1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  *****************************************************************************/
67 #include <linux/firmware.h>
68 #include <linux/rtnetlink.h>
69 #include "iwl-trans.h"
70 #include "iwl-csr.h"
71 #include "mvm.h"
72 #include "iwl-eeprom-parse.h"
73 #include "iwl-eeprom-read.h"
74 #include "iwl-nvm-parse.h"
75 #include "iwl-prph.h"
76 
77 /* Default NVM size to read */
78 #define IWL_NVM_DEFAULT_CHUNK_SIZE (2*1024)
79 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
80 #define IWL_MAX_NVM_8000_SECTION_SIZE	0x1ffc
81 
82 #define NVM_WRITE_OPCODE 1
83 #define NVM_READ_OPCODE 0
84 
85 /* load nvm chunk response */
86 enum {
87 	READ_NVM_CHUNK_SUCCEED = 0,
88 	READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
89 };
90 
91 /*
92  * prepare the NVM host command w/ the pointers to the nvm buffer
93  * and send it to fw
94  */
95 static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
96 			       u16 offset, u16 length, const u8 *data)
97 {
98 	struct iwl_nvm_access_cmd nvm_access_cmd = {
99 		.offset = cpu_to_le16(offset),
100 		.length = cpu_to_le16(length),
101 		.type = cpu_to_le16(section),
102 		.op_code = NVM_WRITE_OPCODE,
103 	};
104 	struct iwl_host_cmd cmd = {
105 		.id = NVM_ACCESS_CMD,
106 		.len = { sizeof(struct iwl_nvm_access_cmd), length },
107 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
108 		.data = { &nvm_access_cmd, data },
109 		/* data may come from vmalloc, so use _DUP */
110 		.dataflags = { 0, IWL_HCMD_DFL_DUP },
111 	};
112 	struct iwl_rx_packet *pkt;
113 	struct iwl_nvm_access_resp *nvm_resp;
114 	int ret;
115 
116 	ret = iwl_mvm_send_cmd(mvm, &cmd);
117 	if (ret)
118 		return ret;
119 
120 	pkt = cmd.resp_pkt;
121 	if (!pkt) {
122 		IWL_ERR(mvm, "Error in NVM_ACCESS response\n");
123 		return -EINVAL;
124 	}
125 	/* Extract & check NVM write response */
126 	nvm_resp = (void *)pkt->data;
127 	if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
128 		IWL_ERR(mvm,
129 			"NVM access write command failed for section %u (status = 0x%x)\n",
130 			section, le16_to_cpu(nvm_resp->status));
131 		ret = -EIO;
132 	}
133 
134 	iwl_free_resp(&cmd);
135 	return ret;
136 }
137 
138 static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
139 			      u16 offset, u16 length, u8 *data)
140 {
141 	struct iwl_nvm_access_cmd nvm_access_cmd = {
142 		.offset = cpu_to_le16(offset),
143 		.length = cpu_to_le16(length),
144 		.type = cpu_to_le16(section),
145 		.op_code = NVM_READ_OPCODE,
146 	};
147 	struct iwl_nvm_access_resp *nvm_resp;
148 	struct iwl_rx_packet *pkt;
149 	struct iwl_host_cmd cmd = {
150 		.id = NVM_ACCESS_CMD,
151 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
152 		.data = { &nvm_access_cmd, },
153 	};
154 	int ret, bytes_read, offset_read;
155 	u8 *resp_data;
156 
157 	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
158 
159 	ret = iwl_mvm_send_cmd(mvm, &cmd);
160 	if (ret)
161 		return ret;
162 
163 	pkt = cmd.resp_pkt;
164 
165 	/* Extract NVM response */
166 	nvm_resp = (void *)pkt->data;
167 	ret = le16_to_cpu(nvm_resp->status);
168 	bytes_read = le16_to_cpu(nvm_resp->length);
169 	offset_read = le16_to_cpu(nvm_resp->offset);
170 	resp_data = nvm_resp->data;
171 	if (ret) {
172 		if ((offset != 0) &&
173 		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
174 			/*
175 			 * meaning of NOT_VALID_ADDRESS:
176 			 * driver try to read chunk from address that is
177 			 * multiple of 2K and got an error since addr is empty.
178 			 * meaning of (offset != 0): driver already
179 			 * read valid data from another chunk so this case
180 			 * is not an error.
