1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016        Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * Copyright(c) 2016        Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  *****************************************************************************/
67 #include <linux/firmware.h>
68 #include <linux/rtnetlink.h>
69 #include <linux/acpi.h>
70 #include "iwl-trans.h"
71 #include "iwl-csr.h"
72 #include "mvm.h"
73 #include "iwl-eeprom-parse.h"
74 #include "iwl-eeprom-read.h"
75 #include "iwl-nvm-parse.h"
76 #include "iwl-prph.h"
77 
78 /* Default NVM size to read */
79 #define IWL_NVM_DEFAULT_CHUNK_SIZE (2*1024)
80 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
81 #define IWL_MAX_NVM_8000_SECTION_SIZE	0x1ffc
82 
83 #define NVM_WRITE_OPCODE 1
84 #define NVM_READ_OPCODE 0
85 
86 /* load nvm chunk response */
87 enum {
88 	READ_NVM_CHUNK_SUCCEED = 0,
89 	READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
90 };
91 
92 /*
93  * prepare the NVM host command w/ the pointers to the nvm buffer
94  * and send it to fw
95  */
96 static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
97 			       u16 offset, u16 length, const u8 *data)
98 {
99 	struct iwl_nvm_access_cmd nvm_access_cmd = {
100 		.offset = cpu_to_le16(offset),
101 		.length = cpu_to_le16(length),
102 		.type = cpu_to_le16(section),
103 		.op_code = NVM_WRITE_OPCODE,
104 	};
105 	struct iwl_host_cmd cmd = {
106 		.id = NVM_ACCESS_CMD,
107 		.len = { sizeof(struct iwl_nvm_access_cmd), length },
108 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
109 		.data = { &nvm_access_cmd, data },
110 		/* data may come from vmalloc, so use _DUP */
111 		.dataflags = { 0, IWL_HCMD_DFL_DUP },
112 	};
113 	struct iwl_rx_packet *pkt;
114 	struct iwl_nvm_access_resp *nvm_resp;
115 	int ret;
116 
117 	ret = iwl_mvm_send_cmd(mvm, &cmd);
118 	if (ret)
119 		return ret;
120 
121 	pkt = cmd.resp_pkt;
122 	if (!pkt) {
123 		IWL_ERR(mvm, "Error in NVM_ACCESS response\n");
124 		return -EINVAL;
125 	}
126 	/* Extract & check NVM write response */
127 	nvm_resp = (void *)pkt->data;
128 	if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
129 		IWL_ERR(mvm,
130 			"NVM access write command failed for section %u (status = 0x%x)\n",
131 			section, le16_to_cpu(nvm_resp->status));
132 		ret = -EIO;
133 	}
134 
135 	iwl_free_resp(&cmd);
136 	return ret;
137 }
138 
139 static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
140 			      u16 offset, u16 length, u8 *data)
141 {
142 	struct iwl_nvm_access_cmd nvm_access_cmd = {
143 		.offset = cpu_to_le16(offset),
144 		.length = cpu_to_le16(length),
145 		.type = cpu_to_le16(section),
146 		.op_code = NVM_READ_OPCODE,
147 	};
148 	struct iwl_nvm_access_resp *nvm_resp;
149 	struct iwl_rx_packet *pkt;
150 	struct iwl_host_cmd cmd = {
151 		.id = NVM_ACCESS_CMD,
152 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
153 		.data = { &nvm_access_cmd, },
154 	};
155 	int ret, bytes_read, offset_read;
156 	u8 *resp_data;
157 
158 	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
159 
160 	ret = iwl_mvm_send_cmd(mvm, &cmd);
161 	if (ret)
162 		return ret;
163 
164 	pkt = cmd.resp_pkt;
165 
166 	/* Extract NVM response */
167 	nvm_resp = (void *)pkt->data;
168 	ret = le16_to_cpu(nvm_resp->status);
169 	bytes_read = le16_to_cpu(nvm_resp->length);
170 	offset_read = le16_to_cpu(nvm_resp->offset);
171 	resp_data = nvm_resp->data;
172 	if (ret) {
173 		if ((offset != 0) &&
174 		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
175 			/*
176 			 * meaning of NOT_VALID_ADDRESS:
177 			 * driver try to read chunk from address that is
178 			 * multiple of 2K and got an error since addr is empty.
