1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 24 * USA 25 * 26 * The full GNU General Public License is included in this distribution 27 * in the file called COPYING. 28 * 29 * Contact Information: 30 * Intel Linux Wireless <linuxwifi@intel.com> 31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 32 * 33 * BSD LICENSE 34 * 35 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 37 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 38 * All rights reserved. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 44 * * Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * * Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in 48 * the documentation and/or other materials provided with the 49 * distribution. 50 * * Neither the name Intel Corporation nor the names of its 51 * contributors may be used to endorse or promote products derived 52 * from this software without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 55 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 56 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 57 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 58 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 61 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 62 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 63 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 64 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 65 * 66 *****************************************************************************/ 67 #ifndef __iwl_trans_h__ 68 #define __iwl_trans_h__ 69 70 #include <linux/ieee80211.h> 71 #include <linux/mm.h> /* for page_address */ 72 #include <linux/lockdep.h> 73 #include <linux/kernel.h> 74 75 #include "iwl-debug.h" 76 #include "iwl-config.h" 77 #include "fw/img.h" 78 #include "iwl-op-mode.h" 79 #include "fw/api.h" 80 81 /** 82 * DOC: Transport layer - what is it ? 83 * 84 * The transport layer is the layer that deals with the HW directly. It provides 85 * an abstraction of the underlying HW to the upper layer. The transport layer 86 * doesn't provide any policy, algorithm or anything of this kind, but only 87 * mechanisms to make the HW do something. It is not completely stateless but 88 * close to it. 89 * We will have an implementation for each different supported bus. 90 */ 91 92 /** 93 * DOC: Life cycle of the transport layer 94 * 95 * The transport layer has a very precise life cycle. 96 * 97 * 1) A helper function is called during the module initialization and 98 * registers the bus driver's ops with the transport's alloc function. 99 * 2) Bus's probe calls to the transport layer's allocation functions. 100 * Of course this function is bus specific. 101 * 3) This allocation functions will spawn the upper layer which will 102 * register mac80211. 103 * 104 * 4) At some point (i.e. mac80211's start call), the op_mode will call 105 * the following sequence: 106 * start_hw 107 * start_fw 108 * 109 * 5) Then when finished (or reset): 110 * stop_device 111 * 112 * 6) Eventually, the free function will be called. 113 */ 114 115 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ 116 #define FH_RSCSR_FRAME_INVALID 0x55550000 117 #define FH_RSCSR_FRAME_ALIGN 0x40 118 #define FH_RSCSR_RPA_EN BIT(25) 119 #define FH_RSCSR_RXQ_POS 16 120 #define FH_RSCSR_RXQ_MASK 0x3F0000 121 122 struct iwl_rx_packet { 123 /* 124 * The first 4 bytes of the RX frame header contain both the RX frame 125 * size and some flags. 126 * Bit fields: 127 * 31: flag flush RB request 128 * 30: flag ignore TC (terminal counter) request 129 * 29: flag fast IRQ request 130 * 28-26: Reserved 131 * 25: Offload enabled 132 * 24: RPF enabled 133 * 23: RSS enabled 134 * 22: Checksum enabled 135 * 21-16: RX queue 136 * 15-14: Reserved 137 * 13-00: RX frame size 138 */ 139 __le32 len_n_flags; 140 struct iwl_cmd_header hdr; 141 u8 data[]; 142 } __packed; 143 144 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) 145 { 146 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; 147 } 148 149 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) 150 { 151 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); 152 } 153 154 /** 155 * enum CMD_MODE - how to send the host commands ? 156 * 157 * @CMD_ASYNC: Return right away and don't wait for the response 158 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of 159 * the response. The caller needs to call iwl_free_resp when done. 160 * @CMD_HIGH_PRIO: The command is high priority - it goes to the front of the 161 * command queue, but after other high priority commands. Valid only 162 * with CMD_ASYNC. 163 * @CMD_SEND_IN_IDLE: The command should be sent even when the trans is idle. 164 * @CMD_MAKE_TRANS_IDLE: The command response should mark the trans as idle. 165 * @CMD_WAKE_UP_TRANS: The command response should wake up the trans 166 * (i.e. mark it as non-idle). 167 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be 168 * called after this command completes. Valid only with CMD_ASYNC. 