xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/iwl-trans.h (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9 
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14 
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24 
25 /**
26  * DOC: Transport layer - what is it ?
27  *
28  * The transport layer is the layer that deals with the HW directly. It provides
29  * an abstraction of the underlying HW to the upper layer. The transport layer
30  * doesn't provide any policy, algorithm or anything of this kind, but only
31  * mechanisms to make the HW do something. It is not completely stateless but
32  * close to it.
33  * We will have an implementation for each different supported bus.
34  */
35 
36 /**
37  * DOC: Life cycle of the transport layer
38  *
39  * The transport layer has a very precise life cycle.
40  *
41  *	1) A helper function is called during the module initialization and
42  *	   registers the bus driver's ops with the transport's alloc function.
43  *	2) Bus's probe calls to the transport layer's allocation functions.
44  *	   Of course this function is bus specific.
45  *	3) This allocation functions will spawn the upper layer which will
46  *	   register mac80211.
47  *
48  *	4) At some point (i.e. mac80211's start call), the op_mode will call
49  *	   the following sequence:
50  *	   start_hw
51  *	   start_fw
52  *
53  *	5) Then when finished (or reset):
54  *	   stop_device
55  *
56  *	6) Eventually, the free function will be called.
57  */
58 
59 #define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
60 
61 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
62 #define FH_RSCSR_FRAME_INVALID		0x55550000
63 #define FH_RSCSR_FRAME_ALIGN		0x40
64 #define FH_RSCSR_RPA_EN			BIT(25)
65 #define FH_RSCSR_RADA_EN		BIT(26)
66 #define FH_RSCSR_RXQ_POS		16
67 #define FH_RSCSR_RXQ_MASK		0x3F0000
68 
69 struct iwl_rx_packet {
70 	/*
71 	 * The first 4 bytes of the RX frame header contain both the RX frame
72 	 * size and some flags.
73 	 * Bit fields:
74 	 * 31:    flag flush RB request
75 	 * 30:    flag ignore TC (terminal counter) request
76 	 * 29:    flag fast IRQ request
77 	 * 28-27: Reserved
78 	 * 26:    RADA enabled
79 	 * 25:    Offload enabled
80 	 * 24:    RPF enabled
81 	 * 23:    RSS enabled
82 	 * 22:    Checksum enabled
83 	 * 21-16: RX queue
84 	 * 15-14: Reserved
85 	 * 13-00: RX frame size
86 	 */
87 	__le32 len_n_flags;
88 	struct iwl_cmd_header hdr;
89 	u8 data[];
90 } __packed;
91 
92 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
93 {
94 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
95 }
96 
97 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
98 {
99 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
100 }
101 
102 /**
103  * enum CMD_MODE - how to send the host commands ?
104  *
105  * @CMD_ASYNC: Return right away and don't wait for the response
106  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
107  *	the response. The caller needs to call iwl_free_resp when done.
108  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
109  *	called after this command completes. Valid only with CMD_ASYNC.
110  * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
111  *	SUSPEND and RESUME commands. We are in D3 mode when we set
112  *	trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
113  */
114 enum CMD_MODE {
115 	CMD_ASYNC		= BIT(0),
116 	CMD_WANT_SKB		= BIT(1),
117 	CMD_SEND_IN_RFKILL	= BIT(2),
118 	CMD_WANT_ASYNC_CALLBACK	= BIT(3),
119 	CMD_SEND_IN_D3          = BIT(4),
120 };
121 
122 #define DEF_CMD_PAYLOAD_SIZE 320
123 
124 /**
125  * struct iwl_device_cmd
126  *
127  * For allocation of the command and tx queues, this establishes the overall
128  * size of the largest command we send to uCode, except for commands that
129  * aren't fully copied and use other TFD space.
130  */
131 struct iwl_device_cmd {
132 	union {
133 		struct {
134 			struct iwl_cmd_header hdr;	/* uCode API */
135 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
136 		};
137 		struct {
138 			struct iwl_cmd_header_wide hdr_wide;
139 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
140 					sizeof(struct iwl_cmd_header_wide) +
141 					sizeof(struct iwl_cmd_header)];
142 		};
143 	};
144 } __packed;
145 
146 /**
147  * struct iwl_device_tx_cmd - buffer for TX command
148  * @hdr: the header
149  * @payload: the payload placeholder
150  *
151  * The actual structure is sized dynamically according to need.
152  */
153 struct iwl_device_tx_cmd {
154 	struct iwl_cmd_header hdr;
155 	u8 payload[];
156 } __packed;
157 
158 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
159 
160 /*
161  * number of transfer buffers (fragments) per transmit frame descriptor;
162  * this is just the driver's idea, the hardware supports 20
163  */
164 #define IWL_MAX_CMD_TBS_PER_TFD	2
165 
166 /* We need 2 entries for the TX command and header, and another one might
167  * be needed for potential data in the SKB's head. The remaining ones can
168  * be used for frags.
169  */
170 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
171 
172 /**
173  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
174  *
175  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
176  *	ring. The transport layer doesn't map the command's buffer to DMA, but
177  *	rather copies it to a previously allocated DMA buffer. This flag tells
178  *	the transport layer not to copy the command, but to map the existing
179  *	buffer (that is passed in) instead. This saves the memcpy and allows
180  *	commands that are bigger than the fixed buffer to be submitted.
181  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
182  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
183  *	chunk internally and free it again after the command completes. This
184  *	can (currently) be used only once per command.
