1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ 2 /* 3 * Copyright (C) 2005-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #ifndef __iwl_trans_h__ 8 #define __iwl_trans_h__ 9 10 #include <linux/ieee80211.h> 11 #include <linux/mm.h> /* for page_address */ 12 #include <linux/lockdep.h> 13 #include <linux/kernel.h> 14 15 #include "iwl-debug.h" 16 #include "iwl-config.h" 17 #include "fw/img.h" 18 #include "iwl-op-mode.h" 19 #include <linux/firmware.h> 20 #include "fw/api/cmdhdr.h" 21 #include "fw/api/txq.h" 22 #include "fw/api/dbg-tlv.h" 23 #include "iwl-dbg-tlv.h" 24 25 /** 26 * DOC: Transport layer - what is it ? 27 * 28 * The transport layer is the layer that deals with the HW directly. It provides 29 * an abstraction of the underlying HW to the upper layer. The transport layer 30 * doesn't provide any policy, algorithm or anything of this kind, but only 31 * mechanisms to make the HW do something. It is not completely stateless but 32 * close to it. 33 * We will have an implementation for each different supported bus. 34 */ 35 36 /** 37 * DOC: Life cycle of the transport layer 38 * 39 * The transport layer has a very precise life cycle. 40 * 41 * 1) A helper function is called during the module initialization and 42 * registers the bus driver's ops with the transport's alloc function. 43 * 2) Bus's probe calls to the transport layer's allocation functions. 44 * Of course this function is bus specific. 45 * 3) This allocation functions will spawn the upper layer which will 46 * register mac80211. 47 * 48 * 4) At some point (i.e. mac80211's start call), the op_mode will call 49 * the following sequence: 50 * start_hw 51 * start_fw 52 * 53 * 5) Then when finished (or reset): 54 * stop_device 55 * 56 * 6) Eventually, the free function will be called. 57 */ 58 59 #define IWL_TRANS_FW_DBG_DOMAIN(trans) IWL_FW_INI_DOMAIN_ALWAYS_ON 60 61 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ 62 #define FH_RSCSR_FRAME_INVALID 0x55550000 63 #define FH_RSCSR_FRAME_ALIGN 0x40 64 #define FH_RSCSR_RPA_EN BIT(25) 65 #define FH_RSCSR_RADA_EN BIT(26) 66 #define FH_RSCSR_RXQ_POS 16 67 #define FH_RSCSR_RXQ_MASK 0x3F0000 68 69 struct iwl_rx_packet { 70 /* 71 * The first 4 bytes of the RX frame header contain both the RX frame 72 * size and some flags. 73 * Bit fields: 74 * 31: flag flush RB request 75 * 30: flag ignore TC (terminal counter) request 76 * 29: flag fast IRQ request 77 * 28-27: Reserved 78 * 26: RADA enabled 79 * 25: Offload enabled 80 * 24: RPF enabled 81 * 23: RSS enabled 82 * 22: Checksum enabled 83 * 21-16: RX queue 84 * 15-14: Reserved 85 * 13-00: RX frame size 86 */ 87 __le32 len_n_flags; 88 struct iwl_cmd_header hdr; 89 u8 data[]; 90 } __packed; 91 92 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) 93 { 94 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; 95 } 96 97 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) 98 { 99 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); 100 } 101 102 /** 103 * enum CMD_MODE - how to send the host commands ? 104 * 105 * @CMD_ASYNC: Return right away and don't wait for the response 106 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of 107 * the response. The caller needs to call iwl_free_resp when done. 108 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be 109 * called after this command completes. Valid only with CMD_ASYNC. 110 * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to 111 * SUSPEND and RESUME commands. We are in D3 mode when we set 112 * trans->system_pm_mode to IWL_PLAT_PM_MODE_D3. 113 */ 114 enum CMD_MODE { 115 CMD_ASYNC = BIT(0), 116 CMD_WANT_SKB = BIT(1), 117 CMD_SEND_IN_RFKILL = BIT(2), 118 CMD_WANT_ASYNC_CALLBACK = BIT(3), 119 CMD_SEND_IN_D3 = BIT(4), 120 }; 121 122 #define DEF_CMD_PAYLOAD_SIZE 320 123 124 /** 125 * struct iwl_device_cmd 126 * 127 * For allocation of the command and tx queues, this establishes the overall 128 * size of the largest command we send to uCode, except for commands that 129 * aren't fully copied and use other TFD space. 130 */ 131 struct iwl_device_cmd { 132 union { 133 struct { 134 struct iwl_cmd_header hdr; /* uCode API */ 135 u8 payload[DEF_CMD_PAYLOAD_SIZE]; 136 }; 137 struct { 138 struct iwl_cmd_header_wide hdr_wide; 139 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE - 140 sizeof(struct iwl_cmd_header_wide) + 141 sizeof(struct iwl_cmd_header)]; 142 }; 143 }; 144 } __packed; 145 146 /** 147 * struct iwl_device_tx_cmd - buffer for TX command 148 * @hdr: the header 149 * @payload: the payload placeholder 150 * 151 * The actual structure is sized dynamically according to need. 152 */ 153 struct iwl_device_tx_cmd { 154 struct iwl_cmd_header hdr; 155 u8 payload[]; 156 } __packed; 157 158 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) 159 160 /* 161 * number of transfer buffers (fragments) per transmit frame descriptor; 162 * this is just the driver's idea, the hardware supports 20 163 */ 164 #define IWL_MAX_CMD_TBS_PER_TFD 2 165 166 /* We need 2 entries for the TX command and header, and another one might 167 * be needed for potential data in the SKB's head. The remaining ones can 168 * be used for frags. 169 */ 170 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3) 171 172 /** 173 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command 174 * 175 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's 176 * ring. The transport layer doesn't map the command's buffer to DMA, but 177 * rather copies it to a previously allocated DMA buffer. This flag tells 178 * the transport layer not to copy the command, but to map the existing 179 * buffer (that is passed in) instead. This saves the memcpy and allows 180 * commands that are bigger than the fixed buffer to be submitted. 181 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. 182 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this 183 * chunk internally and free it again after the command completes. This 184 * can (currently) be used only once per command. 