1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016        Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * Copyright(c) 2016        Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  *****************************************************************************/
67 #include <linux/firmware.h>
68 #include <linux/rtnetlink.h>
69 #include <linux/pci.h>
70 #include <linux/acpi.h>
71 #include "iwl-trans.h"
72 #include "iwl-csr.h"
73 #include "mvm.h"
74 #include "iwl-eeprom-parse.h"
75 #include "iwl-eeprom-read.h"
76 #include "iwl-nvm-parse.h"
77 #include "iwl-prph.h"
78 
79 /* Default NVM size to read */
80 #define IWL_NVM_DEFAULT_CHUNK_SIZE (2*1024)
81 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
82 #define IWL_MAX_NVM_8000_SECTION_SIZE	0x1ffc
83 
84 #define NVM_WRITE_OPCODE 1
85 #define NVM_READ_OPCODE 0
86 
87 /* load nvm chunk response */
88 enum {
89 	READ_NVM_CHUNK_SUCCEED = 0,
90 	READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
91 };
92 
93 /*
94  * prepare the NVM host command w/ the pointers to the nvm buffer
95  * and send it to fw
96  */
97 static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
98 			       u16 offset, u16 length, const u8 *data)
99 {
100 	struct iwl_nvm_access_cmd nvm_access_cmd = {
101 		.offset = cpu_to_le16(offset),
102 		.length = cpu_to_le16(length),
103 		.type = cpu_to_le16(section),
104 		.op_code = NVM_WRITE_OPCODE,
105 	};
106 	struct iwl_host_cmd cmd = {
107 		.id = NVM_ACCESS_CMD,
108 		.len = { sizeof(struct iwl_nvm_access_cmd), length },
109 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
110 		.data = { &nvm_access_cmd, data },
111 		/* data may come from vmalloc, so use _DUP */
112 		.dataflags = { 0, IWL_HCMD_DFL_DUP },
113 	};
114 	struct iwl_rx_packet *pkt;
115 	struct iwl_nvm_access_resp *nvm_resp;
116 	int ret;
117 
118 	ret = iwl_mvm_send_cmd(mvm, &cmd);
119 	if (ret)
120 		return ret;
121 
122 	pkt = cmd.resp_pkt;
123 	if (!pkt) {
124 		IWL_ERR(mvm, "Error in NVM_ACCESS response\n");
125 		return -EINVAL;
126 	}
127 	/* Extract & check NVM write response */
128 	nvm_resp = (void *)pkt->data;
129 	if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
130 		IWL_ERR(mvm,
131 			"NVM access write command failed for section %u (status = 0x%x)\n",
132 			section, le16_to_cpu(nvm_resp->status));
133 		ret = -EIO;
134 	}
135 
136 	iwl_free_resp(&cmd);
137 	return ret;
138 }
139 
140 static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
141 			      u16 offset, u16 length, u8 *data)
142 {
143 	struct iwl_nvm_access_cmd nvm_access_cmd = {
144 		.offset = cpu_to_le16(offset),
145 		.length = cpu_to_le16(length),
146 		.type = cpu_to_le16(section),
147 		.op_code = NVM_READ_OPCODE,
148 	};
149 	struct iwl_nvm_access_resp *nvm_resp;
150 	struct iwl_rx_packet *pkt;
151 	struct iwl_host_cmd cmd = {
152 		.id = NVM_ACCESS_CMD,
153 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
154 		.data = { &nvm_access_cmd, },
155 	};
156 	int ret, bytes_read, offset_read;
157 	u8 *resp_data;
158 
159 	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
160 
161 	ret = iwl_mvm_send_cmd(mvm, &cmd);
162 	if (ret)
163 		return ret;
164 
165 	pkt = cmd.resp_pkt;
166 
167 	/* Extract NVM response */
168 	nvm_resp = (void *)pkt->data;
169 	ret = le16_to_cpu(nvm_resp->status);
170 	bytes_read = le16_to_cpu(nvm_resp->length);
171 	offset_read = le16_to_cpu(nvm_resp->offset);
172 	resp_data = nvm_resp->data;
173 	if (ret) {
174 		if ((offset != 0) &&
175 		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
176 			/*
177 			 * meaning of NOT_VALID_ADDRESS:
178 			 * driver try to read chunk from address that is
179 			 * multiple of 2K and got an error since addr is empty.