169 */ 170 enum CMD_MODE { 171 CMD_ASYNC = BIT(0), 172 CMD_WANT_SKB = BIT(1), 173 CMD_SEND_IN_RFKILL = BIT(2), 174 CMD_HIGH_PRIO = BIT(3), 175 CMD_SEND_IN_IDLE = BIT(4), 176 CMD_MAKE_TRANS_IDLE = BIT(5), 177 CMD_WAKE_UP_TRANS = BIT(6), 178 CMD_WANT_ASYNC_CALLBACK = BIT(7), 179 }; 180 181 #define DEF_CMD_PAYLOAD_SIZE 320 182 183 /** 184 * struct iwl_device_cmd 185 * 186 * For allocation of the command and tx queues, this establishes the overall 187 * size of the largest command we send to uCode, except for commands that 188 * aren't fully copied and use other TFD space. 189 */ 190 struct iwl_device_cmd { 191 union { 192 struct { 193 struct iwl_cmd_header hdr; /* uCode API */ 194 u8 payload[DEF_CMD_PAYLOAD_SIZE]; 195 }; 196 struct { 197 struct iwl_cmd_header_wide hdr_wide; 198 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE - 199 sizeof(struct iwl_cmd_header_wide) + 200 sizeof(struct iwl_cmd_header)]; 201 }; 202 }; 203 } __packed; 204 205 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) 206 207 /* 208 * number of transfer buffers (fragments) per transmit frame descriptor; 209 * this is just the driver's idea, the hardware supports 20 210 */ 211 #define IWL_MAX_CMD_TBS_PER_TFD 2 212 213 /** 214 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command 215 * 216 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's 217 * ring. The transport layer doesn't map the command's buffer to DMA, but 218 * rather copies it to a previously allocated DMA buffer. This flag tells 219 * the transport layer not to copy the command, but to map the existing 220 * buffer (that is passed in) instead. This saves the memcpy and allows 221 * commands that are bigger than the fixed buffer to be submitted. 222 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. 223 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this 224 * chunk internally and free it again after the command completes. This 225 * can (currently) be used only once per command. 226 * Note that a TFD entry after a DUP one cannot be a normal copied one. 227 */ 228 enum iwl_hcmd_dataflag { 229 IWL_HCMD_DFL_NOCOPY = BIT(0), 230 IWL_HCMD_DFL_DUP = BIT(1), 231 }; 232 233 /** 234 * struct iwl_host_cmd - Host command to the uCode 235 * 236 * @data: array of chunks that composes the data of the host command 237 * @resp_pkt: response packet, if %CMD_WANT_SKB was set 238 * @_rx_page_order: (internally used to free response packet) 239 * @_rx_page_addr: (internally used to free response packet) 240 * @flags: can be CMD_* 241 * @len: array of the lengths of the chunks in data 242 * @dataflags: IWL_HCMD_DFL_* 243 * @id: command id of the host command, for wide commands encoding the 244 * version and group as well 245 */ 246 struct iwl_host_cmd { 247 const void *data[IWL_MAX_CMD_TBS_PER_TFD]; 248 struct iwl_rx_packet *resp_pkt; 249 unsigned long _rx_page_addr; 250 u32 _rx_page_order; 251 252 u32 flags; 253 u32 id; 254 u16 len[IWL_MAX_CMD_TBS_PER_TFD]; 255 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; 256 }; 257 258 static inline void iwl_free_resp(struct iwl_host_cmd *cmd) 259 { 260 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); 261 } 262 263 struct iwl_rx_cmd_buffer { 264 struct page *_page; 265 int _offset; 266 bool _page_stolen; 267 u32 _rx_page_order; 268 unsigned int truesize; 269 }; 270 271 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) 272 { 273 return (void *)((unsigned long)page_address(r->_page) + r->_offset); 274 } 275 276 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) 277 { 278 return r->_offset; 279 } 280 281 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) 282 { 283 r->_page_stolen = true; 284 get_page(r->_page); 285 return r->_page; 286 } 287 288 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) 289 { 290 __free_pages(r->_page, r->_rx_page_order); 291 } 292 293 #define MAX_NO_RECLAIM_CMDS 6 294 295 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) 296 297 /* 298 * Maximum number of HW queues the transport layer 299 * currently supports 300 */ 301 #define IWL_MAX_HW_QUEUES 32 302 #define IWL_MAX_TVQM_QUEUES 512 303 304 #define IWL_MAX_TID_COUNT 8 305 #define IWL_MGMT_TID 15 306 #define IWL_FRAME_LIMIT 64 307 #define IWL_MAX_RX_HW_QUEUES 16 308 309 /** 310 * enum iwl_wowlan_status - WoWLAN image/device status 311 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume 312 * @IWL_D3_STATUS_RESET: device was reset while suspended 313 */ 314 enum iwl_d3_status { 315 IWL_D3_STATUS_ALIVE, 316 IWL_D3_STATUS_RESET, 317 }; 318 319 /** 320 * enum iwl_trans_status: transport status flags 321 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed 322 * @STATUS_DEVICE_ENABLED: APM is enabled 323 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) 324 * @STATUS_INT_ENABLED: interrupts are enabled 325 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch 326 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode 327 * @STATUS_FW_ERROR: the fw is in error state 328 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands 329 * are sent 330 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent 331 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation 332 */ 333 enum iwl_trans_status { 334 STATUS_SYNC_HCMD_ACTIVE, 335 STATUS_DEVICE_ENABLED, 336 STATUS_TPOWER_PMI, 337 STATUS_INT_ENABLED, 338 STATUS_RFKILL_HW, 339 STATUS_RFKILL_OPMODE, 340 STATUS_FW_ERROR, 341 STATUS_TRANS_GOING_IDLE, 342 STATUS_TRANS_IDLE, 343 STATUS_TRANS_DEAD, 344 }; 345 346 static inline int 347 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size) 348 { 349 switch (rb_size) { 350 case IWL_AMSDU_4K: 351 return get_order(4 * 1024); 352 case IWL_AMSDU_8K: 353 return get_order(8 * 1024); 354 case IWL_AMSDU_12K: 355 return get_order(12 * 1024); 356 default: 357 WARN_ON(1); 358 return -1; 359 } 360 } 361 362 struct iwl_hcmd_names { 363 u8 cmd_id; 364 const char *const cmd_name; 365 }; 366 367 #define HCMD_NAME(x) \ 368 { .cmd_id = x, .cmd_name = #x } 369 370 struct iwl_hcmd_arr { 371 const struct iwl_hcmd_names *arr; 372 int size; 373 }; 374 375 #define HCMD_ARR(x) \ 376 { .arr = x, .size = ARRAY_SIZE(x) } 377 378 /** 379 * struct iwl_trans_config - transport configuration 380 * 381 * @op_mode: pointer to the upper layer. 382 * @cmd_queue: the index of the command queue. 383 * Must be set before start_fw. 384 * @cmd_fifo: the fifo for host commands 385 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue. 386 * @no_reclaim_cmds: Some devices erroneously don't set the 387 * SEQ_RX_FRAME bit on some notifications, this is the 388 * list of such notifications to filter. Max length is 389 * %MAX_NO_RECLAIM_CMDS. 390 * @n_no_reclaim_cmds: # of commands in list 391 * @rx_buf_size: RX buffer size needed for A-MSDUs 392 * if unset 4k will be the RX buffer size 393 * @bc_table_dword: set to true if the BC table expects the byte count to be 394 * in DWORD (as opposed to bytes) 395 * @scd_set_active: should the transport configure the SCD for HCMD queue 396 * @sw_csum_tx: transport should compute the TCP checksum 397 * @command_groups: array of command groups, each member is an array of the 398 * commands in the group; for debugging only 399 * @command_groups_size: number of command groups, to avoid illegal access 400 * @sdio_adma_addr: the default address to set for the ADMA in SDIO mode until 401 * we get the ALIVE from the uCode 402 * @cb_data_offs: offset inside skb->cb to store transport data at, must have 403 * space for at least two pointers 404 */ 405 struct iwl_trans_config { 406 struct iwl_op_mode *op_mode; 407 408 u8 cmd_queue; 409 u8 cmd_fifo; 410 unsigned int cmd_q_wdg_timeout; 411 const u8 *no_reclaim_cmds; 412 unsigned int n_no_reclaim_cmds; 413 414 enum iwl_amsdu_size rx_buf_size; 415 bool bc_table_dword; 416 bool scd_set_active; 417 bool sw_csum_tx; 418 const struct iwl_hcmd_arr *command_groups; 419 int command_groups_size; 420 421 u32 sdio_adma_addr; 422 423 u8 cb_data_offs; 424 }; 425 426 struct iwl_trans_dump_data { 427 u32 len; 428 u8 data[]; 429 }; 430 431 struct iwl_trans; 432 433 struct iwl_trans_txq_scd_cfg { 434 u8 fifo; 435 u8 sta_id; 436 u8 tid; 437 bool aggregate; 438 int frame_limit; 439 }; 440 441 /** 442 * struct iwl_trans_ops - transport specific operations 443 * 444 * All the handlers MUST be implemented 445 * 446 * @start_hw: starts the HW. If low_power is true, the NIC needs to be taken 447 * out of a low power state. From that point on, the HW can send 448 * interrupts. May sleep. 449 * @op_mode_leave: Turn off the HW RF kill indication if on 450 * May sleep 451 * @start_fw: allocates and inits all the resources for the transport 452 * layer. Also kick a fw image. 453 * May sleep 454 * @fw_alive: called when the fw sends alive notification. If the fw provides 455 * the SCD base address in SRAM, then provide it here, or 0 otherwise. 456 * May sleep 457 * @stop_device: stops the whole device (embedded CPU put to reset) and stops 458 * the HW. If low_power is true, the NIC will be put in low power state. 459 * From that point on, the HW will be stopped but will still issue an 460 * interrupt if the HW RF kill switch is triggered. 461 * This callback must do the right thing and not crash even if %start_hw() 462 * was called but not &start_fw(). May sleep. 463 * @d3_suspend: put the device into the correct mode for WoWLAN during 464 * suspend. This is optional, if not implemented WoWLAN will not be 465 * supported. This callback may sleep. 466 * @d3_resume: resume the device after WoWLAN, enabling the opmode to 467 * talk to the WoWLAN image to get its status. This is optional, if not 468 * implemented WoWLAN will not be supported. This callback may sleep. 469 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. 