1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  *****************************************************************************/
67 #include <linux/firmware.h>
68 #include <linux/rtnetlink.h>
69 #include "iwl-trans.h"
70 #include "iwl-csr.h"
71 #include "mvm.h"
72 #include "iwl-eeprom-parse.h"
73 #include "iwl-eeprom-read.h"
74 #include "iwl-nvm-parse.h"
75 #include "iwl-prph.h"
76 
77 /* Default NVM size to read */
78 #define IWL_NVM_DEFAULT_CHUNK_SIZE (2*1024)
79 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
80 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
81 
82 #define NVM_WRITE_OPCODE 1
83 #define NVM_READ_OPCODE 0
84 
85 /* load nvm chunk response */
86 enum {
87 	READ_NVM_CHUNK_SUCCEED = 0,
88 	READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
89 };
90 
91 /*
92  * prepare the NVM host command w/ the pointers to the nvm buffer
93  * and send it to fw
94  */
95 static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
96 			       u16 offset, u16 length, const u8 *data)
97 {
98 	struct iwl_nvm_access_cmd nvm_access_cmd = {
99 		.offset = cpu_to_le16(offset),
100 		.length = cpu_to_le16(length),
101 		.type = cpu_to_le16(section),
102 		.op_code = NVM_WRITE_OPCODE,
103 	};
104 	struct iwl_host_cmd cmd = {
105 		.id = NVM_ACCESS_CMD,
106 		.len = { sizeof(struct iwl_nvm_access_cmd), length },
107 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
108 		.data = { &nvm_access_cmd, data },
109 		/* data may come from vmalloc, so use _DUP */
110 		.dataflags = { 0, IWL_HCMD_DFL_DUP },
111 	};
112 	struct iwl_rx_packet *pkt;
113 	struct iwl_nvm_access_resp *nvm_resp;
114 	int ret;
115 
116 	ret = iwl_mvm_send_cmd(mvm, &cmd);
117 	if (ret)
118 		return ret;
119 
120 	pkt = cmd.resp_pkt;
121 	/* Extract & check NVM write response */
122 	nvm_resp = (void *)pkt->data;
123 	if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
124 		IWL_ERR(mvm,
125 			"NVM access write command failed for section %u (status = 0x%x)\n",
126 			section, le16_to_cpu(nvm_resp->status));
127 		ret = -EIO;
128 	}
129 
130 	iwl_free_resp(&cmd);
131 	return ret;
132 }
133 
134 static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
135 			      u16 offset, u16 length, u8 *data)
136 {
137 	struct iwl_nvm_access_cmd nvm_access_cmd = {
138 		.offset = cpu_to_le16(offset),
139 		.length = cpu_to_le16(length),
140 		.type = cpu_to_le16(section),
141 		.op_code = NVM_READ_OPCODE,
142 	};
143 	struct iwl_nvm_access_resp *nvm_resp;
144 	struct iwl_rx_packet *pkt;
145 	struct iwl_host_cmd cmd = {
146 		.id = NVM_ACCESS_CMD,
147 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
148 		.data = { &nvm_access_cmd, },
149 	};
150 	int ret, bytes_read, offset_read;
151 	u8 *resp_data;
152 
153 	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
154 
155 	ret = iwl_mvm_send_cmd(mvm, &cmd);
156 	if (ret)
157 		return ret;
158 
159 	pkt = cmd.resp_pkt;
160 
161 	/* Extract NVM response */
162 	nvm_resp = (void *)pkt->data;
163 	ret = le16_to_cpu(nvm_resp->status);
164 	bytes_read = le16_to_cpu(nvm_resp->length);
165 	offset_read = le16_to_cpu(nvm_resp->offset);
166 	resp_data = nvm_resp->data;
167 	if (ret) {
168 		if ((offset != 0) &&
169 		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
170 			/*
171 			 * meaning of NOT_VALID_ADDRESS:
172 			 * driver try to read chunk from address that is
173 			 * multiple of 2K and got an error since addr is empty.
174 			 * meaning of (offset != 0): driver already
175 			 * read valid data from another chunk so this case
176 			 * is not an error.