179 			 * meaning of (offset != 0): driver already
180 			 * read valid data from another chunk so this case
181 			 * is not an error.
182 			 */
183 			IWL_DEBUG_EEPROM(mvm->trans->dev,
184 					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
185 					 offset);
186 			ret = 0;
187 		} else {
188 			IWL_DEBUG_EEPROM(mvm->trans->dev,
189 					 "NVM access command failed with status %d (device: %s)\n",
190 					 ret, mvm->cfg->name);
191 			ret = -EIO;
192 		}
193 		goto exit;
194 	}
195 
196 	if (offset_read != offset) {
197 		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
198 			offset_read);
199 		ret = -EINVAL;
200 		goto exit;
201 	}
202 
203 	/* Write data to NVM */
204 	memcpy(data + offset, resp_data, bytes_read);
205 	ret = bytes_read;
206 
207 exit:
208 	iwl_free_resp(&cmd);
209 	return ret;
210 }
211 
212 static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
213 				 const u8 *data, u16 length)
214 {
215 	int offset = 0;
216 
217 	/* copy data in chunks of 2k (and remainder if any) */
218 
219 	while (offset < length) {
220 		int chunk_size, ret;
221 
222 		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
223 				 length - offset);
224 
225 		ret = iwl_nvm_write_chunk(mvm, section, offset,
226 					  chunk_size, data + offset);
227 		if (ret < 0)
228 			return ret;
229 
230 		offset += chunk_size;
231 	}
232 
233 	return 0;
234 }
235 
236 static void iwl_mvm_nvm_fixups(struct iwl_mvm *mvm, unsigned int section,
237 			       u8 *data, unsigned int len)
238 {
239 #define IWL_4165_DEVICE_ID	0x5501
240 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
241 
242 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
243 	    mvm->trans->hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
244 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
245 		/* OTP 0x52 bug work around: it's a 1x1 device */
246 		data[3] = ANT_B | (ANT_B << 4);
247 }
248 
249 /*
250  * Reads an NVM section completely.
251  * NICs prior to 7000 family doesn't have a real NVM, but just read
252  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
253  * by uCode, we need to manually check in this case that we don't
254  * overflow and try to read more than the EEPROM size.
255  * For 7000 family NICs, we supply the maximal size we can read, and
256  * the uCode fills the response with as much data as we can,
257  * without overflowing, so no check is needed.
258  */
259 static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
260 				u8 *data, u32 size_read)
261 {
262 	u16 length, offset = 0;
263 	int ret;
264 
265 	/* Set nvm section read length */
266 	length = IWL_NVM_DEFAULT_CHUNK_SIZE;
267 
268 	ret = length;
269 
270 	/* Read the NVM until exhausted (reading less than requested) */
271 	while (ret == length) {
272 		/* Check no memory assumptions fail and cause an overflow */
273 		if ((size_read + offset + length) >
274 		    mvm->cfg->base_params->eeprom_size) {
275 			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
276 			return -ENOBUFS;
277 		}
278 
279 		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
280 		if (ret < 0) {
281 			IWL_DEBUG_EEPROM(mvm->trans->dev,
282 					 "Cannot read NVM from section %d offset %d, length %d\n",
283 					 section, offset, length);
284 			return ret;
285 		}
286 		offset += ret;
287 	}
288 
289 	iwl_mvm_nvm_fixups(mvm, section, data, offset);
290 
291 	IWL_DEBUG_EEPROM(mvm->trans->dev,
292 			 "NVM section %d read completed\n", section);
293 	return offset;
294 }
295 
296 static struct iwl_nvm_data *
297 iwl_parse_nvm_sections(struct iwl_mvm *mvm)
298 {
299 	struct iwl_nvm_section *sections = mvm->nvm_sections;
300 	const __le16 *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
301 	bool lar_enabled;
302 
303 	/* Checking for required sections */
304 	if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
305 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
306 		    !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
307 			IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
308 			return NULL;
309 		}
310 	} else {
311 		/* SW and REGULATORY sections are mandatory */