181 			 */
182 			IWL_DEBUG_EEPROM(mvm->trans->dev,
183 					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
184 					 offset);
185 			ret = 0;
186 		} else {
187 			IWL_DEBUG_EEPROM(mvm->trans->dev,
188 					 "NVM access command failed with status %d (device: %s)\n",
189 					 ret, mvm->cfg->name);
190 			ret = -EIO;
191 		}
192 		goto exit;
193 	}
194 
195 	if (offset_read != offset) {
196 		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
197 			offset_read);
198 		ret = -EINVAL;
199 		goto exit;
200 	}
201 
202 	/* Write data to NVM */
203 	memcpy(data + offset, resp_data, bytes_read);
204 	ret = bytes_read;
205 
206 exit:
207 	iwl_free_resp(&cmd);
208 	return ret;
209 }
210 
211 static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
212 				 const u8 *data, u16 length)
213 {
214 	int offset = 0;
215 
216 	/* copy data in chunks of 2k (and remainder if any) */
217 
218 	while (offset < length) {
219 		int chunk_size, ret;
220 
221 		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
222 				 length - offset);
223 
224 		ret = iwl_nvm_write_chunk(mvm, section, offset,
225 					  chunk_size, data + offset);
226 		if (ret < 0)
227 			return ret;
228 
229 		offset += chunk_size;
230 	}
231 
232 	return 0;
233 }
234 
235 static void iwl_mvm_nvm_fixups(struct iwl_mvm *mvm, unsigned int section,
236 			       u8 *data, unsigned int len)
237 {
238 #define IWL_4165_DEVICE_ID	0x5501
239 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
240 
241 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
242 	    mvm->trans->hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
243 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
244 		/* OTP 0x52 bug work around: it's a 1x1 device */
245 		data[3] = ANT_B | (ANT_B << 4);
246 }
247 
248 /*
249  * Reads an NVM section completely.
250  * NICs prior to 7000 family doesn't have a real NVM, but just read
251  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
252  * by uCode, we need to manually check in this case that we don't
253  * overflow and try to read more than the EEPROM size.
254  * For 7000 family NICs, we supply the maximal size we can read, and
255  * the uCode fills the response with as much data as we can,
256  * without overflowing, so no check is needed.
257  */
258 static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
259 				u8 *data, u32 size_read)
260 {
261 	u16 length, offset = 0;
262 	int ret;
263 
264 	/* Set nvm section read length */
265 	length = IWL_NVM_DEFAULT_CHUNK_SIZE;
266 
267 	ret = length;
268 
269 	/* Read the NVM until exhausted (reading less than requested) */
270 	while (ret == length) {
271 		/* Check no memory assumptions fail and cause an overflow */
272 		if ((size_read + offset + length) >
273 		    mvm->cfg->base_params->eeprom_size) {
274 			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
275 			return -ENOBUFS;
276 		}
277 
278 		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
279 		if (ret < 0) {
280 			IWL_DEBUG_EEPROM(mvm->trans->dev,
281 					 "Cannot read NVM from section %d offset %d, length %d\n",
282 					 section, offset, length);
283 			return ret;
284 		}
285 		offset += ret;
286 	}
287 
288 	iwl_mvm_nvm_fixups(mvm, section, data, offset);
289 
290 	IWL_DEBUG_EEPROM(mvm->trans->dev,
291 			 "NVM section %d read completed\n", section);
292 	return offset;
293 }
294 
295 static struct iwl_nvm_data *
296 iwl_parse_nvm_sections(struct iwl_mvm *mvm)
297 {
298 	struct iwl_nvm_section *sections = mvm->nvm_sections;
299 	const __le16 *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
300 	bool lar_enabled;
301 
302 	/* Checking for required sections */
303 	if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
304 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
305 		    !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
306 			IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
307 			return NULL;
308 		}
309 	} else {
310 		/* SW and REGULATORY sections are mandatory */
311 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
312 		    !mvm->nvm_sections[NVM_SECTION_TYPE_REGULATORY].data) {
313 			IWL_ERR(mvm,
314 				"Can't parse empty family 8000 OTP/NVM sections\n");