177 			 */
178 			IWL_DEBUG_EEPROM(mvm->trans->dev,
179 					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
180 					 offset);
181 			ret = 0;
182 		} else {
183 			IWL_DEBUG_EEPROM(mvm->trans->dev,
184 					 "NVM access command failed with status %d (device: %s)\n",
185 					 ret, mvm->cfg->name);
186 			ret = -EIO;
187 		}
188 		goto exit;
189 	}
190 
191 	if (offset_read != offset) {
192 		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
193 			offset_read);
194 		ret = -EINVAL;
195 		goto exit;
196 	}
197 
198 	/* Write data to NVM */
199 	memcpy(data + offset, resp_data, bytes_read);
200 	ret = bytes_read;
201 
202 exit:
203 	iwl_free_resp(&cmd);
204 	return ret;
205 }
206 
207 static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
208 				 const u8 *data, u16 length)
209 {
210 	int offset = 0;
211 
212 	/* copy data in chunks of 2k (and remainder if any) */
213 
214 	while (offset < length) {
215 		int chunk_size, ret;
216 
217 		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
218 				 length - offset);
219 
220 		ret = iwl_nvm_write_chunk(mvm, section, offset,
221 					  chunk_size, data + offset);
222 		if (ret < 0)
223 			return ret;
224 
225 		offset += chunk_size;
226 	}
227 
228 	return 0;
229 }
230 
231 static void iwl_mvm_nvm_fixups(struct iwl_mvm *mvm, unsigned int section,
232 			       u8 *data, unsigned int len)
233 {
234 #define IWL_4165_DEVICE_ID	0x5501
235 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
236 
237 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
238 	    mvm->trans->hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
239 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
240 		/* OTP 0x52 bug work around: it's a 1x1 device */
241 		data[3] = ANT_B | (ANT_B << 4);
242 }
243 
244 /*
245  * Reads an NVM section completely.
246  * NICs prior to 7000 family doesn't have a real NVM, but just read
247  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
248  * by uCode, we need to manually check in this case that we don't
249  * overflow and try to read more than the EEPROM size.
250  * For 7000 family NICs, we supply the maximal size we can read, and
251  * the uCode fills the response with as much data as we can,
252  * without overflowing, so no check is needed.
253  */
254 static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
255 				u8 *data, u32 size_read)
256 {
257 	u16 length, offset = 0;
258 	int ret;
259 
260 	/* Set nvm section read length */
261 	length = IWL_NVM_DEFAULT_CHUNK_SIZE;
262 
263 	ret = length;
264 
265 	/* Read the NVM until exhausted (reading less than requested) */
266 	while (ret == length) {
267 		/* Check no memory assumptions fail and cause an overflow */
268 		if ((size_read + offset + length) >
269 		    mvm->cfg->base_params->eeprom_size) {
270 			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
271 			return -ENOBUFS;
272 		}
273 
274 		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
275 		if (ret < 0) {
276 			IWL_DEBUG_EEPROM(mvm->trans->dev,
277 					 "Cannot read NVM from section %d offset %d, length %d\n",
278 					 section, offset, length);
279 			return ret;
280 		}
281 		offset += ret;
282 	}
283 
284 	iwl_mvm_nvm_fixups(mvm, section, data, offset);
285 
286 	IWL_DEBUG_EEPROM(mvm->trans->dev,
287 			 "NVM section %d read completed\n", section);
288 	return offset;
289 }
290 
291 static struct iwl_nvm_data *
292 iwl_parse_nvm_sections(struct iwl_mvm *mvm)
293 {
294 	struct iwl_nvm_section *sections = mvm->nvm_sections;
295 	const __le16 *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
296 	bool lar_enabled;
297 
298 	/* Checking for required sections */
299 	if (!mvm->trans->cfg->ext_nvm) {
300 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
301 		    !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
302 			IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
303 			return NULL;
304 		}
305 	} else {
306 		/* SW and REGULATORY sections are mandatory */
307 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
308 		    !mvm->nvm_sections[NVM_SECTION_TYPE_REGULATORY].data) {
309 			IWL_ERR(mvm,
