1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 24 * USA 25 * 26 * The full GNU General Public License is included in this distribution 27 * in the file called COPYING. 28 * 29 * Contact Information: 30 * Intel Linux Wireless <linuxwifi@intel.com> 31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 32 * 33 * BSD LICENSE 34 * 35 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 37 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 38 * All rights reserved. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 44 * * Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * * Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in 48 * the documentation and/or other materials provided with the 49 * distribution. 50 * * Neither the name Intel Corporation nor the names of its 51 * contributors may be used to endorse or promote products derived 52 * from this software without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 55 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 56 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 57 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 58 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 61 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 62 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 63 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 64 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 65 * 66 *****************************************************************************/ 67 #ifndef __iwl_trans_h__ 68 #define __iwl_trans_h__ 69 70 #include <linux/ieee80211.h> 71 #include <linux/mm.h> /* for page_address */ 72 #include <linux/lockdep.h> 73 #include <linux/kernel.h> 74 75 #include "iwl-debug.h" 76 #include "iwl-config.h" 77 #include "fw/img.h" 78 #include "iwl-op-mode.h" 79 #include "fw/api/cmdhdr.h" 80 #include "fw/api/txq.h" 81 82 /** 83 * DOC: Transport layer - what is it ? 84 * 85 * The transport layer is the layer that deals with the HW directly. It provides 86 * an abstraction of the underlying HW to the upper layer. The transport layer 87 * doesn't provide any policy, algorithm or anything of this kind, but only 88 * mechanisms to make the HW do something. It is not completely stateless but 89 * close to it. 90 * We will have an implementation for each different supported bus. 91 */ 92 93 /** 94 * DOC: Life cycle of the transport layer 95 * 96 * The transport layer has a very precise life cycle. 97 * 98 * 1) A helper function is called during the module initialization and 99 * registers the bus driver's ops with the transport's alloc function. 100 * 2) Bus's probe calls to the transport layer's allocation functions. 101 * Of course this function is bus specific. 102 * 3) This allocation functions will spawn the upper layer which will 103 * register mac80211. 104 * 105 * 4) At some point (i.e. mac80211's start call), the op_mode will call 106 * the following sequence: 107 * start_hw 108 * start_fw 109 * 110 * 5) Then when finished (or reset): 111 * stop_device 112 * 113 * 6) Eventually, the free function will be called. 114 */ 115 116 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ 117 #define FH_RSCSR_FRAME_INVALID 0x55550000 118 #define FH_RSCSR_FRAME_ALIGN 0x40 119 #define FH_RSCSR_RPA_EN BIT(25) 120 #define FH_RSCSR_RADA_EN BIT(26) 121 #define FH_RSCSR_RXQ_POS 16 122 #define FH_RSCSR_RXQ_MASK 0x3F0000 123 124 struct iwl_rx_packet { 125 /* 126 * The first 4 bytes of the RX frame header contain both the RX frame 127 * size and some flags. 128 * Bit fields: 129 * 31: flag flush RB request 130 * 30: flag ignore TC (terminal counter) request 131 * 29: flag fast IRQ request 132 * 28-27: Reserved 133 * 26: RADA enabled 134 * 25: Offload enabled 135 * 24: RPF enabled 136 * 23: RSS enabled 137 * 22: Checksum enabled 138 * 21-16: RX queue 139 * 15-14: Reserved 140 * 13-00: RX frame size 141 */ 142 __le32 len_n_flags; 143 struct iwl_cmd_header hdr; 144 u8 data[]; 145 } __packed; 146 147 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) 148 { 149 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; 150 } 151 152 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) 153 { 154 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); 155 } 156 157 /** 158 * enum CMD_MODE - how to send the host commands ? 159 * 160 * @CMD_ASYNC: Return right away and don't wait for the response 161 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of 162 * the response. The caller needs to call iwl_free_resp when done. 163 * @CMD_HIGH_PRIO: The command is high priority - it goes to the front of the 164 * command queue, but after other high priority commands. Valid only 165 * with CMD_ASYNC. 166 * @CMD_SEND_IN_IDLE: The command should be sent even when the trans is idle. 167 * @CMD_MAKE_TRANS_IDLE: The command response should mark the trans as idle. 168 * @CMD_WAKE_UP_TRANS: The command response should wake up the trans 169 * (i.e. mark it as non-idle). 