1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2019 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/firmware.h> 8 #include <linux/rtnetlink.h> 9 #include "iwl-trans.h" 10 #include "iwl-csr.h" 11 #include "mvm.h" 12 #include "iwl-eeprom-parse.h" 13 #include "iwl-eeprom-read.h" 14 #include "iwl-nvm-parse.h" 15 #include "iwl-prph.h" 16 #include "fw/acpi.h" 17 18 /* Default NVM size to read */ 19 #define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024) 20 21 #define NVM_WRITE_OPCODE 1 22 #define NVM_READ_OPCODE 0 23 24 /* load nvm chunk response */ 25 enum { 26 READ_NVM_CHUNK_SUCCEED = 0, 27 READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1 28 }; 29 30 /* 31 * prepare the NVM host command w/ the pointers to the nvm buffer 32 * and send it to fw 33 */ 34 static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section, 35 u16 offset, u16 length, const u8 *data) 36 { 37 struct iwl_nvm_access_cmd nvm_access_cmd = { 38 .offset = cpu_to_le16(offset), 39 .length = cpu_to_le16(length), 40 .type = cpu_to_le16(section), 41 .op_code = NVM_WRITE_OPCODE, 42 }; 43 struct iwl_host_cmd cmd = { 44 .id = NVM_ACCESS_CMD, 45 .len = { sizeof(struct iwl_nvm_access_cmd), length }, 46 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, 47 .data = { &nvm_access_cmd, data }, 48 /* data may come from vmalloc, so use _DUP */ 49 .dataflags = { 0, IWL_HCMD_DFL_DUP }, 50 }; 51 struct iwl_rx_packet *pkt; 52 struct iwl_nvm_access_resp *nvm_resp; 53 int ret; 54 55 ret = iwl_mvm_send_cmd(mvm, &cmd); 56 if (ret) 57 return ret; 58 59 pkt = cmd.resp_pkt; 60 /* Extract & check NVM write response */ 61 nvm_resp = (void *)pkt->data; 62 if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) { 63 IWL_ERR(mvm, 64 "NVM access write command failed for section %u (status = 0x%x)\n", 65 section, le16_to_cpu(nvm_resp->status)); 66 ret = -EIO; 67 } 68 69 iwl_free_resp(&cmd); 70 return ret; 71 } 72 73 static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section, 74 u16 offset, u16 length, u8 *data) 75 { 76 struct iwl_nvm_access_cmd nvm_access_cmd = { 77 .offset = cpu_to_le16(offset), 78 .length = cpu_to_le16(length), 79 .type = cpu_to_le16(section), 80 .op_code = NVM_READ_OPCODE, 81 }; 82 struct iwl_nvm_access_resp *nvm_resp; 83 struct iwl_rx_packet *pkt; 84 struct iwl_host_cmd cmd = { 85 .id = NVM_ACCESS_CMD, 86 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, 87 .data = { &nvm_access_cmd, }, 88 }; 89 int ret, bytes_read, offset_read; 90 u8 *resp_data; 91 92 cmd.len[0] = sizeof(struct iwl_nvm_access_cmd); 93 94 ret = iwl_mvm_send_cmd(mvm, &cmd); 95 if (ret) 96 return ret; 97 98 pkt = cmd.resp_pkt; 99 100 /* Extract NVM response */ 101 nvm_resp = (void *)pkt->data; 102 ret = le16_to_cpu(nvm_resp->status); 103 bytes_read = le16_to_cpu(nvm_resp->length); 104 offset_read = le16_to_cpu(nvm_resp->offset); 105 resp_data = nvm_resp->data; 106 if (ret) { 107 if ((offset != 0) && 108 (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) { 109 /* 110 * meaning of NOT_VALID_ADDRESS: 111 * driver try to read chunk from address that is 112 * multiple of 2K and got an error since addr is empty. 113 * meaning of (offset != 0): driver already 114 * read valid data from another chunk so this case 115 * is not an error. 