185  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
186  */
187 enum iwl_hcmd_dataflag {
188 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
189 	IWL_HCMD_DFL_DUP	= BIT(1),
190 };
191 
192 enum iwl_error_event_table_status {
193 	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
194 	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
195 	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
196 };
197 
198 /**
199  * struct iwl_host_cmd - Host command to the uCode
200  *
201  * @data: array of chunks that composes the data of the host command
202  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
203  * @_rx_page_order: (internally used to free response packet)
204  * @_rx_page_addr: (internally used to free response packet)
205  * @flags: can be CMD_*
206  * @len: array of the lengths of the chunks in data
207  * @dataflags: IWL_HCMD_DFL_*
208  * @id: command id of the host command, for wide commands encoding the
209  *	version and group as well
210  */
211 struct iwl_host_cmd {
212 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
213 	struct iwl_rx_packet *resp_pkt;
214 	unsigned long _rx_page_addr;
215 	u32 _rx_page_order;
216 
217 	u32 flags;
218 	u32 id;
219 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
220 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
221 };
222 
223 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
224 {
225 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
226 }
227 
228 struct iwl_rx_cmd_buffer {
229 	struct page *_page;
230 	int _offset;
231 	bool _page_stolen;
232 	u32 _rx_page_order;
233 	unsigned int truesize;
234 };
235 
236 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
237 {
238 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
239 }
240 
241 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
242 {
243 	return r->_offset;
244 }
245 
246 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
247 {
248 	r->_page_stolen = true;
249 	get_page(r->_page);
250 	return r->_page;
251 }
252 
253 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
254 {
255 	__free_pages(r->_page, r->_rx_page_order);
256 }
257 
258 #define MAX_NO_RECLAIM_CMDS	6
259 
260 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
261 
262 /*
263  * Maximum number of HW queues the transport layer
264  * currently supports
265  */
266 #define IWL_MAX_HW_QUEUES		32
267 #define IWL_MAX_TVQM_QUEUES		512
268 
269 #define IWL_MAX_TID_COUNT	8
270 #define IWL_MGMT_TID		15
271 #define IWL_FRAME_LIMIT	64
272 #define IWL_MAX_RX_HW_QUEUES	16
273 #define IWL_9000_MAX_RX_HW_QUEUES	6
274 
275 /**
276  * enum iwl_wowlan_status - WoWLAN image/device status
277  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
278  * @IWL_D3_STATUS_RESET: device was reset while suspended
279  */
280 enum iwl_d3_status {
281 	IWL_D3_STATUS_ALIVE,
282 	IWL_D3_STATUS_RESET,
283 };
284 
285 /**
286  * enum iwl_trans_status: transport status flags
287  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
288  * @STATUS_DEVICE_ENABLED: APM is enabled
289  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
290  * @STATUS_INT_ENABLED: interrupts are enabled
291  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
292  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
293  * @STATUS_FW_ERROR: the fw is in error state
294  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
295  *	are sent
296  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
297  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
298  */
299 enum iwl_trans_status {
300 	STATUS_SYNC_HCMD_ACTIVE,
301 	STATUS_DEVICE_ENABLED,
302 	STATUS_TPOWER_PMI,
303 	STATUS_INT_ENABLED,
304 	STATUS_RFKILL_HW,
305 	STATUS_RFKILL_OPMODE,
306 	STATUS_FW_ERROR,
307 	STATUS_TRANS_GOING_IDLE,
308 	STATUS_TRANS_IDLE,
309 	STATUS_TRANS_DEAD,
310 };
311 
312 static inline int
313 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
314 {
315 	switch (rb_size) {
316 	case IWL_AMSDU_2K:
317 		return get_order(2 * 1024);
318 	case IWL_AMSDU_4K:
319 		return get_order(4 * 1024);
320 	case IWL_AMSDU_8K:
321 		return get_order(8 * 1024);
322 	case IWL_AMSDU_12K:
323 		return get_order(16 * 1024);
324 	default:
325 		WARN_ON(1);
326 		return -1;
327 	}
328 }
329 
330 static inline int
331 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
332 {
333 	switch (rb_size) {
334 	case IWL_AMSDU_2K:
335 		return 2 * 1024;
336 	case IWL_AMSDU_4K:
337 		return 4 * 1024;
338 	case IWL_AMSDU_8K:
339 		return 8 * 1024;
340 	case IWL_AMSDU_12K:
341 		return 16 * 1024;
342 	default:
343 		WARN_ON(1);
344 		return 0;
345 	}
346 }
347 
348 struct iwl_hcmd_names {
349 	u8 cmd_id;
350 	const char *const cmd_name;
351 };
352 
353 #define HCMD_NAME(x)	\
354 	{ .cmd_id = x, .cmd_name = #x }
355 
356 struct iwl_hcmd_arr {
357 	const struct iwl_hcmd_names *arr;
358 	int size;
359 };
360 
361 #define HCMD_ARR(x)	\
362 	{ .arr = x, .size = ARRAY_SIZE(x) }
363 
364 /**
365  * struct iwl_trans_config - transport configuration
366  *
367  * @op_mode: pointer to the upper layer.
368  * @cmd_queue: the index of the command queue.
369  *	Must be set before start_fw.
370  * @cmd_fifo: the fifo for host commands
371  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
372  * @no_reclaim_cmds: Some devices erroneously don't set the
373  *	SEQ_RX_FRAME bit on some notifications, this is the
374  *	list of such notifications to filter. Max length is
375  *	%MAX_NO_RECLAIM_CMDS.