185 * Note that a TFD entry after a DUP one cannot be a normal copied one. 186 */ 187 enum iwl_hcmd_dataflag { 188 IWL_HCMD_DFL_NOCOPY = BIT(0), 189 IWL_HCMD_DFL_DUP = BIT(1), 190 }; 191 192 enum iwl_error_event_table_status { 193 IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0), 194 IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1), 195 IWL_ERROR_EVENT_TABLE_UMAC = BIT(2), 196 IWL_ERROR_EVENT_TABLE_TCM = BIT(3), 197 }; 198 199 /** 200 * struct iwl_host_cmd - Host command to the uCode 201 * 202 * @data: array of chunks that composes the data of the host command 203 * @resp_pkt: response packet, if %CMD_WANT_SKB was set 204 * @_rx_page_order: (internally used to free response packet) 205 * @_rx_page_addr: (internally used to free response packet) 206 * @flags: can be CMD_* 207 * @len: array of the lengths of the chunks in data 208 * @dataflags: IWL_HCMD_DFL_* 209 * @id: command id of the host command, for wide commands encoding the 210 * version and group as well 211 */ 212 struct iwl_host_cmd { 213 const void *data[IWL_MAX_CMD_TBS_PER_TFD]; 214 struct iwl_rx_packet *resp_pkt; 215 unsigned long _rx_page_addr; 216 u32 _rx_page_order; 217 218 u32 flags; 219 u32 id; 220 u16 len[IWL_MAX_CMD_TBS_PER_TFD]; 221 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; 222 }; 223 224 static inline void iwl_free_resp(struct iwl_host_cmd *cmd) 225 { 226 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); 227 } 228 229 struct iwl_rx_cmd_buffer { 230 struct page *_page; 231 int _offset; 232 bool _page_stolen; 233 u32 _rx_page_order; 234 unsigned int truesize; 235 }; 236 237 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) 238 { 239 return (void *)((unsigned long)page_address(r->_page) + r->_offset); 240 } 241 242 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) 243 { 244 return r->_offset; 245 } 246 247 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) 248 { 249 r->_page_stolen = true; 250 get_page(r->_page); 251 return r->_page; 252 } 253 254 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) 255 { 256 __free_pages(r->_page, r->_rx_page_order); 257 } 258 259 #define MAX_NO_RECLAIM_CMDS 6 260 261 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) 262 263 /* 264 * Maximum number of HW queues the transport layer 265 * currently supports 266 */ 267 #define IWL_MAX_HW_QUEUES 32 268 #define IWL_MAX_TVQM_QUEUES 512 269 270 #define IWL_MAX_TID_COUNT 8 271 #define IWL_MGMT_TID 15 272 #define IWL_FRAME_LIMIT 64 273 #define IWL_MAX_RX_HW_QUEUES 16 274 #define IWL_9000_MAX_RX_HW_QUEUES 6 275 276 /** 277 * enum iwl_wowlan_status - WoWLAN image/device status 278 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume 279 * @IWL_D3_STATUS_RESET: device was reset while suspended 280 */ 281 enum iwl_d3_status { 282 IWL_D3_STATUS_ALIVE, 283 IWL_D3_STATUS_RESET, 284 }; 285 286 /** 287 * enum iwl_trans_status: transport status flags 288 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed 289 * @STATUS_DEVICE_ENABLED: APM is enabled 290 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) 291 * @STATUS_INT_ENABLED: interrupts are enabled 292 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch 293 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode 294 * @STATUS_FW_ERROR: the fw is in error state 295 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands 296 * are sent 297 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent 298 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation 299 */ 300 enum iwl_trans_status { 301 STATUS_SYNC_HCMD_ACTIVE, 302 STATUS_DEVICE_ENABLED, 303 STATUS_TPOWER_PMI, 304 STATUS_INT_ENABLED, 305 STATUS_RFKILL_HW, 306 STATUS_RFKILL_OPMODE, 307 STATUS_FW_ERROR, 308 STATUS_TRANS_GOING_IDLE, 309 STATUS_TRANS_IDLE, 310 STATUS_TRANS_DEAD, 311 }; 312 313 static inline int 314 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size) 315 { 316 switch (rb_size) { 317 case IWL_AMSDU_2K: 318 return get_order(2 * 1024); 319 case IWL_AMSDU_4K: 320 return get_order(4 * 1024); 321 case IWL_AMSDU_8K: 322 return get_order(8 * 1024); 323 case IWL_AMSDU_12K: 324 return get_order(16 * 1024); 325 default: 326 WARN_ON(1); 327 return -1; 328 } 329 } 330 331 static inline int 332 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size) 333 { 334 switch (rb_size) { 335 case IWL_AMSDU_2K: 336 return 2 * 1024; 337 case IWL_AMSDU_4K: 338 return 4 * 1024; 339 case IWL_AMSDU_8K: 340 return 8 * 1024; 341 case IWL_AMSDU_12K: 342 return 16 * 1024; 343 default: 344 WARN_ON(1); 345 return 0; 346 } 347 } 348 349 struct iwl_hcmd_names { 350 u8 cmd_id; 351 const char *const cmd_name; 352 }; 353 354 #define HCMD_NAME(x) \ 355 { .cmd_id = x, .cmd_name = #x } 356 357 struct iwl_hcmd_arr { 358 const struct iwl_hcmd_names *arr; 359 int size; 360 }; 361 362 #define HCMD_ARR(x) \ 363 { .arr = x, .size = ARRAY_SIZE(x) } 364 365 /** 366 * struct iwl_trans_config - transport configuration 367 * 368 * @op_mode: pointer to the upper layer. 369 * @cmd_queue: the index of the command queue. 370 * Must be set before start_fw. 371 * @cmd_fifo: the fifo for host commands 372 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue. 373 * @no_reclaim_cmds: Some devices erroneously don't set the 374 * SEQ_RX_FRAME bit on some notifications, this is the 375 * list of such notifications to filter. Max length is 376 * %MAX_NO_RECLAIM_CMDS. 377 * @n_no_reclaim_cmds: # of commands in list 378 * @rx_buf_size: RX buffer size needed for A-MSDUs 379 * if unset 4k will be the RX buffer size 380 * @bc_table_dword: set to true if the BC table expects the byte count to be 381 * in DWORD (as opposed to bytes) 382 * @scd_set_active: should the transport configure the SCD for HCMD queue 383 * @command_groups: array of command groups, each member is an array of the 384 * commands in the group; for debugging only 385 * @command_groups_size: number of command groups, to avoid illegal access 386 * @cb_data_offs: offset inside skb->cb to store transport data