170 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be 171 * called after this command completes. Valid only with CMD_ASYNC. 172 */ 173 enum CMD_MODE { 174 CMD_ASYNC = BIT(0), 175 CMD_WANT_SKB = BIT(1), 176 CMD_SEND_IN_RFKILL = BIT(2), 177 CMD_HIGH_PRIO = BIT(3), 178 CMD_SEND_IN_IDLE = BIT(4), 179 CMD_MAKE_TRANS_IDLE = BIT(5), 180 CMD_WAKE_UP_TRANS = BIT(6), 181 CMD_WANT_ASYNC_CALLBACK = BIT(7), 182 }; 183 184 #define DEF_CMD_PAYLOAD_SIZE 320 185 186 /** 187 * struct iwl_device_cmd 188 * 189 * For allocation of the command and tx queues, this establishes the overall 190 * size of the largest command we send to uCode, except for commands that 191 * aren't fully copied and use other TFD space. 192 */ 193 struct iwl_device_cmd { 194 union { 195 struct { 196 struct iwl_cmd_header hdr; /* uCode API */ 197 u8 payload[DEF_CMD_PAYLOAD_SIZE]; 198 }; 199 struct { 200 struct iwl_cmd_header_wide hdr_wide; 201 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE - 202 sizeof(struct iwl_cmd_header_wide) + 203 sizeof(struct iwl_cmd_header)]; 204 }; 205 }; 206 } __packed; 207 208 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) 209 210 /* 211 * number of transfer buffers (fragments) per transmit frame descriptor; 212 * this is just the driver's idea, the hardware supports 20 213 */ 214 #define IWL_MAX_CMD_TBS_PER_TFD 2 215 216 /** 217 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command 218 * 219 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's 220 * ring. The transport layer doesn't map the command's buffer to DMA, but 221 * rather copies it to a previously allocated DMA buffer. This flag tells 222 * the transport layer not to copy the command, but to map the existing 223 * buffer (that is passed in) instead. This saves the memcpy and allows 224 * commands that are bigger than the fixed buffer to be submitted. 225 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. 226 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this 227 * chunk internally and free it again after the command completes. This 228 * can (currently) be used only once per command. 229 * Note that a TFD entry after a DUP one cannot be a normal copied one. 230 */ 231 enum iwl_hcmd_dataflag { 232 IWL_HCMD_DFL_NOCOPY = BIT(0), 233 IWL_HCMD_DFL_DUP = BIT(1), 234 }; 235 236 /** 237 * struct iwl_host_cmd - Host command to the uCode 238 * 239 * @data: array of chunks that composes the data of the host command 240 * @resp_pkt: response packet, if %CMD_WANT_SKB was set 241 * @_rx_page_order: (internally used to free response packet) 242 * @_rx_page_addr: (internally used to free response packet) 243 * @flags: can be CMD_* 244 * @len: array of the lengths of the chunks in data 245 * @dataflags: IWL_HCMD_DFL_* 246 * @id: command id of the host command, for wide commands encoding the 247 * version and group as well 248 */ 249 struct iwl_host_cmd { 250 const void *data[IWL_MAX_CMD_TBS_PER_TFD]; 251 struct iwl_rx_packet *resp_pkt; 252 unsigned long _rx_page_addr; 253 u32 _rx_page_order; 254 255 u32 flags; 256 u32 id; 257 u16 len[IWL_MAX_CMD_TBS_PER_TFD]; 258 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; 259 }; 260 261 static inline void iwl_free_resp(struct iwl_host_cmd *cmd) 262 { 263 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); 264 } 265 266 struct iwl_rx_cmd_buffer { 267 struct page *_page; 268 int _offset; 269 bool _page_stolen; 270 u32 _rx_page_order; 271 unsigned int truesize; 272 }; 273 274 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) 275 { 276 return (void *)((unsigned long)page_address(r->_page) + r->_offset); 277 } 278 279 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) 280 { 281 return r->_offset; 282 } 283 284 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) 285 { 286 r->_page_stolen = true; 287 get_page(r->_page); 288 return r->_page; 289 } 290 291 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) 292 { 293 __free_pages(r->_page, r->_rx_page_order); 294 } 295 296 #define MAX_NO_RECLAIM_CMDS 6 297 298 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) 299 300 /* 301 * Maximum number of HW queues the transport layer 302 * currently supports 303 */ 304 #define IWL_MAX_HW_QUEUES 32 305 #define IWL_MAX_TVQM_QUEUES 512 306 307 #define IWL_MAX_TID_COUNT 8 308 #define IWL_MGMT_TID 15 309 #define IWL_FRAME_LIMIT 64 310 #define IWL_MAX_RX_HW_QUEUES 16 311 312 /** 313 * enum iwl_wowlan_status - WoWLAN image/device status 314 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume 315 * @IWL_D3_STATUS_RESET: device was reset while suspended 316 */ 317 enum iwl_d3_status { 318 IWL_D3_STATUS_ALIVE, 319 IWL_D3_STATUS_RESET, 320 }; 321 322 /** 323 * enum iwl_trans_status: transport status flags 324 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed 325 * @STATUS_DEVICE_ENABLED: APM is enabled 326 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) 327 * @STATUS_INT_ENABLED: interrupts are enabled 328 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch 329 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode 330 * @STATUS_FW_ERROR: the fw is in error state 331 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands 332 * are sent 333 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent 334 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation 335 */ 336 enum iwl_trans_status { 337 STATUS_SYNC_HCMD_ACTIVE, 338 STATUS_DEVICE_ENABLED, 339 STATUS_TPOWER_PMI, 340 STATUS_INT_ENABLED, 341 STATUS_RFKILL_HW, 342 STATUS_RFKILL_OPMODE, 343 STATUS_FW_ERROR, 344 STATUS_TRANS_GOING_IDLE, 345 STATUS_TRANS_IDLE, 346 STATUS_TRANS_DEAD, 347 }; 348 349 static inline int 350 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size) 351 { 352 switch (rb_size) { 353 case IWL_AMSDU_4K: 354 return get_order(4 * 1024); 355 case IWL_AMSDU_8K: 356 return get_order(8 * 1024); 357 case IWL_AMSDU_12K: 358 return get_order(12 * 1024); 359 default: 360 WARN_ON(1); 361 return -1; 362 } 363 } 364 365 struct iwl_hcmd_names { 366 u8 cmd_id; 367 const char *const cmd_name; 368 }; 369 370 #define HCMD_NAME(x) \ 371 { .cmd_id = x, .cmd_name = #x } 372 373 struct iwl_hcmd_arr { 374 const struct iwl_hcmd_names *arr; 375 int size; 376 }; 377 378 #define HCMD_ARR(x) \ 379 { .arr = x, .size = ARRAY_SIZE(x) } 380 381 /** 382 * struct iwl_trans_config - transport configuration 383 * 384 * @op_mode: pointer to the upper layer. 385 * @cmd_queue: the index of the command queue. 386 * Must be set before start_fw. 387 * @cmd_fifo: the fifo for host commands 388 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue. 389 * @no_reclaim_cmds: Some devices erroneously don't set the 390 * SEQ_RX_FRAME bit on some notifications, this is the 391 * list of such notifications to filter. Max length is 392 * %MAX_NO_RECLAIM_CMDS. 393 * @n_no_reclaim_cmds: # of commands in list 394 * @rx_buf_size: RX buffer size needed for A-MSDUs 395 * if unset 4k will be the RX buffer size 396 * @bc_table_dword: set to true if the BC table expects the byte count to be 397 * in DWORD (as opposed to bytes) 398 * @scd_set_active: should the transport configure the SCD for HCMD queue 399 * @sw_csum_tx: transport should compute the TCP checksum 400 * @command_groups: array of command groups, each member is an array of the 401 * commands in the group; for debugging only 402 * @command_groups_size: number of command groups, to avoid illegal access 403 * @cb_data_offs: offset inside skb->cb to store transport data at, must have 404 * space for at least two pointers 405 */ 406 struct iwl_trans_config { 407 struct iwl_op_mode *op_mode; 408 409 u8 cmd_queue; 410 u8 cmd_fifo; 411 unsigned int cmd_q_wdg_timeout; 412 const u8 *no_reclaim_cmds; 413 unsigned int n_no_reclaim_cmds; 414 415 enum iwl_amsdu_size rx_buf_size; 416 bool bc_table_dword; 417 bool scd_set_active; 418 bool sw_csum_tx; 419 const struct iwl_hcmd_arr *command_groups; 420 int command_groups_size; 421 422 u8 cb_data_offs; 423 }; 424 425 struct iwl_trans_dump_data { 426 u32 len; 427 u8 data[]; 428 }; 429 430 struct iwl_trans; 431 432 struct iwl_trans_txq_scd_cfg { 433 u8 fifo; 434 u8 sta_id; 435 u8 tid; 436 bool aggregate; 437 int frame_limit; 438 }; 439 440 /** 441 * struct iwl_trans_ops - transport specific operations 442 * 443 * All the handlers MUST be implemented 444 * 445 * @start_hw: starts the HW. If low_power is true, the NIC needs to be taken 446 * out of a low power state. From that point on, the HW can send 447 * interrupts. May sleep. 448 * @op_mode_leave: Turn off the HW RF kill indication if on 449 * May sleep 450 * @start_fw: allocates and inits all the resources for the transport 451 * layer. Also kick a fw image. 452 * May sleep 453 * @fw_alive: called when the fw sends alive notification. If the fw provides 454 * the SCD base address in SRAM, then provide it here, or 0 otherwise. 455 * May sleep 456 * @stop_device: stops the whole device (embedded CPU put to reset) and stops 457 * the HW. If low_power is true, the NIC will be put in low power state. 458 * From that point on, the HW will be stopped but will still issue an 459 * interrupt if the HW RF kill switch is triggered. 460 * This callback must do the right thing and not crash even if %start_hw() 461 * was called but not &start_fw(). May sleep. 462 * @d3_suspend: put the device into the correct mode for WoWLAN during 463 * suspend. This is optional, if not implemented WoWLAN will not be 464 * supported. This callback may sleep. 465 * @d3_resume: resume the device after WoWLAN, enabling the opmode to 466 * talk to the WoWLAN image to get its status. This is optional, if not 467 * implemented WoWLAN will not be supported. This callback may sleep. 