315 			return NULL;
316 		}
317 		/* MAC_OVERRIDE or at least HW section must exist */
318 		if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
319 		    !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
320 			IWL_ERR(mvm,
321 				"Can't parse mac_address, empty sections\n");
322 			return NULL;
323 		}
324 
325 		/* PHY_SKU section is mandatory in B0 */
326 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
327 			IWL_ERR(mvm,
328 				"Can't parse phy_sku in B0, empty sections\n");
329 			return NULL;
330 		}
331 	}
332 
333 	if (WARN_ON(!mvm->cfg))
334 		return NULL;
335 
336 	hw = (const __le16 *)sections[mvm->cfg->nvm_hw_section_num].data;
337 	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
338 	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
339 	regulatory = (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
340 	mac_override =
341 		(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
342 	phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
343 
344 	lar_enabled = !iwlwifi_mod_params.lar_disable &&
345 		      fw_has_capa(&mvm->fw->ucode_capa,
346 				  IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
347 
348 	return iwl_parse_nvm_data(mvm->trans, mvm->cfg, hw, sw, calib,
349 				  regulatory, mac_override, phy_sku,
350 				  mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant,
351 				  lar_enabled);
352 }
353 
354 #define MAX_NVM_FILE_LEN	16384
355 
356 /*
357  * Reads external NVM from a file into mvm->nvm_sections
358  *
359  * HOW TO CREATE THE NVM FILE FORMAT:
360  * ------------------------------
361  * 1. create hex file, format:
362  *      3800 -> header
363  *      0000 -> header
364  *      5a40 -> data
365  *
366  *   rev - 6 bit (word1)
367  *   len - 10 bit (word1)
368  *   id - 4 bit (word2)
369  *   rsv - 12 bit (word2)
370  *
371  * 2. flip 8bits with 8 bits per line to get the right NVM file format
372  *
373  * 3. create binary file from the hex file
374  *
375  * 4. save as "iNVM_xxx.bin" under /lib/firmware
376  */
377 static int iwl_mvm_read_external_nvm(struct iwl_mvm *mvm)
378 {
379 	int ret, section_size;
380 	u16 section_id;
381 	const struct firmware *fw_entry;
382 	const struct {
383 		__le16 word1;
384 		__le16 word2;
385 		u8 data[];
386 	} *file_sec;
387 	const u8 *eof;
388 	u8 *temp;
389 	int max_section_size;
390 	const __le32 *dword_buff;
391 
392 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
393 #define NVM_WORD2_ID(x) (x >> 12)
394 #define NVM_WORD2_LEN_FAMILY_8000(x) (2 * ((x & 0xFF) << 8 | x >> 8))
395 #define NVM_WORD1_ID_FAMILY_8000(x) (x >> 4)
396 #define NVM_HEADER_0	(0x2A504C54)
397 #define NVM_HEADER_1	(0x4E564D2A)
398 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
399 
400 	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from external NVM\n");
401 
402 	/* Maximal size depends on HW family and step */
403 	if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000)
404 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
405 	else
406 		max_section_size = IWL_MAX_NVM_8000_SECTION_SIZE;
407 
408 	/*
409 	 * Obtain NVM image via request_firmware. Since we already used
410 	 * request_firmware_nowait() for the firmware binary load and only
411 	 * get here after that we assume the NVM request can be satisfied
412 	 * synchronously.
413 	 */
414 	ret = request_firmware(&fw_entry, mvm->nvm_file_name,
415 			       mvm->trans->dev);
416 	if (ret) {
417 		IWL_ERR(mvm, "ERROR: %s isn't available %d\n",
418 			mvm->nvm_file_name, ret);
419 		return ret;
420 	}
421 
422 	IWL_INFO(mvm, "Loaded NVM file %s (%zu bytes)\n",
423 		 mvm->nvm_file_name, fw_entry->size);
424 
425 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
426 		IWL_ERR(mvm, "NVM file too large\n");
427 		ret = -EINVAL;
428 		goto out;
429 	}
430 
431 	eof = fw_entry->data + fw_entry->size;
432 	dword_buff = (__le32 *)fw_entry->data;
433 
434 	/* some NVM file will contain a header.
435 	 * The header is identified by 2 dwords header as follow:
436 	 * dword[0] = 0x2A504C54
437 	 * dword[1] = 0x4E564D2A
438 	 *
439 	 * This header must be skipped when providing the NVM data to the FW.