at, must have 387 * space for at least two pointers 388 * @fw_reset_handshake: firmware supports reset flow handshake 389 */ 390 struct iwl_trans_config { 391 struct iwl_op_mode *op_mode; 392 393 u8 cmd_queue; 394 u8 cmd_fifo; 395 unsigned int cmd_q_wdg_timeout; 396 const u8 *no_reclaim_cmds; 397 unsigned int n_no_reclaim_cmds; 398 399 enum iwl_amsdu_size rx_buf_size; 400 bool bc_table_dword; 401 bool scd_set_active; 402 const struct iwl_hcmd_arr *command_groups; 403 int command_groups_size; 404 405 u8 cb_data_offs; 406 bool fw_reset_handshake; 407 }; 408 409 struct iwl_trans_dump_data { 410 u32 len; 411 u8 data[]; 412 }; 413 414 struct iwl_trans; 415 416 struct iwl_trans_txq_scd_cfg { 417 u8 fifo; 418 u8 sta_id; 419 u8 tid; 420 bool aggregate; 421 int frame_limit; 422 }; 423 424 /** 425 * struct iwl_trans_rxq_dma_data - RX queue DMA data 426 * @fr_bd_cb: DMA address of free BD cyclic buffer 427 * @fr_bd_wid: Initial write index of the free BD cyclic buffer 428 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr 429 * @ur_bd_cb: DMA address of used BD cyclic buffer 430 */ 431 struct iwl_trans_rxq_dma_data { 432 u64 fr_bd_cb; 433 u32 fr_bd_wid; 434 u64 urbd_stts_wrptr; 435 u64 ur_bd_cb; 436 }; 437 438 /** 439 * struct iwl_trans_ops - transport specific operations 440 * 441 * All the handlers MUST be implemented 442 * 443 * @start_hw: starts the HW. From that point on, the HW can send interrupts. 444 * May sleep. 445 * @op_mode_leave: Turn off the HW RF kill indication if on 446 * May sleep 447 * @start_fw: allocates and inits all the resources for the transport 448 * layer. Also kick a fw image. 449 * May sleep 450 * @fw_alive: called when the fw sends alive notification. If the fw provides 451 * the SCD base address in SRAM, then provide it here, or 0 otherwise. 452 * May sleep 453 * @stop_device: stops the whole device (embedded CPU put to reset) and stops 454 * the HW. From that point on, the HW will be stopped but will still issue 455 * an interrupt if the HW RF kill switch is triggered. 456 * This callback must do the right thing and not crash even if %start_hw() 457 * was called but not &start_fw(). May sleep. 458 * @d3_suspend: put the device into the correct mode for WoWLAN during 459 * suspend. This is optional, if not implemented WoWLAN will not be 460 * supported. This callback may sleep. 461 * @d3_resume: resume the device after WoWLAN, enabling the opmode to 462 * talk to the WoWLAN image to get its status. This is optional, if not 463 * implemented WoWLAN will not be supported. This callback may sleep. 464 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. 465 * If RFkill is asserted in the middle of a SYNC host command, it must 466 * return -ERFKILL straight away. 467 * May sleep only if CMD_ASYNC is not set 468 * @tx: send an skb. The transport relies on the op_mode to zero the 469 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all 470 * the CSUM will be taken care of (TCP CSUM and IP header in case of 471 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP 472 * header if it is IPv4. 473 * Must be atomic 474 * @reclaim: free packet until ssn. Returns a list of freed packets. 475 * Must be atomic 476 * @txq_enable: setup a queue. To setup an AC queue, use the 477 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before 478 * this one. The op_mode must not configure the HCMD queue. The scheduler 479 * configuration may be %NULL, in which case the hardware will not be 480 * configured. If true is returned, the operation mode needs to increment 481 * the sequence number of the packets routed to this queue because of a 482 * hardware scheduler bug. May sleep. 483 * @txq_disable: de-configure a Tx queue to send AMPDUs 484 * Must be atomic 485 * @txq_set_shared_mode: change Tx queue shared/unshared marking 486 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep. 487 * @wait_txq_empty: wait until specific tx queue is empty. May sleep. 488 * @freeze_txq_timer: prevents the timer of the queue from firing until the 489 * queue is set to awake. Must be atomic. 490 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note 491 * that the transport needs to refcount the calls since this function 492 * will be called several times with block = true, and then the queues 493 * need to be unblocked only after the same number of calls with 494 * block = false. 495 * @write8: write a u8 to a register at offset ofs from the BAR 496 * @write32: write a u32 to a register at offset ofs from the BAR 497 * @read32: read a u32 register at offset ofs from the BAR 498 * @read_prph: read a DWORD from a periphery register 499 * @write_prph: write a DWORD to a periphery register 500 * @read_mem: read device's SRAM in DWORD 501 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory 502 * will be zeroed. 503 * @read_config32: read a u32 value from the device's config space at 504 * the given offset. 505 * @configure: configure parameters required by the transport layer from 506 * the op_mode. May be called several times before start_fw, can't be 507 * called after that. 508 * @set_pmi: set the power pmi state 509 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. 510 * Sleeping is not allowed between grab_nic_access and 511 * release_nic_access. 512 * @release_nic_access: let the NIC go to sleep. The "flags" parameter 513 * must be the same one that was sent before to the grab_nic_access. 514 * @set_bits_mask - set SRAM register according to value and mask. 515 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last 516 * TX'ed commands and similar. The buffer will be vfree'd by the caller. 517 * Note that the transport must fill in the proper file headers. 