312 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
313 		    !mvm->nvm_sections[NVM_SECTION_TYPE_REGULATORY].data) {
314 			IWL_ERR(mvm,
315 				"Can't parse empty family 8000 OTP/NVM sections\n");
316 			return NULL;
317 		}
318 		/* MAC_OVERRIDE or at least HW section must exist */
319 		if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
320 		    !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
321 			IWL_ERR(mvm,
322 				"Can't parse mac_address, empty sections\n");
323 			return NULL;
324 		}
325 
326 		/* PHY_SKU section is mandatory in B0 */
327 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
328 			IWL_ERR(mvm,
329 				"Can't parse phy_sku in B0, empty sections\n");
330 			return NULL;
331 		}
332 	}
333 
334 	if (WARN_ON(!mvm->cfg))
335 		return NULL;
336 
337 	hw = (const __le16 *)sections[mvm->cfg->nvm_hw_section_num].data;
338 	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
339 	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
340 	regulatory = (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
341 	mac_override =
342 		(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
343 	phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
344 
345 	lar_enabled = !iwlwifi_mod_params.lar_disable &&
346 		      fw_has_capa(&mvm->fw->ucode_capa,
347 				  IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
348 
349 	return iwl_parse_nvm_data(mvm->trans, mvm->cfg, hw, sw, calib,
350 				  regulatory, mac_override, phy_sku,
351 				  mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant,
352 				  lar_enabled);
353 }
354 
355 #define MAX_NVM_FILE_LEN	16384
356 
357 /*
358  * Reads external NVM from a file into mvm->nvm_sections
359  *
360  * HOW TO CREATE THE NVM FILE FORMAT:
361  * ------------------------------
362  * 1. create hex file, format:
363  *      3800 -> header
364  *      0000 -> header
365  *      5a40 -> data
366  *
367  *   rev - 6 bit (word1)
368  *   len - 10 bit (word1)
369  *   id - 4 bit (word2)
370  *   rsv - 12 bit (word2)
371  *
372  * 2. flip 8bits with 8 bits per line to get the right NVM file format
373  *
374  * 3. create binary file from the hex file
375  *
376  * 4. save as "iNVM_xxx.bin" under /lib/firmware
377  */
378 static int iwl_mvm_read_external_nvm(struct iwl_mvm *mvm)
379 {
380 	int ret, section_size;
381 	u16 section_id;
382 	const struct firmware *fw_entry;
383 	const struct {
384 		__le16 word1;
385 		__le16 word2;
386 		u8 data[];
387 	} *file_sec;
388 	const u8 *eof;
389 	u8 *temp;
390 	int max_section_size;
391 	const __le32 *dword_buff;
392 
393 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
394 #define NVM_WORD2_ID(x) (x >> 12)
395 #define NVM_WORD2_LEN_FAMILY_8000(x) (2 * ((x & 0xFF) << 8 | x >> 8))
396 #define NVM_WORD1_ID_FAMILY_8000(x) (x >> 4)
397 #define NVM_HEADER_0	(0x2A504C54)
398 #define NVM_HEADER_1	(0x4E564D2A)
399 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
400 
401 	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from external NVM\n");
402 
403 	/* Maximal size depends on HW family and step */
404 	if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000)
405 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
406 	else
407 		max_section_size = IWL_MAX_NVM_8000_SECTION_SIZE;
408 
409 	/*
410 	 * Obtain NVM image via request_firmware. Since we already used
411 	 * request_firmware_nowait() for the firmware binary load and only
412 	 * get here after that we assume the NVM request can be satisfied
413 	 * synchronously.
414 	 */
415 	ret = request_firmware(&fw_entry, mvm->nvm_file_name,
416 			       mvm->trans->dev);
417 	if (ret) {
418 		IWL_ERR(mvm, "ERROR: %s isn't available %d\n",
419 			mvm->nvm_file_name, ret);
420 		return ret;
421 	}
422 
423 	IWL_INFO(mvm, "Loaded NVM file %s (%zu bytes)\n",
424 		 mvm->nvm_file_name, fw_entry->size);
425 
426 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
427 		IWL_ERR(mvm, "NVM file too large\n");
428 		ret = -EINVAL;
429 		goto out;
430 	}
431 
432 	eof = fw_entry->data + fw_entry->size;
433 	dword_buff = (__le32 *)fw_entry->data;
434 
435 	/* some NVM file will contain a header.