440 	 */
441 	if (fw_entry->size > NVM_HEADER_SIZE &&
442 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
443 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
444 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
445 		IWL_INFO(mvm, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
446 		IWL_INFO(mvm, "NVM Manufacturing date %08X\n",
447 			 le32_to_cpu(dword_buff[3]));
448 
449 		/* nvm file validation, dword_buff[2] holds the file version */
450 		if ((CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_C_STEP &&
451 		     le32_to_cpu(dword_buff[2]) < 0xE4A) ||
452 		    (CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_B_STEP &&
453 		     le32_to_cpu(dword_buff[2]) >= 0xE4A)) {
454 			ret = -EFAULT;
455 			goto out;
456 		}
457 	} else {
458 		file_sec = (void *)fw_entry->data;
459 	}
460 
461 	while (true) {
462 		if (file_sec->data > eof) {
463 			IWL_ERR(mvm,
464 				"ERROR - NVM file too short for section header\n");
465 			ret = -EINVAL;
466 			break;
467 		}
468 
469 		/* check for EOF marker */
470 		if (!file_sec->word1 && !file_sec->word2) {
471 			ret = 0;
472 			break;
473 		}
474 
475 		if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
476 			section_size =
477 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
478 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
479 		} else {
480 			section_size = 2 * NVM_WORD2_LEN_FAMILY_8000(
481 						le16_to_cpu(file_sec->word2));
482 			section_id = NVM_WORD1_ID_FAMILY_8000(
483 						le16_to_cpu(file_sec->word1));
484 		}
485 
486 		if (section_size > max_section_size) {
487 			IWL_ERR(mvm, "ERROR - section too large (%d)\n",
488 				section_size);
489 			ret = -EINVAL;
490 			break;
491 		}
492 
493 		if (!section_size) {
494 			IWL_ERR(mvm, "ERROR - section empty\n");
495 			ret = -EINVAL;
496 			break;
497 		}
498 
499 		if (file_sec->data + section_size > eof) {
500 			IWL_ERR(mvm,
501 				"ERROR - NVM file too short for section (%d bytes)\n",
502 				section_size);
503 			ret = -EINVAL;
504 			break;
505 		}
506 
507 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
508 			 "Invalid NVM section ID %d\n", section_id)) {
509 			ret = -EINVAL;
510 			break;
511 		}
512 
513 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
514 		if (!temp) {
515 			ret = -ENOMEM;
516 			break;
517 		}
518 
519 		iwl_mvm_nvm_fixups(mvm, section_id, temp, section_size);
520 
521 		kfree(mvm->nvm_sections[section_id].data);
522 		mvm->nvm_sections[section_id].data = temp;
523 		mvm->nvm_sections[section_id].length = section_size;
524 
525 		/* advance to the next section */
526 		file_sec = (void *)(file_sec->data + section_size);
527 	}
528 out:
529 	release_firmware(fw_entry);
530 	return ret;
531 }
532 
533 /* Loads the NVM data stored in mvm->nvm_sections into the NIC */
534 int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
535 {
536 	int i, ret = 0;
537 	struct iwl_nvm_section *sections = mvm->nvm_sections;
538 
539 	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
540 
541 	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
542 		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
543 			continue;
544 		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
545 					    sections[i].length);
546 		if (ret < 0) {
547 			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
548 			break;
549 		}
550 	}
551 	return ret;
552 }
553 
554 int iwl_nvm_init(struct iwl_mvm *mvm, bool read_nvm_from_nic)
555 {
556 	int ret, section;
557 	u32 size_read = 0;
558 	u8 *nvm_buffer, *temp;
559 	const char *nvm_file_B = mvm->cfg->default_nvm_file_B_step;
560 	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
561 
562 	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
563 		return -EINVAL;
564 
565 	/* load NVM values from nic */
566 	if (read_nvm_from_nic) {
567 		/* Read From FW NVM */
568 		IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
569 
570 		nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size,
571 				     GFP_KERNEL);
572 		if (!nvm_buffer)