180 			 * meaning of (offset != 0): driver already
181 			 * read valid data from another chunk so this case
182 			 * is not an error.
183 			 */
184 			IWL_DEBUG_EEPROM(mvm->trans->dev,
185 					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
186 					 offset);
187 			ret = 0;
188 		} else {
189 			IWL_DEBUG_EEPROM(mvm->trans->dev,
190 					 "NVM access command failed with status %d (device: %s)\n",
191 					 ret, mvm->cfg->name);
192 			ret = -EIO;
193 		}
194 		goto exit;
195 	}
196 
197 	if (offset_read != offset) {
198 		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
199 			offset_read);
200 		ret = -EINVAL;
201 		goto exit;
202 	}
203 
204 	/* Write data to NVM */
205 	memcpy(data + offset, resp_data, bytes_read);
206 	ret = bytes_read;
207 
208 exit:
209 	iwl_free_resp(&cmd);
210 	return ret;
211 }
212 
213 static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
214 				 const u8 *data, u16 length)
215 {
216 	int offset = 0;
217 
218 	/* copy data in chunks of 2k (and remainder if any) */
219 
220 	while (offset < length) {
221 		int chunk_size, ret;
222 
223 		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
224 				 length - offset);
225 
226 		ret = iwl_nvm_write_chunk(mvm, section, offset,
227 					  chunk_size, data + offset);
228 		if (ret < 0)
229 			return ret;
230 
231 		offset += chunk_size;
232 	}
233 
234 	return 0;
235 }
236 
237 static void iwl_mvm_nvm_fixups(struct iwl_mvm *mvm, unsigned int section,
238 			       u8 *data, unsigned int len)
239 {
240 #define IWL_4165_DEVICE_ID	0x5501
241 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
242 
243 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
244 	    mvm->trans->hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
245 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
246 		/* OTP 0x52 bug work around: it's a 1x1 device */
247 		data[3] = ANT_B | (ANT_B << 4);
248 }
249 
250 /*
251  * Reads an NVM section completely.
252  * NICs prior to 7000 family doesn't have a real NVM, but just read
253  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
254  * by uCode, we need to manually check in this case that we don't
255  * overflow and try to read more than the EEPROM size.
256  * For 7000 family NICs, we supply the maximal size we can read, and
257  * the uCode fills the response with as much data as we can,
258  * without overflowing, so no check is needed.
259  */
260 static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
261 				u8 *data, u32 size_read)
262 {
263 	u16 length, offset = 0;
264 	int ret;
265 
266 	/* Set nvm section read length */
267 	length = IWL_NVM_DEFAULT_CHUNK_SIZE;
268 
269 	ret = length;
270 
271 	/* Read the NVM until exhausted (reading less than requested) */
272 	while (ret == length) {
273 		/* Check no memory assumptions fail and cause an overflow */
274 		if ((size_read + offset + length) >
275 		    mvm->cfg->base_params->eeprom_size) {
276 			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
277 			return -ENOBUFS;
278 		}
279 
280 		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
281 		if (ret < 0) {
282 			IWL_DEBUG_EEPROM(mvm->trans->dev,
283 					 "Cannot read NVM from section %d offset %d, length %d\n",
284 					 section, offset, length);
285 			return ret;
286 		}
287 		offset += ret;
288 	}
289 
290 	iwl_mvm_nvm_fixups(mvm, section, data, offset);
291 
292 	IWL_DEBUG_EEPROM(mvm->trans->dev,
293 			 "NVM section %d read completed\n", section);
294 	return offset;
295 }
296 
297 static struct iwl_nvm_data *
298 iwl_parse_nvm_sections(struct iwl_mvm *mvm)
299 {
300 	struct iwl_nvm_section *sections = mvm->nvm_sections;
301 	const __le16 *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
302 	bool lar_enabled;
303 	u32 mac_addr0, mac_addr1;
304 
305 	/* Checking for required sections */
306 	if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
307 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
308 		    !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
309 			IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
310 			return NULL;
311 		}
312 	} else {
313 		/* SW and REGULATORY sections are mandatory */
314 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
315 		    !mvm->nvm_sections[NVM_SECTION_TYPE_REGULATORY].data) {