470 * If RFkill is asserted in the middle of a SYNC host command, it must 471 * return -ERFKILL straight away. 472 * May sleep only if CMD_ASYNC is not set 473 * @tx: send an skb. The transport relies on the op_mode to zero the 474 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all 475 * the CSUM will be taken care of (TCP CSUM and IP header in case of 476 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP 477 * header if it is IPv4. 478 * Must be atomic 479 * @reclaim: free packet until ssn. Returns a list of freed packets. 480 * Must be atomic 481 * @txq_enable: setup a queue. To setup an AC queue, use the 482 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before 483 * this one. The op_mode must not configure the HCMD queue. The scheduler 484 * configuration may be %NULL, in which case the hardware will not be 485 * configured. If true is returned, the operation mode needs to increment 486 * the sequence number of the packets routed to this queue because of a 487 * hardware scheduler bug. May sleep. 488 * @txq_disable: de-configure a Tx queue to send AMPDUs 489 * Must be atomic 490 * @txq_set_shared_mode: change Tx queue shared/unshared marking 491 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep. 492 * @wait_txq_empty: wait until specific tx queue is empty. May sleep. 493 * @freeze_txq_timer: prevents the timer of the queue from firing until the 494 * queue is set to awake. Must be atomic. 495 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note 496 * that the transport needs to refcount the calls since this function 497 * will be called several times with block = true, and then the queues 498 * need to be unblocked only after the same number of calls with 499 * block = false. 500 * @write8: write a u8 to a register at offset ofs from the BAR 501 * @write32: write a u32 to a register at offset ofs from the BAR 502 * @read32: read a u32 register at offset ofs from the BAR 503 * @read_prph: read a DWORD from a periphery register 504 * @write_prph: write a DWORD to a periphery register 505 * @read_mem: read device's SRAM in DWORD 506 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory 507 * will be zeroed. 508 * @configure: configure parameters required by the transport layer from 509 * the op_mode. May be called several times before start_fw, can't be 510 * called after that. 511 * @set_pmi: set the power pmi state 512 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. 513 * Sleeping is not allowed between grab_nic_access and 514 * release_nic_access. 515 * @release_nic_access: let the NIC go to sleep. The "flags" parameter 516 * must be the same one that was sent before to the grab_nic_access. 517 * @set_bits_mask - set SRAM register according to value and mask. 518 * @ref: grab a reference to the transport/FW layers, disallowing 519 * certain low power states 520 * @unref: release a reference previously taken with @ref. Note that 521 * initially the reference count is 1, making an initial @unref 522 * necessary to allow low power states. 523 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last 524 * TX'ed commands and similar. The buffer will be vfree'd by the caller. 525 * Note that the transport must fill in the proper file headers. 526 */ 527 struct iwl_trans_ops { 528 529 int (*start_hw)(struct iwl_trans *iwl_trans, bool low_power); 530 void (*op_mode_leave)(struct iwl_trans *iwl_trans); 531 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, 532 bool run_in_rfkill); 533 int (*update_sf)(struct iwl_trans *trans, 534 struct iwl_sf_region *st_fwrd_space); 535 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); 536 void (*stop_device)(struct iwl_trans *trans, bool low_power); 537 538 void (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset); 539 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, 540 bool test, bool reset); 541 542 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 543 544 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, 545 struct iwl_device_cmd *dev_cmd, int queue); 546 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, 547 struct sk_buff_head *skbs); 548 549 bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn, 550 const struct iwl_trans_txq_scd_cfg *cfg, 551 unsigned int queue_wdg_timeout); 552 void (*txq_disable)(struct iwl_trans *trans, int queue, 553 bool configure_scd); 554 /* a000 functions */ 555 int (*txq_alloc)(struct iwl_trans *trans, 556 struct iwl_tx_queue_cfg_cmd *cmd, 557 int cmd_id, 558 unsigned int queue_wdg_timeout); 559 void (*txq_free)(struct iwl_trans *trans, int queue); 560 561 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id, 562 bool shared); 563 564 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm); 565 int (*wait_txq_empty)(struct iwl_trans *trans, int queue); 566 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs, 567 bool freeze); 568 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block); 569 570 