116 */ 117 IWL_DEBUG_EEPROM(mvm->trans->dev, 118 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n", 119 offset); 120 ret = 0; 121 } else { 122 IWL_DEBUG_EEPROM(mvm->trans->dev, 123 "NVM access command failed with status %d (device: %s)\n", 124 ret, mvm->trans->name); 125 ret = -ENODATA; 126 } 127 goto exit; 128 } 129 130 if (offset_read != offset) { 131 IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n", 132 offset_read); 133 ret = -EINVAL; 134 goto exit; 135 } 136 137 /* Write data to NVM */ 138 memcpy(data + offset, resp_data, bytes_read); 139 ret = bytes_read; 140 141 exit: 142 iwl_free_resp(&cmd); 143 return ret; 144 } 145 146 static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section, 147 const u8 *data, u16 length) 148 { 149 int offset = 0; 150 151 /* copy data in chunks of 2k (and remainder if any) */ 152 153 while (offset < length) { 154 int chunk_size, ret; 155 156 chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE, 157 length - offset); 158 159 ret = iwl_nvm_write_chunk(mvm, section, offset, 160 chunk_size, data + offset); 161 if (ret < 0) 162 return ret; 163 164 offset += chunk_size; 165 } 166 167 return 0; 168 } 169 170 /* 171 * Reads an NVM section completely. 172 * NICs prior to 7000 family doesn't have a real NVM, but just read 173 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited 174 * by uCode, we need to manually check in this case that we don't 175 * overflow and try to read more than the EEPROM size. 176 * For 7000 family NICs, we supply the maximal size we can read, and 177 * the uCode fills the response with as much data as we can, 178 * without overflowing, so no check is needed. 179 */ 180 static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section, 181 u8 *data, u32 size_read) 182 { 183 u16 length, offset = 0; 184 int ret; 185 186 /* Set nvm section read length */ 187 length = IWL_NVM_DEFAULT_CHUNK_SIZE; 188 189 ret = length; 190 191 /* Read the NVM until exhausted (reading less than requested) */ 192 while (ret == length) { 193 /* Check no memory assumptions fail and cause an overflow */ 194 if ((size_read + offset + length) > 195 mvm->trans->trans_cfg->base_params->eeprom_size) { 196 IWL_ERR(mvm, "EEPROM size is too small for NVM\n"); 197 return -ENOBUFS; 198 } 199 200 ret = iwl_nvm_read_chunk(mvm, section, offset, length, data); 201 if (ret < 0) { 202 IWL_DEBUG_EEPROM(mvm->trans->dev, 203 "Cannot read NVM from section %d offset %d, length %d\n", 204 section, offset, length); 205 return ret; 206 } 207 offset += ret; 208 } 209 210 iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset); 211 212 IWL_DEBUG_EEPROM(mvm->trans->dev, 213 "NVM section %d read completed\n", section); 214 return offset; 215 } 216 217 static struct iwl_nvm_data * 218 iwl_parse_nvm_sections(struct iwl_mvm *mvm) 219 { 220 struct iwl_nvm_section *sections = mvm->nvm_sections; 221 const __be16 *hw; 222 const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku; 223 int regulatory_type; 224 225 /* Checking for required sections */ 226 if (mvm->trans->cfg->nvm_type == IWL_NVM) { 227 if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data || 228 !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) { 229 IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n"); 230 return NULL; 231 } 232 } else { 233 if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP) 234 regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP; 235 else 236 regulatory_type = NVM_SECTION_TYPE_REGULATORY; 237 238 /* SW and REGULATORY sections are mandatory */ 239 if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data || 240 !mvm->nvm_sections[regulatory_type].data) { 241 IWL_ERR(mvm, 242 "Can't parse empty family 8000 OTP/NVM sections\n"); 243 return NULL; 244 } 245 /* MAC_OVERRIDE or at least HW section must exist */ 246 if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data && 247 !