468 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. 469 * If RFkill is asserted in the middle of a SYNC host command, it must 470 * return -ERFKILL straight away. 471 * May sleep only if CMD_ASYNC is not set 472 * @tx: send an skb. The transport relies on the op_mode to zero the 473 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all 474 * the CSUM will be taken care of (TCP CSUM and IP header in case of 475 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP 476 * header if it is IPv4. 477 * Must be atomic 478 * @reclaim: free packet until ssn. Returns a list of freed packets. 479 * Must be atomic 480 * @txq_enable: setup a queue. To setup an AC queue, use the 481 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before 482 * this one. The op_mode must not configure the HCMD queue. The scheduler 483 * configuration may be %NULL, in which case the hardware will not be 484 * configured. If true is returned, the operation mode needs to increment 485 * the sequence number of the packets routed to this queue because of a 486 * hardware scheduler bug. May sleep. 487 * @txq_disable: de-configure a Tx queue to send AMPDUs 488 * Must be atomic 489 * @txq_set_shared_mode: change Tx queue shared/unshared marking 490 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep. 491 * @wait_txq_empty: wait until specific tx queue is empty. May sleep. 492 * @freeze_txq_timer: prevents the timer of the queue from firing until the 493 * queue is set to awake. Must be atomic. 494 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note 495 * that the transport needs to refcount the calls since this function 496 * will be called several times with block = true, and then the queues 497 * need to be unblocked only after the same number of calls with 498 * block = false. 499 * @write8: write a u8 to a register at offset ofs from the BAR 500 * @write32: write a u32 to a register at offset ofs from the BAR 501 * @read32: read a u32 register at offset ofs from the BAR 502 * @read_prph: read a DWORD from a periphery register 503 * @write_prph: write a DWORD to a periphery register 504 * @read_mem: read device's SRAM in DWORD 505 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory 506 * will be zeroed. 507 * @configure: configure parameters required by the transport layer from 508 * the op_mode. May be called several times before start_fw, can't be 509 * called after that. 510 * @set_pmi: set the power pmi state 511 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. 512 * Sleeping is not allowed between grab_nic_access and 513 * release_nic_access. 514 * @release_nic_access: let the NIC go to sleep. The "flags" parameter 515 * must be the same one that was sent before to the grab_nic_access. 516 * @set_bits_mask - set SRAM register according to value and mask. 517 * @ref: grab a reference to the transport/FW layers, disallowing 518 * certain low power states 519 * @unref: release a reference previously taken with @ref. Note that 520 * initially the reference count is 1, making an initial @unref 521 * necessary to allow low power states. 522 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last 523 * TX'ed commands and similar. The buffer will be vfree'd by the caller. 524 * Note that the transport must fill in the proper file headers. 525 * @dump_regs: dump using IWL_ERR configuration space and memory mapped 526 * registers of the device to diagnose failure, e.g., when HW becomes 527 * inaccessible. 528 */ 529 struct iwl_trans_ops { 530 531 int (*start_hw)(struct iwl_trans *iwl_trans, bool low_power); 532 void (*op_mode_leave)(struct iwl_trans *iwl_trans); 533 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, 534 bool run_in_rfkill); 535 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); 536 void (*stop_device)(struct iwl_trans *trans, bool low_power); 537 538 void (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset); 539 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, 540 bool test, bool reset); 541 542 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 543 544 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, 545 struct iwl_device_cmd *dev_cmd, int queue); 546 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, 547 struct sk_buff_head *skbs); 548 549 bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn, 550 const struct iwl_trans_txq_scd_cfg *cfg, 551 unsigned int queue_wdg_timeout); 552 void (*txq_disable)(struct iwl_trans *trans, int queue, 553 bool configure_scd); 554 /* 22000 functions */ 555 int (*txq_alloc)(struct iwl_trans *trans, 556 struct iwl_tx_queue_cfg_cmd *cmd, 557 int cmd_id, int size, 558 unsigned int queue_wdg_timeout); 559 void (*txq_free)(struct iwl_trans *trans, int queue); 560 561 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id, 562 bool shared); 563 