instead.
155 	 *
156 	 * Starting from Bz hardware, it calculates starting directly after
157 	 * the MAC header, so that matches mac80211's expectation.
158 	 */
159 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 		struct {
161 			u8 hdr[6];
162 			__be16 type;
163 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164 
165 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 			     (shdr->type != htons(ETH_P_IP) &&
168 			      shdr->type != htons(ETH_P_ARP) &&
169 			      shdr->type != htons(ETH_P_IPV6) &&
170 			      shdr->type != htons(ETH_P_8021Q) &&
171 			      shdr->type != htons(ETH_P_PAE) &&
172 			      shdr->type != htons(ETH_P_TDLS))))
173 			skb->ip_summed = CHECKSUM_NONE;
174 		else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 			/* mac80211 assumes full CSUM including SNAP header */
176 			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 	}
178 
179 	fraglen = len - headlen;
180 
181 	if (fraglen) {
182 		int offset = (u8 *)hdr + headlen + pad_len -
183 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184 
185 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 				fraglen, rxb->truesize);
187 	}
188 
189 	return 0;
190 }
191 
192 /* put a TLV on the skb and return data pointer
193  *
194  * Also pad to 4 the len and zero out all data part
195  */
196 static void *
197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198 {
199 	struct ieee80211_radiotap_tlv *tlv;
200 
201 	tlv = skb_put(skb, sizeof(*tlv));
202 	tlv->type = cpu_to_le16(type);
203 	tlv->len = cpu_to_le16(len);
204 	return skb_put_zero(skb, ALIGN(len, 4));
205 }
206 
207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 					    struct sk_buff *skb)
209 {
210 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 	struct ieee80211_radiotap_vendor_content *radiotap;
212 	const u16 vendor_data_len = sizeof(mvm->cur_aid);
213 
214 	if (!mvm->cur_aid)
215 		return;
216 
217 	radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 					    sizeof(*radiotap) + vendor_data_len);
220 
221 	/* Intel OUI */
222 	radiotap->oui[0] = 0xf6;
223 	radiotap->oui[1] = 0x54;
224 	radiotap->oui[2] = 0x25;
225 	/* radiotap sniffer config sub-namespace */
226 	radiotap->oui_subtype = 1;
227 	radiotap->vendor_type = 0;
228 
229 	/* fill the data now */
230 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231 
232 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233 }
234 
235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 					    struct napi_struct *napi,
238 					    struct sk_buff *skb, int queue,
239 					    struct ieee80211_sta *sta,
240 					    struct ieee80211_link_sta *link_sta)
241 {
242 	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
243 		kfree_skb(skb);
244 		return;
245 	}
246 
247 	if (sta && sta->valid_links && link_sta) {
248 		struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
249 
250 		rx_status->link_valid = 1;
251 		rx_status->link_id = link_sta->link_id;
252 	}
253 
254 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
255 }
256 
257 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
258 					struct ieee80211_rx_status *rx_status,
259 					u32 rate_n_flags, int energy_a,
260 					int energy_b)
261 {
262 	int max_energy;
263 	u32 rate_flags = rate_n_flags;
264 
265 	energy_a = energy_a ? -energy_a : S8_MIN;
266 	energy_b = energy_b ? -energy_b : S8_MIN;
267 	max_energy = max(energy_a, energy_b);
268 
269 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
270 			energy_a, energy_b, max_energy);
271 
272 	rx_status->signal = max_energy;
273 	rx_status->chains =
274 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
275 	rx_status->chain_signal[0] = energy_a;
276 	rx_status->chain_signal[1] = energy_b;
277 }
278 
279 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
280 				struct ieee80211_hdr *hdr,
281 				struct iwl_rx_mpdu_desc *desc,
282 				u32 status)
283 {
284 	struct iwl_mvm_sta *mvmsta;
285 	struct iwl_mvm_vif *mvmvif;
286 	u8 keyid;
287 	struct ieee80211_key_conf *key;
288 	u32 len = le16_to_cpu(desc->mpdu_len);
289 	const u8 *frame = (void *)hdr;
290 
291 	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
292 		return 0;
293 
294 	/*
295 	 * For non-beacon, we don't really care. But beacons may
296 	 * be filtered out, and we thus need the firmware's replay
297 	 * detection, otherwise beacons the firmware previously
298 	 * filtered could be replayed, or something like that, and
299 	 * it can filter a lot - though usually only if nothing has
300 	 * changed.
301 	 */
302 	if (!ieee80211_is_beacon(hdr->frame_control))
303 		return 0;
304 
305 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
306 	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
307 		return -1;
308 
309 	/* good cases */
310 	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
311 		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)))
312 		return 0;
313 
314 	if (!sta)
315 		return -1;
316 
317 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
318 
319 	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
320 
321 	/*
322 	 * both keys will have the same cipher and MIC length, use
323 	 * whichever one is available
324 	 */
325 	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
326 	if (!key) {
327 		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
328 		if (!key)
329 			return -1;
330 	}
331 
332 	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
333 		return -1;
334 
335 	/* get the real key ID */
336 	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
337 	/* and if that's the other key, look it up */
338 	if (keyid != key->keyidx) {
339 		/*
340 		 * shouldn't happen since firmware checked, but be safe
341 		 * in case the MIC length is wrong too, for example
342 		 */
343 		if (keyid != 6 && keyid != 7)
344 			return -1;
345 		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
346 		if (!key)
347 			return -1;
348 	}
349 
350 	/* Report status to mac80211 */
351 	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
352 		ieee80211_key_mic_failure(key);
353 	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
354 		ieee80211_key_replay(key);
355 
356 	return -1;
357 }
358 
359 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
360 			     struct ieee80211_hdr *hdr,
361 			     struct ieee80211_rx_status *stats, u16 phy_info,
362 			     struct iwl_rx_mpdu_desc *desc,
363 			     u32 pkt_flags, int queue, u8 *crypt_len)
364 {
365 	u32 status = le32_to_cpu(desc->status);
366 
367 	/*
368 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
369 	 * (where we don't have the keys).
370 	 * We limit this to aggregation because in TKIP this is a valid
371 	 * scenario, since we may not have the (correct) TTAK (phase 1
372 	 * key) in the firmware.
373 	 */
374 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
375 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
376 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
377 		return -1;
378 
379 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
380 		     !ieee80211_has_protected(hdr->frame_control)))
381 		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status);
382 
383 	if (!ieee80211_has_protected(hdr->frame_control) ||
384 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
385 	    IWL_RX_MPDU_STATUS_SEC_NONE)
386 		return 0;
387 
388 	/* TODO: handle packets encrypted with unknown alg */
389 
390 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
391 	case IWL_RX_MPDU_STATUS_SEC_CCM:
392 	case IWL_RX_MPDU_STATUS_SEC_GCM:
393 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
394 		/* alg is CCM: check MIC only */
395 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
396 			return -1;
397 
398 		stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
399 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
400 		return 0;
401 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
402 		/* Don't drop the frame and decrypt it in SW */
403 		if (!fw_has_api(&mvm->fw->ucode_capa,
404 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
405 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
406 			return 0;
407 
408 		if (mvm->trans->trans_cfg->gen2 &&
409 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
410 			stats->flag |= RX_FLAG_MMIC_ERROR;
411 
412 		*crypt_len = IEEE80211_TKIP_IV_LEN;
413 		fallthrough;
414 	case IWL_RX_MPDU_STATUS_SEC_WEP:
415 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
416 			return -1;
417 
418 		stats->flag |= RX_FLAG_DECRYPTED;
419 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
420 				IWL_RX_MPDU_STATUS_SEC_WEP)
421 			*crypt_len = IEEE80211_WEP_IV_LEN;
422 
423 		if (pkt_flags & FH_RSCSR_RADA_EN) {
424 			stats->flag |= RX_FLAG_ICV_STRIPPED;
425 			if (mvm->trans->trans_cfg->gen2)
426 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
427 		}
428 
429 		return 0;
430 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
431 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
432 			return -1;
433 		stats->flag |= RX_FLAG_DECRYPTED;
434 		return 0;
435 	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
436 		break;
437 	default:
438 		/*
439 		 * Sometimes we can get frames that were not decrypted
440 		 * because the firmware didn't have the keys yet. This can
441 		 * happen after connection where we can get multicast frames
442 		 * before the GTK is installed.
443 		 * Silently drop those frames.
444 		 * Also drop un-decrypted frames in monitor mode.
445 		 */
446 		if (!is_multicast_ether_addr(hdr->addr1) &&
447 		    !mvm->monitor_on && net_ratelimit())
448 			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
449 	}
450 
451 	return 0;
452 }
453 
454 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
455 			    struct ieee80211_sta *sta,
456 			    struct sk_buff *skb,
457 			    struct iwl_rx_packet *pkt)
458 {
459 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
460 
461 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
462 		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
463 			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
464 
465 			skb->ip_summed = CHECKSUM_COMPLETE;
466 			skb->csum = csum_unfold(~(__force __sum16)hwsum);
467 		}
468 	} else {
469 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
470 		struct iwl_mvm_vif *mvmvif;
471 		u16 flags = le16_to_cpu(desc->l3l4_flags);
472 		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
473 				  IWL_RX_L3_PROTO_POS);
474 
475 		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
476 
477 		if (mvmvif->features & NETIF_F_RXCSUM &&
478 		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
479 		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
480 		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
481 		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
482 			skb->ip_summed = CHECKSUM_UNNECESSARY;
483 	}
484 }
485 
486 /*
487  * returns true if a packet is a duplicate and should be dropped.