310 				"Can't parse empty family 8000 OTP/NVM sections\n");
311 			return NULL;
312 		}
313 		/* MAC_OVERRIDE or at least HW section must exist */
314 		if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
315 		    !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
316 			IWL_ERR(mvm,
317 				"Can't parse mac_address, empty sections\n");
318 			return NULL;
319 		}
320 
321 		/* PHY_SKU section is mandatory in B0 */
322 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
323 			IWL_ERR(mvm,
324 				"Can't parse phy_sku in B0, empty sections\n");
325 			return NULL;
326 		}
327 	}
328 
329 	if (WARN_ON(!mvm->cfg))
330 		return NULL;
331 
332 	hw = (const __le16 *)sections[mvm->cfg->nvm_hw_section_num].data;
333 	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
334 	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
335 	regulatory = (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
336 	mac_override =
337 		(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
338 	phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
339 
340 	lar_enabled = !iwlwifi_mod_params.lar_disable &&
341 		      fw_has_capa(&mvm->fw->ucode_capa,
342 				  IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
343 
344 	return iwl_parse_nvm_data(mvm->trans, mvm->cfg, hw, sw, calib,
345 				  regulatory, mac_override, phy_sku,
346 				  mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant,
347 				  lar_enabled);
348 }
349 
350 #define MAX_NVM_FILE_LEN	16384
351 
352 /*
353  * Reads external NVM from a file into mvm->nvm_sections
354  *
355  * HOW TO CREATE THE NVM FILE FORMAT:
356  * ------------------------------
357  * 1. create hex file, format:
358  *      3800 -> header
359  *      0000 -> header
360  *      5a40 -> data
361  *
362  *   rev - 6 bit (word1)
363  *   len - 10 bit (word1)
364  *   id - 4 bit (word2)
365  *   rsv - 12 bit (word2)
366  *
367  * 2. flip 8bits with 8 bits per line to get the right NVM file format
368  *
369  * 3. create binary file from the hex file
370  *
371  * 4. save as "iNVM_xxx.bin" under /lib/firmware
372  */
373 int iwl_mvm_read_external_nvm(struct iwl_mvm *mvm)
374 {
375 	int ret, section_size;
376 	u16 section_id;
377 	const struct firmware *fw_entry;
378 	const struct {
379 		__le16 word1;
380 		__le16 word2;
381 		u8 data[];
382 	} *file_sec;
383 	const u8 *eof;
384 	u8 *temp;
385 	int max_section_size;
386 	const __le32 *dword_buff;
387 
388 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
389 #define NVM_WORD2_ID(x) (x >> 12)
390 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
391 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
392 #define NVM_HEADER_0	(0x2A504C54)
393 #define NVM_HEADER_1	(0x4E564D2A)
394 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
395 
396 	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from external NVM\n");
397 
398 	/* Maximal size depends on NVM version */
399 	if (!mvm->trans->cfg->ext_nvm)
400 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
401 	else
402 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
403 
404 	/*
405 	 * Obtain NVM image via request_firmware. Since we already used
406 	 * request_firmware_nowait() for the firmware binary load and only
407 	 * get here after that we assume the NVM request can be satisfied
408 	 * synchronously.
409 	 */
410 	ret = request_firmware(&fw_entry, mvm->nvm_file_name,
411 			       mvm->trans->dev);
412 	if (ret) {
413 		IWL_ERR(mvm, "ERROR: %s isn't available %d\n",
414 			mvm->nvm_file_name, ret);
415 		return ret;
416 	}
417 
418 	IWL_INFO(mvm, "Loaded NVM file %s (%zu bytes)\n",
419 		 mvm->nvm_file_name, fw_entry->size);
420 
421 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
422 		IWL_ERR(mvm, "NVM file too large\n");
423 		ret = -EINVAL;
424 		goto out;
425 	}
426 
427 	eof = fw_entry->data + fw_entry->size;
428 	dword_buff = (__le32 *)fw_entry->data;
429 
430 	/* some NVM file will contain a header.
431 	 * The header is identified by 2 dwords header as follow:
432 	 * dword[0] = 0x2A504C54
433 	 * dword[1] = 0x4E564D2A
434 	 *
435 	 * This header must be skipped when providing the NVM data to the FW.