518 * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup 519 * of the trans debugfs 520 * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the 521 * context info. 522 * @interrupts: disable/enable interrupts to transport 523 */ 524 struct iwl_trans_ops { 525 526 int (*start_hw)(struct iwl_trans *iwl_trans); 527 void (*op_mode_leave)(struct iwl_trans *iwl_trans); 528 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, 529 bool run_in_rfkill); 530 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); 531 void (*stop_device)(struct iwl_trans *trans); 532 533 int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset); 534 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, 535 bool test, bool reset); 536 537 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 538 539 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, 540 struct iwl_device_tx_cmd *dev_cmd, int queue); 541 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, 542 struct sk_buff_head *skbs); 543 544 void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr); 545 546 bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn, 547 const struct iwl_trans_txq_scd_cfg *cfg, 548 unsigned int queue_wdg_timeout); 549 void (*txq_disable)(struct iwl_trans *trans, int queue, 550 bool configure_scd); 551 /* 22000 functions */ 552 int (*txq_alloc)(struct iwl_trans *trans, 553 __le16 flags, u8 sta_id, u8 tid, 554 int cmd_id, int size, 555 unsigned int queue_wdg_timeout); 556 void (*txq_free)(struct iwl_trans *trans, int queue); 557 int (*rxq_dma_data)(struct iwl_trans *trans, int queue, 558 struct iwl_trans_rxq_dma_data *data); 559 560 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id, 561 bool shared); 562 563 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm); 564 int (*wait_txq_empty)(struct iwl_trans *trans, int queue); 565 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs, 566 bool freeze); 567 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block); 568 569 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); 570 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); 571 u32 (*read32)(struct iwl_trans *trans, u32 ofs); 572 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); 573 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); 574 int (*read_mem)(struct iwl_trans *trans, u32 addr, 575 void *buf, int dwords); 576 int (*write_mem)(struct iwl_trans *trans, u32 addr, 577 const void *buf, int dwords); 578 int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val); 579 void (*configure)(struct iwl_trans *trans, 580 const struct iwl_trans_config *trans_cfg); 581 void (*set_pmi)(struct iwl_trans *trans, bool state); 582 void (*sw_reset)(struct iwl_trans *trans); 583 bool (*grab_nic_access)(struct iwl_trans *trans); 584 void (*release_nic_access)(struct iwl_trans *trans); 585 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, 586 u32 value); 587 588 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans, 589 u32 dump_mask); 590 void (*debugfs_cleanup)(struct iwl_trans *trans); 591 void (*sync_nmi)(struct iwl_trans *trans); 592 int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len); 593 int (*set_reduce_power)(struct iwl_trans *trans, 594 const void *data, u32 len); 595 void (*interrupts)(struct iwl_trans *trans, bool enable); 596 }; 597 598 /** 599 * enum iwl_trans_state - state of the transport layer 600 * 601 * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed 602 * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet 603 * @IWL_TRANS_FW_ALIVE: FW has sent an alive response 604 */ 605 enum iwl_trans_state { 606 IWL_TRANS_NO_FW, 607 IWL_TRANS_FW_STARTED, 608 IWL_TRANS_FW_ALIVE, 609 }; 610 611 /** 612 * DOC: Platform power management 613 * 614 * In system-wide power management the entire platform goes into a low 615 * power state (e.g. idle or suspend to RAM) at the same time and the 616 * device is configured as a wakeup source for the entire platform. 617 * This is usually triggered by userspace activity (e.g. the user 618 * presses the suspend button or a power management daemon decides to 619 * put the platform in low power mode). The device's behavior in this 620 * mode is dictated by the wake-on-WLAN configuration. 621 * 622 * The terms used for the device's behavior are as follows: 623 * 624 * - D0: the device is fully powered and the host is awake; 625 * - D3: the device is in low power mode and only reacts to 626 * specific events (e.g. magic-packet received or scan 627 * results found); 628 * 629 * These terms reflect the power modes in the firmware and are not to 630 * be confused with the physical device power state. 631 */ 632 633 /** 634 * enum iwl_plat_pm_mode - platform power management mode 635 * 636 * This enumeration describes the device's platform power management 637 * behavior when in system-wide suspend (i.e WoWLAN). 638 * 639 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this 640 * device. In system-wide suspend mode, it means that the all 641 * connections will be closed automatically by mac80211 before 642 * the platform is suspended. 643 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN). 644 */ 645 enum iwl_plat_pm_mode { 646 IWL_PLAT_PM_MODE_DISABLED, 647 IWL_PLAT_PM_MODE_D3, 648 }; 649 650 /** 651 * enum iwl_ini_cfg_state 652 * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given 653 * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded 654 * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs 655 * are corrupted. The rest of the debug TLVs will still be used 656 */ 657 enum iwl_ini_cfg_state { 658 IWL_INI_CFG_STATE_NOT_LOADED, 659 IWL_INI_CFG_STATE_LOADED, 660 IWL_INI_CFG_STATE_CORRUPTED, 661 }; 662 663 /* Max time to wait for nmi interrupt */ 664 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4) 665 666 /** 667 * struct iwl_dram_data 668 * @physical: page phy pointer 669 * @block: pointer to the allocated block/page 670 * @size: size of the block/page 671 */ 672 struct iwl_dram_data { 673 dma_addr_t physical; 674 void *block; 675 int size; 676 }; 677 678 /** 679 * struct iwl_fw_mon - fw monitor per allocation id 680 * @num_frags: number of fragments 681 * @frags: an array of DRAM buffer fragments 682 */ 683 struct iwl_fw_mon { 684 u32 num_frags; 685 struct