436 	 * The header is identified by 2 dwords header as follow:
437 	 * dword[0] = 0x2A504C54
438 	 * dword[1] = 0x4E564D2A
439 	 *
440 	 * This header must be skipped when providing the NVM data to the FW.
441 	 */
442 	if (fw_entry->size > NVM_HEADER_SIZE &&
443 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
444 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
445 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
446 		IWL_INFO(mvm, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
447 		IWL_INFO(mvm, "NVM Manufacturing date %08X\n",
448 			 le32_to_cpu(dword_buff[3]));
449 
450 		/* nvm file validation, dword_buff[2] holds the file version */
451 		if ((CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_C_STEP &&
452 		     le32_to_cpu(dword_buff[2]) < 0xE4A) ||
453 		    (CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_B_STEP &&
454 		     le32_to_cpu(dword_buff[2]) >= 0xE4A)) {
455 			ret = -EFAULT;
456 			goto out;
457 		}
458 	} else {
459 		file_sec = (void *)fw_entry->data;
460 	}
461 
462 	while (true) {
463 		if (file_sec->data > eof) {
464 			IWL_ERR(mvm,
465 				"ERROR - NVM file too short for section header\n");
466 			ret = -EINVAL;
467 			break;
468 		}
469 
470 		/* check for EOF marker */
471 		if (!file_sec->word1 && !file_sec->word2) {
472 			ret = 0;
473 			break;
474 		}
475 
476 		if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
477 			section_size =
478 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
479 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
480 		} else {
481 			section_size = 2 * NVM_WORD2_LEN_FAMILY_8000(
482 						le16_to_cpu(file_sec->word2));
483 			section_id = NVM_WORD1_ID_FAMILY_8000(
484 						le16_to_cpu(file_sec->word1));
485 		}
486 
487 		if (section_size > max_section_size) {
488 			IWL_ERR(mvm, "ERROR - section too large (%d)\n",
489 				section_size);
490 			ret = -EINVAL;
491 			break;
492 		}
493 
494 		if (!section_size) {
495 			IWL_ERR(mvm, "ERROR - section empty\n");
496 			ret = -EINVAL;
497 			break;
498 		}
499 
500 		if (file_sec->data + section_size > eof) {
501 			IWL_ERR(mvm,
502 				"ERROR - NVM file too short for section (%d bytes)\n",
503 				section_size);
504 			ret = -EINVAL;
505 			break;
506 		}
507 
508 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
509 			 "Invalid NVM section ID %d\n", section_id)) {
510 			ret = -EINVAL;
511 			break;
512 		}
513 
514 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
515 		if (!temp) {
516 			ret = -ENOMEM;
517 			break;
518 		}
519 
520 		iwl_mvm_nvm_fixups(mvm, section_id, temp, section_size);
521 
522 		kfree(mvm->nvm_sections[section_id].data);
523 		mvm->nvm_sections[section_id].data = temp;
524 		mvm->nvm_sections[section_id].length = section_size;
525 
526 		/* advance to the next section */
527 		file_sec = (void *)(file_sec->data + section_size);
528 	}
529 out:
530 	release_firmware(fw_entry);
531 	return ret;
532 }
533 
534 /* Loads the NVM data stored in mvm->nvm_sections into the NIC */
535 int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
536 {
537 	int i, ret = 0;
538 	struct iwl_nvm_section *sections = mvm->nvm_sections;
539 
540 	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
541 
542 	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
543 		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
544 			continue;
545 		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
546 					    sections[i].length);
547 		if (ret < 0) {
548 			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
549 			break;
550 		}
551 	}
552 	return ret;
553 }
554 
555 int iwl_nvm_init(struct iwl_mvm *mvm, bool read_nvm_from_nic)
556 {