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); 571 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); 572 u32 (*read32)(struct iwl_trans *trans, u32 ofs); 573 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); 574 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); 575 int (*read_mem)(struct iwl_trans *trans, u32 addr, 576 void *buf, int dwords); 577 int (*write_mem)(struct iwl_trans *trans, u32 addr, 578 const void *buf, int dwords); 579 void (*configure)(struct iwl_trans *trans, 580 const struct iwl_trans_config *trans_cfg); 581 void (*set_pmi)(struct iwl_trans *trans, bool state); 582 bool (*grab_nic_access)(struct iwl_trans *trans, unsigned long *flags); 583 void (*release_nic_access)(struct iwl_trans *trans, 584 unsigned long *flags); 585 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, 586 u32 value); 587 void (*ref)(struct iwl_trans *trans); 588 void (*unref)(struct iwl_trans *trans); 589 int (*suspend)(struct iwl_trans *trans); 590 void (*resume)(struct iwl_trans *trans); 591 592 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans, 593 const struct iwl_fw_dbg_trigger_tlv 594 *trigger); 595 }; 596 597 /** 598 * enum iwl_trans_state - state of the transport layer 599 * 600 * @IWL_TRANS_NO_FW: no fw has sent an alive response 601 * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response 602 */ 603 enum iwl_trans_state { 604 IWL_TRANS_NO_FW = 0, 605 IWL_TRANS_FW_ALIVE = 1, 606 }; 607 608 /** 609 * DOC: Platform power management 610 * 611 * There are two types of platform power management: system-wide 612 * (WoWLAN) and runtime. 613 * 614 * In system-wide power management the entire platform goes into a low 615 * power state (e.g. idle or suspend to RAM) at the same time and the 616 * device is configured as a wakeup source for the entire platform. 617 * This is usually triggered by userspace activity (e.g. the user 618 * presses the suspend button or a power management daemon decides to 619 * put the platform in low power mode). The device's behavior in this 620 * mode is dictated by the wake-on-WLAN configuration. 621 * 622 * In runtime power management, only the devices which are themselves 623 * idle enter a low power state. This is done at runtime, which means 624 * that the entire system is still running normally. This mode is 625 * usually triggered automatically by the device driver and requires 626 * the ability to enter and exit the low power modes in a very short 627 * time, so there is not much impact in usability. 628 * 629 * The terms used for the device's behavior are as follows: 630 * 631 * - D0: the device is fully powered and the host is awake; 632 * - D3: the device is in low power mode and only reacts to 633 * specific events (e.g. magic-packet received or scan 634 * results found); 635 * - D0I3: the device is in low power mode and reacts to any 636 * activity (e.g. RX); 637 * 638 * These terms reflect the power modes in the firmware and are not to 639 * be confused with the physical device power state. The NIC can be 640 * in D0I3 mode even if, for instance, the PCI device is in D3 state. 641 */ 642 643 /** 644 * enum iwl_plat_pm_mode - platform power management mode 645 * 646 * This enumeration describes the device's platform power management 647 * behavior when in idle mode (i.e. runtime power management) or when 648 * in system-wide suspend (i.e WoWLAN). 649 * 650 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this 651 * device. At runtime, this means that nothing happens and the 652 * device always remains in active. In system-wide suspend mode, 653 * it means that the all connections will be closed automatically 654 * by mac80211 before the platform is suspended. 655 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN). 656 * For runtime power management, this mode is not officially 657 * supported. 658 * @IWL_PLAT_PM_MODE_D0I3: the device goes into D0I3 mode. 659 */ 660 enum iwl_plat_pm_mode { 661 IWL_PLAT_PM_MODE_DISABLED, 662 IWL_PLAT_PM_MODE_D3, 663 IWL_PLAT_PM_MODE_D0I3, 664 }; 665 666 /* Max time to wait for trans to become idle/non-idle on d0i3 667 * enter/exit (in msecs). 668 */ 669 #define IWL_TRANS_IDLE_TIMEOUT 2000 670 671 /** 672 * struct iwl_trans - transport common data 673 * 674 * @ops - pointer to iwl_trans_ops 675 * @op_mode - pointer to the op_mode 676 * @cfg - pointer to the configuration 677 * @drv - pointer to iwl_drv 678 * @status: a bit-mask of transport status flags 679 * @dev - pointer to struct device * that represents the device 680 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted. 681 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported. 682 * @hw_rf_id a u32 with the device RF ID 683 * @hw_id: a u32 with the ID of the device / sub-device. 684 * Set during transport allocation. 685 * @hw_id_str: a string with info about HW ID. Set during transport allocation. 