iwl_dram_data *frags; 686 }; 687 688 /** 689 * struct iwl_self_init_dram - dram data used by self init process 690 * @fw: lmac and umac dram data 691 * @fw_cnt: total number of items in array 692 * @paging: paging dram data 693 * @paging_cnt: total number of items in array 694 */ 695 struct iwl_self_init_dram { 696 struct iwl_dram_data *fw; 697 int fw_cnt; 698 struct iwl_dram_data *paging; 699 int paging_cnt; 700 }; 701 702 /** 703 * struct iwl_trans_debug - transport debug related data 704 * 705 * @n_dest_reg: num of reg_ops in %dbg_dest_tlv 706 * @rec_on: true iff there is a fw debug recording currently active 707 * @dest_tlv: points to the destination TLV for debug 708 * @conf_tlv: array of pointers to configuration TLVs for debug 709 * @trigger_tlv: array of pointers to triggers TLVs for debug 710 * @lmac_error_event_table: addrs of lmacs error tables 711 * @umac_error_event_table: addr of umac error table 712 * @tcm_error_event_table: address of TCM error table 713 * @error_event_table_tlv_status: bitmap that indicates what error table 714 * pointers was recevied via TLV. uses enum &iwl_error_event_table_status 715 * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state 716 * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state 717 * @fw_mon_cfg: debug buffer allocation configuration 718 * @fw_mon_ini: DRAM buffer fragments per allocation id 719 * @fw_mon: DRAM buffer for firmware monitor 720 * @hw_error: equals true if hw error interrupt was received from the FW 721 * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location 722 * @active_regions: active regions 723 * @debug_info_tlv_list: list of debug info TLVs 724 * @time_point: array of debug time points 725 * @periodic_trig_list: periodic triggers list 726 * @domains_bitmap: bitmap of active domains other than 727 * &IWL_FW_INI_DOMAIN_ALWAYS_ON 728 */ 729 struct iwl_trans_debug { 730 u8 n_dest_reg; 731 bool rec_on; 732 733 const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv; 734 const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX]; 735 struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv; 736 737 u32 lmac_error_event_table[2]; 738 u32 umac_error_event_table; 739 u32 tcm_error_event_table; 740 unsigned int error_event_table_tlv_status; 741 742 enum iwl_ini_cfg_state internal_ini_cfg; 743 enum iwl_ini_cfg_state external_ini_cfg; 744 745 struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM]; 746 struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM]; 747 748 struct iwl_dram_data fw_mon; 749 750 bool hw_error; 751 enum iwl_fw_ini_buffer_location ini_dest; 752 753 u64 unsupported_region_msk; 754 struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID]; 755 struct list_head debug_info_tlv_list; 756 struct iwl_dbg_tlv_time_point_data 757 time_point[IWL_FW_INI_TIME_POINT_NUM]; 758 struct list_head periodic_trig_list; 759 760 u32 domains_bitmap; 761 }; 762 763 struct iwl_dma_ptr { 764 dma_addr_t dma; 765 void *addr; 766 size_t size; 767 }; 768 769 struct iwl_cmd_meta { 770 /* only for SYNC commands, iff the reply skb is wanted */ 771 struct iwl_host_cmd *source; 772 u32 flags; 773 u32 tbs; 774 }; 775 776 /* 777 * The FH will write back to the first TB only, so we need to copy some data 778 * into the buffer regardless of whether it should be mapped or not. 779 * This indicates how big the first TB must be to include the scratch buffer 780 * and the assigned PN. 781 * Since PN location is 8 bytes at offset 12, it's 20 now. 782 * If we make it bigger then allocations will be bigger and copy slower, so 783 * that's probably not useful. 784 */ 785 #define IWL_FIRST_TB_SIZE 20 786 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64) 787 788 struct iwl_pcie_txq_entry { 789 void *cmd; 790 struct sk_buff *skb; 791 /* buffer to free after command completes */ 792 const void *free_buf; 793 struct iwl_cmd_meta meta; 794 }; 795 796 struct iwl_pcie_first_tb_buf { 797 u8 buf[IWL_FIRST_TB_SIZE_ALIGN]; 798 }; 799 800 /** 801 * struct iwl_txq - Tx Queue for DMA 802 * @q: generic Rx/Tx queue descriptor 803 * @tfds: transmit frame descriptors (DMA memory) 804 * @first_tb_bufs: start of command headers, including scratch buffers, for 805 * the writeback -- this is DMA memory and an array holding one buffer 806 * for each command on the queue 807 * @first_tb_dma: DMA address for the first_tb_bufs start 808 * @entries: transmit entries (driver state) 809 * @lock: queue lock 810 * @stuck_timer: timer that fires if queue gets stuck 811 * @trans: pointer back to transport (for timer) 812 * @need_update: indicates need to update read/write index 813 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID 814 * @wd_timeout: queue watchdog timeout (jiffies) - per queue 815 * @frozen: tx stuck queue timer is frozen 816 * @frozen_expiry_remainder: remember how long until the timer fires 817 * @bc_tbl: byte count table of the queue (relevant only for gen2 transport) 818 * @write_ptr: 1-st empty entry (index) host_w 819 * @read_ptr: last used entry (index) host_r 820 * @dma_addr: physical addr for BD's 821 * @n_window: safe queue window 822 * @id: queue id 823 * @low_mark: low watermark, resume queue if free space more than this 824 * @high_mark: high watermark, stop queue if free space less than this 825 * 826 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame 827 * descriptors) and required locking structures. 828 * 829 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware 830 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless 831 * there might be HW changes in the future). For the normal TX 832 * queues, n_window, which is the size of the software queue data 833 * is also 256; however, for the command queue, n_window is only 834 * 32 since we don't need so many commands pending. Since the HW 835 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256. 