557 	int ret, section;
558 	u32 size_read = 0;
559 	u8 *nvm_buffer, *temp;
560 	const char *nvm_file_B = mvm->cfg->default_nvm_file_B_step;
561 	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
562 
563 	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
564 		return -EINVAL;
565 
566 	/* load NVM values from nic */
567 	if (read_nvm_from_nic) {
568 		/* Read From FW NVM */
569 		IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
570 
571 		nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size,
572 				     GFP_KERNEL);
573 		if (!nvm_buffer)
574 			return -ENOMEM;
575 		for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
576 			/* we override the constness for initial read */
577 			ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
578 						   size_read);
579 			if (ret < 0)
580 				continue;
581 			size_read += ret;
582 			temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
583 			if (!temp) {
584 				ret = -ENOMEM;
585 				break;
586 			}
587 
588 			iwl_mvm_nvm_fixups(mvm, section, temp, ret);
589 
590 			mvm->nvm_sections[section].data = temp;
591 			mvm->nvm_sections[section].length = ret;
592 
593 #ifdef CONFIG_IWLWIFI_DEBUGFS
594 			switch (section) {
595 			case NVM_SECTION_TYPE_SW:
596 				mvm->nvm_sw_blob.data = temp;
597 				mvm->nvm_sw_blob.size  = ret;
598 				break;
599 			case NVM_SECTION_TYPE_CALIBRATION:
600 				mvm->nvm_calib_blob.data = temp;
601 				mvm->nvm_calib_blob.size  = ret;
602 				break;
603 			case NVM_SECTION_TYPE_PRODUCTION:
604 				mvm->nvm_prod_blob.data = temp;
605 				mvm->nvm_prod_blob.size  = ret;
606 				break;
607 			case NVM_SECTION_TYPE_PHY_SKU:
608 				mvm->nvm_phy_sku_blob.data = temp;
609 				mvm->nvm_phy_sku_blob.size  = ret;
610 				break;
611 			default:
612 				if (section == mvm->cfg->nvm_hw_section_num) {
613 					mvm->nvm_hw_blob.data = temp;
614 					mvm->nvm_hw_blob.size = ret;
615 					break;
616 				}
617 			}
618 #endif
619 		}
620 		if (!size_read)
621 			IWL_ERR(mvm, "OTP is blank\n");
622 		kfree(nvm_buffer);
623 	}
624 
625 	/* Only if PNVM selected in the mod param - load external NVM  */
626 	if (mvm->nvm_file_name) {
627 		/* read External NVM file from the mod param */
628 		ret = iwl_mvm_read_external_nvm(mvm);
629 		if (ret) {
630 			/* choose the nvm_file name according to the
631 			 * HW step
632 			 */
633 			if (CSR_HW_REV_STEP(mvm->trans->hw_rev) ==
634 			    SILICON_B_STEP)
635 				mvm->nvm_file_name = nvm_file_B;
636 			else
637 				mvm->nvm_file_name = nvm_file_C;
638 
639 			if ((ret == -EFAULT || ret == -ENOENT) &&
640 			    mvm->nvm_file_name) {
641 				/* in case nvm file was failed try again */
642 				ret = iwl_mvm_read_external_nvm(mvm);
643 				if (ret)
644 					return ret;
645 			} else {
646 				return ret;
647 			}
648 		}
649 	}
650 
651 	/* parse the relevant nvm sections */
652 	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
653 	if (!mvm->nvm_data)
654 		return -ENODATA;
655 	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
656 			 mvm->nvm_data->nvm_version);
657 
658 	return 0;
659 }
660 
661 struct iwl_mcc_update_resp *
662 iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
663 		   enum iwl_mcc_source src_id)
664 {
665 	struct iwl_mcc_update_cmd mcc_update_cmd = {
666 		.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
667 		.source_id = (u8)src_id,
668 	};
669 	struct iwl_mcc_update_resp *resp_cp;
670 	struct iwl_rx_packet *pkt;
671 	struct iwl_host_cmd cmd = {
672 		.id = MCC_UPDATE_CMD,
673 		.flags = CMD_WANT_SKB,
674 		.data = { &mcc_update_cmd },
675 	};
676 
677 	int ret;
678 	u32 status;
679 	int resp_len, n_channels;
680 	u16 mcc;
681 	bool resp_v2 = fw_has_capa(&mvm->fw->ucode_capa,