564 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm); 565 int (*wait_txq_empty)(struct iwl_trans *trans, int queue); 566 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs, 567 bool freeze); 568 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block); 569 570 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); 571 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); 572 u32 (*read32)(struct iwl_trans *trans, u32 ofs); 573 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); 574 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); 575 int (*read_mem)(struct iwl_trans *trans, u32 addr, 576 void *buf, int dwords); 577 int (*write_mem)(struct iwl_trans *trans, u32 addr, 578 const void *buf, int dwords); 579 void (*configure)(struct iwl_trans *trans, 580 const struct iwl_trans_config *trans_cfg); 581 void (*set_pmi)(struct iwl_trans *trans, bool state); 582 void (*sw_reset)(struct iwl_trans *trans); 583 bool (*grab_nic_access)(struct iwl_trans *trans, unsigned long *flags); 584 void (*release_nic_access)(struct iwl_trans *trans, 585 unsigned long *flags); 586 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, 587 u32 value); 588 void (*ref)(struct iwl_trans *trans); 589 void (*unref)(struct iwl_trans *trans); 590 int (*suspend)(struct iwl_trans *trans); 591 void (*resume)(struct iwl_trans *trans); 592 593 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans, 594 const struct iwl_fw_dbg_trigger_tlv 595 *trigger); 596 597 void (*dump_regs)(struct iwl_trans *trans); 598 }; 599 600 /** 601 * enum iwl_trans_state - state of the transport layer 602 * 603 * @IWL_TRANS_NO_FW: no fw has sent an alive response 604 * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response 605 */ 606 enum iwl_trans_state { 607 IWL_TRANS_NO_FW = 0, 608 IWL_TRANS_FW_ALIVE = 1, 609 }; 610 611 /** 612 * DOC: Platform power management 613 * 614 * There are two types of platform power management: system-wide 615 * (WoWLAN) and runtime. 616 * 617 * In system-wide power management the entire platform goes into a low 618 * power state (e.g. idle or suspend to RAM) at the same time and the 619 * device is configured as a wakeup source for the entire platform. 620 * This is usually triggered by userspace activity (e.g. the user 621 * presses the suspend button or a power management daemon decides to 622 * put the platform in low power mode). The device's behavior in this 623 * mode is dictated by the wake-on-WLAN configuration. 624 * 625 * In runtime power management, only the devices which are themselves 626 * idle enter a low power state. This is done at runtime, which means 627 * that the entire system is still running normally. This mode is 628 * usually triggered automatically by the device driver and requires 629 * the ability to enter and exit the low power modes in a very short 630 * time, so there is not much impact in usability. 631 * 632 * The terms used for the device's behavior are as follows: 633 * 634 * - D0: the device is fully powered and the host is awake; 635 * - D3: the device is in low power mode and only reacts to 636 * specific events (e.g. magic-packet received or scan 637 * results found); 638 * - D0I3: the device is in low power mode and reacts to any 639 * activity (e.g. RX); 640 * 641 * These terms reflect the power modes in the firmware and are not to 642 * be confused with the physical device power state. The NIC can be 643 * in D0I3 mode even if, for instance, the PCI device is in D3 state. 644 */ 645 646 /** 647 * enum iwl_plat_pm_mode - platform power management mode 648 * 649 * This enumeration describes the device's platform power management 650 * behavior when in idle mode (i.e. runtime power management) or when 651 * in system-wide suspend (i.e WoWLAN). 652 * 653 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this 654 * device. At runtime, this means that nothing happens and the 655 * device always remains in active. In system-wide suspend mode, 656 * it means that the all connections will be closed automatically 657 * by mac80211 before the platform is suspended. 658 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN). 659 * For runtime power management, this mode is not officially 660 * supported. 661 * @IWL_PLAT_PM_MODE_D0I3: the device goes into D0I3 mode. 662 */ 663 enum iwl_plat_pm_mode { 664 IWL_PLAT_PM_MODE_DISABLED, 665 IWL_PLAT_PM_MODE_D3, 666 IWL_PLAT_PM_MODE_D0I3, 667 }; 668 669 /* Max time to wait for trans to become idle/non-idle on d0i3 670 * enter/exit (in msecs). 671 */ 672 #define IWL_TRANS_IDLE_TIMEOUT 2000 673 674 /** 675 * struct iwl_trans - transport common data 676 * 677 * @ops - pointer to iwl_trans_ops 678 * @op_mode - pointer to the op_mode 679 * @cfg - pointer to the configuration 680 * @drv - pointer to iwl_drv 681 * @status: a bit-mask of transport status flags 682 * @dev - pointer to struct device * that represents the device 683 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted. 684 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported. 