836 * This means that we end up with the following: 837 * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 | 838 * SW entries: | 0 | ... | 31 | 839 * where N is a number between 0 and 7. This means that the SW 840 * data is a window overlayed over the HW queue. 841 */ 842 struct iwl_txq { 843 void *tfds; 844 struct iwl_pcie_first_tb_buf *first_tb_bufs; 845 dma_addr_t first_tb_dma; 846 struct iwl_pcie_txq_entry *entries; 847 /* lock for syncing changes on the queue */ 848 spinlock_t lock; 849 unsigned long frozen_expiry_remainder; 850 struct timer_list stuck_timer; 851 struct iwl_trans *trans; 852 bool need_update; 853 bool frozen; 854 bool ampdu; 855 int block; 856 unsigned long wd_timeout; 857 struct sk_buff_head overflow_q; 858 struct iwl_dma_ptr bc_tbl; 859 860 int write_ptr; 861 int read_ptr; 862 dma_addr_t dma_addr; 863 int n_window; 864 u32 id; 865 int low_mark; 866 int high_mark; 867 868 bool overflow_tx; 869 }; 870 871 /** 872 * struct iwl_trans_txqs - transport tx queues data 873 * 874 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes) 875 * @page_offs: offset from skb->cb to mac header page pointer 876 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer 877 * @queue_used - bit mask of used queues 878 * @queue_stopped - bit mask of stopped queues 879 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler 880 */ 881 struct iwl_trans_txqs { 882 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 883 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 884 struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES]; 885 struct dma_pool *bc_pool; 886 size_t bc_tbl_size; 887 bool bc_table_dword; 888 u8 page_offs; 889 u8 dev_cmd_offs; 890 struct iwl_tso_hdr_page __percpu *tso_hdr_page; 891 892 struct { 893 u8 fifo; 894 u8 q_id; 895 unsigned int wdg_timeout; 896 } cmd; 897 898 struct { 899 u8 max_tbs; 900 u16 size; 901 u8 addr_size; 902 } tfd; 903 904 struct iwl_dma_ptr scd_bc_tbls; 905 }; 906 907 /** 908 * struct iwl_trans - transport common data 909 * 910 * @ops - pointer to iwl_trans_ops 911 * @op_mode - pointer to the op_mode 912 * @trans_cfg: the trans-specific configuration part 913 * @cfg - pointer to the configuration 914 * @drv - pointer to iwl_drv 915 * @status: a bit-mask of transport status flags 916 * @dev - pointer to struct device * that represents the device 917 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted. 918 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported. 919 * @hw_rf_id a u32 with the device RF ID 920 * @hw_id: a u32 with the ID of the device / sub-device. 921 * Set during transport allocation. 922 * @hw_id_str: a string with info about HW ID. Set during transport allocation. 923 * @pm_support: set to true in start_hw if link pm is supported 924 * @ltr_enabled: set to true if the LTR is enabled 925 * @wide_cmd_header: true when ucode supports wide command header format 926 * @wait_command_queue: wait queue for sync commands 927 * @num_rx_queues: number of RX queues allocated by the transport; 928 * the transport must set this before calling iwl_drv_start() 929 * @iml_len: the length of the image loader 930 * @iml: a pointer to the image loader itself 931 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. 932 * The user should use iwl_trans_{alloc,free}_tx_cmd. 933 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before 934 * starting the firmware, used for tracing 935 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the 936 * start of the 802.11 header in the @rx_mpdu_cmd 937 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI) 938 * @system_pm_mode: the system-wide power management mode in use. 939 * This mode is set dynamically, depending on the WoWLAN values 940 * configured from the userspace at runtime. 941 * @iwl_trans_txqs: transport tx queues data. 942 */ 943 struct iwl_trans { 944 const struct iwl_trans_ops *ops; 945 struct iwl_op_mode *op_mode; 946 const struct iwl_cfg_trans_params *trans_cfg; 947 const struct iwl_cfg *cfg; 948 struct iwl_drv *drv; 949 enum iwl_trans_state state; 950 unsigned long status; 951 952 struct device *dev; 953 u32 max_skb_frags; 954 u32 hw_rev; 955 u32 hw_rf_id; 956 u32 hw_id; 957 char hw_id_str[52]; 958 u32 sku_id[3]; 959 960 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; 961 962 bool pm_support; 963 bool ltr_enabled; 964 u8 pnvm_loaded:1; 965 u8 reduce_power_loaded:1; 966 967 const struct iwl_hcmd_arr *command_groups; 968 int command_groups_size; 969 bool wide_cmd_header; 970 971 wait_queue_head_t wait_command_queue; 972 u8 num_rx_queues; 973 974 size_t iml_len; 975 u8 *iml; 976 977 /* The following fields are internal only */ 978 struct kmem_cache *dev_cmd_pool; 979 char dev_cmd_pool_name[50]; 980 981 struct dentry *dbgfs_dir; 982 983 #ifdef CONFIG_LOCKDEP 984 struct lockdep_map sync_cmd_lockdep_map; 985 #endif 986 987 struct iwl_trans_debug dbg; 988 struct iwl_self_init_dram init_dram; 989 990 enum iwl_plat_pm_mode system_pm_mode; 991 992 const char *name; 993 struct iwl_trans_txqs txqs; 994 995 /* pointer to trans specific struct */ 996 /*Ensure that this pointer will always be aligned to sizeof pointer */ 997 char trans_specific[] __aligned(sizeof(void *)); 998 }; 999 1000 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id); 1001 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans); 1002 1003 static inline void iwl_trans_configure(struct iwl_trans *trans, 1004 const struct iwl_trans_config *trans_cfg) 1005 { 1006 trans->op_mode = trans_cfg->op_mode; 1007 1008 trans->ops->configure(trans, trans_cfg); 1009 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg)); 1010 } 1011 1012 static inline int iwl_trans_start_hw(struct iwl_trans *trans) 1013 { 1014 might_sleep(); 1015 1016 return trans->ops->start_hw(trans); 1017 } 1018 1019 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) 1020 { 1021 might_sleep(); 1022 1023 if (trans->ops->op_mode_leave) 1024 trans->ops->op_mode_leave(trans); 1025 1026 trans->op_mode = NULL; 1027 1028 trans->state = IWL_TRANS_NO_FW; 1029 } 1030 1031 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) 