682 				   IWL_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
683 
684 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
685 		return ERR_PTR(-EOPNOTSUPP);
686 
687 	cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
688 	if (!resp_v2)
689 		cmd.len[0] = sizeof(struct iwl_mcc_update_cmd_v1);
690 
691 	IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
692 		      alpha2[0], alpha2[1], src_id);
693 
694 	ret = iwl_mvm_send_cmd(mvm, &cmd);
695 	if (ret)
696 		return ERR_PTR(ret);
697 
698 	pkt = cmd.resp_pkt;
699 
700 	/* Extract MCC response */
701 	if (resp_v2) {
702 		struct iwl_mcc_update_resp *mcc_resp = (void *)pkt->data;
703 
704 		n_channels =  __le32_to_cpu(mcc_resp->n_channels);
705 		resp_len = sizeof(struct iwl_mcc_update_resp) +
706 			   n_channels * sizeof(__le32);
707 		resp_cp = kmemdup(mcc_resp, resp_len, GFP_KERNEL);
708 	} else {
709 		struct iwl_mcc_update_resp_v1 *mcc_resp_v1 = (void *)pkt->data;
710 
711 		n_channels =  __le32_to_cpu(mcc_resp_v1->n_channels);
712 		resp_len = sizeof(struct iwl_mcc_update_resp) +
713 			   n_channels * sizeof(__le32);
714 		resp_cp = kzalloc(resp_len, GFP_KERNEL);
715 
716 		if (resp_cp) {
717 			resp_cp->status = mcc_resp_v1->status;
718 			resp_cp->mcc = mcc_resp_v1->mcc;
719 			resp_cp->cap = mcc_resp_v1->cap;
720 			resp_cp->source_id = mcc_resp_v1->source_id;
721 			resp_cp->n_channels = mcc_resp_v1->n_channels;
722 			memcpy(resp_cp->channels, mcc_resp_v1->channels,
723 			       n_channels * sizeof(__le32));
724 		}
725 	}
726 
727 	if (!resp_cp) {
728 		ret = -ENOMEM;
729 		goto exit;
730 	}
731 
732 	status = le32_to_cpu(resp_cp->status);
733 
734 	mcc = le16_to_cpu(resp_cp->mcc);
735 
736 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
737 	if (mcc == 0) {
738 		mcc = 0x3030;  /* "00" - world */
739 		resp_cp->mcc = cpu_to_le16(mcc);
740 	}
741 
742 	IWL_DEBUG_LAR(mvm,
743 		      "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') change: %d n_chans: %d\n",
744 		      status, mcc, mcc >> 8, mcc & 0xff,
745 		      !!(status == MCC_RESP_NEW_CHAN_PROFILE), n_channels);
746 
747 exit:
748 	iwl_free_resp(&cmd);
749 	if (ret)
750 		return ERR_PTR(ret);
751 	return resp_cp;
752 }
753 
754 #ifdef CONFIG_ACPI
755 #define WRD_METHOD		"WRDD"
756 #define WRDD_WIFI		(0x07)
757 #define WRDD_WIGIG		(0x10)
758 
759 static u32 iwl_mvm_wrdd_get_mcc(struct iwl_mvm *mvm, union acpi_object *wrdd)
760 {
761 	union acpi_object *mcc_pkg, *domain_type, *mcc_value;
762 	u32 i;
763 
764 	if (wrdd->type != ACPI_TYPE_PACKAGE ||
765 	    wrdd->package.count < 2 ||
766 	    wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
767 	    wrdd->package.elements[0].integer.value != 0) {
768 		IWL_DEBUG_LAR(mvm, "Unsupported wrdd structure\n");
769 		return 0;
770 	}
771 
772 	for (i = 1 ; i < wrdd->package.count ; ++i) {
773 		mcc_pkg = &wrdd->package.elements[i];
774 
775 		if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
776 		    mcc_pkg->package.count < 2 ||
777 		    mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
778 		    mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
779 			mcc_pkg = NULL;
780 			continue;
781 		}
782 
783 		domain_type = &mcc_pkg->package.elements[0];
784 		if (domain_type->integer.value == WRDD_WIFI)
785 			break;
786 
787 		mcc_pkg = NULL;
788 	}
789 
790 	if (mcc_pkg) {
791 		mcc_value = &mcc_pkg->package.elements[1];
792 		return mcc_value->integer.value;
793 	}
794 
795 	return 0;
796 }
797 
798 static int iwl_mvm_get_bios_mcc(struct iwl_mvm *mvm, char *mcc)
799 {
800 	acpi_handle root_handle;
801 	acpi_handle handle;
802 	struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