316 			IWL_ERR(mvm,
317 				"Can't parse empty family 8000 OTP/NVM sections\n");
318 			return NULL;
319 		}
320 		/* MAC_OVERRIDE or at least HW section must exist */
321 		if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
322 		    !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
323 			IWL_ERR(mvm,
324 				"Can't parse mac_address, empty sections\n");
325 			return NULL;
326 		}
327 
328 		/* PHY_SKU section is mandatory in B0 */
329 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
330 			IWL_ERR(mvm,
331 				"Can't parse phy_sku in B0, empty sections\n");
332 			return NULL;
333 		}
334 	}
335 
336 	if (WARN_ON(!mvm->cfg))
337 		return NULL;
338 
339 	/* read the mac address from WFMP registers */
340 	mac_addr0 = iwl_trans_read_prph(mvm->trans, WFMP_MAC_ADDR_0);
341 	mac_addr1 = iwl_trans_read_prph(mvm->trans, WFMP_MAC_ADDR_1);
342 
343 	hw = (const __le16 *)sections[mvm->cfg->nvm_hw_section_num].data;
344 	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
345 	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
346 	regulatory = (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
347 	mac_override =
348 		(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
349 	phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
350 
351 	lar_enabled = !iwlwifi_mod_params.lar_disable &&
352 		      fw_has_capa(&mvm->fw->ucode_capa,
353 				  IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
354 
355 	return iwl_parse_nvm_data(mvm->trans->dev, mvm->cfg, hw, sw, calib,
356 				  regulatory, mac_override, phy_sku,
357 				  mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant,
358 				  lar_enabled, mac_addr0, mac_addr1);
359 }
360 
361 #define MAX_NVM_FILE_LEN	16384
362 
363 /*
364  * Reads external NVM from a file into mvm->nvm_sections
365  *
366  * HOW TO CREATE THE NVM FILE FORMAT:
367  * ------------------------------
368  * 1. create hex file, format:
369  *      3800 -> header
370  *      0000 -> header
371  *      5a40 -> data
372  *
373  *   rev - 6 bit (word1)
374  *   len - 10 bit (word1)
375  *   id - 4 bit (word2)
376  *   rsv - 12 bit (word2)
377  *
378  * 2. flip 8bits with 8 bits per line to get the right NVM file format
379  *
380  * 3. create binary file from the hex file
381  *
382  * 4. save as "iNVM_xxx.bin" under /lib/firmware
383  */
384 static int iwl_mvm_read_external_nvm(struct iwl_mvm *mvm)
385 {
386 	int ret, section_size;
387 	u16 section_id;
388 	const struct firmware *fw_entry;
389 	const struct {
390 		__le16 word1;
391 		__le16 word2;
392 		u8 data[];
393 	} *file_sec;
394 	const u8 *eof;
395 	u8 *temp;
396 	int max_section_size;
397 	const __le32 *dword_buff;
398 
399 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
400 #define NVM_WORD2_ID(x) (x >> 12)
401 #define NVM_WORD2_LEN_FAMILY_8000(x) (2 * ((x & 0xFF) << 8 | x >> 8))
402 #define NVM_WORD1_ID_FAMILY_8000(x) (x >> 4)
403 #define NVM_HEADER_0	(0x2A504C54)
404 #define NVM_HEADER_1	(0x4E564D2A)
405 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
406 
407 	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from external NVM\n");
408 
409 	/* Maximal size depends on HW family and step */
410 	if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000)
411 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
412 	else
413 		max_section_size = IWL_MAX_NVM_8000_SECTION_SIZE;
414 
415 	/*
416 	 * Obtain NVM image via request_firmware. Since we already used
417 	 * request_firmware_nowait() for the firmware binary load and only
418 	 * get here after that we assume the NVM request can be satisfied
419 	 * synchronously.
420 	 */
421 	ret = request_firmware(&fw_entry, mvm->nvm_file_name,
422 			       mvm->trans->dev);
423 	if (ret) {
424 		IWL_ERR(mvm, "ERROR: %s isn't available %d\n",
425 			mvm->nvm_file_name, ret);
426 		return ret;
427 	}
428 
429 	IWL_INFO(mvm, "Loaded NVM file %s (%zu bytes)\n",
430 		 mvm->nvm_file_name, fw_entry->size);
431 
432 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
433 		IWL_ERR(mvm, "NVM file too large\n");
434 		ret = -EINVAL;
435 		goto out;
436 	}
437 
438 	eof = fw_entry->data + fw_entry->size;
439 	dword_buff = (__le32 *)fw_entry->data;
440 
441 	/* some NVM file will contain a header.