488  * Updates AMSDU PN tracking info
489  */
490 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
491 			   struct ieee80211_rx_status *rx_status,
492 			   struct ieee80211_hdr *hdr,
493 			   struct iwl_rx_mpdu_desc *desc)
494 {
495 	struct iwl_mvm_sta *mvm_sta;
496 	struct iwl_mvm_rxq_dup_data *dup_data;
497 	u8 tid, sub_frame_idx;
498 
499 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
500 		return false;
501 
502 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
503 	dup_data = &mvm_sta->dup_data[queue];
504 
505 	/*
506 	 * Drop duplicate 802.11 retransmissions
507 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
508 	 */
509 	if (ieee80211_is_ctl(hdr->frame_control) ||
510 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
511 	    is_multicast_ether_addr(hdr->addr1)) {
512 		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
513 		return false;
514 	}
515 
516 	if (ieee80211_is_data_qos(hdr->frame_control))
517 		/* frame has qos control */
518 		tid = ieee80211_get_tid(hdr);
519 	else
520 		tid = IWL_MAX_TID_COUNT;
521 
522 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
523 	sub_frame_idx = desc->amsdu_info &
524 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
525 
526 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
527 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
528 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
529 		return true;
530 
531 	/* Allow same PN as the first subframe for following sub frames */
532 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
533 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
534 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
535 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
536 
537 	dup_data->last_seq[tid] = hdr->seq_ctrl;
538 	dup_data->last_sub_frame[tid] = sub_frame_idx;
539 
540 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
541 
542 	return false;
543 }
544 
545 /*
546  * Returns true if sn2 - buffer_size < sn1 < sn2.
547  * To be used only in order to compare reorder buffer head with NSSN.
548  * We fully trust NSSN unless it is behind us due to reorder timeout.
549  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
550  */
551 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
552 {
553 	return ieee80211_sn_less(sn1, sn2) &&
554 	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
555 }
556 
557 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
558 {
559 	if (IWL_MVM_USE_NSSN_SYNC) {
560 		struct iwl_mvm_nssn_sync_data notif = {
561 			.baid = baid,
562 			.nssn = nssn,
563 		};
564 
565 		iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
566 						&notif, sizeof(notif));
567 	}
568 }
569 
570 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
571 
572 enum iwl_mvm_release_flags {
573 	IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
574 	IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
575 };
576 
577 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
578 				   struct ieee80211_sta *sta,
579 				   struct napi_struct *napi,
580 				   struct iwl_mvm_baid_data *baid_data,
581 				   struct iwl_mvm_reorder_buffer *reorder_buf,
582 				   u16 nssn, u32 flags)
583 {
584 	struct iwl_mvm_reorder_buf_entry *entries =
585 		&baid_data->entries[reorder_buf->queue *
586 				    baid_data->entries_per_queue];
587 	u16 ssn = reorder_buf->head_sn;
588 
589 	lockdep_assert_held(&reorder_buf->lock);
590 
591 	/*
592 	 * We keep the NSSN not too far behind, if we are sync'ing it and it
593 	 * is more than 2048 ahead of us, it must be behind us. Discard it.
594 	 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
595 	 * behind and this queue already processed packets. The next if
596 	 * would have caught cases where this queue would have processed less
597 	 * than 64 packets, but it may have processed more than 64 packets.
598 	 */
599 	if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
600 	    ieee80211_sn_less(nssn, ssn))
601 		goto set_timer;
602 
603 	/* ignore nssn smaller than head sn - this can happen due to timeout */
604 	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
605 		goto set_timer;
606 
607 	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
608 		int index = ssn % reorder_buf->buf_size;
609 		struct sk_buff_head *skb_list = &entries[index].e.frames;
610 		struct sk_buff *skb;
611 
612 		ssn = ieee80211_sn_inc(ssn);
613 		if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
614 		    (ssn == 2048 || ssn == 0))
615 			iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
616 
617 		/*
618 		 * Empty the list. Will have more than one frame for A-MSDU.
619 		 * Empty list is valid as well since nssn indicates frames were
620 		 * received.
621 		 */
622 		while ((skb = __skb_dequeue(skb_list))) {
623 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
624 							reorder_buf->queue,
625 							sta, NULL /* FIXME */);
626 			reorder_buf->num_stored--;
627 		}
628 	}
629 	reorder_buf->head_sn = nssn;
630 
631 set_timer:
632 	if (reorder_buf->num_stored && !reorder_buf->removed) {
633 		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
634 
635 		while (skb_queue_empty(&entries[index].e.frames))
636 			index = (index + 1) % reorder_buf->buf_size;
637 		/* modify timer to match next frame's expiration time */
638 		mod_timer(&reorder_buf->reorder_timer,
639 			  entries[index].e.reorder_time + 1 +
640 			  RX_REORDER_BUF_TIMEOUT_MQ);
641 	} else {
642 		del_timer(&reorder_buf->reorder_timer);
643 	}
644 }
645 
646 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
647 {
648 	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
649 	struct iwl_mvm_baid_data *baid_data =
650 		iwl_mvm_baid_data_from_reorder_buf(buf);
651 	struct iwl_mvm_reorder_buf_entry *entries =
652 		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
653 	int i;
654 	u16 sn = 0, index = 0;
655 	bool expired = false;
656 	bool cont = false;
657 
658 	spin_lock(&buf->lock);
659 
660 	if (!buf->num_stored || buf->removed) {
661 		spin_unlock(&buf->lock);
662 		return;
663 	}
664 
665 	for (i = 0; i < buf->buf_size ; i++) {
666 		index = (buf->head_sn + i) % buf->buf_size;
667 
668 		if (skb_queue_empty(&entries[index].e.frames)) {
669 			/*
670 			 * If there is a hole and the next frame didn't expire
671 			 * we want to break and not advance SN
672 			 */
673 			cont = false;
674 			continue;
675 		}
676 		if (!cont &&
677 		    !time_after(jiffies, entries[index].e.reorder_time +
678 					 RX_REORDER_BUF_TIMEOUT_MQ))
679 			break;
680 
681 		expired = true;
682 		/* continue until next hole after this expired frames */
683 		cont = true;
684 		sn = ieee80211_sn_add(buf->head_sn, i + 1);
685 	}
686 
687 	if (expired) {
688 		struct ieee80211_sta *sta;
689 		struct iwl_mvm_sta *mvmsta;
690 		u8 sta_id = ffs(baid_data->sta_mask) - 1;
691 
692 		rcu_read_lock();
693 		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
694 		if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) {
695 			rcu_read_unlock();
696 			goto out;
697 		}
698 
699 		mvmsta = iwl_mvm_sta_from_mac80211(sta);
700 
701 		/* SN is set to the last expired frame + 1 */
702 		IWL_DEBUG_HT(buf->mvm,
703 			     "Releasing expired frames for sta %u, sn %d\n",
704 			     sta_id, sn);
705 		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
706 						     sta, baid_data->tid);
707 		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
708 				       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
709 		rcu_read_unlock();
710 	} else {
711 		/*
712 		 * If no frame expired and there are stored frames, index is now
713 		 * pointing to the first unexpired frame - modify timer
714 		 * accordingly to this frame.