436 	 */
437 	if (fw_entry->size > NVM_HEADER_SIZE &&
438 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
439 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
440 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
441 		IWL_INFO(mvm, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
442 		IWL_INFO(mvm, "NVM Manufacturing date %08X\n",
443 			 le32_to_cpu(dword_buff[3]));
444 
445 		/* nvm file validation, dword_buff[2] holds the file version */
446 		if (mvm->trans->cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
447 		    CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_C_STEP &&
448 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
449 			ret = -EFAULT;
450 			goto out;
451 		}
452 	} else {
453 		file_sec = (void *)fw_entry->data;
454 	}
455 
456 	while (true) {
457 		if (file_sec->data > eof) {
458 			IWL_ERR(mvm,
459 				"ERROR - NVM file too short for section header\n");
460 			ret = -EINVAL;
461 			break;
462 		}
463 
464 		/* check for EOF marker */
465 		if (!file_sec->word1 && !file_sec->word2) {
466 			ret = 0;
467 			break;
468 		}
469 
470 		if (!mvm->trans->cfg->ext_nvm) {
471 			section_size =
472 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
473 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
474 		} else {
475 			section_size = 2 * EXT_NVM_WORD2_LEN(
476 						le16_to_cpu(file_sec->word2));
477 			section_id = EXT_NVM_WORD1_ID(
478 						le16_to_cpu(file_sec->word1));
479 		}
480 
481 		if (section_size > max_section_size) {
482 			IWL_ERR(mvm, "ERROR - section too large (%d)\n",
483 				section_size);
484 			ret = -EINVAL;
485 			break;
486 		}
487 
488 		if (!section_size) {
489 			IWL_ERR(mvm, "ERROR - section empty\n");
490 			ret = -EINVAL;
491 			break;
492 		}
493 
494 		if (file_sec->data + section_size > eof) {
495 			IWL_ERR(mvm,
496 				"ERROR - NVM file too short for section (%d bytes)\n",
497 				section_size);
498 			ret = -EINVAL;
499 			break;
500 		}
501 
502 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
503 			 "Invalid NVM section ID %d\n", section_id)) {
504 			ret = -EINVAL;
505 			break;
506 		}
507 
508 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
509 		if (!temp) {
510 			ret = -ENOMEM;
511 			break;
512 		}
513 
514 		iwl_mvm_nvm_fixups(mvm, section_id, temp, section_size);
515 
516 		kfree(mvm->nvm_sections[section_id].data);
517 		mvm->nvm_sections[section_id].data = temp;
518 		mvm->nvm_sections[section_id].length = section_size;
519 
520 		/* advance to the next section */
521 		file_sec = (void *)(file_sec->data + section_size);
522 	}
523 out:
524 	release_firmware(fw_entry);
525 	return ret;
526 }
527 
528 /* Loads the NVM data stored in mvm->nvm_sections into the NIC */
529 int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
530 {
531 	int i, ret = 0;
532 	struct iwl_nvm_section *sections = mvm->nvm_sections;
533 
534 	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
535 
536 	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
537 		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
538 			continue;
539 		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
540 					    sections[i].length);
541 		if (ret < 0) {
542 			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
543 			break;
544 		}
545 	}
546 	return ret;
547 }
548 
549 int iwl_mvm_nvm_get_from_fw(struct iwl_mvm *mvm)
550 {
551 	struct iwl_nvm_get_info cmd = {};
552 	struct iwl_nvm_get_info_rsp *rsp;
553 	struct iwl_trans *trans = mvm->trans;
554 	struct iwl_host_cmd hcmd = {
555 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
556 		.data = { &cmd, },
557 		.len = { sizeof(cmd) },
558 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
559 	};
560 	int  ret;