803 	acpi_status status;
804 	u32 mcc_val;
805 
806 	root_handle = ACPI_HANDLE(mvm->dev);
807 	if (!root_handle) {
808 		IWL_DEBUG_LAR(mvm,
809 			      "Could not retrieve root port ACPI handle\n");
810 		return -ENOENT;
811 	}
812 
813 	/* Get the method's handle */
814 	status = acpi_get_handle(root_handle, (acpi_string)WRD_METHOD, &handle);
815 	if (ACPI_FAILURE(status)) {
816 		IWL_DEBUG_LAR(mvm, "WRD method not found\n");
817 		return -ENOENT;
818 	}
819 
820 	/* Call WRDD with no arguments */
821 	status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
822 	if (ACPI_FAILURE(status)) {
823 		IWL_DEBUG_LAR(mvm, "WRDC invocation failed (0x%x)\n", status);
824 		return -ENOENT;
825 	}
826 
827 	mcc_val = iwl_mvm_wrdd_get_mcc(mvm, wrdd.pointer);
828 	kfree(wrdd.pointer);
829 	if (!mcc_val)
830 		return -ENOENT;
831 
832 	mcc[0] = (mcc_val >> 8) & 0xff;
833 	mcc[1] = mcc_val & 0xff;
834 	mcc[2] = '\0';
835 	return 0;
836 }
837 #else /* CONFIG_ACPI */
838 static int iwl_mvm_get_bios_mcc(struct iwl_mvm *mvm, char *mcc)
839 {
840 	return -ENOENT;
841 }
842 #endif
843 
844 int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
845 {
846 	bool tlv_lar;
847 	bool nvm_lar;
848 	int retval;
849 	struct ieee80211_regdomain *regd;
850 	char mcc[3];
851 
852 	if (mvm->cfg->device_family == IWL_DEVICE_FAMILY_8000) {
853 		tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
854 				      IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
855 		nvm_lar = mvm->nvm_data->lar_enabled;
856 		if (tlv_lar != nvm_lar)
857 			IWL_INFO(mvm,
858 				 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
859 				 tlv_lar ? "enabled" : "disabled",
860 				 nvm_lar ? "enabled" : "disabled");
861 	}
862 
863 	if (!iwl_mvm_is_lar_supported(mvm))
864 		return 0;
865 
866 	/*
867 	 * try to replay the last set MCC to FW. If it doesn't exist,
868 	 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
869 	 */
870 	retval = iwl_mvm_init_fw_regd(mvm);
871 	if (retval != -ENOENT)
872 		return retval;
873 
874 	/*
875 	 * Driver regulatory hint for initial update, this also informs the
876 	 * firmware we support wifi location updates.
877 	 * Disallow scans that might crash the FW while the LAR regdomain
878 	 * is not set.
879 	 */
880 	mvm->lar_regdom_set = false;
881 
882 	regd = iwl_mvm_get_current_regdomain(mvm, NULL);
883 	if (IS_ERR_OR_NULL(regd))
884 		return -EIO;
885 
886 	if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
887 	    !iwl_mvm_get_bios_mcc(mvm, mcc)) {
888 		kfree(regd);
889 		regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
890 					     MCC_SOURCE_BIOS, NULL);
891 		if (IS_ERR_OR_NULL(regd))
892 			return -EIO;
893 	}
894 
895 	retval = regulatory_set_wiphy_regd_sync_rtnl(mvm->hw->wiphy, regd);
896 	kfree(regd);
897 	return retval;
898 }
899 
900 void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
901 				struct iwl_rx_cmd_buffer *rxb)
902 {
903 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
904 	struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
905 	enum iwl_mcc_source src;
906 	char mcc[3];
907 	struct ieee80211_regdomain *regd;
908 
909 	lockdep_assert_held(&mvm->mutex);
910 
911 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
912 		return;
913 
914 	mcc[0] = notif->mcc >> 8;
915 	mcc[1] = notif->mcc & 0xff;
916 	mcc[2] = '\0';
917 	src = notif->source_id;
918 
919 	IWL_DEBUG_LAR(mvm,
920 		      "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
921 		      mcc, src);
922 	regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
923 	if (IS_ERR_OR_NULL(regd))
924 		return;
925 
926 	regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
927 	kfree(regd);
928 }
929