715 		 */
716 		mod_timer(&buf->reorder_timer,
717 			  entries[index].e.reorder_time +
718 			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
719 	}
720 
721 out:
722 	spin_unlock(&buf->lock);
723 }
724 
725 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
726 			   struct iwl_mvm_delba_data *data)
727 {
728 	struct iwl_mvm_baid_data *ba_data;
729 	struct ieee80211_sta *sta;
730 	struct iwl_mvm_reorder_buffer *reorder_buf;
731 	u8 baid = data->baid;
732 	u32 sta_id;
733 
734 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
735 		return;
736 
737 	rcu_read_lock();
738 
739 	ba_data = rcu_dereference(mvm->baid_map[baid]);
740 	if (WARN_ON_ONCE(!ba_data))
741 		goto out;
742 
743 	/* pick any STA ID to find the pointer */
744 	sta_id = ffs(ba_data->sta_mask) - 1;
745 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
746 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
747 		goto out;
748 
749 	reorder_buf = &ba_data->reorder_buf[queue];
750 
751 	/* release all frames that are in the reorder buffer to the stack */
752 	spin_lock_bh(&reorder_buf->lock);
753 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
754 			       ieee80211_sn_add(reorder_buf->head_sn,
755 						reorder_buf->buf_size),
756 			       0);
757 	spin_unlock_bh(&reorder_buf->lock);
758 	del_timer_sync(&reorder_buf->reorder_timer);
759 
760 out:
761 	rcu_read_unlock();
762 }
763 
764 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
765 					      struct napi_struct *napi,
766 					      u8 baid, u16 nssn, int queue,
767 					      u32 flags)
768 {
769 	struct ieee80211_sta *sta;
770 	struct iwl_mvm_reorder_buffer *reorder_buf;
771 	struct iwl_mvm_baid_data *ba_data;
772 	u32 sta_id;
773 
774 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
775 		     baid, nssn);
776 
777 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
778 			 baid >= ARRAY_SIZE(mvm->baid_map)))
779 		return;
780 
781 	rcu_read_lock();
782 
783 	ba_data = rcu_dereference(mvm->baid_map[baid]);
784 	if (!ba_data) {
785 		WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
786 		     "BAID %d not found in map\n", baid);
787 		goto out;
788 	}
789 
790 	/* pick any STA ID to find the pointer */
791 	sta_id = ffs(ba_data->sta_mask) - 1;
792 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
793 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
794 		goto out;
795 
796 	reorder_buf = &ba_data->reorder_buf[queue];
797 
798 	spin_lock_bh(&reorder_buf->lock);
799 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
800 			       reorder_buf, nssn, flags);
801 	spin_unlock_bh(&reorder_buf->lock);
802 
803 out:
804 	rcu_read_unlock();
805 }
806 
807 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
808 			      struct napi_struct *napi, int queue,
809 			      const struct iwl_mvm_nssn_sync_data *data)
810 {
811 	iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
812 					  data->nssn, queue,
813 					  IWL_MVM_RELEASE_FROM_RSS_SYNC);
814 }
815 
816 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
817 			    struct iwl_rx_cmd_buffer *rxb, int queue)
818 {
819 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
820 	struct iwl_rxq_sync_notification *notif;
821 	struct iwl_mvm_internal_rxq_notif *internal_notif;
822 	u32 len = iwl_rx_packet_payload_len(pkt);
823 
824 	notif = (void *)pkt->data;
825 	internal_notif = (void *)notif->payload;
826 
827 	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
828 		      "invalid notification size %d (%d)",
829 		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
830 		return;
831 	len -= sizeof(*notif) + sizeof(*internal_notif);
832 
833 	if (internal_notif->sync &&
834 	    mvm->queue_sync_cookie != internal_notif->cookie) {
835 		WARN_ONCE(1, "Received expired RX queue sync message\n");
836 		return;
837 	}
838 
839 	switch (internal_notif->type) {
840 	case IWL_MVM_RXQ_EMPTY:
841 		WARN_ONCE(len, "invalid empty notification size %d", len);
842 		break;
843 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
844 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
845 			      "invalid delba notification size %d (%d)",
846 			      len, (int)sizeof(struct iwl_mvm_delba_data)))
847 			break;
848 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
849 		break;
850 	case IWL_MVM_RXQ_NSSN_SYNC:
851 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
852 			      "invalid nssn sync notification size %d (%d)",
853 			      len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
854 			break;
855 		iwl_mvm_nssn_sync(mvm, napi, queue,
856 				  (void *)internal_notif->data);
857 		break;
858 	default:
859 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
860 	}
861 
862 	if (internal_notif->sync) {
863 		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
864 			  "queue sync: queue %d responded a second time!\n",
865 			  queue);
866 		if (READ_ONCE(mvm->queue_sync_state) == 0)
867 			wake_up(&mvm->rx_sync_waitq);
868 	}
869 }
870 
871 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
872 				     struct ieee80211_sta *sta, int tid,
873 				     struct iwl_mvm_reorder_buffer *buffer,
874 				     u32 reorder, u32 gp2, int queue)
875 {
876 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
877 
878 	if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
879 		/* we have a new (A-)MPDU ... */
880 
881 		/*
882 		 * reset counter to 0 if we didn't have any oldsn in
883 		 * the last A-MPDU (as detected by GP2 being identical)
884 		 */
885 		if (!buffer->consec_oldsn_prev_drop)
886 			buffer->consec_oldsn_drops = 0;
887 
888 		/* either way, update our tracking state */
889 		buffer->consec_oldsn_ampdu_gp2 = gp2;
890 	} else if (buffer->consec_oldsn_prev_drop) {
891 		/*
892 		 * tracking state didn't change, and we had an old SN
893 		 * indication before - do nothing in this case, we
894 		 * already noted this one down and are waiting for the
895 		 * next A-MPDU (by GP2)
896 		 */
897 		return;
898 	}
899 
900 	/* return unless this MPDU has old SN */
901 	if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
902 		return;
903 
904 	/* update state */
905 	buffer->consec_oldsn_prev_drop = 1;
906 	buffer->consec_oldsn_drops++;
907 
908 	/* if limit is reached, send del BA and reset state */
909 	if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
910 		IWL_WARN(mvm,
911 			 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
912 			 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
913 			 sta->addr, queue, tid);
914 		ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
915 		buffer->consec_oldsn_prev_drop = 0;
916 		buffer->consec_oldsn_drops = 0;
917 	}
918 }
919 
920 /*
921  * Returns true if the MPDU was buffered\dropped, false if it should be passed
922  * to upper layer.
923  */
924 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
925 			    struct napi_struct *napi,
926 			    int queue,
927 			    struct ieee80211_sta *sta,
928 			    struct sk_buff *skb,
929 			    struct iwl_rx_mpdu_desc *desc)
930 {
931 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
932 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
933 	struct iwl_mvm_baid_data *baid_data;
934 	struct iwl_mvm_reorder_buffer *buffer;
935 	struct sk_buff *tail;
936 	u32 reorder = le32_to_cpu(desc->reorder_data);
937 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
938 	bool last_subframe =
939 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
940 	u8 tid = ieee80211_get_tid(hdr);
941 	u8 sub_frame_idx = desc->amsdu_info &
942 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
943 	struct iwl_mvm_reorder_buf_entry *entries;
944 	u32 sta_mask;
945 	int index;
946 	u16 nssn, sn;
947 	u8 baid;
948 
949 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
950 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
951 
952 	/*
953 	 * This also covers the case of receiving a Block Ack Request
954 	 * outside a BA session; we'll pass it to mac80211 and that
955 	 * then sends a delBA action frame.
956 	 * This also covers pure monitor mode, in which case we won't
957 	 * have any BA sessions.
958 	 */
959 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
960 		return false;
961 
962 	/* no sta yet */
963 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
964 		      "Got valid BAID without a valid station assigned\n"))
965 		return false;
966 
967 	/* not a data packet or a bar */
968 	if (!ieee80211_is_back_req(hdr->frame_control) &&
969 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
970 	     is_multicast_ether_addr(hdr->addr1)))
971 		return false;
972 
973 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
974 		return false;
975 
976 	baid_data = rcu_dereference(mvm->baid_map[baid]);
977 	if (!baid_data) {
978 		IWL_DEBUG_RX(mvm,
979 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
980 			      baid, reorder);
981 		return false;
982 	}
983 
984 	rcu_read_lock();
985 	sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
986 	rcu_read_unlock();
987 
988 	if (WARN(tid != baid_data->tid ||
989 		 !(sta_mask & baid_data->sta_mask),
990 		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
991 		 baid, baid_data->sta_mask, baid_data->tid, sta_mask, tid))
992 		return false;
993 
994 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
995 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
996 		IWL_RX_MPDU_REORDER_SN_SHIFT;
997 
998 	buffer = &baid_data->reorder_buf[queue];
999 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
1000 
1001 	spin_lock_bh(&buffer->lock);
1002 
1003 	if (!buffer->valid) {
1004 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1005 			spin_unlock_bh(&buffer->lock);
1006 			return false;
1007 		}
1008 		buffer->valid = true;
1009 	}
1010 
1011 	if (ieee80211_is_back_req(hdr->frame_control)) {
1012 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1013 				       buffer, nssn, 0);
1014 		goto drop;
1015 	}
1016 
1017 	/*
1018 	 * If there was a significant jump in the nssn - adjust.
1019 	 * If the SN is smaller than the NSSN it might need to first go into
1020 	 * the reorder buffer, in which case we just release up to it and the
1021 	 * rest of the function will take care of storing it and releasing up to
1022 	 * the nssn.
1023 	 * This should not happen. This queue has been lagging and it should
1024 	 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1025 	 * and update the other queues.
1026 	 */
1027 	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1028 				buffer->buf_size) ||
1029 	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1030 		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1031 
1032 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1033 				       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1034 	}
1035 
1036 	iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1037 				 rx_status->device_timestamp, queue);
1038 
1039 	/* drop any oudated packets */
1040 	if (ieee80211_sn_less(sn, buffer->head_sn))
1041 		goto drop;
1042 
1043 	/* release immediately if allowed by nssn and no stored frames */
1044 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1045 		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1046 				       buffer->buf_size) &&
1047 		   (!amsdu || last_subframe)) {
1048 			/*
1049 			 * If we crossed the 2048 or 0 SN, notify all the
1050 			 * queues. This is done in order to avoid having a
1051 			 * head_sn that lags behind for too long. When that
1052 			 * happens, we can get to a situation where the head_sn
1053 			 * is within the interval [nssn - buf_size : nssn]
1054 			 * which will make us think that the nssn is a packet
1055 			 * that we already freed because of the reordering
1056 			 * buffer and we will ignore it. So maintain the
1057 			 * head_sn somewhat updated across all the queues:
1058 			 * when it crosses 0 and 2048.