1032 { 1033 might_sleep(); 1034 1035 trans->state = IWL_TRANS_FW_ALIVE; 1036 1037 trans->ops->fw_alive(trans, scd_addr); 1038 } 1039 1040 static inline int iwl_trans_start_fw(struct iwl_trans *trans, 1041 const struct fw_img *fw, 1042 bool run_in_rfkill) 1043 { 1044 int ret; 1045 1046 might_sleep(); 1047 1048 WARN_ON_ONCE(!trans->rx_mpdu_cmd); 1049 1050 clear_bit(STATUS_FW_ERROR, &trans->status); 1051 ret = trans->ops->start_fw(trans, fw, run_in_rfkill); 1052 if (ret == 0) 1053 trans->state = IWL_TRANS_FW_STARTED; 1054 1055 return ret; 1056 } 1057 1058 static inline void iwl_trans_stop_device(struct iwl_trans *trans) 1059 { 1060 might_sleep(); 1061 1062 trans->ops->stop_device(trans); 1063 1064 trans->state = IWL_TRANS_NO_FW; 1065 } 1066 1067 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, 1068 bool reset) 1069 { 1070 might_sleep(); 1071 if (!trans->ops->d3_suspend) 1072 return 0; 1073 1074 return trans->ops->d3_suspend(trans, test, reset); 1075 } 1076 1077 static inline int iwl_trans_d3_resume(struct iwl_trans *trans, 1078 enum iwl_d3_status *status, 1079 bool test, bool reset) 1080 { 1081 might_sleep(); 1082 if (!trans->ops->d3_resume) 1083 return 0; 1084 1085 return trans->ops->d3_resume(trans, status, test, reset); 1086 } 1087 1088 static inline struct iwl_trans_dump_data * 1089 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask) 1090 { 1091 if (!trans->ops->dump_data) 1092 return NULL; 1093 return trans->ops->dump_data(trans, dump_mask); 1094 } 1095 1096 static inline struct iwl_device_tx_cmd * 1097 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) 1098 { 1099 return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC); 1100 } 1101 1102 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 1103 1104 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, 1105 struct iwl_device_tx_cmd *dev_cmd) 1106 { 1107 kmem_cache_free(trans->dev_cmd_pool, dev_cmd); 1108 } 1109 1110 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, 1111 struct iwl_device_tx_cmd *dev_cmd, int queue) 1112 { 1113 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) 1114 return -EIO; 1115 1116 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1117 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1118 return -EIO; 1119 } 1120 1121 return trans->ops->tx(trans, skb, dev_cmd, queue); 1122 } 1123 1124 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, 1125 int ssn, struct sk_buff_head *skbs) 1126 { 1127 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1128 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1129 return; 1130 } 1131 1132 trans->ops->reclaim(trans, queue, ssn, skbs); 1133 } 1134 1135 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue, 1136 int ptr) 1137 { 1138 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1139 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1140 return; 1141 } 1142 1143 trans->ops->set_q_ptrs(trans, queue, ptr); 1144 } 1145 1146 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue, 1147 bool configure_scd) 1148 { 1149 trans->ops->txq_disable(trans, queue, configure_scd); 1150 } 1151 1152 static inline bool 1153 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn, 1154 const struct iwl_trans_txq_scd_cfg *cfg, 1155 unsigned int queue_wdg_timeout) 1156 { 1157 might_sleep(); 1158 1159 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1160 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1161 return false; 1162 } 1163 1164 return trans->ops->txq_enable(trans, queue, ssn, 1165 cfg, queue_wdg_timeout); 1166 } 1167 1168 static inline int 1169 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue, 1170 struct iwl_trans_rxq_dma_data *data) 1171 { 1172 if (WARN_ON_ONCE(!trans->ops->rxq_dma_data)) 1173 return -ENOTSUPP; 1174 1175 return trans->ops->rxq_dma_data(trans, queue, data); 1176 } 1177 1178 static inline void 1179 iwl_trans_txq_free(struct iwl_trans *trans, int queue) 1180 { 1181 if (WARN_ON_ONCE(!trans->ops->txq_free)) 1182 return; 1183 1184 trans->ops->txq_free(trans, queue); 1185 } 1186 1187 static inline int 1188 iwl_trans_txq_alloc(struct iwl_trans *trans, 1189 __le16 flags, u8 sta_id, u8 tid, 1190 int cmd_id, int size, 1191 unsigned int wdg_timeout) 1192 { 1193 might_sleep(); 1194 1195 if (WARN_ON_ONCE(!trans->ops->txq_alloc)) 1196 return -ENOTSUPP; 1197 1198 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1199 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1200 return -EIO; 1201 } 1202 1203 return trans->ops->txq_alloc(trans, flags, sta_id, tid, 1204 cmd_id, size, wdg_timeout); 1205 } 1206 1207 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans, 1208 int queue, bool shared_mode) 1209 { 1210 if (trans->ops->txq_set_shared_mode) 1211 trans->ops->txq_set_shared_mode(trans, queue, shared_mode); 1212 } 1213 1214 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, 1215 int fifo, int sta_id, int tid, 1216 int frame_limit, u16 ssn, 1217 unsigned int queue_wdg_timeout) 1218 { 1219 struct iwl_trans_txq_scd_cfg cfg = { 1220 .fifo = fifo, 1221 .sta_id = sta_id, 1222 .tid = tid, 1223 .frame_limit = frame_limit, 1224 .aggregate = sta_id >= 0, 1225 }; 1226 1227 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout); 1228 } 1229 1230 static inline 1231 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo, 1232 unsigned int queue_wdg_timeout) 1233 { 1234 struct iwl_trans_txq_scd_cfg cfg = { 1235 .fifo = fifo, 1236 .sta_id = -1, 1237 .tid = IWL_MAX_TID_COUNT, 1238 .frame_limit = IWL_FRAME_LIMIT, 1239 .aggregate = false, 1240 }; 1241 1242 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout); 1243 } 1244 1245 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans, 1246 unsigned long txqs, 1247 bool freeze) 1248 { 1249 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1250 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1251 return; 1252 } 1253 1254 if (trans->ops->freeze_txq_timer) 1255 trans->ops->freeze_txq_timer(trans, txqs, freeze); 1256 } 1257 1258 