685 * @hw_rf_id a u32 with the device RF ID 686 * @hw_id: a u32 with the ID of the device / sub-device. 687 * Set during transport allocation. 688 * @hw_id_str: a string with info about HW ID. Set during transport allocation. 689 * @pm_support: set to true in start_hw if link pm is supported 690 * @ltr_enabled: set to true if the LTR is enabled 691 * @wide_cmd_header: true when ucode supports wide command header format 692 * @num_rx_queues: number of RX queues allocated by the transport; 693 * the transport must set this before calling iwl_drv_start() 694 * @iml_len: the length of the image loader 695 * @iml: a pointer to the image loader itself 696 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. 697 * The user should use iwl_trans_{alloc,free}_tx_cmd. 698 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before 699 * starting the firmware, used for tracing 700 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the 701 * start of the 802.11 header in the @rx_mpdu_cmd 702 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI) 703 * @dbg_dest_tlv: points to the destination TLV for debug 704 * @dbg_conf_tlv: array of pointers to configuration TLVs for debug 705 * @dbg_trigger_tlv: array of pointers to triggers TLVs for debug 706 * @dbg_dest_reg_num: num of reg_ops in %dbg_dest_tlv 707 * @system_pm_mode: the system-wide power management mode in use. 708 * This mode is set dynamically, depending on the WoWLAN values 709 * configured from the userspace at runtime. 710 * @runtime_pm_mode: the runtime power management mode in use. This 711 * mode is set during the initialization phase and is not 712 * supposed to change during runtime. 713 */ 714 struct iwl_trans { 715 const struct iwl_trans_ops *ops; 716 struct iwl_op_mode *op_mode; 717 const struct iwl_cfg *cfg; 718 struct iwl_drv *drv; 719 enum iwl_trans_state state; 720 unsigned long status; 721 722 struct device *dev; 723 u32 max_skb_frags; 724 u32 hw_rev; 725 u32 hw_rf_id; 726 u32 hw_id; 727 char hw_id_str[52]; 728 729 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; 730 731 bool pm_support; 732 bool ltr_enabled; 733 734 const struct iwl_hcmd_arr *command_groups; 735 int command_groups_size; 736 bool wide_cmd_header; 737 738 u8 num_rx_queues; 739 740 size_t iml_len; 741 u8 *iml; 742 743 /* The following fields are internal only */ 744 struct kmem_cache *dev_cmd_pool; 745 char dev_cmd_pool_name[50]; 746 747 struct dentry *dbgfs_dir; 748 749 #ifdef CONFIG_LOCKDEP 750 struct lockdep_map sync_cmd_lockdep_map; 751 #endif 752 753 const struct iwl_fw_dbg_dest_tlv_v1 *dbg_dest_tlv; 754 const struct iwl_fw_dbg_conf_tlv *dbg_conf_tlv[FW_DBG_CONF_MAX]; 755 struct iwl_fw_dbg_trigger_tlv * const *dbg_trigger_tlv; 756 u8 dbg_dest_reg_num; 757 758 enum iwl_plat_pm_mode system_pm_mode; 759 enum iwl_plat_pm_mode runtime_pm_mode; 760 bool suspending; 761 762 /* pointer to trans specific struct */ 763 /*Ensure that this pointer will always be aligned to sizeof pointer */ 764 char trans_specific[0] __aligned(sizeof(void *)); 765 }; 766 767 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id); 768 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans); 769 770 static inline void iwl_trans_configure(struct iwl_trans *trans, 771 const struct iwl_trans_config *trans_cfg) 772 { 773 trans->op_mode = trans_cfg->op_mode; 774 775 trans->ops->configure(trans, trans_cfg); 776 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg)); 777 } 778 779 static inline int _iwl_trans_start_hw(struct iwl_trans *trans, bool low_power) 780 { 781 might_sleep(); 782 783 return trans->ops->start_hw(trans, low_power); 784 } 785 786 static inline int iwl_trans_start_hw(struct iwl_trans *trans) 787 { 788 return trans->ops->start_hw(trans, true); 789 } 790 791 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) 792 { 793 might_sleep(); 794 795 if (trans->ops->op_mode_leave) 796 trans->ops->op_mode_leave(trans); 797 798 trans->op_mode = NULL; 799 800 trans->state = IWL_TRANS_NO_FW; 801 } 802 803 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) 804 { 805 might_sleep(); 806 807 trans->state = IWL_TRANS_FW_ALIVE; 808 809 trans->ops->fw_alive(trans, scd_addr); 810 } 811 812 static inline int iwl_trans_start_fw(struct iwl_trans *trans, 813 const struct fw_img *fw, 814 bool run_in_rfkill) 815 { 816 might_sleep(); 817 818 WARN_ON_ONCE(!trans->rx_mpdu_cmd); 819 820 clear_bit(STATUS_FW_ERROR, &trans->status); 821 return trans->ops->start_fw(trans, fw, run_in_rfkill); 822 } 823 824 static inline void _iwl_trans_stop_device(struct iwl_trans *trans, 825 bool low_power) 826 { 827 might_sleep(); 828 829 trans->ops->stop_device(trans, low_power); 830 831 trans->state = IWL_TRANS_NO_FW; 832 } 833 834 static inline void iwl_trans_stop_device(struct iwl_trans *trans) 835 { 836 _iwl_trans_stop_device(trans, true); 837 } 838 839 static inline void iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, 840 bool reset) 841 { 842 might_sleep(); 843 if (trans->ops->d3_suspend) 844 trans->ops->d3_suspend(trans, test, reset); 845 } 846 847 static inline int iwl_trans_d3_resume(struct iwl_trans *trans, 848 enum iwl_d3_status *status, 849 bool test, bool reset) 850 { 851 might_sleep(); 852 if (!trans->ops->d3_resume) 853 return 0; 854 855 return trans->ops->d3_resume(trans, status, test, reset); 856 } 857 858 static inline int iwl_trans_suspend(struct iwl_trans *trans) 859 { 860 if (!trans->ops->suspend) 861 return 0; 862 863 return trans->ops->suspend(trans); 864 } 865 866 static inline void iwl_trans_resume(struct iwl_trans *trans) 867 { 868 if (trans->ops->resume) 869 trans->ops->resume(trans); 870 } 871 872 static inline struct iwl_trans_dump_data * 873 iwl_trans_dump_data(struct iwl_trans *trans, 874 const struct iwl_fw_dbg_trigger_tlv *trigger) 875 { 876 if (!trans->ops->dump_data) 877 return NULL; 878 return trans->ops->dump_data(trans, trigger); 879 } 880 881 static inline void iwl_trans_dump_regs(struct iwl_trans *trans) 882 { 883 if (trans->ops->dump_regs) 884 trans->ops->dump_regs(trans); 885 } 886 887 static inline struct iwl_device_cmd * 888 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) 889 { 890 return kmem_cache_alloc(trans->dev_cmd_pool, GFP_ATOMIC); 891 } 892 893 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 894 895 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, 896 struct iwl_device_cmd *dev_cmd) 897 { 898 kmem_cache_free(trans->dev_cmd_pool, dev_cmd); 899 } 900 901 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, 902 struct iwl_device_cmd *dev_cmd, int queue) 903 { 904 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) 905 return -EIO; 906 907 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 908 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 909 return -EIO; 910 } 911 912 return trans->ops->tx(trans, skb, dev_cmd, queue); 913 } 914 915 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, 916 int ssn, struct sk_buff_head *skbs) 917 { 918 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 919 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 920 return; 921 } 922 923 trans->ops->reclaim(trans, queue, ssn, skbs); 924 } 925 926 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue, 927 bool configure_scd) 928 { 929 trans->ops->txq_disable(trans, queue, configure_scd); 930 } 931 932 static inline bool 933 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn, 934 const struct iwl_trans_txq_scd_cfg *cfg, 935 unsigned int queue_wdg_timeout) 936 { 937 might_sleep(); 938 939 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 940 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 941 return false; 942 } 943 944 return trans->ops->txq_enable(trans, queue, ssn, 945 cfg, queue_wdg_timeout); 946 } 947 948 static inline void 949 iwl_trans_txq_free(struct iwl_trans *trans, int queue) 950 { 951 if (WARN_ON_ONCE(!trans->ops->txq_free)) 952 return; 953 954 trans->ops->txq_free(trans, queue); 955 } 956 957 static inline int 958 iwl_trans_txq_alloc(struct iwl_trans *trans, 959 struct iwl_tx_queue_cfg_cmd *cmd, 960 int cmd_id, int size, 961 unsigned int wdg_timeout) 962 { 963 might_sleep(); 964 965 if (WARN_ON_ONCE(!trans->ops->txq_alloc)) 966 return -ENOTSUPP; 967 968 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 969 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 970 return -EIO; 971 } 972 973 return trans->ops->txq_alloc(trans, cmd, cmd_id, size, wdg_timeout); 974 } 975 976 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans, 977 int queue, bool shared_mode) 978 { 979 if (trans->ops->txq_set_shared_mode) 980 trans->ops->txq_set_shared_mode(trans, queue, shared_mode); 981 } 982 983 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, 984 int fifo, int sta_id, int tid, 985 int frame_limit, u16 ssn, 986 unsigned int queue_wdg_timeout) 987 { 988 struct iwl_trans_txq_scd_cfg cfg = { 989 .fifo = fifo, 990 .sta_id = sta_id, 991 .tid = tid, 992 .frame_limit = frame_limit, 993 .aggregate = sta_id >= 0, 994 }; 995 996 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout); 997 } 998 999 static inline 1000 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo, 1001 unsigned int queue_wdg_timeout) 1002 { 1003 struct iwl_trans_txq_scd_cfg cfg = { 1004 .fifo = fifo, 1005 .sta_id = -1, 1006 .tid = IWL_MAX_TID_COUNT, 1007 .frame_limit = IWL_FRAME_LIMIT, 1008 .aggregate = false, 1009 }; 1010 1011 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout); 1012 } 1013 1014 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans, 1015 unsigned long txqs, 