1059 			 */
1060 			if (sn == 2048 || sn == 0)
1061 				iwl_mvm_sync_nssn(mvm, baid, sn);
1062 			buffer->head_sn = nssn;
1063 		}
1064 		/* No need to update AMSDU last SN - we are moving the head */
1065 		spin_unlock_bh(&buffer->lock);
1066 		return false;
1067 	}
1068 
1069 	/*
1070 	 * release immediately if there are no stored frames, and the sn is
1071 	 * equal to the head.
1072 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
1073 	 * When we released everything, and we got the next frame in the
1074 	 * sequence, according to the NSSN we can't release immediately,
1075 	 * while technically there is no hole and we can move forward.
1076 	 */
1077 	if (!buffer->num_stored && sn == buffer->head_sn) {
1078 		if (!amsdu || last_subframe) {
1079 			if (sn == 2048 || sn == 0)
1080 				iwl_mvm_sync_nssn(mvm, baid, sn);
1081 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1082 		}
1083 		/* No need to update AMSDU last SN - we are moving the head */
1084 		spin_unlock_bh(&buffer->lock);
1085 		return false;
1086 	}
1087 
1088 	index = sn % buffer->buf_size;
1089 
1090 	/*
1091 	 * Check if we already stored this frame
1092 	 * As AMSDU is either received or not as whole, logic is simple:
1093 	 * If we have frames in that position in the buffer and the last frame
1094 	 * originated from AMSDU had a different SN then it is a retransmission.
1095 	 * If it is the same SN then if the subframe index is incrementing it
1096 	 * is the same AMSDU - otherwise it is a retransmission.
1097 	 */
1098 	tail = skb_peek_tail(&entries[index].e.frames);
1099 	if (tail && !amsdu)
1100 		goto drop;
1101 	else if (tail && (sn != buffer->last_amsdu ||
1102 			  buffer->last_sub_index >= sub_frame_idx))
1103 		goto drop;
1104 
1105 	/* put in reorder buffer */
1106 	__skb_queue_tail(&entries[index].e.frames, skb);
1107 	buffer->num_stored++;
1108 	entries[index].e.reorder_time = jiffies;
1109 
1110 	if (amsdu) {
1111 		buffer->last_amsdu = sn;
1112 		buffer->last_sub_index = sub_frame_idx;
1113 	}
1114 
1115 	/*
1116 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1117 	 * The reason is that NSSN advances on the first sub-frame, and may
1118 	 * cause the reorder buffer to advance before all the sub-frames arrive.
1119 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1120 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1121 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1122 	 * already ahead and it will be dropped.
1123 	 * If the last sub-frame is not on this queue - we will get frame
1124 	 * release notification with up to date NSSN.
1125 	 */
1126 	if (!amsdu || last_subframe)
1127 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1128 				       buffer, nssn,
1129 				       IWL_MVM_RELEASE_SEND_RSS_SYNC);
1130 
1131 	spin_unlock_bh(&buffer->lock);
1132 	return true;
1133 
1134 drop:
1135 	kfree_skb(skb);
1136 	spin_unlock_bh(&buffer->lock);
1137 	return true;
1138 }
1139 
1140 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1141 				    u32 reorder_data, u8 baid)
1142 {
1143 	unsigned long now = jiffies;
1144 	unsigned long timeout;
1145 	struct iwl_mvm_baid_data *data;
1146 
1147 	rcu_read_lock();
1148 
1149 	data = rcu_dereference(mvm->baid_map[baid]);
1150 	if (!data) {
1151 		IWL_DEBUG_RX(mvm,
1152 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1153 			      baid, reorder_data);
1154 		goto out;
1155 	}
1156 
1157 	if (!data->timeout)
1158 		goto out;
1159 
1160 	timeout = data->timeout;
1161 	/*
1162 	 * Do not update last rx all the time to avoid cache bouncing
1163 	 * between the rx queues.
1164 	 * Update it every timeout. Worst case is the session will
1165 	 * expire after ~ 2 * timeout, which doesn't matter that much.
1166 	 */
1167 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1168 		/* Update is atomic */
1169 		data->last_rx = now;
1170 
1171 out:
1172 	rcu_read_unlock();
1173 }
1174 
1175 static void iwl_mvm_flip_address(u8 *addr)
1176 {
1177 	int i;
1178 	u8 mac_addr[ETH_ALEN];
1179 
1180 	for (i = 0; i < ETH_ALEN; i++)
1181 		mac_addr[i] = addr[ETH_ALEN - i - 1];
1182 	ether_addr_copy(addr, mac_addr);
1183 }
1184 
1185 struct iwl_mvm_rx_phy_data {
1186 	enum iwl_rx_phy_info_type info_type;
1187 	__le32 d0, d1, d2, d3, eht_d4, d5;
1188 	__le16 d4;
1189 	bool with_data;
1190 	bool first_subframe;
1191 	__le32 rx_vec[4];
1192 
1193 	u32 rate_n_flags;
1194 	u32 gp2_on_air_rise;
1195 	u16 phy_info;
1196 	u8 energy_a, energy_b;
1197 	u8 channel;
1198 };
1199 
1200 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1201 				     struct iwl_mvm_rx_phy_data *phy_data,
1202 				     struct ieee80211_radiotap_he_mu *he_mu)
1203 {
1204 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
1205 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
1206 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
1207 	u32 rate_n_flags = phy_data->rate_n_flags;
1208 
1209 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1210 		he_mu->flags1 |=
1211 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1212 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1213 
1214 		he_mu->flags1 |=
1215 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1216 						   phy_data4),
1217 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1218 
1219 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1220 					     phy_data2);
1221 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1222 					     phy_data3);
1223 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1224 					     phy_data2);
1225 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1226 					     phy_data3);
1227 	}
1228 
1229 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1230 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1231 		he_mu->flags1 |=
1232 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1233 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1234 
1235 		he_mu->flags2 |=
1236 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1237 						   phy_data4),
1238 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1239 
1240 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1241 					     phy_data2);
1242 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1243 					     phy_data3);
1244 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1245 					     phy_data2);
1246 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1247 					     phy_data3);
1248 	}
1249 }
1250 
1251 static void
1252 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1253 			       struct ieee80211_radiotap_he *he,
1254 			       struct ieee80211_radiotap_he_mu *he_mu,
1255 			       struct ieee80211_rx_status *rx_status)
1256 {
1257 	/*
1258 	 * Unfortunately, we have to leave the mac80211 data
1259 	 * incorrect for the case that we receive an HE-MU
1260 	 * transmission and *don't* have the HE phy data (due
1261 	 * to the bits being used for TSF). This shouldn't
1262 	 * happen though as management frames where we need
1263 	 * the TSF/timers are not be transmitted in HE-MU.