686 * @pm_support: set to true in start_hw if link pm is supported 687 * @ltr_enabled: set to true if the LTR is enabled 688 * @wide_cmd_header: true when ucode supports wide command header format 689 * @num_rx_queues: number of RX queues allocated by the transport; 690 * the transport must set this before calling iwl_drv_start() 691 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. 692 * The user should use iwl_trans_{alloc,free}_tx_cmd. 693 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before 694 * starting the firmware, used for tracing 695 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the 696 * start of the 802.11 header in the @rx_mpdu_cmd 697 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI) 698 * @dbg_dest_tlv: points to the destination TLV for debug 699 * @dbg_conf_tlv: array of pointers to configuration TLVs for debug 700 * @dbg_trigger_tlv: array of pointers to triggers TLVs for debug 701 * @dbg_dest_reg_num: num of reg_ops in %dbg_dest_tlv 702 * @paging_req_addr: The location were the FW will upload / download the pages 703 * from. The address is set by the opmode 704 * @paging_db: Pointer to the opmode paging data base, the pointer is set by 705 * the opmode. 706 * @paging_download_buf: Buffer used for copying all of the pages before 707 * downloading them to the FW. The buffer is allocated in the opmode 708 * @system_pm_mode: the system-wide power management mode in use. 709 * This mode is set dynamically, depending on the WoWLAN values 710 * configured from the userspace at runtime. 711 * @runtime_pm_mode: the runtime power management mode in use. This 712 * mode is set during the initialization phase and is not 713 * supposed to change during runtime. 714 */ 715 struct iwl_trans { 716 const struct iwl_trans_ops *ops; 717 struct iwl_op_mode *op_mode; 718 const struct iwl_cfg *cfg; 719 struct iwl_drv *drv; 720 enum iwl_trans_state state; 721 unsigned long status; 722 723 struct device *dev; 724 u32 max_skb_frags; 725 u32 hw_rev; 726 u32 hw_rf_id; 727 u32 hw_id; 728 char hw_id_str[52]; 729 730 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; 731 732 bool pm_support; 733 bool ltr_enabled; 734 735 const struct iwl_hcmd_arr *command_groups; 736 int command_groups_size; 737 bool wide_cmd_header; 738 739 u8 num_rx_queues; 740 741 /* The following fields are internal only */ 742 struct kmem_cache *dev_cmd_pool; 743 char dev_cmd_pool_name[50]; 744 745 struct dentry *dbgfs_dir; 746 747 #ifdef CONFIG_LOCKDEP 748 struct lockdep_map sync_cmd_lockdep_map; 749 #endif 750 751 u64 dflt_pwr_limit; 752 753 const struct iwl_fw_dbg_dest_tlv *dbg_dest_tlv; 754 const struct iwl_fw_dbg_conf_tlv *dbg_conf_tlv[FW_DBG_CONF_MAX]; 755 struct iwl_fw_dbg_trigger_tlv * const *dbg_trigger_tlv; 756 u8 dbg_dest_reg_num; 757 758 /* 759 * Paging parameters - All of the parameters should be set by the 760 * opmode when paging is enabled 761 */ 762 u32 paging_req_addr; 763 struct iwl_fw_paging *paging_db; 764 void *paging_download_buf; 765 766 enum iwl_plat_pm_mode system_pm_mode; 767 enum iwl_plat_pm_mode runtime_pm_mode; 768 bool suspending; 769 770 /* pointer to trans specific struct */ 771 /*Ensure that this pointer will always be aligned to sizeof pointer */ 772 char trans_specific[0] __aligned(sizeof(void *)); 773 }; 774 775 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id); 776 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans); 777 778 static inline void iwl_trans_configure(struct iwl_trans *trans, 779 const struct iwl_trans_config *trans_cfg) 780 { 781 trans->op_mode = trans_cfg->op_mode; 782 783 trans->ops->configure(trans, trans_cfg); 784 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg)); 785 } 786 787 static inline int _iwl_trans_start_hw(struct iwl_trans *trans, bool low_power) 788 { 789 might_sleep(); 790 791 return trans->ops->start_hw(trans, low_power); 792 } 793 794 static inline int iwl_trans_start_hw(struct iwl_trans *trans) 795 { 796 return trans->ops->start_hw(trans, true); 797 } 798 799 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) 800 { 801 might_sleep(); 802 803 if (trans->ops->op_mode_leave) 804 trans->ops->op_mode_leave(trans); 805 806 trans->op_mode = NULL; 807 808 trans->state = IWL_TRANS_NO_FW; 809 } 810 811 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) 812 { 813 might_sleep(); 814 815 trans->state = IWL_TRANS_FW_ALIVE; 816 817 trans->ops->fw_alive(trans, scd_addr); 818 } 819 820 static inline int iwl_trans_start_fw(struct iwl_trans *trans, 821 const struct fw_img *fw, 822 bool run_in_rfkill) 823 { 824 might_sleep(); 825 826 WARN_ON_ONCE(!trans->rx_mpdu_cmd); 827 828 clear_bit(STATUS_FW_ERROR, &trans->status); 829 return trans->ops->start_fw(trans, fw, run_in_rfkill); 830 } 831 832 static inline int iwl_trans_update_sf(struct iwl_trans *trans, 833 struct iwl_sf_region *st_fwrd_space) 834 { 835 might_sleep(); 836 837 if (trans->ops->update_sf) 838 return trans->ops->update_sf(trans, st_fwrd_space); 