1016 bool freeze) 1017 { 1018 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1019 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1020 return; 1021 } 1022 1023 if (trans->ops->freeze_txq_timer) 1024 trans->ops->freeze_txq_timer(trans, txqs, freeze); 1025 } 1026 1027 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans, 1028 bool block) 1029 { 1030 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1031 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1032 return; 1033 } 1034 1035 if (trans->ops->block_txq_ptrs) 1036 trans->ops->block_txq_ptrs(trans, block); 1037 } 1038 1039 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, 1040 u32 txqs) 1041 { 1042 if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty)) 1043 return -ENOTSUPP; 1044 1045 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1046 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1047 return -EIO; 1048 } 1049 1050 return trans->ops->wait_tx_queues_empty(trans, txqs); 1051 } 1052 1053 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue) 1054 { 1055 if (WARN_ON_ONCE(!trans->ops->wait_txq_empty)) 1056 return -ENOTSUPP; 1057 1058 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1059 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1060 return -EIO; 1061 } 1062 1063 return trans->ops->wait_txq_empty(trans, queue); 1064 } 1065 1066 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) 1067 { 1068 trans->ops->write8(trans, ofs, val); 1069 } 1070 1071 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) 1072 { 1073 trans->ops->write32(trans, ofs, val); 1074 } 1075 1076 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) 1077 { 1078 return trans->ops->read32(trans, ofs); 1079 } 1080 1081 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) 1082 { 1083 return trans->ops->read_prph(trans, ofs); 1084 } 1085 1086 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, 1087 u32 val) 1088 { 1089 return trans->ops->write_prph(trans, ofs, val); 1090 } 1091 1092 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, 1093 void *buf, int dwords) 1094 { 1095 return trans->ops->read_mem(trans, addr, buf, dwords); 1096 } 1097 1098 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ 1099 do { \ 1100 if (__builtin_constant_p(bufsize)) \ 1101 BUILD_BUG_ON((bufsize) % sizeof(u32)); \ 1102 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ 1103 } while (0) 1104 1105 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) 1106 { 1107 u32 value; 1108 1109 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) 1110 return 0xa5a5a5a5; 1111 1112 return value; 1113 } 1114 1115 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, 1116 const void *buf, int dwords) 1117 { 1118 return trans->ops->write_mem(trans, addr, buf, dwords); 1119 } 1120 1121 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, 1122 u32 val) 1123 { 1124 return iwl_trans_write_mem(trans, addr, &val, 1); 1125 } 1126 1127 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) 1128 { 1129 if (trans->ops->set_pmi) 1130 trans->ops->set_pmi(trans, state); 1131 } 1132 1133 static inline void iwl_trans_sw_reset(struct iwl_trans *trans) 1134 { 1135 if (trans->ops->sw_reset) 1136 trans->ops->sw_reset(trans); 1137 } 1138 1139 static inline void 1140 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) 1141 { 1142 trans->ops->set_bits_mask(trans, reg, mask, value); 1143 } 1144 1145 #define iwl_trans_grab_nic_access(trans, flags) \ 1146 __cond_lock(nic_access, \ 1147 likely((trans)->ops->grab_nic_access(trans, flags))) 1148 1149 static inline void __releases(nic_access) 1150 iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags) 1151 { 1152 trans->ops->release_nic_access(trans, flags); 1153 __release(nic_access); 1154 } 1155 1156 static inline void iwl_trans_fw_error(struct iwl_trans *trans) 1157 { 1158 if (WARN_ON_ONCE(!trans->op_mode)) 1159 return; 1160 1161 /* prevent double restarts due to the same erroneous FW */ 1162 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) 1163 iwl_op_mode_nic_error(trans->op_mode); 1164 } 1165 1166 /***************************************************** 1167 * transport helper functions 1168 *****************************************************/ 1169 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, 1170 struct device *dev, 1171 const struct iwl_cfg *cfg, 1172 const struct iwl_trans_ops *ops); 1173 void iwl_trans_free(struct iwl_trans *trans); 1174 void iwl_trans_ref(struct iwl_trans *trans); 1175 void iwl_trans_unref(struct iwl_trans *trans); 1176 1177 /***************************************************** 1178 * driver (transport) register/unregister functions 1179 ******************************************************/ 1180 int __must_check iwl_pci_register_driver(void); 1181 void iwl_pci_unregister_driver(void); 1182 1183 #endif /* __iwl_trans_h__ */ 1184