376  * @n_no_reclaim_cmds: # of commands in list
377  * @rx_buf_size: RX buffer size needed for A-MSDUs
378  *	if unset 4k will be the RX buffer size
379  * @bc_table_dword: set to true if the BC table expects the byte count to be
380  *	in DWORD (as opposed to bytes)
381  * @scd_set_active: should the transport configure the SCD for HCMD queue
382  * @command_groups: array of command groups, each member is an array of the
383  *	commands in the group; for debugging only
384  * @command_groups_size: number of command groups, to avoid illegal access
385  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
386  *	space for at least two pointers
387  * @fw_reset_handshake: firmware supports reset flow handshake
388  */
389 struct iwl_trans_config {
390 	struct iwl_op_mode *op_mode;
391 
392 	u8 cmd_queue;
393 	u8 cmd_fifo;
394 	unsigned int cmd_q_wdg_timeout;
395 	const u8 *no_reclaim_cmds;
396 	unsigned int n_no_reclaim_cmds;
397 
398 	enum iwl_amsdu_size rx_buf_size;
399 	bool bc_table_dword;
400 	bool scd_set_active;
401 	const struct iwl_hcmd_arr *command_groups;
402 	int command_groups_size;
403 
404 	u8 cb_data_offs;
405 	bool fw_reset_handshake;
406 };
407 
408 struct iwl_trans_dump_data {
409 	u32 len;
410 	u8 data[];
411 };
412 
413 struct iwl_trans;
414 
415 struct iwl_trans_txq_scd_cfg {
416 	u8 fifo;
417 	u8 sta_id;
418 	u8 tid;
419 	bool aggregate;
420 	int frame_limit;
421 };
422 
423 /**
424  * struct iwl_trans_rxq_dma_data - RX queue DMA data
425  * @fr_bd_cb: DMA address of free BD cyclic buffer
426  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
427  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
428  * @ur_bd_cb: DMA address of used BD cyclic buffer
429  */
430 struct iwl_trans_rxq_dma_data {
431 	u64 fr_bd_cb;
432 	u32 fr_bd_wid;
433 	u64 urbd_stts_wrptr;
434 	u64 ur_bd_cb;
435 };
436 
437 /**
438  * struct iwl_trans_ops - transport specific operations
439  *
440  * All the handlers MUST be implemented
441  *
442  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
443  *	May sleep.
444  * @op_mode_leave: Turn off the HW RF kill indication if on
445  *	May sleep
446  * @start_fw: allocates and inits all the resources for the transport
447  *	layer. Also kick a fw image.
448  *	May sleep
449  * @fw_alive: called when the fw sends alive notification. If the fw provides
450  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
451  *	May sleep
452  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
453  *	the HW. From that point on, the HW will be stopped but will still issue
454  *	an interrupt if the HW RF kill switch is triggered.
455  *	This callback must do the right thing and not crash even if %start_hw()
456  *	was called but not &start_fw(). May sleep.
457  * @d3_suspend: put the device into the correct mode for WoWLAN during
458  *	suspend. This is optional, if not implemented WoWLAN will not be
459  *	supported. This callback may sleep.
460  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
461  *	talk to the WoWLAN image to get its status. This is optional, if not
462  *	implemented WoWLAN will not be supported. This callback may sleep.
463  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
464  *	If RFkill is asserted in the middle of a SYNC host command, it must
465  *	return -ERFKILL straight away.
466  *	May sleep only if CMD_ASYNC is not set
467  * @tx: send an skb. The transport relies on the op_mode to zero the
468  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
469  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
470  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
471  *	header if it is IPv4.
472  *	Must be atomic
473  * @reclaim: free packet until ssn. Returns a list of freed packets.
474  *	Must be atomic
475  * @txq_enable: setup a queue. To setup an AC queue, use the
476  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
477  *	this one. The op_mode must not configure the HCMD queue. The scheduler
478  *	configuration may be %NULL, in which case the hardware will not be
479  *	configured. If true is returned, the operation mode needs to increment
480  *	the sequence number of the packets routed to this queue because of a
481  *	hardware scheduler bug. May sleep.
482  * @txq_disable: de-configure a Tx queue to send AMPDUs
483  *	Must be atomic
484  * @txq_set_shared_mode: change Tx queue shared/unshared marking
485  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
486  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
487  * @freeze_txq_timer: prevents the timer of the queue from firing until the
488  *	queue is set to awake. Must be atomic.
489  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
490  *	that the transport needs to refcount the calls since this function
491  *	will be called several times with block = true, and then the queues
492  *	need to be unblocked only after the same number of calls with
493  *	block = false.
494  * @write8: write a u8 to a register at offset ofs from the BAR
495  * @write32: write a u32 to a register at offset ofs from the BAR
496  * @read32: read a u32 register at offset ofs from the BAR
497  * @read_prph: read a DWORD from a periphery register
498  * @write_prph: write a DWORD to a periphery register
499  * @read_mem: read device's SRAM in DWORD
500  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
501  *	will be zeroed.
502  * @read_config32: read a u32 value from the device's config space at
503  *	the given offset.
504  * @configure: configure parameters required by the transport layer from
505  *	the op_mode. May be called several times before start_fw, can't be
506  *	called after that.
507  * @set_pmi: set the power pmi state
508  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
509  *	Sleeping is not allowed between grab_nic_access and
510  *	release_nic_access.
511  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
512  *	must be the same one that was sent before to the grab_nic_access.
513  * @set_bits_mask - set SRAM register according to value and mask.