442 	 * The header is identified by 2 dwords header as follow:
443 	 * dword[0] = 0x2A504C54
444 	 * dword[1] = 0x4E564D2A
445 	 *
446 	 * This header must be skipped when providing the NVM data to the FW.
447 	 */
448 	if (fw_entry->size > NVM_HEADER_SIZE &&
449 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
450 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
451 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
452 		IWL_INFO(mvm, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
453 		IWL_INFO(mvm, "NVM Manufacturing date %08X\n",
454 			 le32_to_cpu(dword_buff[3]));
455 
456 		/* nvm file validation, dword_buff[2] holds the file version */
457 		if ((CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_C_STEP &&
458 		     le32_to_cpu(dword_buff[2]) < 0xE4A) ||
459 		    (CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_B_STEP &&
460 		     le32_to_cpu(dword_buff[2]) >= 0xE4A)) {
461 			ret = -EFAULT;
462 			goto out;
463 		}
464 	} else {
465 		file_sec = (void *)fw_entry->data;
466 	}
467 
468 	while (true) {
469 		if (file_sec->data > eof) {
470 			IWL_ERR(mvm,
471 				"ERROR - NVM file too short for section header\n");
472 			ret = -EINVAL;
473 			break;
474 		}
475 
476 		/* check for EOF marker */
477 		if (!file_sec->word1 && !file_sec->word2) {
478 			ret = 0;
479 			break;
480 		}
481 
482 		if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
483 			section_size =
484 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
485 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
486 		} else {
487 			section_size = 2 * NVM_WORD2_LEN_FAMILY_8000(
488 						le16_to_cpu(file_sec->word2));
489 			section_id = NVM_WORD1_ID_FAMILY_8000(
490 						le16_to_cpu(file_sec->word1));
491 		}
492 
493 		if (section_size > max_section_size) {
494 			IWL_ERR(mvm, "ERROR - section too large (%d)\n",
495 				section_size);
496 			ret = -EINVAL;
497 			break;
498 		}
499 
500 		if (!section_size) {
501 			IWL_ERR(mvm, "ERROR - section empty\n");
502 			ret = -EINVAL;
503 			break;
504 		}
505 
506 		if (file_sec->data + section_size > eof) {
507 			IWL_ERR(mvm,
508 				"ERROR - NVM file too short for section (%d bytes)\n",
509 				section_size);
510 			ret = -EINVAL;
511 			break;
512 		}
513 
514 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
515 			 "Invalid NVM section ID %d\n", section_id)) {
516 			ret = -EINVAL;
517 			break;
518 		}
519 
520 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
521 		if (!temp) {
522 			ret = -ENOMEM;
523 			break;
524 		}
525 
526 		iwl_mvm_nvm_fixups(mvm, section_id, temp, section_size);
527 
528 		kfree(mvm->nvm_sections[section_id].data);
529 		mvm->nvm_sections[section_id].data = temp;
530 		mvm->nvm_sections[section_id].length = section_size;
531 
532 		/* advance to the next section */
533 		file_sec = (void *)(file_sec->data + section_size);
534 	}
535 out:
536 	release_firmware(fw_entry);
537 	return ret;
538 }
539 
540 /* Loads the NVM data stored in mvm->nvm_sections into the NIC */
541 int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
542 {
543 	int i, ret = 0;
544 	struct iwl_nvm_section *sections = mvm->nvm_sections;
545 
546 	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
547 
548 	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
549 		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
550 			continue;
551 		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
552 					    sections[i].length);
553 		if (ret < 0) {
554 			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
555 			break;
556 		}
557 	}
558 	return ret;
559 }
560 
561 int iwl_nvm_init(struct iwl_mvm *mvm, bool read_nvm_from_nic)
562 {