573 			return -ENOMEM;
574 		for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
575 			/* we override the constness for initial read */
576 			ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
577 						   size_read);
578 			if (ret < 0)
579 				continue;
580 			size_read += ret;
581 			temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
582 			if (!temp) {
583 				ret = -ENOMEM;
584 				break;
585 			}
586 
587 			iwl_mvm_nvm_fixups(mvm, section, temp, ret);
588 
589 			mvm->nvm_sections[section].data = temp;
590 			mvm->nvm_sections[section].length = ret;
591 
592 #ifdef CONFIG_IWLWIFI_DEBUGFS
593 			switch (section) {
594 			case NVM_SECTION_TYPE_SW:
595 				mvm->nvm_sw_blob.data = temp;
596 				mvm->nvm_sw_blob.size  = ret;
597 				break;
598 			case NVM_SECTION_TYPE_CALIBRATION:
599 				mvm->nvm_calib_blob.data = temp;
600 				mvm->nvm_calib_blob.size  = ret;
601 				break;
602 			case NVM_SECTION_TYPE_PRODUCTION:
603 				mvm->nvm_prod_blob.data = temp;
604 				mvm->nvm_prod_blob.size  = ret;
605 				break;
606 			case NVM_SECTION_TYPE_PHY_SKU:
607 				mvm->nvm_phy_sku_blob.data = temp;
608 				mvm->nvm_phy_sku_blob.size  = ret;
609 				break;
610 			default:
611 				if (section == mvm->cfg->nvm_hw_section_num) {
612 					mvm->nvm_hw_blob.data = temp;
613 					mvm->nvm_hw_blob.size = ret;
614 					break;
615 				}
616 			}
617 #endif
618 		}
619 		if (!size_read)
620 			IWL_ERR(mvm, "OTP is blank\n");
621 		kfree(nvm_buffer);
622 	}
623 
624 	/* Only if PNVM selected in the mod param - load external NVM  */
625 	if (mvm->nvm_file_name) {
626 		/* read External NVM file from the mod param */
627 		ret = iwl_mvm_read_external_nvm(mvm);
628 		if (ret) {
629 			/* choose the nvm_file name according to the
630 			 * HW step
631 			 */
632 			if (CSR_HW_REV_STEP(mvm->trans->hw_rev) ==
633 			    SILICON_B_STEP)
634 				mvm->nvm_file_name = nvm_file_B;
635 			else
636 				mvm->nvm_file_name = nvm_file_C;
637 
638 			if ((ret == -EFAULT || ret == -ENOENT) &&
639 			    mvm->nvm_file_name) {
640 				/* in case nvm file was failed try again */
641 				ret = iwl_mvm_read_external_nvm(mvm);
642 				if (ret)
643 					return ret;
644 			} else {
645 				return ret;
646 			}
647 		}
648 	}
649 
650 	/* parse the relevant nvm sections */
651 	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
652 	if (!mvm->nvm_data)
653 		return -ENODATA;
654 	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
655 			 mvm->nvm_data->nvm_version);
656 
657 	return 0;
658 }
659 
660 struct iwl_mcc_update_resp *
661 iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
662 		   enum iwl_mcc_source src_id)
663 {
664 	struct iwl_mcc_update_cmd mcc_update_cmd = {
665 		.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
666 		.source_id = (u8)src_id,
667 	};
668 	struct iwl_mcc_update_resp *resp_cp;
669 	struct iwl_rx_packet *pkt;
670 	struct iwl_host_cmd cmd = {
671 		.id = MCC_UPDATE_CMD,
672 		.flags = CMD_WANT_SKB,
673 		.data = { &mcc_update_cmd },
674 	};
675 
676 	int ret;
677 	u32 status;
678 	int resp_len, n_channels;
679 	u16 mcc;
680 	bool resp_v2 = fw_has_capa(&mvm->fw->ucode_capa,
681 				   IWL_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
682 
683 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
684 		return ERR_PTR(-EOPNOTSUPP);
685 
686 	cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
687 	if (!resp_v2)
688 		cmd.len[0] = sizeof(struct iwl_mcc_update_cmd_v1);
689 
690 	IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
691 		      alpha2[0], alpha2[1], src_id);
692 
693 	ret = iwl_mvm_send_cmd(mvm, &cmd);
694 	if (ret)
695 		return ERR_PTR(ret);
696 
697 	pkt = cmd.resp_pkt;
698 
699 	/* Extract MCC response */
700 	if (resp_v2) {
701 		struct iwl_mcc_update_resp *mcc_resp = (void *)pkt->data;
702 
703 		n_channels =  __le32_to_cpu(mcc_resp->n_channels);
704 		resp_len = sizeof(struct iwl_mcc_update_resp) +
705 			   n_channels * sizeof(__le32);
706 		resp_cp = kmemdup(mcc_resp, resp_len, GFP_KERNEL);
707 	} else {