514  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
515  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
516  *	Note that the transport must fill in the proper file headers.
517  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
518  *	of the trans debugfs
519  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
520  *	context info.
521  * @interrupts: disable/enable interrupts to transport
522  */
523 struct iwl_trans_ops {
524 
525 	int (*start_hw)(struct iwl_trans *iwl_trans);
526 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
527 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
528 			bool run_in_rfkill);
529 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
530 	void (*stop_device)(struct iwl_trans *trans);
531 
532 	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
533 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
534 			 bool test, bool reset);
535 
536 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
537 
538 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
539 		  struct iwl_device_tx_cmd *dev_cmd, int queue);
540 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
541 			struct sk_buff_head *skbs);
542 
543 	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
544 
545 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
546 			   const struct iwl_trans_txq_scd_cfg *cfg,
547 			   unsigned int queue_wdg_timeout);
548 	void (*txq_disable)(struct iwl_trans *trans, int queue,
549 			    bool configure_scd);
550 	/* 22000 functions */
551 	int (*txq_alloc)(struct iwl_trans *trans,
552 			 __le16 flags, u8 sta_id, u8 tid,
553 			 int cmd_id, int size,
554 			 unsigned int queue_wdg_timeout);
555 	void (*txq_free)(struct iwl_trans *trans, int queue);
556 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
557 			    struct iwl_trans_rxq_dma_data *data);
558 
559 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
560 				    bool shared);
561 
562 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
563 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
564 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
565 				 bool freeze);
566 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
567 
568 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
569 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
570 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
571 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
572 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
573 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
574 			void *buf, int dwords);
575 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
576 			 const void *buf, int dwords);
577 	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
578 	void (*configure)(struct iwl_trans *trans,
579 			  const struct iwl_trans_config *trans_cfg);
580 	void (*set_pmi)(struct iwl_trans *trans, bool state);
581 	void (*sw_reset)(struct iwl_trans *trans);
582 	bool (*grab_nic_access)(struct iwl_trans *trans);
583 	void (*release_nic_access)(struct iwl_trans *trans);
584 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
585 			      u32 value);
586 
587 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
588 						 u32 dump_mask);
589 	void (*debugfs_cleanup)(struct iwl_trans *trans);
590 	void (*sync_nmi)(struct iwl_trans *trans);
591 	int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
592 	void (*interrupts)(struct iwl_trans *trans, bool enable);
593 };
594 
595 /**
596  * enum iwl_trans_state - state of the transport layer
597  *
598  * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
599  * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
600  * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
601  */
602 enum iwl_trans_state {
603 	IWL_TRANS_NO_FW,
604 	IWL_TRANS_FW_STARTED,
605 	IWL_TRANS_FW_ALIVE,
606 };
607 
608 /**
609  * DOC: Platform power management
610  *
611  * In system-wide power management the entire platform goes into a low
612  * power state (e.g. idle or suspend to RAM) at the same time and the
613  * device is configured as a wakeup source for the entire platform.
614  * This is usually triggered by userspace activity (e.g. the user
615  * presses the suspend button or a power management daemon decides to
616  * put the platform in low power mode).  The device's behavior in this
617  * mode is dictated by the wake-on-WLAN configuration.
618  *
619  * The terms used for the device's behavior are as follows:
620  *
621  *	- D0: the device is fully powered and the host is awake;
622  *	- D3: the device is in low power mode and only reacts to
623  *		specific events (e.g. magic-packet received or scan
624  *		results found);
625  *
626  * These terms reflect the power modes in the firmware and are not to
627  * be confused with the physical device power state.
628  */
629 
630 /**
631  * enum iwl_plat_pm_mode - platform power management mode
632  *
633  * This enumeration describes the device's platform power management
634  * behavior when in system-wide suspend (i.e WoWLAN).
635  *
636  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
637  *	device.  In system-wide suspend mode, it means that the all
638  *	connections will be closed automatically by mac80211 before
639  *	the platform is suspended.