1264 	 */
1265 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1266 	u32 rate_n_flags = phy_data->rate_n_flags;
1267 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1268 	u8 offs = 0;
1269 
1270 	rx_status->bw = RATE_INFO_BW_HE_RU;
1271 
1272 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1273 
1274 	switch (ru) {
1275 	case 0 ... 36:
1276 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1277 		offs = ru;
1278 		break;
1279 	case 37 ... 52:
1280 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1281 		offs = ru - 37;
1282 		break;
1283 	case 53 ... 60:
1284 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1285 		offs = ru - 53;
1286 		break;
1287 	case 61 ... 64:
1288 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1289 		offs = ru - 61;
1290 		break;
1291 	case 65 ... 66:
1292 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1293 		offs = ru - 65;
1294 		break;
1295 	case 67:
1296 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1297 		break;
1298 	case 68:
1299 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1300 		break;
1301 	}
1302 	he->data2 |= le16_encode_bits(offs,
1303 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1304 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1305 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1306 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1307 		he->data2 |=
1308 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1309 
1310 #define CHECK_BW(bw) \
1311 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1312 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1313 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1314 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1315 	CHECK_BW(20);
1316 	CHECK_BW(40);
1317 	CHECK_BW(80);
1318 	CHECK_BW(160);
1319 
1320 	if (he_mu)
1321 		he_mu->flags2 |=
1322 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1323 						   rate_n_flags),
1324 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1325 	else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1326 		he->data6 |=
1327 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1328 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1329 						   rate_n_flags),
1330 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1331 }
1332 
1333 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1334 				       struct iwl_mvm_rx_phy_data *phy_data,
1335 				       struct ieee80211_radiotap_he *he,
1336 				       struct ieee80211_radiotap_he_mu *he_mu,
1337 				       struct ieee80211_rx_status *rx_status,
1338 				       int queue)
1339 {
1340 	switch (phy_data->info_type) {
1341 	case IWL_RX_PHY_INFO_TYPE_NONE:
1342 	case IWL_RX_PHY_INFO_TYPE_CCK:
1343 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1344 	case IWL_RX_PHY_INFO_TYPE_HT:
1345 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1346 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1347 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1348 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1349 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1350 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1351 		return;
1352 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1353 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1354 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1355 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1356 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1357 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1358 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1359 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1360 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1361 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1362 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1363 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1364 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1365 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1366 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1367 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1368 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1369 		fallthrough;
1370 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1371 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1372 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1373 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1374 		/* HE common */
1375 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1376 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1377 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1378 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1379 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1380 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1381 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1382 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1383 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1384 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1385 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1386 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1387 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1388 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1389 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1390 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1391 		}
1392 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1393 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1394 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1395 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1396 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1397 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1398 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1399 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1400 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1401 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1402 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1403 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1404 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1405 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1406 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1407 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1408 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1409 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1410 		break;
1411 	}
1412 
1413 	switch (phy_data->info_type) {
1414 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1415 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1416 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1417 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1418 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1419 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1420 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1421 		break;
1422 	default:
1423 		/* nothing here */
1424 		break;
1425 	}
1426 
1427 	switch (phy_data->info_type) {
1428 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1429 		he_mu->flags1 |=
1430 			le16_encode_bits(le16_get_bits(phy_data->d4,
1431 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1432 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1433 		he_mu->flags1 |=
1434 			le16_encode_bits(le16_get_bits(phy_data->d4,
1435 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1436 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1437 		he_mu->flags2 |=
1438 			le16_encode_bits(le16_get_bits(phy_data->d4,
1439 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1440 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1441 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1442 		fallthrough;
1443 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1444 		he_mu->flags2 |=
1445 			le16_encode_bits(le32_get_bits(phy_data->d1,
1446 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1447 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1448 		he_mu->flags2 |=
1449 			le16_encode_bits(le32_get_bits(phy_data->d1,
1450 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1451 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1452 		fallthrough;
1453 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1454 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1455 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1456 		break;
1457 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1458 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1459 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1460 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1461 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1462 		break;
1463 	default:
1464 		/* nothing */
1465 		break;
1466 	}
1467 }
1468 
1469 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1470 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1471 
1472 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1473 	typeof(enc_bits) _enc_bits = enc_bits; \
1474 	typeof(usig) _usig = usig; \
1475 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1476 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1477 } while (0)
1478 
1479 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1480 	eht->data[(rt_data)] |= \
1481 		(cpu_to_le32 \
1482 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1483 		 LE32_DEC_ENC(data ## fw_data, \
1484 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1485 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1486 
1487 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1488 	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1489 
1490 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1491 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1492 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1493 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1494 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1495 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1496 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1497 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1498 
1499 #define IWL_RX_RU_DATA_A1			2
1500 #define IWL_RX_RU_DATA_A2			2
1501 #define IWL_RX_RU_DATA_B1			2
1502 #define IWL_RX_RU_DATA_B2			3
1503 #define IWL_RX_RU_DATA_C1			3
1504 #define IWL_RX_RU_DATA_C2			3
1505 #define IWL_RX_RU_DATA_D1			4
1506 #define IWL_RX_RU_DATA_D2			4
1507 
1508 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1509 	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1510 			    rt_ru,					\
1511 			    IWL_RX_RU_DATA_ ## fw_ru,			\
1512 			    fw_ru)
1513 
1514 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1515 				      struct iwl_mvm_rx_phy_data *phy_data,
1516 				      struct ieee80211_rx_status *rx_status,
1517 				      struct ieee80211_radiotap_eht *eht,
1518 				      struct ieee80211_radiotap_eht_usig *usig)
1519 {
1520 	if (phy_data->with_data) {
1521 		__le32 data1 = phy_data->d1;
1522 		__le32 data2 = phy_data->d2;
1523 		__le32 data3 = phy_data->d3;
1524 		__le32 data4 = phy_data->eht_d4;
1525 		__le32 data5 = phy_data->d5;
1526 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1527 
1528 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1529 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1530 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1531 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1532 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1533 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1534 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1535 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1536 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1537 		IWL_MVM_ENC_USIG_VALUE_MASK
1538 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1539 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1540 
1541 		eht->user_info[0] |=
1542 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1543 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1544 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1545 
1546 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1547 		eht->data[7] |= LE32_DEC_ENC
1548 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1549 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1550 
1551 		/*
1552 		 * Hardware labels the content channels/RU allocation values
1553 		 * as follows:
1554 		 *           Content Channel 1		Content Channel 2
1555 		 *   20 MHz: A1
1556 		 *   40 MHz: A1				B1
1557 		 *   80 MHz: A1 C1			B1 D1
1558 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1559 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1560 		 *
1561 		 * However firmware can only give us A1-D2, so the higher
1562 		 * frequencies are missing.
1563 		 */
1564 
1565 		switch (phy_bw) {
1566 		case RATE_MCS_CHAN_WIDTH_320:
1567 			/* additional values are missing in RX metadata */
1568 		case RATE_MCS_CHAN_WIDTH_160:
1569 			/* content channel 1 */
1570 			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1571 			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1572 			/* content channel 2 */
1573 			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1574 			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1575 			fallthrough;
1576 		case RATE_MCS_CHAN_WIDTH_80:
1577 			/* content channel 1 */
1578 			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1579 			/* content channel 2 */
1580 			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1581 			fallthrough;
1582 		case RATE_MCS_CHAN_WIDTH_40:
1583 			/* content channel 2 */
1584 			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1585 			fallthrough;
1586 		case RATE_MCS_CHAN_WIDTH_20:
1587 			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1588 			break;
1589 		}
1590 	} else {
1591 		__le32 usig_a1 = phy_data->rx_vec[0];
1592 		__le32 usig_a2 = phy_data->rx_vec[1];
1593 
1594 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1595 					    IWL_RX_USIG_A1_DISREGARD,
1596 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1597 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1598 					    IWL_RX_USIG_A1_VALIDATE,
1599 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1600 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1601 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1602 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1603 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1604 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1605 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1606 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1607 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1608 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1609 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1610 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1611 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1612 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1613 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1614 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1615 		IWL_MVM_ENC_USIG_VALUE_MASK
1616 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1617 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1618 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1619 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1620 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1621 	}
1622 }
1623 
1624 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1625 				      struct iwl_mvm_rx_phy_data *phy_data,
1626 				      struct ieee80211_rx_status *rx_status,
1627 				      struct ieee80211_radiotap_eht *eht,
1628 				      struct ieee80211_radiotap_eht_usig *usig)
1629 {
1630 	if (phy_data->with_data) {
1631 		__le32 data5 = phy_data->d5;
1632 
1633 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1634 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1635 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1636 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1637 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1638 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1639 
1640 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1641 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1642 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1643 	} else {
1644 		__le32 usig_a1 = phy_data->rx_vec[0];
1645 		__le32 usig_a2 = phy_data->rx_vec[1];
1646 
1647 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1648 					    IWL_RX_USIG_A1_DISREGARD,
1649 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1650 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1651 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1652 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1653 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1654 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1655 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1656 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1657 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1658 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1659 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1660 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1661 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1662 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1663 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1664 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1665 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1666 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1667 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1668 	}
1669 }
1670 
1671 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1672 				  struct ieee80211_rx_status *rx_status,
1673 				  struct ieee80211_radiotap_eht *eht)
1674 {
1675 	u32 ru = le32_get_bits(eht->data[8],
1676 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1677 	enum nl80211_eht_ru_alloc nl_ru;
1678 
1679 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1680 	 * in an EHT variant User Info field
1681 	 */
1682 
1683 	switch (ru) {
1684 	case 0 ... 36:
1685 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1686 		break;
1687 	case 37 ... 52:
1688 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1689 		break;
1690 	case 53 ... 60:
1691 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1692 		break;
1693 	case 61 ... 64:
1694 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1695 		break;
1696 	case 65 ... 66:
1697 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1698 		break;
1699 	case 67:
1700 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1701 		break;
1702 	case 68:
1703 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1704 		break;
1705 	case 69:
1706 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1707 		break;
1708 	case 70 ... 81:
1709 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1710 		break;
1711 	case 82 ... 89:
1712 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1713 		break;
1714 	case 90 ... 93:
1715 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1716 		break;
1717 	case 94 ... 95:
1718 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1719 		break;
1720 	case 96 ... 99:
1721 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1722 		break;
1723 	case 100 ... 103:
1724 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1725 		break;
1726 	case 104:
1727 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1728 		break;