561 	bool lar_fw_supported = !iwlwifi_mod_params.lar_disable &&
562 				fw_has_capa(&mvm->fw->ucode_capa,
563 					    IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
564 
565 	lockdep_assert_held(&mvm->mutex);
566 
567 	ret = iwl_mvm_send_cmd(mvm, &hcmd);
568 	if (ret)
569 		return ret;
570 
571 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != sizeof(*rsp),
572 		 "Invalid payload len in NVM response from FW %d",
573 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
574 		ret = -EINVAL;
575 		goto out;
576 	}
577 
578 	rsp = (void *)hcmd.resp_pkt->data;
579 	if (le32_to_cpu(rsp->general.flags)) {
580 		IWL_ERR(mvm, "Invalid NVM data from FW\n");
581 		ret = -EINVAL;
582 		goto out;
583 	}
584 
585 	mvm->nvm_data = kzalloc(sizeof(*mvm->nvm_data) +
586 				sizeof(struct ieee80211_channel) *
587 				IWL_NUM_CHANNELS, GFP_KERNEL);
588 	if (!mvm->nvm_data) {
589 		ret = -ENOMEM;
590 		goto out;
591 	}
592 
593 	iwl_set_hw_address_from_csr(trans, mvm->nvm_data);
594 	/* TODO: if platform NVM has MAC address - override it here */
595 
596 	if (!is_valid_ether_addr(mvm->nvm_data->hw_addr)) {
597 		IWL_ERR(trans, "no valid mac address was found\n");
598 		ret = -EINVAL;
599 		goto err_free;
600 	}
601 
602 	IWL_INFO(trans, "base HW address: %pM\n", mvm->nvm_data->hw_addr);
603 
604 	/* Initialize general data */
605 	mvm->nvm_data->nvm_version = le16_to_cpu(rsp->general.nvm_version);
606 
607 	/* Initialize MAC sku data */
608 	mvm->nvm_data->sku_cap_11ac_enable =
609 		le32_to_cpu(rsp->mac_sku.enable_11ac);
610 	mvm->nvm_data->sku_cap_11n_enable =
611 		le32_to_cpu(rsp->mac_sku.enable_11n);
612 	mvm->nvm_data->sku_cap_band_24GHz_enable =
613 		le32_to_cpu(rsp->mac_sku.enable_24g);
614 	mvm->nvm_data->sku_cap_band_52GHz_enable =
615 		le32_to_cpu(rsp->mac_sku.enable_5g);
616 	mvm->nvm_data->sku_cap_mimo_disabled =
617 		le32_to_cpu(rsp->mac_sku.mimo_disable);
618 
619 	/* Initialize PHY sku data */
620 	mvm->nvm_data->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
621 	mvm->nvm_data->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
622 
623 	/* Initialize regulatory data */
624 	mvm->nvm_data->lar_enabled =
625 		le32_to_cpu(rsp->regulatory.lar_enabled) && lar_fw_supported;
626 
627 	iwl_init_sbands(trans->dev, trans->cfg, mvm->nvm_data,
628 			rsp->regulatory.channel_profile,
629 			mvm->nvm_data->valid_tx_ant & mvm->fw->valid_tx_ant,
630 			mvm->nvm_data->valid_rx_ant & mvm->fw->valid_rx_ant,
631 			rsp->regulatory.lar_enabled && lar_fw_supported);
632 
633 	iwl_free_resp(&hcmd);
634 	return 0;
635 
636 err_free:
637 	kfree(mvm->nvm_data);
638 out:
639 	iwl_free_resp(&hcmd);
640 	return ret;
641 }
642 
643 int iwl_nvm_init(struct iwl_mvm *mvm, bool read_nvm_from_nic)
644 {
645 	int ret, section;
646 	u32 size_read = 0;
647 	u8 *nvm_buffer, *temp;
648 	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
649 
650 	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
651 		return -EINVAL;
652 
653 	/* load NVM values from nic */
654 	if (read_nvm_from_nic) {
655 		/* Read From FW NVM */
656 		IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
657 
658 		nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size,
659 				     GFP_KERNEL);
660 		if (!nvm_buffer)
661 			return -ENOMEM;
662 		for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
663 			/* we override the constness for initial read */
664 			ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
665 						   size_read);
666 			if (ret < 0)
667 				continue;
668 			size_read += ret;
669 			temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
670 			if (!temp) {
671 				ret = -ENOMEM;
672 				break;
673 			}
674 
675 			iwl_mvm_nvm_fixups(mvm, section, temp, ret);