640  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
641  */
642 enum iwl_plat_pm_mode {
643 	IWL_PLAT_PM_MODE_DISABLED,
644 	IWL_PLAT_PM_MODE_D3,
645 };
646 
647 /**
648  * enum iwl_ini_cfg_state
649  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
650  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
651  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
652  *	are corrupted. The rest of the debug TLVs will still be used
653  */
654 enum iwl_ini_cfg_state {
655 	IWL_INI_CFG_STATE_NOT_LOADED,
656 	IWL_INI_CFG_STATE_LOADED,
657 	IWL_INI_CFG_STATE_CORRUPTED,
658 };
659 
660 /* Max time to wait for nmi interrupt */
661 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
662 
663 /**
664  * struct iwl_dram_data
665  * @physical: page phy pointer
666  * @block: pointer to the allocated block/page
667  * @size: size of the block/page
668  */
669 struct iwl_dram_data {
670 	dma_addr_t physical;
671 	void *block;
672 	int size;
673 };
674 
675 /**
676  * struct iwl_fw_mon - fw monitor per allocation id
677  * @num_frags: number of fragments
678  * @frags: an array of DRAM buffer fragments
679  */
680 struct iwl_fw_mon {
681 	u32 num_frags;
682 	struct iwl_dram_data *frags;
683 };
684 
685 /**
686  * struct iwl_self_init_dram - dram data used by self init process
687  * @fw: lmac and umac dram data
688  * @fw_cnt: total number of items in array
689  * @paging: paging dram data
690  * @paging_cnt: total number of items in array
691  */
692 struct iwl_self_init_dram {
693 	struct iwl_dram_data *fw;
694 	int fw_cnt;
695 	struct iwl_dram_data *paging;
696 	int paging_cnt;
697 };
698 
699 /**
700  * struct iwl_trans_debug - transport debug related data
701  *
702  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
703  * @rec_on: true iff there is a fw debug recording currently active
704  * @dest_tlv: points to the destination TLV for debug
705  * @conf_tlv: array of pointers to configuration TLVs for debug
706  * @trigger_tlv: array of pointers to triggers TLVs for debug
707  * @lmac_error_event_table: addrs of lmacs error tables
708  * @umac_error_event_table: addr of umac error table
709  * @error_event_table_tlv_status: bitmap that indicates what error table
710  *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
711  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
712  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
713  * @fw_mon_cfg: debug buffer allocation configuration
714  * @fw_mon_ini: DRAM buffer fragments per allocation id
715  * @fw_mon: DRAM buffer for firmware monitor
716  * @hw_error: equals true if hw error interrupt was received from the FW
717  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
718  * @active_regions: active regions
719  * @debug_info_tlv_list: list of debug info TLVs
720  * @time_point: array of debug time points
721  * @periodic_trig_list: periodic triggers list
722  * @domains_bitmap: bitmap of active domains other than
723  *	&IWL_FW_INI_DOMAIN_ALWAYS_ON
724  */
725 struct iwl_trans_debug {
726 	u8 n_dest_reg;
727 	bool rec_on;
728 
729 	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
730 	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
731 	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
732 
733 	u32 lmac_error_event_table[2];
734 	u32 umac_error_event_table;
735 	unsigned int error_event_table_tlv_status;
736 
737 	enum iwl_ini_cfg_state internal_ini_cfg;
738 	enum iwl_ini_cfg_state external_ini_cfg;
739 
740 	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
741 	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
742 
743 	struct iwl_dram_data fw_mon;
744 
745 	bool hw_error;
746 	enum iwl_fw_ini_buffer_location ini_dest;
747 
748 	u64 unsupported_region_msk;
749 	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
750 	struct list_head debug_info_tlv_list;
751 	struct iwl_dbg_tlv_time_point_data
752 		time_point[IWL_FW_INI_TIME_POINT_NUM];
753 	struct list_head periodic_trig_list;
754 
755 	u32 domains_bitmap;
756 };
757 
758 struct iwl_dma_ptr {
759 	dma_addr_t dma;
760 	void *addr;
761 	size_t size;
762 };
763 
764 struct iwl_cmd_meta {
765 	/* only for SYNC commands, iff the reply skb is wanted */
766 	struct iwl_host_cmd *source;
767 	u32 flags;
768 	u32 tbs;
769 };
770 
771 /*
772  * The FH will write back to the first TB only, so we need to copy some data
773  * into the buffer regardless of whether it should be mapped or not.
774  * This indicates how big the first TB must be to include the scratch buffer
775  * and the assigned PN.
776  * Since PN location is 8 bytes at offset 12, it's 20 now.
777  * If we make it bigger then allocations will be bigger and copy slower, so
778  * that's probably not useful.
779  */
780 #define IWL_FIRST_TB_SIZE	20
781 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
782 
783 struct iwl_pcie_txq_entry {
784 	void *cmd;
785 	struct sk_buff *skb;
786 	/* buffer to free after command completes */
787 	const void *free_buf;
788 	struct iwl_cmd_meta meta;
789 };
790 
791 struct iwl_pcie_first_tb_buf {
792 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
793 };
794 
795 /**
796  * struct iwl_txq - Tx Queue for DMA
797  * @q: generic Rx/Tx queue descriptor
798  * @tfds: transmit frame descriptors (DMA memory)
799  * @first_tb_bufs: start of command headers, including scratch buffers, for
800  *	the writeback -- this is DMA memory and an array holding one buffer
801  *	for each command on the queue
802  * @first_tb_dma: DMA address for the first_tb_bufs start
803  * @entries: transmit entries (driver state)
804  * @lock: queue lock
805  * @stuck_timer: timer that fires if queue gets stuck
806  * @trans: pointer back to transport (for timer)
807  * @need_update: indicates need to update read/write index
808  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
809  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
810  * @frozen: tx stuck queue timer is frozen
811  * @frozen_expiry_remainder: remember how long until the timer fires
812  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
813  * @write_ptr: 1-st empty entry (index) host_w
814  * @read_ptr: last used entry (index) host_r
815  * @dma_addr:  physical addr for BD's
816  * @n_window: safe queue window
817  * @id: queue id
818  * @low_mark: low watermark, resume queue if free space more than this
819  * @high_mark: high watermark, stop queue if free space less than this
820  *
821  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
822  * descriptors) and required locking structures.
823  *
824  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
825  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
826  * there might be HW changes in the future). For the normal TX
827  * queues, n_window, which is the size of the software queue data
828  * is also 256; however, for the command queue, n_window is only
829  * 32 since we don't need so many commands pending. Since the HW
830  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
831  * This means that we end up with the following:
832  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
833  *  SW entries:           | 0      | ... | 31          |
834  * where N is a number between 0 and 7. This means that the SW
835  * data is a window overlayed over the HW queue.