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans, 1259 bool block) 1260 { 1261 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1262 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1263 return; 1264 } 1265 1266 if (trans->ops->block_txq_ptrs) 1267 trans->ops->block_txq_ptrs(trans, block); 1268 } 1269 1270 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, 1271 u32 txqs) 1272 { 1273 if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty)) 1274 return -ENOTSUPP; 1275 1276 /* No need to wait if the firmware is not alive */ 1277 if (trans->state != IWL_TRANS_FW_ALIVE) { 1278 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1279 return -EIO; 1280 } 1281 1282 return trans->ops->wait_tx_queues_empty(trans, txqs); 1283 } 1284 1285 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue) 1286 { 1287 if (WARN_ON_ONCE(!trans->ops->wait_txq_empty)) 1288 return -ENOTSUPP; 1289 1290 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1291 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1292 return -EIO; 1293 } 1294 1295 return trans->ops->wait_txq_empty(trans, queue); 1296 } 1297 1298 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) 1299 { 1300 trans->ops->write8(trans, ofs, val); 1301 } 1302 1303 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) 1304 { 1305 trans->ops->write32(trans, ofs, val); 1306 } 1307 1308 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) 1309 { 1310 return trans->ops->read32(trans, ofs); 1311 } 1312 1313 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) 1314 { 1315 return trans->ops->read_prph(trans, ofs); 1316 } 1317 1318 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, 1319 u32 val) 1320 { 1321 return trans->ops->write_prph(trans, ofs, val); 1322 } 1323 1324 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, 1325 void *buf, int dwords) 1326 { 1327 return trans->ops->read_mem(trans, addr, buf, dwords); 1328 } 1329 1330 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ 1331 do { \ 1332 if (__builtin_constant_p(bufsize)) \ 1333 BUILD_BUG_ON((bufsize) % sizeof(u32)); \ 1334 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ 1335 } while (0) 1336 1337 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) 1338 { 1339 u32 value; 1340 1341 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) 1342 return 0xa5a5a5a5; 1343 1344 return value; 1345 } 1346 1347 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, 1348 const void *buf, int dwords) 1349 { 1350 return trans->ops->write_mem(trans, addr, buf, dwords); 1351 } 1352 1353 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, 1354 u32 val) 1355 { 1356 return iwl_trans_write_mem(trans, addr, &val, 1); 1357 } 1358 1359 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) 1360 { 1361 if (trans->ops->set_pmi) 1362 trans->ops->set_pmi(trans, state); 1363 } 1364 1365 static inline void iwl_trans_sw_reset(struct iwl_trans *trans) 1366 { 1367 if (trans->ops->sw_reset) 1368 trans->ops->sw_reset(trans); 1369 } 1370 1371 static inline void 1372 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) 1373 { 1374 trans->ops->set_bits_mask(trans, reg, mask, value); 1375 } 1376 1377 #define iwl_trans_grab_nic_access(trans) \ 1378 __cond_lock(nic_access, \ 1379 likely((trans)->ops->grab_nic_access(trans))) 1380 1381 static inline void __releases(nic_access) 1382 iwl_trans_release_nic_access(struct iwl_trans *trans) 1383 { 1384 trans->ops->release_nic_access(trans); 1385 __release(nic_access); 1386 } 1387 1388 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync) 1389 { 1390 if (WARN_ON_ONCE(!trans->op_mode)) 1391 return; 1392 1393 /* prevent double restarts due to the same erroneous FW */ 1394 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) { 1395 iwl_op_mode_nic_error(trans->op_mode, sync); 1396 trans->state = IWL_TRANS_NO_FW; 1397 } 1398 } 1399 1400 static inline bool iwl_trans_fw_running(struct iwl_trans *trans) 1401 { 1402 return trans->state == IWL_TRANS_FW_ALIVE; 1403 } 1404 1405 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans) 1406 { 1407 if (trans->ops->sync_nmi) 1408 trans->ops->sync_nmi(trans); 1409 } 1410 1411 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr, 1412 u32 sw_err_bit); 1413 1414 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans, 1415 const void *data, u32 len) 1416 { 1417 if (trans->ops->set_pnvm) { 1418 int ret = trans->ops->set_pnvm(trans, data, len); 1419 1420 if (ret) 1421 return ret; 1422 } 1423 1424 trans->pnvm_loaded = true; 1425 1426 return 0; 1427 } 1428 1429 static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans, 1430 const void *data, u32 len) 1431 { 1432 if (trans->ops->set_reduce_power) { 1433 int ret = trans->ops->set_reduce_power(trans, data, len); 1434 1435 if (ret) 1436 return ret; 1437 } 1438 1439 trans->reduce_power_loaded = true; 1440 return 0; 1441 } 1442 1443 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans) 1444 { 1445 return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED || 1446 trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED; 1447 } 1448 1449 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable) 1450 { 1451 if (trans->ops->interrupts) 1452 trans->ops->interrupts(trans, enable); 1453 } 1454 1455 /***************************************************** 1456 * transport helper functions 1457 *****************************************************/ 1458 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, 1459 struct device *dev, 1460 const struct iwl_trans_ops *ops, 1461 const struct iwl_cfg_trans_params *cfg_trans); 1462 int iwl_trans_init(struct iwl_trans *trans); 1463 void iwl_trans_free(struct iwl_trans *trans); 1464 1465 /***************************************************** 1466 * driver (transport) register/unregister functions 1467 ******************************************************/ 1468 int __must_check iwl_pci_register_driver(void); 1469 void iwl_pci_unregister_driver(void); 1470 1471 #endif /* __iwl_trans_h__ */ 1472