676 
677 			mvm->nvm_sections[section].data = temp;
678 			mvm->nvm_sections[section].length = ret;
679 
680 #ifdef CONFIG_IWLWIFI_DEBUGFS
681 			switch (section) {
682 			case NVM_SECTION_TYPE_SW:
683 				mvm->nvm_sw_blob.data = temp;
684 				mvm->nvm_sw_blob.size  = ret;
685 				break;
686 			case NVM_SECTION_TYPE_CALIBRATION:
687 				mvm->nvm_calib_blob.data = temp;
688 				mvm->nvm_calib_blob.size  = ret;
689 				break;
690 			case NVM_SECTION_TYPE_PRODUCTION:
691 				mvm->nvm_prod_blob.data = temp;
692 				mvm->nvm_prod_blob.size  = ret;
693 				break;
694 			case NVM_SECTION_TYPE_PHY_SKU:
695 				mvm->nvm_phy_sku_blob.data = temp;
696 				mvm->nvm_phy_sku_blob.size  = ret;
697 				break;
698 			default:
699 				if (section == mvm->cfg->nvm_hw_section_num) {
700 					mvm->nvm_hw_blob.data = temp;
701 					mvm->nvm_hw_blob.size = ret;
702 					break;
703 				}
704 			}
705 #endif
706 		}
707 		if (!size_read)
708 			IWL_ERR(mvm, "OTP is blank\n");
709 		kfree(nvm_buffer);
710 	}
711 
712 	/* Only if PNVM selected in the mod param - load external NVM  */
713 	if (mvm->nvm_file_name) {
714 		/* read External NVM file from the mod param */
715 		ret = iwl_mvm_read_external_nvm(mvm);
716 		if (ret) {
717 			mvm->nvm_file_name = nvm_file_C;
718 
719 			if ((ret == -EFAULT || ret == -ENOENT) &&
720 			    mvm->nvm_file_name) {
721 				/* in case nvm file was failed try again */
722 				ret = iwl_mvm_read_external_nvm(mvm);
723 				if (ret)
724 					return ret;
725 			} else {
726 				return ret;
727 			}
728 		}
729 	}
730 
731 	/* parse the relevant nvm sections */
732 	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
733 	if (!mvm->nvm_data)
734 		return -ENODATA;
735 	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
736 			 mvm->nvm_data->nvm_version);
737 
738 	return 0;
739 }
740 
741 struct iwl_mcc_update_resp *
742 iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
743 		   enum iwl_mcc_source src_id)
744 {
745 	struct iwl_mcc_update_cmd mcc_update_cmd = {
746 		.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
747 		.source_id = (u8)src_id,
748 	};
749 	struct iwl_mcc_update_resp *resp_cp;
750 	struct iwl_rx_packet *pkt;
751 	struct iwl_host_cmd cmd = {
752 		.id = MCC_UPDATE_CMD,
753 		.flags = CMD_WANT_SKB,
754 		.data = { &mcc_update_cmd },
755 	};
756 
757 	int ret;
758 	u32 status;
759 	int resp_len, n_channels;
760 	u16 mcc;
761 	bool resp_v2 = fw_has_capa(&mvm->fw->ucode_capa,
762 				   IWL_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
763 
764 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
765 		return ERR_PTR(-EOPNOTSUPP);
766 
767 	cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
768 	if (!resp_v2)
769 		cmd.len[0] = sizeof(struct iwl_mcc_update_cmd_v1);
770 
771 	IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
772 		      alpha2[0], alpha2[1], src_id);
773 
774 	ret = iwl_mvm_send_cmd(mvm, &cmd);
775 	if (ret)
776 		return ERR_PTR(ret);
777 
778 	pkt = cmd.resp_pkt;
779 
780 	/* Extract MCC response */
781 	if (resp_v2) {
782 		struct iwl_mcc_update_resp *mcc_resp = (void *)pkt->data;
783 
784 		n_channels =  __le32_to_cpu(mcc_resp->n_channels);
785 		resp_len = sizeof(struct iwl_mcc_update_resp) +
786 			   n_channels * sizeof(__le32);
787 		resp_cp = kmemdup(mcc_resp, resp_len, GFP_KERNEL);
788 		if (!resp_cp) {
789 			resp_cp = ERR_PTR(-ENOMEM);
790 			goto exit;
791 		}
792 	} else {
793 		struct iwl_mcc_update_resp_v1 *mcc_resp_v1 = (void *)pkt->data;
794 
795 		n_channels =  __le32_to_cpu(mcc_resp_v1->n_channels);
796 		resp_len = sizeof(struct iwl_mcc_update_resp) +
797 			   n_channels * sizeof(__le32);
798 		resp_cp = kzalloc(resp_len, GFP_KERNEL);
799 		if (!resp_cp) {