836  */
837 struct iwl_txq {
838 	void *tfds;
839 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
840 	dma_addr_t first_tb_dma;
841 	struct iwl_pcie_txq_entry *entries;
842 	/* lock for syncing changes on the queue */
843 	spinlock_t lock;
844 	unsigned long frozen_expiry_remainder;
845 	struct timer_list stuck_timer;
846 	struct iwl_trans *trans;
847 	bool need_update;
848 	bool frozen;
849 	bool ampdu;
850 	int block;
851 	unsigned long wd_timeout;
852 	struct sk_buff_head overflow_q;
853 	struct iwl_dma_ptr bc_tbl;
854 
855 	int write_ptr;
856 	int read_ptr;
857 	dma_addr_t dma_addr;
858 	int n_window;
859 	u32 id;
860 	int low_mark;
861 	int high_mark;
862 
863 	bool overflow_tx;
864 };
865 
866 /**
867  * struct iwl_trans_txqs - transport tx queues data
868  *
869  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
870  * @page_offs: offset from skb->cb to mac header page pointer
871  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
872  * @queue_used - bit mask of used queues
873  * @queue_stopped - bit mask of stopped queues
874  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
875  */
876 struct iwl_trans_txqs {
877 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
878 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
879 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
880 	struct dma_pool *bc_pool;
881 	size_t bc_tbl_size;
882 	bool bc_table_dword;
883 	u8 page_offs;
884 	u8 dev_cmd_offs;
885 	struct __percpu iwl_tso_hdr_page * tso_hdr_page;
886 
887 	struct {
888 		u8 fifo;
889 		u8 q_id;
890 		unsigned int wdg_timeout;
891 	} cmd;
892 
893 	struct {
894 		u8 max_tbs;
895 		u16 size;
896 		u8 addr_size;
897 	} tfd;
898 
899 	struct iwl_dma_ptr scd_bc_tbls;
900 };
901 
902 /**
903  * struct iwl_trans - transport common data
904  *
905  * @ops - pointer to iwl_trans_ops
906  * @op_mode - pointer to the op_mode
907  * @trans_cfg: the trans-specific configuration part
908  * @cfg - pointer to the configuration
909  * @drv - pointer to iwl_drv
910  * @status: a bit-mask of transport status flags
911  * @dev - pointer to struct device * that represents the device
912  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
913  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
914  * @hw_rf_id a u32 with the device RF ID
915  * @hw_id: a u32 with the ID of the device / sub-device.
916  *	Set during transport allocation.
917  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
918  * @pm_support: set to true in start_hw if link pm is supported
919  * @ltr_enabled: set to true if the LTR is enabled
920  * @wide_cmd_header: true when ucode supports wide command header format
921  * @wait_command_queue: wait queue for sync commands
922  * @num_rx_queues: number of RX queues allocated by the transport;
923  *	the transport must set this before calling iwl_drv_start()
924  * @iml_len: the length of the image loader
925  * @iml: a pointer to the image loader itself
926  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
927  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
928  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
929  *	starting the firmware, used for tracing
930  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
931  *	start of the 802.11 header in the @rx_mpdu_cmd
932  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
933  * @system_pm_mode: the system-wide power management mode in use.
934  *	This mode is set dynamically, depending on the WoWLAN values
935  *	configured from the userspace at runtime.
936  * @iwl_trans_txqs: transport tx queues data.
937  */
938 struct iwl_trans {
939 	const struct iwl_trans_ops *ops;
940 	struct iwl_op_mode *op_mode;
941 	const struct iwl_cfg_trans_params *trans_cfg;
942 	const struct iwl_cfg *cfg;
943 	struct iwl_drv *drv;
944 	enum iwl_trans_state state;
945 	unsigned long status;
946 
947 	struct device *dev;
948 	u32 max_skb_frags;
949 	u32 hw_rev;
950 	u32 hw_rf_id;
951 	u32 hw_id;
952 	char hw_id_str[52];
953 	u32 sku_id[3];
954 
955 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
956 
957 	bool pm_support;
958 	bool ltr_enabled;
959 	u8 pnvm_loaded:1;
960 
961 	const struct iwl_hcmd_arr *command_groups;
962 	int command_groups_size;
963 	bool wide_cmd_header;
964 
965 	wait_queue_head_t wait_command_queue;
966 	u8 num_rx_queues;
967 
968 	size_t iml_len;
969 	u8 *iml;
970 
971 	/* The following fields are internal only */
972 	struct kmem_cache *dev_cmd_pool;
973 	char dev_cmd_pool_name[50];
974 
975 	struct dentry *dbgfs_dir;
976 
977 #ifdef CONFIG_LOCKDEP
978 	struct lockdep_map sync_cmd_lockdep_map;
979 #endif
980 
981 	struct iwl_trans_debug dbg;
982 	struct iwl_self_init_dram init_dram;
983 
984 	enum iwl_plat_pm_mode system_pm_mode;
985 
986 	const char *name;
987 	struct iwl_trans_txqs txqs;
988 
989 	/* pointer to trans specific struct */
990 	/*Ensure that this pointer will always be aligned to sizeof pointer */
991 	char trans_specific[] __aligned(sizeof(void *));
992 };
993 
994 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
995 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
996 
997 static inline void iwl_trans_configure(struct iwl_trans *trans,
998 				       const struct iwl_trans_config *trans_cfg)
999 {
1000 	trans->op_mode = trans_cfg->op_mode;
1001 
1002 	trans->ops->configure(trans, trans_cfg);
1003 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1004 }
1005 
1006 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1007 {
1008 	might_sleep();
1009 
1010 	return trans->ops->start_hw(trans);
1011 }
1012 
1013 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1014 {
1015 	might_sleep();
1016 
1017 	if (trans->ops->op_mode_leave)
1018 		trans->ops->op_mode_leave(trans);
1019 
1020 	trans->op_mode = NULL;
1021 
1022 	trans->state = IWL_TRANS_NO_FW;
1023 }
1024 
1025 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1026 {
1027 	might_sleep();
1028 
1029 	trans->state = IWL_TRANS_FW_ALIVE;
1030 