708 		struct iwl_mcc_update_resp_v1 *mcc_resp_v1 = (void *)pkt->data;
709 
710 		n_channels =  __le32_to_cpu(mcc_resp_v1->n_channels);
711 		resp_len = sizeof(struct iwl_mcc_update_resp) +
712 			   n_channels * sizeof(__le32);
713 		resp_cp = kzalloc(resp_len, GFP_KERNEL);
714 
715 		if (resp_cp) {
716 			resp_cp->status = mcc_resp_v1->status;
717 			resp_cp->mcc = mcc_resp_v1->mcc;
718 			resp_cp->cap = mcc_resp_v1->cap;
719 			resp_cp->source_id = mcc_resp_v1->source_id;
720 			resp_cp->n_channels = mcc_resp_v1->n_channels;
721 			memcpy(resp_cp->channels, mcc_resp_v1->channels,
722 			       n_channels * sizeof(__le32));
723 		}
724 	}
725 
726 	if (!resp_cp) {
727 		ret = -ENOMEM;
728 		goto exit;
729 	}
730 
731 	status = le32_to_cpu(resp_cp->status);
732 
733 	mcc = le16_to_cpu(resp_cp->mcc);
734 
735 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
736 	if (mcc == 0) {
737 		mcc = 0x3030;  /* "00" - world */
738 		resp_cp->mcc = cpu_to_le16(mcc);
739 	}
740 
741 	IWL_DEBUG_LAR(mvm,
742 		      "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') change: %d n_chans: %d\n",
743 		      status, mcc, mcc >> 8, mcc & 0xff,
744 		      !!(status == MCC_RESP_NEW_CHAN_PROFILE), n_channels);
745 
746 exit:
747 	iwl_free_resp(&cmd);
748 	if (ret)
749 		return ERR_PTR(ret);
750 	return resp_cp;
751 }
752 
753 int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
754 {
755 	bool tlv_lar;
756 	bool nvm_lar;
757 	int retval;
758 	struct ieee80211_regdomain *regd;
759 	char mcc[3];
760 
761 	if (mvm->cfg->device_family == IWL_DEVICE_FAMILY_8000) {
762 		tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
763 				      IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
764 		nvm_lar = mvm->nvm_data->lar_enabled;
765 		if (tlv_lar != nvm_lar)
766 			IWL_INFO(mvm,
767 				 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
768 				 tlv_lar ? "enabled" : "disabled",
769 				 nvm_lar ? "enabled" : "disabled");
770 	}
771 
772 	if (!iwl_mvm_is_lar_supported(mvm))
773 		return 0;
774 
775 	/*
776 	 * try to replay the last set MCC to FW. If it doesn't exist,
777 	 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
778 	 */
779 	retval = iwl_mvm_init_fw_regd(mvm);
780 	if (retval != -ENOENT)
781 		return retval;
782 
783 	/*
784 	 * Driver regulatory hint for initial update, this also informs the
785 	 * firmware we support wifi location updates.
786 	 * Disallow scans that might crash the FW while the LAR regdomain
787 	 * is not set.
788 	 */
789 	mvm->lar_regdom_set = false;
790 
791 	regd = iwl_mvm_get_current_regdomain(mvm, NULL);
792 	if (IS_ERR_OR_NULL(regd))
793 		return -EIO;
794 
795 	if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
796 	    !iwl_get_bios_mcc(mvm->dev, mcc)) {
797 		kfree(regd);
798 		regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
799 					     MCC_SOURCE_BIOS, NULL);
800 		if (IS_ERR_OR_NULL(regd))
801 			return -EIO;
802 	}
803 
804 	retval = regulatory_set_wiphy_regd_sync_rtnl(mvm->hw->wiphy, regd);
805 	kfree(regd);
806 	return retval;
807 }
808 
809 void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
810 				struct iwl_rx_cmd_buffer *rxb)
811 {
812 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
813 	struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
814 	enum iwl_mcc_source src;
815 	char mcc[3];
816 	struct ieee80211_regdomain *regd;
817 
818 	lockdep_assert_held(&mvm->mutex);
819 
820 	if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
821 		IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
822 		return;
823 	}
824 
825 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
826 		return;
827 
828 	mcc[0] = notif->mcc >> 8;
829 	mcc[1] = notif->mcc & 0xff;
830 	mcc[2] = '\0';
831 	src = notif->source_id;
832 
833 	IWL_DEBUG_LAR(mvm,
834 		      "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
835 		      mcc, src);
836 	regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
837 	if (IS_ERR_OR_NULL(regd))
838 		return;
839 
840 	regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
841 	kfree(regd);
842 }
843