839 840 return 0; 841 } 842 843 static inline void _iwl_trans_stop_device(struct iwl_trans *trans, 844 bool low_power) 845 { 846 might_sleep(); 847 848 trans->ops->stop_device(trans, low_power); 849 850 trans->state = IWL_TRANS_NO_FW; 851 } 852 853 static inline void iwl_trans_stop_device(struct iwl_trans *trans) 854 { 855 _iwl_trans_stop_device(trans, true); 856 } 857 858 static inline void iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, 859 bool reset) 860 { 861 might_sleep(); 862 if (trans->ops->d3_suspend) 863 trans->ops->d3_suspend(trans, test, reset); 864 } 865 866 static inline int iwl_trans_d3_resume(struct iwl_trans *trans, 867 enum iwl_d3_status *status, 868 bool test, bool reset) 869 { 870 might_sleep(); 871 if (!trans->ops->d3_resume) 872 return 0; 873 874 return trans->ops->d3_resume(trans, status, test, reset); 875 } 876 877 static inline void iwl_trans_ref(struct iwl_trans *trans) 878 { 879 if (trans->ops->ref) 880 trans->ops->ref(trans); 881 } 882 883 static inline void iwl_trans_unref(struct iwl_trans *trans) 884 { 885 if (trans->ops->unref) 886 trans->ops->unref(trans); 887 } 888 889 static inline int iwl_trans_suspend(struct iwl_trans *trans) 890 { 891 if (!trans->ops->suspend) 892 return 0; 893 894 return trans->ops->suspend(trans); 895 } 896 897 static inline void iwl_trans_resume(struct iwl_trans *trans) 898 { 899 if (trans->ops->resume) 900 trans->ops->resume(trans); 901 } 902 903 static inline struct iwl_trans_dump_data * 904 iwl_trans_dump_data(struct iwl_trans *trans, 905 const struct iwl_fw_dbg_trigger_tlv *trigger) 906 { 907 if (!trans->ops->dump_data) 908 return NULL; 909 return trans->ops->dump_data(trans, trigger); 910 } 911 912 static inline struct iwl_device_cmd * 913 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) 914 { 915 return kmem_cache_alloc(trans->dev_cmd_pool, GFP_ATOMIC); 916 } 917 918 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 919 920 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, 921 struct iwl_device_cmd *dev_cmd) 922 { 923 kmem_cache_free(trans->dev_cmd_pool, dev_cmd); 924 } 925 926 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, 927 struct iwl_device_cmd *dev_cmd, int queue) 928 { 929 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) 930 return -EIO; 931 932 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 933 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 934 return -EIO; 935 } 936 937 return trans->ops->tx(trans, skb, dev_cmd, queue); 938 } 939 940 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, 941 int ssn, struct sk_buff_head *skbs) 942 { 943 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 944 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 945 return; 946 } 947 948 trans->ops->reclaim(trans, queue, ssn, skbs); 949 } 950 951 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue, 952 bool configure_scd) 953 { 954 trans->ops->txq_disable(trans, queue, configure_scd); 955 } 956 957 static inline bool 958 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn, 959 const struct iwl_trans_txq_scd_cfg *cfg, 960 unsigned int queue_wdg_timeout) 961 { 962 might_sleep(); 963 964 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 965 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 966 return false; 967 } 968 969 return trans->ops->txq_enable(trans, queue, ssn, 970 cfg, queue_wdg_timeout); 971 } 972 973 static inline void 974 iwl_trans_txq_free(struct iwl_trans *trans, int queue) 975 { 976 if (WARN_ON_ONCE(!trans->ops->txq_free)) 977 return; 978 979 trans->ops->txq_free(trans, queue); 980 } 981 982 static inline int 983 iwl_trans_txq_alloc(struct iwl_trans *trans, 984 struct iwl_tx_queue_cfg_cmd *cmd, 985 int cmd_id, 986 unsigned int queue_wdg_timeout) 987 { 988 might_sleep(); 989 990 if (WARN_ON_ONCE(!trans->ops->txq_alloc)) 991 return -ENOTSUPP; 992 993 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 994 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 995 return -EIO; 996 } 997 998 return trans->ops->txq_alloc(trans, cmd, cmd_id, queue_wdg_timeout); 999 } 1000 1001 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans, 1002 int queue, bool shared_mode) 1003 { 1004 if (trans->ops->txq_set_shared_mode) 1005 trans->ops->txq_set_shared_mode(trans, queue, shared_mode); 1006 } 1007 1008 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, 1009 int fifo, int sta_id, int tid, 1010 int frame_limit, u16 ssn, 1011 unsigned int queue_wdg_timeout) 1012 { 1013 struct iwl_trans_txq_scd_cfg cfg = { 1014 .fifo = fifo, 1015 .sta_id = sta_id, 1016 .tid = tid, 1017 .frame_limit = frame_limit, 1018 .aggregate = sta_id >= 0, 1019 }; 1020 1021 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout); 1022 } 1023 1024 static inline 1025 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo, 1026 unsigned int queue_wdg_timeout) 1027 { 1028 struct iwl_trans_txq_scd_cfg