1031 	trans->ops->fw_alive(trans, scd_addr);
1032 }
1033 
1034 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1035 				     const struct fw_img *fw,
1036 				     bool run_in_rfkill)
1037 {
1038 	int ret;
1039 
1040 	might_sleep();
1041 
1042 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1043 
1044 	clear_bit(STATUS_FW_ERROR, &trans->status);
1045 	ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1046 	if (ret == 0)
1047 		trans->state = IWL_TRANS_FW_STARTED;
1048 
1049 	return ret;
1050 }
1051 
1052 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1053 {
1054 	might_sleep();
1055 
1056 	trans->ops->stop_device(trans);
1057 
1058 	trans->state = IWL_TRANS_NO_FW;
1059 }
1060 
1061 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1062 				       bool reset)
1063 {
1064 	might_sleep();
1065 	if (!trans->ops->d3_suspend)
1066 		return 0;
1067 
1068 	return trans->ops->d3_suspend(trans, test, reset);
1069 }
1070 
1071 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1072 				      enum iwl_d3_status *status,
1073 				      bool test, bool reset)
1074 {
1075 	might_sleep();
1076 	if (!trans->ops->d3_resume)
1077 		return 0;
1078 
1079 	return trans->ops->d3_resume(trans, status, test, reset);
1080 }
1081 
1082 static inline struct iwl_trans_dump_data *
1083 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask)
1084 {
1085 	if (!trans->ops->dump_data)
1086 		return NULL;
1087 	return trans->ops->dump_data(trans, dump_mask);
1088 }
1089 
1090 static inline struct iwl_device_tx_cmd *
1091 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1092 {
1093 	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1094 }
1095 
1096 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1097 
1098 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1099 					 struct iwl_device_tx_cmd *dev_cmd)
1100 {
1101 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1102 }
1103 
1104 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1105 			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1106 {
1107 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1108 		return -EIO;
1109 
1110 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1111 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1112 		return -EIO;
1113 	}
1114 
1115 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1116 }
1117 
1118 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1119 				     int ssn, struct sk_buff_head *skbs)
1120 {
1121 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1122 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1123 		return;
1124 	}
1125 
1126 	trans->ops->reclaim(trans, queue, ssn, skbs);
1127 }
1128 
1129 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1130 					int ptr)
1131 {
1132 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1133 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1134 		return;
1135 	}
1136 
1137 	trans->ops->set_q_ptrs(trans, queue, ptr);
1138 }
1139 
1140 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1141 					 bool configure_scd)
1142 {
1143 	trans->ops->txq_disable(trans, queue, configure_scd);
1144 }
1145 
1146 static inline bool
1147 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1148 			 const struct iwl_trans_txq_scd_cfg *cfg,
1149 			 unsigned int queue_wdg_timeout)
1150 {
1151 	might_sleep();
1152 
1153 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1154 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1155 		return false;
1156 	}
1157 
1158 	return trans->ops->txq_enable(trans, queue, ssn,
1159 				      cfg, queue_wdg_timeout);
1160 }
1161 
1162 static inline int
1163 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1164 			   struct iwl_trans_rxq_dma_data *data)
1165 {
1166 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1167 		return -ENOTSUPP;
1168 
1169 	return trans->ops->rxq_dma_data(trans, queue, data);
1170 }
1171 
1172 static inline void
1173 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1174 {
1175 	if (WARN_ON_ONCE(!trans->ops->txq_free))
1176 		return;
1177 
1178 	trans->ops->txq_free(trans, queue);
1179 }
1180 
1181 static inline int
1182 iwl_trans_txq_alloc(struct iwl_trans *trans,
1183 		    __le16 flags, u8 sta_id, u8 tid,
1184 		    int cmd_id, int size,
1185 		    unsigned int wdg_timeout)
1186 {
1187 	might_sleep();
1188 
1189 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1190 		return -ENOTSUPP;
1191 
1192 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1193 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1194 		return -EIO;
1195 	}
1196 
1197 	return trans->ops->txq_alloc(trans, flags, sta_id, tid,
1198 				     cmd_id, size, wdg_timeout);
1199 }
1200 
1201 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1202 						 int queue, bool shared_mode)
1203 {
1204 	if (trans->ops->txq_set_shared_mode)
1205 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1206 }
1207 
1208 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1209 					int fifo, int sta_id, int tid,
1210 					int frame_limit, u16 ssn,
1211 					unsigned int queue_wdg_timeout)
1212 {
1213 	struct iwl_trans_txq_scd_cfg cfg = {
1214 		.fifo = fifo,
1215 		.sta_id = sta_id,
1216 		.tid = tid,
1217 		.frame_limit = frame_limit,
1218 		.aggregate = sta_id >= 0,
1219 	};
1220 
1221 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1222 }
1223 
1224 static inline
1225 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1226 			     unsigned int queue_wdg_timeout)
1227 {
1228 	struct iwl_trans_txq_scd_cfg cfg = {
1229 		.fifo = fifo,
1230 		.sta_id = -1,
1231 		.tid = IWL_MAX_TID_COUNT,
1232 		.frame_limit = IWL_FRAME_LIMIT,
1233 		.aggregate = false,
1234 	};
1235 
1236 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1237 }
1238 
1239 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1240 					      unsigned long txqs,
1241 					      bool freeze)
1242 {
1243 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1244 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1245 		return;