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) { 248 IWL_ERR(mvm, 249 "Can't parse mac_address, empty sections\n"); 250 return NULL; 251 } 252 253 /* PHY_SKU section is mandatory in B0 */ 254 if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT && 255 !mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) { 256 IWL_ERR(mvm, 257 "Can't parse phy_sku in B0, empty sections\n"); 258 return NULL; 259 } 260 } 261 262 hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data; 263 sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data; 264 calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data; 265 mac_override = 266 (const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data; 267 phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data; 268 269 regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ? 270 (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data : 271 (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data; 272 273 return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib, 274 regulatory, mac_override, phy_sku, 275 mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant); 276 } 277 278 /* Loads the NVM data stored in mvm->nvm_sections into the NIC */ 279 int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm) 280 { 281 int i, ret = 0; 282 struct iwl_nvm_section *sections = mvm->nvm_sections; 283 284 IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n"); 285 286 for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) { 287 if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length) 288 continue; 289 ret = iwl_nvm_write_section(mvm, i, sections[i].data, 290 sections[i].length); 291 if (ret < 0) { 292 IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret); 293 break; 294 } 295 } 296 return ret; 297 } 298 299 int iwl_nvm_init(struct iwl_mvm *mvm) 300 { 301 int ret, section; 302 u32 size_read = 0; 303 u8 *nvm_buffer, *temp; 304 const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step; 305 306 if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS)) 307 return -EINVAL; 308 309 /* load NVM values from nic */ 310 /* Read From FW NVM */ 311 IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n"); 312 313 nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size, 314 GFP_KERNEL); 315 if (!nvm_buffer) 316 return -ENOMEM; 317 for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) { 318 /* we override the constness for initial read */ 319 ret = iwl_nvm_read_section(mvm, section, nvm_buffer, 320 size_read); 321 if (ret == -ENODATA) { 322 ret = 0; 323 continue; 324 } 325 if (ret < 0) 326 break; 327 size_read += ret; 328 temp = kmemdup(nvm_buffer, ret, GFP_KERNEL); 329 if (!temp) { 330 ret = -ENOMEM; 331 break; 332 } 333 334 iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret); 335 336 mvm->nvm_sections[section].data = temp; 337 mvm->nvm_sections[section].length = ret; 338 339 #ifdef CONFIG_IWLWIFI_DEBUGFS 340 switch (section) { 341 case NVM_SECTION_TYPE_SW: 342 mvm->nvm_sw_blob.data = temp; 343 mvm->nvm_sw_blob.size = ret; 344 break; 345 case NVM_SECTION_TYPE_CALIBRATION: 346 mvm->nvm_calib_blob.data = temp; 347 mvm->nvm_calib_blob.size = ret; 348 break; 349 case NVM_SECTION_TYPE_PRODUCTION: 350 