1729 	case 105 ... 106:
1730 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1731 		break;
1732 	default:
1733 		return;
1734 	}
1735 
1736 	rx_status->bw = RATE_INFO_BW_EHT_RU;
1737 	rx_status->eht.ru = nl_ru;
1738 }
1739 
1740 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1741 					struct iwl_mvm_rx_phy_data *phy_data,
1742 					struct ieee80211_rx_status *rx_status,
1743 					struct ieee80211_radiotap_eht *eht,
1744 					struct ieee80211_radiotap_eht_usig *usig)
1745 
1746 {
1747 	__le32 data0 = phy_data->d0;
1748 	__le32 data1 = phy_data->d1;
1749 	__le32 usig_a1 = phy_data->rx_vec[0];
1750 	u8 info_type = phy_data->info_type;
1751 
1752 	/* Not in EHT range */
1753 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1754 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1755 		return;
1756 
1757 	usig->common |= cpu_to_le32
1758 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1759 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1760 	if (phy_data->with_data) {
1761 		usig->common |= LE32_DEC_ENC(data0,
1762 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1763 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1764 		usig->common |= LE32_DEC_ENC(data0,
1765 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1766 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1767 	} else {
1768 		usig->common |= LE32_DEC_ENC(usig_a1,
1769 					     IWL_RX_USIG_A1_UL_FLAG,
1770 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1771 		usig->common |= LE32_DEC_ENC(usig_a1,
1772 					     IWL_RX_USIG_A1_BSS_COLOR,
1773 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1774 	}
1775 
1776 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1777 	eht->data[0] |= LE32_DEC_ENC(data0,
1778 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1779 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1780 
1781 	/* All RU allocating size/index is in TB format */
1782 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1783 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1784 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1785 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_B0,
1786 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1787 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_B1_B7_ALLOC,
1788 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1789 
1790 	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1791 
1792 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1793 	 * which is on only in case of monitor mode so no need to check monitor
1794 	 * mode
1795 	 */
1796 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1797 	eht->data[1] |=
1798 		le32_encode_bits(mvm->monitor_p80,
1799 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1800 
1801 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1802 	if (phy_data->with_data)
1803 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1804 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1805 	else
1806 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1807 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1808 
1809 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1810 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1811 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1812 
1813 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1814 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1815 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1816 
1817 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1818 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1819 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1820 
1821 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1822 
1823 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1824 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1825 
1826 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1827 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1828 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1829 
1830 	/*
1831 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1832 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1833 	 */
1834 
1835 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1836 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1837 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1838 
1839 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1840 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1841 		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1842 
1843 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1844 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1845 		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1846 }
1847 
1848 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1849 			   struct iwl_mvm_rx_phy_data *phy_data,
1850 			   int queue)
1851 {
1852 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1853 
1854 	struct ieee80211_radiotap_eht *eht;
1855 	struct ieee80211_radiotap_eht_usig *usig;
1856 	size_t eht_len = sizeof(*eht);
1857 
1858 	u32 rate_n_flags = phy_data->rate_n_flags;
1859 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1860 	/* EHT and HE have the same valus for LTF */
1861 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1862 	u16 phy_info = phy_data->phy_info;
1863 	u32 bw;
1864 
1865 	/* u32 for 1 user_info */
1866 	if (phy_data->with_data)
1867 		eht_len += sizeof(u32);
1868 
1869 	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1870 
1871 	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1872 					sizeof(*usig));
1873 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1874 	usig->common |=
1875 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1876 
1877 	/* specific handling for 320MHz */
1878 	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1879 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1880 		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1881 				le32_to_cpu(phy_data->d0));
1882 
1883 	usig->common |= cpu_to_le32
1884 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1885 
1886 	/* report the AMPDU-EOF bit on single frames */
1887 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1888 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1889 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1890 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1891 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1892 	}
1893 
1894 	/* update aggregation data for monitor sake on default queue */
1895 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1896 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1897 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1898 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1899 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1900 	}
1901 
1902 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1903 		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1904 
1905 #define CHECK_TYPE(F)							\
1906 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1907 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1908 
1909 	CHECK_TYPE(SU);
1910 	CHECK_TYPE(EXT_SU);
1911 	CHECK_TYPE(MU);
1912 	CHECK_TYPE(TRIG);
1913 
1914 	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1915 	case 0:
1916 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1917 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1918 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1919 		} else {
1920 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1921 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1922 		}
1923 		break;
1924 	case 1:
1925 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1926 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1927 		break;
1928 	case 2:
1929 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1930 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1931 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1932 		else
1933 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1934 		break;
1935 	case 3:
1936 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1937 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1938 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1939 		}
1940 		break;
1941 	default:
1942 		/* nothing here */
1943 		break;
1944 	}
1945 
1946 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1947 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1948 		eht->data[0] |= cpu_to_le32
1949 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1950 				    ltf) |
1951 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1952 				    rx_status->eht.gi));
1953 	}
1954 
1955 
1956 	if (!phy_data->with_data) {
1957 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1958 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1959 		eht->data[7] |=
1960 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1961 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1962 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1963 		if (rate_n_flags & RATE_MCS_BF_MSK)
1964 			eht->data[7] |=
1965 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1966 	} else {
1967 		eht->user_info[0] |=
1968 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1969 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1970 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1971 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1972 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1973 
1974 		if (rate_n_flags & RATE_MCS_BF_MSK)
1975 			eht->user_info[0] |=
1976 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1977 
1978 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1979 			eht->user_info[0] |=
1980 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1981 
1982 		eht->user_info[0] |= cpu_to_le32
1983 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1984 				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1985 					      rate_n_flags)) |
1986 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1987 				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1988 	}
1989 }
1990 
1991 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1992 			  struct iwl_mvm_rx_phy_data *phy_data,
1993 			  int queue)
1994 {
1995 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1996 	struct ieee80211_radiotap_he *he = NULL;
1997 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1998 	u32 rate_n_flags = phy_data->rate_n_flags;
1999 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
2000 	u8 ltf;
2001 	static const struct ieee80211_radiotap_he known = {
2002 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
2003 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
2004 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
2005 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
2006 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
2007 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
2008 	};
2009 	static const struct ieee80211_radiotap_he_mu mu_known = {
2010 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
2011 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
2012 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
2013 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
2014 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
2015 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
2016 	};
2017 	u16 phy_info = phy_data->phy_info;
2018 
2019 	he = skb_put_data(skb, &known, sizeof(known));
2020 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
2021 
2022 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
2023 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
2024 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
2025 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
2026 	}
2027 
2028 	/* report the AMPDU-EOF bit on single frames */
2029 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2030 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2031 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2032 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
2033 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2034 	}
2035 
2036 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2037 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
2038 					   queue);
2039 
2040 	/* update aggregation data for monitor sake on default queue */
2041 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
2042 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
2043 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2044 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
2045 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2046 	}
2047 
2048 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
2049 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
2050 		rx_status->bw = RATE_INFO_BW_HE_RU;
2051 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
2052 	}
2053 
2054 	/* actually data is filled in mac80211 */
2055 	if (he_type == RATE_MCS_HE_TYPE_SU ||
2056 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
2057 		he->data1 |=
2058 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
2059 
2060 #define CHECK_TYPE(F)							\
2061 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
2062 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
2063 
2064 	CHECK_TYPE(SU);
2065 	CHECK_TYPE(EXT_SU);
2066 	CHECK_TYPE(MU);
2067 	CHECK_TYPE(TRIG);
2068 
2069 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
2070 
2071 	if (rate_n_flags & RATE_MCS_BF_MSK)
2072 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
2073 
2074 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
2075 		RATE_MCS_HE_GI_LTF_POS) {
2076 	case 0:
2077 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2078 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2079 		else
2080 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2081 		if (he_type == RATE_MCS_HE_TYPE_MU)
2082 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2083 		else
2084 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
2085 		break;
2086 	case 1:
2087 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2088 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2089 		else
2090 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2091 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2092 		break;
2093 	case 2:
2094 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
2095 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2096 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2097 		} else {
2098 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2099 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2100 		}
2101 		break;
2102 	case 3:
2103 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2104 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2105 		break;
2106 	case 4:
2107 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2108 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2109 		break;
2110 	default:
2111 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
2112 	}
2113 
2114 	he->data5 |= le16_encode_bits(ltf,
2115 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
2116 }
2117 
2118 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
2119 				struct iwl_mvm_rx_phy_data *phy_data)
2120 {
2121 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2122 	struct ieee80211_radiotap_lsig *lsig;
2123 
2124 	switch (phy_data->info_type) {
2125 	case IWL_RX_PHY_INFO_TYPE_HT:
2126 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
2127 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
2128 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
2129 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
2130 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
2131 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
2132 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
2133 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
2134 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
2135 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
2136 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
2137 		lsig = skb_put(skb, sizeof(*lsig));
2138 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
2139 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
2140 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
2141 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
2142 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
2143 		break;
2144 	default:
2145 		break;
2146 	}
2147 }
2148 
2149 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
2150 {
2151 	switch (phy_band) {
2152 	case PHY_BAND_24:
2153 		return NL80211_BAND_2GHZ;
2154 	case PHY_BAND_5:
2155 		return NL80211_BAND_5GHZ;
2156 	case PHY_BAND_6:
2157 		return NL80211_BAND_6GHZ;
2158 	default:
2159 		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
2160 		return NL80211_BAND_5GHZ;
2161 	}
2162 }
2163 
2164 struct iwl_rx_sta_csa {
2165 	bool all_sta_unblocked;
2166 	struct ieee80211_vif *vif;
2167 };
2168 
2169 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
2170 {
2171 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2172 	struct iwl_rx_sta_csa *rx_sta_csa = data;
2173 
2174 	if (mvmsta->vif != rx_sta_csa->vif)
2175 		return;
2176 
2177 	if (mvmsta->disable_tx)
2178 		rx_sta_csa->all_sta_unblocked = false;
2179 }
2180 
2181 /*
2182  * Note: requires also rx_status->band to be prefilled, as well
2183  * as phy_data (apart from phy_data->info_type)
2184  */
2185 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
2186 				   struct sk_buff *skb,
2187 				   struct iwl_mvm_rx_phy_data *phy_data,
2188 				   int queue)
2189 {
2190 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2191 	u32 rate_n_flags = phy_data->rate_n_flags;
2192 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
2193 	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2194 	bool is_sgi;
2195 
2196 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
2197 
2198 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2199 		phy_data->info_type =
2200 			le32_get_bits(phy_data->d1,
2201 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
2202 
2203 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2204 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2205 	case RATE_MCS_CHAN_WIDTH_20:
2206 		break;
2207 	case RATE_MCS_CHAN_WIDTH_40:
2208 		rx_status->bw = RATE_INFO_BW_40;
2209 		break;
2210 	case RATE_MCS_CHAN_WIDTH_80:
2211 		rx_status->bw = RATE_INFO_BW_80;
2212 		break;
2213 	case RATE_MCS_CHAN_WIDTH_160:
2214 		rx_status->bw = RATE_INFO_BW_160;
2215 		break;
2216 	case RATE_MCS_CHAN_WIDTH_320:
2217 		rx_status->bw = RATE_INFO_BW_320;
2218 		break;
2219 	}
2220 
2221 	/* must be before L-SIG data */
2222 	if (format == RATE_MCS_HE_MSK)
2223 		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
2224 
2225 	iwl_mvm_decode_lsig(skb, phy_data);
2226 
2227 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
2228 	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
2229 							 rx_status->band);
2230 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
2231 				    phy_data->energy_a, phy_data->energy_b);
2232 
2233 	/* using TLV format and must be after all fixed len fields */
2234 	if (format == RATE_MCS_EHT_MSK)
2235 		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
2236 
2237 	if (unlikely(mvm->monitor_on))
2238 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
2239 
2240 	is_sgi = format == RATE_MCS_HE_MSK ?