563 	int ret, section;
564 	u32 size_read = 0;
565 	u8 *nvm_buffer, *temp;
566 	const char *nvm_file_B = mvm->cfg->default_nvm_file_B_step;
567 	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
568 
569 	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
570 		return -EINVAL;
571 
572 	/* load NVM values from nic */
573 	if (read_nvm_from_nic) {
574 		/* Read From FW NVM */
575 		IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
576 
577 		nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size,
578 				     GFP_KERNEL);
579 		if (!nvm_buffer)
580 			return -ENOMEM;
581 		for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
582 			/* we override the constness for initial read */
583 			ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
584 						   size_read);
585 			if (ret < 0)
586 				continue;
587 			size_read += ret;
588 			temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
589 			if (!temp) {
590 				ret = -ENOMEM;
591 				break;
592 			}
593 
594 			iwl_mvm_nvm_fixups(mvm, section, temp, ret);
595 
596 			mvm->nvm_sections[section].data = temp;
597 			mvm->nvm_sections[section].length = ret;
598 
599 #ifdef CONFIG_IWLWIFI_DEBUGFS
600 			switch (section) {
601 			case NVM_SECTION_TYPE_SW:
602 				mvm->nvm_sw_blob.data = temp;
603 				mvm->nvm_sw_blob.size  = ret;
604 				break;
605 			case NVM_SECTION_TYPE_CALIBRATION:
606 				mvm->nvm_calib_blob.data = temp;
607 				mvm->nvm_calib_blob.size  = ret;
608 				break;
609 			case NVM_SECTION_TYPE_PRODUCTION:
610 				mvm->nvm_prod_blob.data = temp;
611 				mvm->nvm_prod_blob.size  = ret;
612 				break;
613 			case NVM_SECTION_TYPE_PHY_SKU:
614 				mvm->nvm_phy_sku_blob.data = temp;
615 				mvm->nvm_phy_sku_blob.size  = ret;
616 				break;
617 			default:
618 				if (section == mvm->cfg->nvm_hw_section_num) {
619 					mvm->nvm_hw_blob.data = temp;
620 					mvm->nvm_hw_blob.size = ret;
621 					break;
622 				}
623 			}
624 #endif
625 		}
626 		if (!size_read)
627 			IWL_ERR(mvm, "OTP is blank\n");
628 		kfree(nvm_buffer);
629 	}
630 
631 	/* Only if PNVM selected in the mod param - load external NVM  */
632 	if (mvm->nvm_file_name) {
633 		/* read External NVM file from the mod param */
634 		ret = iwl_mvm_read_external_nvm(mvm);
635 		if (ret) {
636 			/* choose the nvm_file name according to the
637 			 * HW step
638 			 */
639 			if (CSR_HW_REV_STEP(mvm->trans->hw_rev) ==
640 			    SILICON_B_STEP)
641 				mvm->nvm_file_name = nvm_file_B;
642 			else
643 				mvm->nvm_file_name = nvm_file_C;
644 
645 			if ((ret == -EFAULT || ret == -ENOENT) &&
646 			    mvm->nvm_file_name) {
647 				/* in case nvm file was failed try again */
648 				ret = iwl_mvm_read_external_nvm(mvm);
649 				if (ret)
650 					return ret;
651 			} else {
652 				return ret;
653 			}
654 		}
655 	}
656 
657 	/* parse the relevant nvm sections */
658 	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
659 	if (!mvm->nvm_data)
660 		return -ENODATA;
661 	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
662 			 mvm->nvm_data->nvm_version);
663 
664 	return 0;
665 }
666 
667 struct iwl_mcc_update_resp *
668 iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
669 		   enum iwl_mcc_source src_id)
670 {
671 	struct iwl_mcc_update_cmd mcc_update_cmd = {
672 		.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
673 		.source_id = (u8)src_id,
674 	};
675 	struct iwl_mcc_update_resp *mcc_resp, *resp_cp = NULL;
676 	struct iwl_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
677 	struct iwl_rx_packet *pkt;
678 	struct iwl_host_cmd cmd = {
679 		.id = MCC_UPDATE_CMD,
680 		.flags = CMD_WANT_SKB,
681 		.data = { &mcc_update_cmd },
682 	};
683 