mvm->nvm_prod_blob.data = temp; 351 mvm->nvm_prod_blob.size = ret; 352 break; 353 case NVM_SECTION_TYPE_PHY_SKU: 354 mvm->nvm_phy_sku_blob.data = temp; 355 mvm->nvm_phy_sku_blob.size = ret; 356 break; 357 case NVM_SECTION_TYPE_REGULATORY_SDP: 358 case NVM_SECTION_TYPE_REGULATORY: 359 mvm->nvm_reg_blob.data = temp; 360 mvm->nvm_reg_blob.size = ret; 361 break; 362 default: 363 if (section == mvm->cfg->nvm_hw_section_num) { 364 mvm->nvm_hw_blob.data = temp; 365 mvm->nvm_hw_blob.size = ret; 366 break; 367 } 368 } 369 #endif 370 } 371 if (!size_read) 372 IWL_ERR(mvm, "OTP is blank\n"); 373 kfree(nvm_buffer); 374 375 /* Only if PNVM selected in the mod param - load external NVM */ 376 if (mvm->nvm_file_name) { 377 /* read External NVM file from the mod param */ 378 ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name, 379 mvm->nvm_sections); 380 if (ret) { 381 mvm->nvm_file_name = nvm_file_C; 382 383 if ((ret == -EFAULT || ret == -ENOENT) && 384 mvm->nvm_file_name) { 385 /* in case nvm file was failed try again */ 386 ret = iwl_read_external_nvm(mvm->trans, 387 mvm->nvm_file_name, 388 mvm->nvm_sections); 389 if (ret) 390 return ret; 391 } else { 392 return ret; 393 } 394 } 395 } 396 397 /* parse the relevant nvm sections */ 398 mvm->nvm_data = iwl_parse_nvm_sections(mvm); 399 if (!mvm->nvm_data) 400 return -ENODATA; 401 IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n", 402 mvm->nvm_data->nvm_version); 403 404 return ret < 0 ? ret : 0; 405 } 406 407 struct iwl_mcc_update_resp * 408 iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2, 409 enum iwl_mcc_source src_id) 410 { 411 struct iwl_mcc_update_cmd mcc_update_cmd = { 412 .mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]), 413 .source_id = (u8)src_id, 414 }; 415 struct iwl_mcc_update_resp *resp_cp; 416 struct iwl_rx_packet *pkt; 417 struct iwl_host_cmd cmd = { 418 .id = MCC_UPDATE_CMD, 419 .flags = CMD_WANT_SKB, 420 .data = { &mcc_update_cmd }, 421 }; 422 423 int ret; 424 u32 status; 425 int resp_len, n_channels; 426 u16 mcc; 427 428 if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm))) 429 return ERR_PTR(-EOPNOTSUPP); 430 431 cmd.len[0] = sizeof(struct iwl_mcc_update_cmd); 432 433 IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n", 434 alpha2[0], alpha2[1], src_id); 435 436 ret = iwl_mvm_send_cmd(mvm, &cmd); 437 if (ret) 438 return ERR_PTR(ret); 439 440 pkt = cmd.resp_pkt; 441 442 /* Extract MCC response */ 443 if (fw_has_capa(&mvm->fw->ucode_capa, 444 IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) { 445 struct iwl_mcc_update_resp *mcc_resp = (void *)pkt->data; 446 447 n_channels = __le32_to_cpu(mcc_resp->n_channels); 448 resp_len = sizeof(struct iwl_mcc_update_resp) + 449 n_channels * sizeof(__le32); 450 resp_cp = kmemdup(mcc_resp, resp_len, GFP_KERNEL); 451 if (!resp_cp) { 452 resp_cp = ERR_PTR(-ENOMEM); 453 goto exit; 454 } 455 } else { 456 struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data; 457 458 n_channels = __le32_to_cpu(mcc_resp_v3->n_channels); 459 resp_len = sizeof(struct iwl_mcc_update_resp) + 460 n_channels * sizeof(__le32); 461 resp_cp = kzalloc(resp_len, GFP_KERNEL); 462 if (!resp_cp) { 463 resp_cp = ERR_PTR(-ENOMEM); 464 goto exit; 465 } 466 467 resp_cp->status = mcc_resp_v3->status; 468 resp_cp->mcc = mcc_resp_v3->mcc; 469 resp_cp->cap = cpu_to_le16(mcc_resp_v3->cap); 470 resp_cp->source_id = mcc_resp_v3->source_id; 471 resp_cp->time = mcc_resp_v3->time; 472 resp_cp->geo_info = mcc_resp_v3->geo_info; 