2241 		iwl_he_is_sgi(rate_n_flags) :
2242 		rate_n_flags & RATE_MCS_SGI_MSK;
2243 
2244 	if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
2245 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2246 
2247 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
2248 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2249 
2250 	switch (format) {
2251 	case RATE_MCS_VHT_MSK:
2252 		rx_status->encoding = RX_ENC_VHT;
2253 		break;
2254 	case RATE_MCS_HE_MSK:
2255 		rx_status->encoding = RX_ENC_HE;
2256 		rx_status->he_dcm =
2257 			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2258 		break;
2259 	case RATE_MCS_EHT_MSK:
2260 		rx_status->encoding = RX_ENC_EHT;
2261 		break;
2262 	}
2263 
2264 	switch (format) {
2265 	case RATE_MCS_HT_MSK:
2266 		rx_status->encoding = RX_ENC_HT;
2267 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2268 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2269 		break;
2270 	case RATE_MCS_VHT_MSK:
2271 	case RATE_MCS_HE_MSK:
2272 	case RATE_MCS_EHT_MSK:
2273 		rx_status->nss =
2274 			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2275 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2276 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2277 		break;
2278 	default: {
2279 		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2280 								 rx_status->band);
2281 
2282 		rx_status->rate_idx = rate;
2283 
2284 		if ((rate < 0 || rate > 0xFF)) {
2285 			rx_status->rate_idx = 0;
2286 			if (net_ratelimit())
2287 				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2288 					rate_n_flags, rx_status->band);
2289 		}
2290 
2291 		break;
2292 		}
2293 	}
2294 }
2295 
2296 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2297 			struct iwl_rx_cmd_buffer *rxb, int queue)
2298 {
2299 	struct ieee80211_rx_status *rx_status;
2300 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2301 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2302 	struct ieee80211_hdr *hdr;
2303 	u32 len;
2304 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2305 	struct ieee80211_sta *sta = NULL;
2306 	struct ieee80211_link_sta *link_sta = NULL;
2307 	struct sk_buff *skb;
2308 	u8 crypt_len = 0;
2309 	size_t desc_size;
2310 	struct iwl_mvm_rx_phy_data phy_data = {};
2311 	u32 format;
2312 
2313 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2314 		return;
2315 
2316 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2317 		desc_size = sizeof(*desc);
2318 	else
2319 		desc_size = IWL_RX_DESC_SIZE_V1;
2320 
2321 	if (unlikely(pkt_len < desc_size)) {
2322 		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2323 		return;
2324 	}
2325 
2326 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2327 		phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2328 		phy_data.channel = desc->v3.channel;
2329 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2330 		phy_data.energy_a = desc->v3.energy_a;
2331 		phy_data.energy_b = desc->v3.energy_b;
2332 
2333 		phy_data.d0 = desc->v3.phy_data0;
2334 		phy_data.d1 = desc->v3.phy_data1;
2335 		phy_data.d2 = desc->v3.phy_data2;
2336 		phy_data.d3 = desc->v3.phy_data3;
2337 		phy_data.eht_d4 = desc->phy_eht_data4;
2338 		phy_data.d5 = desc->v3.phy_data5;
2339 	} else {
2340 		phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2341 		phy_data.channel = desc->v1.channel;
2342 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2343 		phy_data.energy_a = desc->v1.energy_a;
2344 		phy_data.energy_b = desc->v1.energy_b;
2345 
2346 		phy_data.d0 = desc->v1.phy_data0;
2347 		phy_data.d1 = desc->v1.phy_data1;
2348 		phy_data.d2 = desc->v1.phy_data2;
2349 		phy_data.d3 = desc->v1.phy_data3;
2350 	}
2351 
2352 	if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2353 				    REPLY_RX_MPDU_CMD, 0) < 4) {
2354 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2355 		IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2356 			       phy_data.rate_n_flags);
2357 	}
2358 
2359 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2360 
2361 	len = le16_to_cpu(desc->mpdu_len);
2362 
2363 	if (unlikely(len + desc_size > pkt_len)) {
2364 		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2365 		return;
2366 	}
2367 
2368 	phy_data.with_data = true;
2369 	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2370 	phy_data.d4 = desc->phy_data4;
2371 
2372 	hdr = (void *)(pkt->data + desc_size);
2373 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2374 	 * ieee80211_hdr pulled.
2375 	 */
2376 	skb = alloc_skb(128, GFP_ATOMIC);
2377 	if (!skb) {
2378 		IWL_ERR(mvm, "alloc_skb failed\n");
2379 		return;
2380 	}
2381 
2382 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2383 		/*
2384 		 * If the device inserted padding it means that (it thought)
2385 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2386 		 * this case, reserve two bytes at the start of the SKB to
2387 		 * align the payload properly in case we end up copying it.
2388 		 */
2389 		skb_reserve(skb, 2);
2390 	}
2391 
2392 	rx_status = IEEE80211_SKB_RXCB(skb);
2393 
2394 	/*
2395 	 * Keep packets with CRC errors (and with overrun) for monitor mode
2396 	 * (otherwise the firmware discards them) but mark them as bad.
2397 	 */
2398 	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2399 	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2400 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2401 			     le32_to_cpu(desc->status));
2402 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2403 	}
2404 
2405 	/* set the preamble flag if appropriate */
2406 	if (format == RATE_MCS_CCK_MSK &&
2407 	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2408 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2409 
2410 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2411 		u64 tsf_on_air_rise;
2412 
2413 		if (mvm->trans->trans_cfg->device_family >=
2414 		    IWL_DEVICE_FAMILY_AX210)
2415 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2416 		else
2417 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2418 
2419 		rx_status->mactime = tsf_on_air_rise;
2420 		/* TSF as indicated by the firmware is at INA time */
2421 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2422 	}
2423 
2424 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2425 		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2426 
2427 		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2428 	} else {
2429 		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2430 			NL80211_BAND_2GHZ;
2431 	}
2432 
2433 	/* update aggregation data for monitor sake on default queue */
2434 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2435 		bool toggle_bit;
2436 
2437 		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2438 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2439 		/*
2440 		 * Toggle is switched whenever new aggregation starts. Make
2441 		 * sure ampdu_reference is never 0 so we can later use it to
2442 		 * see if the frame was really part of an A-MPDU or not.
2443 		 */
2444 		if (toggle_bit != mvm->ampdu_toggle) {
2445 			mvm->ampdu_ref++;
2446 			if (mvm->ampdu_ref == 0)
2447 				mvm->ampdu_ref++;
2448 			mvm->ampdu_toggle = toggle_bit;
2449 			phy_data.first_subframe = true;
2450 		}
2451 		rx_status->ampdu_reference = mvm->ampdu_ref;
2452 	}
2453 
2454 	rcu_read_lock();
2455 
2456 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2457 		u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2458 
2459 		if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2460 			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2461 			if (IS_ERR(sta))
2462 				sta = NULL;
2463 			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2464 		}
2465 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2466 		/*
2467 		 * This is fine since we prevent two stations with the same
2468 		 * address from being added.