684 	int ret;
685 	u32 status;
686 	int resp_len, n_channels;
687 	u16 mcc;
688 	bool resp_v2 = fw_has_capa(&mvm->fw->ucode_capa,
689 				   IWL_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
690 
691 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
692 		return ERR_PTR(-EOPNOTSUPP);
693 
694 	cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
695 	if (!resp_v2)
696 		cmd.len[0] = sizeof(struct iwl_mcc_update_cmd_v1);
697 
698 	IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
699 		      alpha2[0], alpha2[1], src_id);
700 
701 	ret = iwl_mvm_send_cmd(mvm, &cmd);
702 	if (ret)
703 		return ERR_PTR(ret);
704 
705 	pkt = cmd.resp_pkt;
706 
707 	/* Extract MCC response */
708 	if (resp_v2) {
709 		mcc_resp = (void *)pkt->data;
710 		n_channels =  __le32_to_cpu(mcc_resp->n_channels);
711 	} else {
712 		mcc_resp_v1 = (void *)pkt->data;
713 		n_channels =  __le32_to_cpu(mcc_resp_v1->n_channels);
714 	}
715 
716 	resp_len = sizeof(struct iwl_mcc_update_resp) + n_channels *
717 		sizeof(__le32);
718 
719 	resp_cp = kzalloc(resp_len, GFP_KERNEL);
720 	if (!resp_cp) {
721 		ret = -ENOMEM;
722 		goto exit;
723 	}
724 
725 	if (resp_v2) {
726 		memcpy(resp_cp, mcc_resp, resp_len);
727 	} else {
728 		resp_cp->status = mcc_resp_v1->status;
729 		resp_cp->mcc = mcc_resp_v1->mcc;
730 		resp_cp->cap = mcc_resp_v1->cap;
731 		resp_cp->source_id = mcc_resp_v1->source_id;
732 		resp_cp->n_channels = mcc_resp_v1->n_channels;
733 		memcpy(resp_cp->channels, mcc_resp_v1->channels,
734 		       n_channels * sizeof(__le32));
735 	}
736 
737 	status = le32_to_cpu(resp_cp->status);
738 
739 	mcc = le16_to_cpu(resp_cp->mcc);
740 
741 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
742 	if (mcc == 0) {
743 		mcc = 0x3030;  /* "00" - world */
744 		resp_cp->mcc = cpu_to_le16(mcc);
745 	}
746 
747 	IWL_DEBUG_LAR(mvm,
748 		      "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') change: %d n_chans: %d\n",
749 		      status, mcc, mcc >> 8, mcc & 0xff,
750 		      !!(status == MCC_RESP_NEW_CHAN_PROFILE), n_channels);
751 
752 exit:
753 	iwl_free_resp(&cmd);
754 	if (ret)
755 		return ERR_PTR(ret);
756 	return resp_cp;
757 }
758 
759 #ifdef CONFIG_ACPI
760 #define WRD_METHOD		"WRDD"
761 #define WRDD_WIFI		(0x07)
762 #define WRDD_WIGIG		(0x10)
763 
764 static u32 iwl_mvm_wrdd_get_mcc(struct iwl_mvm *mvm, union acpi_object *wrdd)
765 {
766 	union acpi_object *mcc_pkg, *domain_type, *mcc_value;
767 	u32 i;
768 
769 	if (wrdd->type != ACPI_TYPE_PACKAGE ||
770 	    wrdd->package.count < 2 ||
771 	    wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
772 	    wrdd->package.elements[0].integer.value != 0) {
773 		IWL_DEBUG_LAR(mvm, "Unsupported wrdd structure\n");
774 		return 0;
775 	}
776 
777 	for (i = 1 ; i < wrdd->package.count ; ++i) {
778 		mcc_pkg = &wrdd->package.elements[i];
779 
780 		if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
781 		    mcc_pkg->package.count < 2 ||
782 		    mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
783 		    mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
784 			mcc_pkg = NULL;
785 			continue;
786 		}
787 
788 		domain_type = &mcc_pkg->package.elements[0];
789 		if (domain_type->integer.value == WRDD_WIFI)
790 			break;
791 
792 		mcc_pkg = NULL;
793 	}
794 
795 	if (mcc_pkg) {
796 		mcc_value = &mcc_pkg->package.elements[1];
797 		return mcc_value->integer.value;
798 	}
799 
800 	return 0;
801 }
802 
803 static int iwl_mvm_get_bios_mcc(struct iwl_mvm *mvm, char *mcc)
804 {
805 	acpi_handle root_handle;
806 	acpi_handle handle;
807 	struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
808 	acpi_status status;
809 	u32 mcc_val;