cfg = { 1029 .fifo = fifo, 1030 .sta_id = -1, 1031 .tid = IWL_MAX_TID_COUNT, 1032 .frame_limit = IWL_FRAME_LIMIT, 1033 .aggregate = false, 1034 }; 1035 1036 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout); 1037 } 1038 1039 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans, 1040 unsigned long txqs, 1041 bool freeze) 1042 { 1043 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1044 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1045 return; 1046 } 1047 1048 if (trans->ops->freeze_txq_timer) 1049 trans->ops->freeze_txq_timer(trans, txqs, freeze); 1050 } 1051 1052 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans, 1053 bool block) 1054 { 1055 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1056 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1057 return; 1058 } 1059 1060 if (trans->ops->block_txq_ptrs) 1061 trans->ops->block_txq_ptrs(trans, block); 1062 } 1063 1064 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, 1065 u32 txqs) 1066 { 1067 if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty)) 1068 return -ENOTSUPP; 1069 1070 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1071 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1072 return -EIO; 1073 } 1074 1075 return trans->ops->wait_tx_queues_empty(trans, txqs); 1076 } 1077 1078 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue) 1079 { 1080 if (WARN_ON_ONCE(!trans->ops->wait_txq_empty)) 1081 return -ENOTSUPP; 1082 1083 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1084 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1085 return -EIO; 1086 } 1087 1088 return trans->ops->wait_txq_empty(trans, queue); 1089 } 1090 1091 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) 1092 { 1093 trans->ops->write8(trans, ofs, val); 1094 } 1095 1096 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) 1097 { 1098 trans->ops->write32(trans, ofs, val); 1099 } 1100 1101 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) 1102 { 1103 return trans->ops->read32(trans, ofs); 1104 } 1105 1106 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) 1107 { 1108 return trans->ops->read_prph(trans, ofs); 1109 } 1110 1111 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, 1112 u32 val) 1113 { 1114 return trans->ops->write_prph(trans, ofs, val); 1115 } 1116 1117 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, 1118 void *buf, int dwords) 1119 { 1120 return trans->ops->read_mem(trans, addr, buf, dwords); 1121 } 1122 1123 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ 1124 do { \ 1125 if (__builtin_constant_p(bufsize)) \ 1126 BUILD_BUG_ON((bufsize) % sizeof(u32)); \ 1127 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ 1128 } while (0) 1129 1130 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) 1131 { 1132 u32 value; 1133 1134 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) 1135 return 0xa5a5a5a5; 1136 1137 return value; 1138 } 1139 1140 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, 1141 const void *buf, int dwords) 1142 { 1143 return trans->ops->write_mem(trans, addr, buf, dwords); 1144 } 1145 1146 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, 1147 u32 val) 1148 { 1149 return iwl_trans_write_mem(trans, addr, &val, 1); 1150 } 1151 1152 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) 1153 { 1154 if (trans->ops->set_pmi) 1155 trans->ops->set_pmi(trans, state); 1156 } 1157 1158 static inline void 1159 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) 1160 { 1161 trans->ops->set_bits_mask(trans, reg, mask, value); 1162 } 1163 1164 #define iwl_trans_grab_nic_access(trans, flags) \ 1165 __cond_lock(nic_access, \ 1166 likely((trans)->ops->grab_nic_access(trans, flags))) 1167 1168 static inline void __releases(nic_access) 1169 iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags) 1170 { 1171 trans->ops->release_nic_access(trans, flags); 1172 __release(nic_access); 1173 } 1174 1175 static inline void iwl_trans_fw_error(struct iwl_trans *trans) 1176 { 1177 if (WARN_ON_ONCE(!trans->op_mode)) 1178 return; 1179 1180 /* prevent double restarts due to the same erroneous FW */ 1181 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) 1182 iwl_op_mode_nic_error(trans->op_mode); 1183 } 1184 1185 /***************************************************** 1186 * transport helper functions 1187 *****************************************************/ 1188 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, 1189 struct device *dev, 1190 const struct iwl_cfg *cfg, 1191 const struct iwl_trans_ops *ops); 1192 void iwl_trans_free(struct iwl_trans *trans); 1193 1194 /***************************************************** 1195 * driver (transport) register/unregister functions 1196 ******************************************************/ 1197 int __must_check iwl_pci_register_driver(void); 1198 void iwl_pci_unregister_driver(void); 1199 1200 #endif /* __iwl_trans_h__ */ 1201