2469 		 */
2470 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2471 	}
2472 
2473 	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2474 			      le32_to_cpu(pkt->len_n_flags), queue,
2475 			      &crypt_len)) {
2476 		kfree_skb(skb);
2477 		goto out;
2478 	}
2479 
2480 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2481 
2482 	if (sta) {
2483 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2484 		struct ieee80211_vif *tx_blocked_vif =
2485 			rcu_dereference(mvm->csa_tx_blocked_vif);
2486 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2487 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2488 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2489 		struct iwl_fw_dbg_trigger_tlv *trig;
2490 		struct ieee80211_vif *vif = mvmsta->vif;
2491 
2492 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2493 		    !is_multicast_ether_addr(hdr->addr1) &&
2494 		    ieee80211_is_data(hdr->frame_control) &&
2495 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2496 			schedule_delayed_work(&mvm->tcm.work, 0);
2497 
2498 		/*
2499 		 * We have tx blocked stations (with CS bit). If we heard
2500 		 * frames from a blocked station on a new channel we can
2501 		 * TX to it again.
2502 		 */
2503 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2504 			struct iwl_mvm_vif *mvmvif =
2505 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2506 			struct iwl_rx_sta_csa rx_sta_csa = {
2507 				.all_sta_unblocked = true,
2508 				.vif = tx_blocked_vif,
2509 			};
2510 
2511 			if (mvmvif->csa_target_freq == rx_status->freq)
2512 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2513 								 false);
2514 			ieee80211_iterate_stations_atomic(mvm->hw,
2515 							  iwl_mvm_rx_get_sta_block_tx,
2516 							  &rx_sta_csa);
2517 
2518 			if (rx_sta_csa.all_sta_unblocked) {
2519 				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2520 				/* Unblock BCAST / MCAST station */
2521 				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2522 				cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2523 			}
2524 		}
2525 
2526 		rs_update_last_rssi(mvm, mvmsta, rx_status);
2527 
2528 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2529 					     ieee80211_vif_to_wdev(vif),
2530 					     FW_DBG_TRIGGER_RSSI);
2531 
2532 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2533 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2534 			s32 rssi;
2535 
2536 			rssi_trig = (void *)trig->data;
2537 			rssi = le32_to_cpu(rssi_trig->rssi);
2538 
2539 			if (rx_status->signal < rssi)
2540 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2541 							NULL);
2542 		}
2543 
2544 		if (ieee80211_is_data(hdr->frame_control))
2545 			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2546 
2547 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2548 			kfree_skb(skb);
2549 			goto out;
2550 		}
2551 
2552 		/*
2553 		 * Our hardware de-aggregates AMSDUs but copies the mac header
2554 		 * as it to the de-aggregated MPDUs. We need to turn off the
2555 		 * AMSDU bit in the QoS control ourselves.
2556 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2557 		 */
2558 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2559 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2560 			u8 *qc = ieee80211_get_qos_ctl(hdr);
2561 
2562 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2563 
2564 			if (mvm->trans->trans_cfg->device_family ==
2565 			    IWL_DEVICE_FAMILY_9000) {
2566 				iwl_mvm_flip_address(hdr->addr3);
2567 
2568 				if (ieee80211_has_a4(hdr->frame_control))
2569 					iwl_mvm_flip_address(hdr->addr4);
2570 			}
2571 		}
2572 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2573 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2574 
2575 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2576 		}
2577 	}
2578 
2579 	/* management stuff on default queue */
2580 	if (!queue) {
2581 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2582 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2583 			     mvm->sched_scan_pass_all ==
2584 			     SCHED_SCAN_PASS_ALL_ENABLED))
2585 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2586 
2587 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2588 			     ieee80211_is_probe_resp(hdr->frame_control)))
2589 			rx_status->boottime_ns = ktime_get_boottime_ns();
2590 	}
2591 
2592 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2593 		kfree_skb(skb);
2594 		goto out;
2595 	}
2596 
2597 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2598 	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2599 	    likely(!iwl_mvm_mei_filter_scan(mvm, skb)))
2600 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2601 						link_sta);
2602 out:
2603 	rcu_read_unlock();
2604 }
2605 
2606 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2607 				struct iwl_rx_cmd_buffer *rxb, int queue)
2608 {
2609 	struct ieee80211_rx_status *rx_status;
2610 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2611 	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2612 	u32 rssi;
2613 	u32 info_type;
2614 	struct ieee80211_sta *sta = NULL;
2615 	struct sk_buff *skb;
2616 	struct iwl_mvm_rx_phy_data phy_data;
2617 	u32 format;
2618 
2619 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2620 		return;
2621 
2622 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2623 		return;
2624 
2625 	rssi = le32_to_cpu(desc->rssi);
2626 	info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2627 	phy_data.d0 = desc->phy_info[0];
2628 	phy_data.d1 = desc->phy_info[1];
2629 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2630 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2631 	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2632 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2633 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2634 	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2635 	phy_data.with_data = false;
2636 
2637 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2638 				    RX_NO_DATA_NOTIF, 0) < 2) {
2639 		IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2640 			       phy_data.rate_n_flags);
2641 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2642 		IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2643 			       phy_data.rate_n_flags);
2644 	}
2645 
2646 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2647 
2648 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2649 				    RX_NO_DATA_NOTIF, 0) >= 3) {
2650 		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2651 		    sizeof(struct iwl_rx_no_data_ver_3)))
2652 		/* invalid len for ver 3 */
2653 			return;
2654 		memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec));
2655 	} else {
2656 		if (format == RATE_MCS_EHT_MSK)
2657 			/* no support for EHT before version 3 API */
2658 			return;
2659 	}
2660 
2661 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2662 	 * ieee80211_hdr pulled.
2663 	 */
2664 	skb = alloc_skb(128, GFP_ATOMIC);
2665 	if (!skb) {
2666 		IWL_ERR(mvm, "alloc_skb failed\n");
2667 		return;
2668 	}
2669 
2670 	rx_status = IEEE80211_SKB_RXCB(skb);
2671 
2672 	/* 0-length PSDU */
2673 	rx_status->flag |= RX_FLAG_NO_PSDU;
2674 
2675 	switch (info_type) {
2676 	case RX_NO_DATA_INFO_TYPE_NDP:
2677 		rx_status->zero_length_psdu_type =
2678 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2679 		break;
2680 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2681 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2682 		rx_status->zero_length_psdu_type =
2683 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2684 		break;
2685 	default:
2686 		rx_status->zero_length_psdu_type =
2687 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2688 		break;
2689 	}
2690 
2691 	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2692 		NL80211_BAND_2GHZ;
2693 
2694 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2695 
2696 	/* no more radio tap info should be put after this point.
2697 	 *
2698 	 * We mark it as mac header, for upper layers to know where
2699 	 * all radio tap header ends.
2700 	 */
2701 	skb_reset_mac_header(skb);
2702 
2703 	/*
2704 	 * Override the nss from the rx_vec since the rate_n_flags has
2705 	 * only 2 bits for the nss which gives a max of 4 ss but there
2706 	 * may be up to 8 spatial streams.
2707 	 */
2708 	switch (format) {
2709 	case RATE_MCS_VHT_MSK:
2710 		rx_status->nss =
2711 			le32_get_bits(desc->rx_vec[0],
2712 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2713 		break;
2714 	case RATE_MCS_HE_MSK:
2715 		rx_status->nss =
2716 			le32_get_bits(desc->rx_vec[0],
2717 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2718 		break;
2719 	case RATE_MCS_EHT_MSK:
2720 		rx_status->nss =
2721 			le32_get_bits(desc->rx_vec[2],
2722 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2723 	}
2724 
2725 	rcu_read_lock();
2726 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2727 	rcu_read_unlock();
2728 }
2729 
2730 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2731 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2732 {
2733 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2734 	struct iwl_frame_release *release = (void *)pkt->data;
2735 
2736 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2737 		return;
2738 
2739 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2740 					  le16_to_cpu(release->nssn),
2741 					  queue, 0);
2742 }
2743 
2744 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2745 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2746 {
2747 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2748 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2749 	unsigned int baid = le32_get_bits(release->ba_info,
2750 					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2751 	unsigned int nssn = le32_get_bits(release->ba_info,
2752 					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2753 	unsigned int sta_id = le32_get_bits(release->sta_tid,
2754 					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2755 	unsigned int tid = le32_get_bits(release->sta_tid,
2756 					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2757 	struct iwl_mvm_baid_data *baid_data;
2758 
2759 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2760 		return;
2761 
2762 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2763 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2764 		return;
2765 
2766 	rcu_read_lock();
2767 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2768 	if (!baid_data) {
2769 		IWL_DEBUG_RX(mvm,
2770 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2771 			      baid);
2772 		goto out;
2773 	}
2774 
2775 	if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2776 		 !(baid_data->sta_mask & BIT(sta_id)),
2777 		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2778 		 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2779 		 tid))
2780 		goto out;
2781 
2782 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2783 out:
2784 	rcu_read_unlock();
2785 }
2786