1246 	}
1247 
1248 	if (trans->ops->freeze_txq_timer)
1249 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1250 }
1251 
1252 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1253 					    bool block)
1254 {
1255 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1256 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1257 		return;
1258 	}
1259 
1260 	if (trans->ops->block_txq_ptrs)
1261 		trans->ops->block_txq_ptrs(trans, block);
1262 }
1263 
1264 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1265 						 u32 txqs)
1266 {
1267 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1268 		return -ENOTSUPP;
1269 
1270 	/* No need to wait if the firmware is not alive */
1271 	if (trans->state != IWL_TRANS_FW_ALIVE) {
1272 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1273 		return -EIO;
1274 	}
1275 
1276 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1277 }
1278 
1279 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1280 {
1281 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1282 		return -ENOTSUPP;
1283 
1284 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1285 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1286 		return -EIO;
1287 	}
1288 
1289 	return trans->ops->wait_txq_empty(trans, queue);
1290 }
1291 
1292 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1293 {
1294 	trans->ops->write8(trans, ofs, val);
1295 }
1296 
1297 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1298 {
1299 	trans->ops->write32(trans, ofs, val);
1300 }
1301 
1302 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1303 {
1304 	return trans->ops->read32(trans, ofs);
1305 }
1306 
1307 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1308 {
1309 	return trans->ops->read_prph(trans, ofs);
1310 }
1311 
1312 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1313 					u32 val)
1314 {
1315 	return trans->ops->write_prph(trans, ofs, val);
1316 }
1317 
1318 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1319 				     void *buf, int dwords)
1320 {
1321 	return trans->ops->read_mem(trans, addr, buf, dwords);
1322 }
1323 
1324 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1325 	do {								      \
1326 		if (__builtin_constant_p(bufsize))			      \
1327 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1328 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1329 	} while (0)
1330 
1331 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1332 {
1333 	u32 value;
1334 
1335 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1336 		return 0xa5a5a5a5;
1337 
1338 	return value;
1339 }
1340 
1341 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1342 				      const void *buf, int dwords)
1343 {
1344 	return trans->ops->write_mem(trans, addr, buf, dwords);
1345 }
1346 
1347 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1348 					u32 val)
1349 {
1350 	return iwl_trans_write_mem(trans, addr, &val, 1);
1351 }
1352 
1353 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1354 {
1355 	if (trans->ops->set_pmi)
1356 		trans->ops->set_pmi(trans, state);
1357 }
1358 
1359 static inline void iwl_trans_sw_reset(struct iwl_trans *trans)
1360 {
1361 	if (trans->ops->sw_reset)
1362 		trans->ops->sw_reset(trans);
1363 }
1364 
1365 static inline void
1366 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1367 {
1368 	trans->ops->set_bits_mask(trans, reg, mask, value);
1369 }
1370 
1371 #define iwl_trans_grab_nic_access(trans)		\
1372 	__cond_lock(nic_access,				\
1373 		    likely((trans)->ops->grab_nic_access(trans)))
1374 
1375 static inline void __releases(nic_access)
1376 iwl_trans_release_nic_access(struct iwl_trans *trans)
1377 {
1378 	trans->ops->release_nic_access(trans);
1379 	__release(nic_access);
1380 }
1381 
1382 static inline void iwl_trans_fw_error(struct iwl_trans *trans)
1383 {
1384 	if (WARN_ON_ONCE(!trans->op_mode))
1385 		return;
1386 
1387 	/* prevent double restarts due to the same erroneous FW */
1388 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1389 		iwl_op_mode_nic_error(trans->op_mode);
1390 		trans->state = IWL_TRANS_NO_FW;
1391 	}
1392 }
1393 
1394 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1395 {
1396 	return trans->state == IWL_TRANS_FW_ALIVE;
1397 }
1398 
1399 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1400 {
1401 	if (trans->ops->sync_nmi)
1402 		trans->ops->sync_nmi(trans);
1403 }
1404 
1405 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1406 				  u32 sw_err_bit);
1407 
1408 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1409 				     const void *data, u32 len)
1410 {
1411 	if (trans->ops->set_pnvm) {
1412 		int ret = trans->ops->set_pnvm(trans, data, len);
1413 
1414 		if (ret)
1415 			return ret;
1416 	}
1417 
1418 	trans->pnvm_loaded = true;
1419 
1420 	return 0;
1421 }
1422 
1423 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1424 {
1425 	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1426 		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1427 }
1428 
1429 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1430 {
1431 	if (trans->ops->interrupts)
1432 		trans->ops->interrupts(trans, enable);
1433 }
1434 
1435 /*****************************************************
1436  * transport helper functions
1437  *****************************************************/
1438 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1439 			  struct device *dev,
1440 			  const struct iwl_trans_ops *ops,
1441 			  const struct iwl_cfg_trans_params *cfg_trans);
1442 int iwl_trans_init(struct iwl_trans *trans);
1443 void iwl_trans_free(struct iwl_trans *trans);
1444 
1445 /*****************************************************
1446 * driver (transport) register/unregister functions
1447 ******************************************************/
1448 int __must_check iwl_pci_register_driver(void);
1449 void iwl_pci_unregister_driver(void);
1450 
1451 #endif /* __iwl_trans_h__ */
1452