473 resp_cp->n_channels = mcc_resp_v3->n_channels; 474 memcpy(resp_cp->channels, mcc_resp_v3->channels, 475 n_channels * sizeof(__le32)); 476 } 477 478 status = le32_to_cpu(resp_cp->status); 479 480 mcc = le16_to_cpu(resp_cp->mcc); 481 482 /* W/A for a FW/NVM issue - returns 0x00 for the world domain */ 483 if (mcc == 0) { 484 mcc = 0x3030; /* "00" - world */ 485 resp_cp->mcc = cpu_to_le16(mcc); 486 } 487 488 IWL_DEBUG_LAR(mvm, 489 "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n", 490 status, mcc, mcc >> 8, mcc & 0xff, n_channels); 491 492 exit: 493 iwl_free_resp(&cmd); 494 return resp_cp; 495 } 496 497 int iwl_mvm_init_mcc(struct iwl_mvm *mvm) 498 { 499 bool tlv_lar; 500 bool nvm_lar; 501 int retval; 502 struct ieee80211_regdomain *regd; 503 char mcc[3]; 504 505 if (mvm->cfg->nvm_type == IWL_NVM_EXT) { 506 tlv_lar = fw_has_capa(&mvm->fw->ucode_capa, 507 IWL_UCODE_TLV_CAPA_LAR_SUPPORT); 508 nvm_lar = mvm->nvm_data->lar_enabled; 509 if (tlv_lar != nvm_lar) 510 IWL_INFO(mvm, 511 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n", 512 tlv_lar ? "enabled" : "disabled", 513 nvm_lar ? "enabled" : "disabled"); 514 } 515 516 if (!iwl_mvm_is_lar_supported(mvm)) 517 return 0; 518 519 /* 520 * try to replay the last set MCC to FW. If it doesn't exist, 521 * queue an update to cfg80211 to retrieve the default alpha2 from FW. 522 */ 523 retval = iwl_mvm_init_fw_regd(mvm); 524 if (retval != -ENOENT) 525 return retval; 526 527 /* 528 * Driver regulatory hint for initial update, this also informs the 529 * firmware we support wifi location updates. 530 * Disallow scans that might crash the FW while the LAR regdomain 531 * is not set. 532 */ 533 mvm->lar_regdom_set = false; 534 535 regd = iwl_mvm_get_current_regdomain(mvm, NULL); 536 if (IS_ERR_OR_NULL(regd)) 537 return -EIO; 538 539 if (iwl_mvm_is_wifi_mcc_supported(mvm) && 540 !iwl_acpi_get_mcc(mvm->dev, mcc)) { 541 kfree(regd); 542 regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, 543 MCC_SOURCE_BIOS, NULL); 544 if (IS_ERR_OR_NULL(regd)) 545 return -EIO; 546 } 547 548 retval = regulatory_set_wiphy_regd_sync_rtnl(mvm->hw->wiphy, regd); 549 kfree(regd); 550 return retval; 551 } 552 553 void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm, 554 struct iwl_rx_cmd_buffer *rxb) 555 { 556 struct iwl_rx_packet *pkt = rxb_addr(rxb); 557 struct iwl_mcc_chub_notif *notif = (void *)pkt->data; 558 enum iwl_mcc_source src; 559 char mcc[3]; 560 struct ieee80211_regdomain *regd; 561 int wgds_tbl_idx; 562 563 lockdep_assert_held(&mvm->mutex); 564 565 if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) { 566 IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n"); 567 return; 568 } 569 570 if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm))) 571 return; 572 573 mcc[0] = le16_to_cpu(notif->mcc) >> 8; 574 mcc[1] = le16_to_cpu(notif->mcc) & 0xff; 575 mcc[2] = '\0'; 576 src = notif->source_id; 577 578 IWL_DEBUG_LAR(mvm, 579 "RX: received chub update mcc cmd (mcc '%s' src %d)\n", 580 mcc, src); 581 regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL); 582 if (IS_ERR_OR_NULL(regd)) 583 return; 584 585 wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm); 586 if (wgds_tbl_idx < 0) 587 IWL_DEBUG_INFO(mvm, "SAR WGDS is disabled (%d)\n", 588 wgds_tbl_idx); 589 else 590 IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n", 591 wgds_tbl_idx); 592 593 regulatory_set_wiphy_regd(mvm->hw->wiphy, regd); 594 kfree(regd); 595 } 596