810 	struct pci_dev *pdev = to_pci_dev(mvm->dev);
811 
812 	root_handle = ACPI_HANDLE(&pdev->dev);
813 	if (!root_handle) {
814 		IWL_DEBUG_LAR(mvm,
815 			      "Could not retrieve root port ACPI handle\n");
816 		return -ENOENT;
817 	}
818 
819 	/* Get the method's handle */
820 	status = acpi_get_handle(root_handle, (acpi_string)WRD_METHOD, &handle);
821 	if (ACPI_FAILURE(status)) {
822 		IWL_DEBUG_LAR(mvm, "WRD method not found\n");
823 		return -ENOENT;
824 	}
825 
826 	/* Call WRDD with no arguments */
827 	status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
828 	if (ACPI_FAILURE(status)) {
829 		IWL_DEBUG_LAR(mvm, "WRDC invocation failed (0x%x)\n", status);
830 		return -ENOENT;
831 	}
832 
833 	mcc_val = iwl_mvm_wrdd_get_mcc(mvm, wrdd.pointer);
834 	kfree(wrdd.pointer);
835 	if (!mcc_val)
836 		return -ENOENT;
837 
838 	mcc[0] = (mcc_val >> 8) & 0xff;
839 	mcc[1] = mcc_val & 0xff;
840 	mcc[2] = '\0';
841 	return 0;
842 }
843 #else /* CONFIG_ACPI */
844 static int iwl_mvm_get_bios_mcc(struct iwl_mvm *mvm, char *mcc)
845 {
846 	return -ENOENT;
847 }
848 #endif
849 
850 int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
851 {
852 	bool tlv_lar;
853 	bool nvm_lar;
854 	int retval;
855 	struct ieee80211_regdomain *regd;
856 	char mcc[3];
857 
858 	if (mvm->cfg->device_family == IWL_DEVICE_FAMILY_8000) {
859 		tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
860 				      IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
861 		nvm_lar = mvm->nvm_data->lar_enabled;
862 		if (tlv_lar != nvm_lar)
863 			IWL_INFO(mvm,
864 				 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
865 				 tlv_lar ? "enabled" : "disabled",
866 				 nvm_lar ? "enabled" : "disabled");
867 	}
868 
869 	if (!iwl_mvm_is_lar_supported(mvm))
870 		return 0;
871 
872 	/*
873 	 * try to replay the last set MCC to FW. If it doesn't exist,
874 	 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
875 	 */
876 	retval = iwl_mvm_init_fw_regd(mvm);
877 	if (retval != -ENOENT)
878 		return retval;
879 
880 	/*
881 	 * Driver regulatory hint for initial update, this also informs the
882 	 * firmware we support wifi location updates.
883 	 * Disallow scans that might crash the FW while the LAR regdomain
884 	 * is not set.
885 	 */
886 	mvm->lar_regdom_set = false;
887 
888 	regd = iwl_mvm_get_current_regdomain(mvm, NULL);
889 	if (IS_ERR_OR_NULL(regd))
890 		return -EIO;
891 
892 	if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
893 	    !iwl_mvm_get_bios_mcc(mvm, mcc)) {
894 		kfree(regd);
895 		regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
896 					     MCC_SOURCE_BIOS, NULL);
897 		if (IS_ERR_OR_NULL(regd))
898 			return -EIO;
899 	}
900 
901 	retval = regulatory_set_wiphy_regd_sync_rtnl(mvm->hw->wiphy, regd);
902 	kfree(regd);
903 	return retval;
904 }
905 
906 void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
907 				struct iwl_rx_cmd_buffer *rxb)
908 {
909 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
910 	struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
911 	enum iwl_mcc_source src;
912 	char mcc[3];
913 	struct ieee80211_regdomain *regd;
914 
915 	lockdep_assert_held(&mvm->mutex);
916 
917 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
918 		return;
919 
920 	mcc[0] = notif->mcc >> 8;
921 	mcc[1] = notif->mcc & 0xff;
922 	mcc[2] = '\0';
923 	src = notif->source_id;
924 
925 	IWL_DEBUG_LAR(mvm,
926 		      "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
927 		      mcc, src);
928 	regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
929 	if (IS_ERR_OR_NULL(regd))
930 		return;
931 
932 	regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
933 	kfree(regd);
934 }
935