800 			resp_cp = ERR_PTR(-ENOMEM);
801 			goto exit;
802 		}
803 
804 		resp_cp->status = mcc_resp_v1->status;
805 		resp_cp->mcc = mcc_resp_v1->mcc;
806 		resp_cp->cap = mcc_resp_v1->cap;
807 		resp_cp->source_id = mcc_resp_v1->source_id;
808 		resp_cp->n_channels = mcc_resp_v1->n_channels;
809 		memcpy(resp_cp->channels, mcc_resp_v1->channels,
810 		       n_channels * sizeof(__le32));
811 	}
812 
813 	status = le32_to_cpu(resp_cp->status);
814 
815 	mcc = le16_to_cpu(resp_cp->mcc);
816 
817 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
818 	if (mcc == 0) {
819 		mcc = 0x3030;  /* "00" - world */
820 		resp_cp->mcc = cpu_to_le16(mcc);
821 	}
822 
823 	IWL_DEBUG_LAR(mvm,
824 		      "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') change: %d n_chans: %d\n",
825 		      status, mcc, mcc >> 8, mcc & 0xff,
826 		      !!(status == MCC_RESP_NEW_CHAN_PROFILE), n_channels);
827 
828 exit:
829 	iwl_free_resp(&cmd);
830 	return resp_cp;
831 }
832 
833 int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
834 {
835 	bool tlv_lar;
836 	bool nvm_lar;
837 	int retval;
838 	struct ieee80211_regdomain *regd;
839 	char mcc[3];
840 
841 	if (mvm->cfg->ext_nvm) {
842 		tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
843 				      IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
844 		nvm_lar = mvm->nvm_data->lar_enabled;
845 		if (tlv_lar != nvm_lar)
846 			IWL_INFO(mvm,
847 				 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
848 				 tlv_lar ? "enabled" : "disabled",
849 				 nvm_lar ? "enabled" : "disabled");
850 	}
851 
852 	if (!iwl_mvm_is_lar_supported(mvm))
853 		return 0;
854 
855 	/*
856 	 * try to replay the last set MCC to FW. If it doesn't exist,
857 	 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
858 	 */
859 	retval = iwl_mvm_init_fw_regd(mvm);
860 	if (retval != -ENOENT)
861 		return retval;
862 
863 	/*
864 	 * Driver regulatory hint for initial update, this also informs the
865 	 * firmware we support wifi location updates.
866 	 * Disallow scans that might crash the FW while the LAR regdomain
867 	 * is not set.
868 	 */
869 	mvm->lar_regdom_set = false;
870 
871 	regd = iwl_mvm_get_current_regdomain(mvm, NULL);
872 	if (IS_ERR_OR_NULL(regd))
873 		return -EIO;
874 
875 	if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
876 	    !iwl_get_bios_mcc(mvm->dev, mcc)) {
877 		kfree(regd);
878 		regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
879 					     MCC_SOURCE_BIOS, NULL);
880 		if (IS_ERR_OR_NULL(regd))
881 			return -EIO;
882 	}
883 
884 	retval = regulatory_set_wiphy_regd_sync_rtnl(mvm->hw->wiphy, regd);
885 	kfree(regd);
886 	return retval;
887 }
888 
889 void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
890 				struct iwl_rx_cmd_buffer *rxb)
891 {
892 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
893 	struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
894 	enum iwl_mcc_source src;
895 	char mcc[3];
896 	struct ieee80211_regdomain *regd;
897 
898 	lockdep_assert_held(&mvm->mutex);
899 
900 	if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
901 		IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
902 		return;
903 	}
904 
905 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
906 		return;
907 
908 	mcc[0] = le16_to_cpu(notif->mcc) >> 8;
909 	mcc[1] = le16_to_cpu(notif->mcc) & 0xff;
910 	mcc[2] = '\0';
911 	src = notif->source_id;
912 
913 	IWL_DEBUG_LAR(mvm,
914 		      "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
915 		      mcc, src);
916 	regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
917 	if (IS_ERR_OR_NULL(regd))
918 		return;
919 
920 	regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
921 	kfree(regd);
922 }
923