1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  *****************************************************************************/
67 #ifndef __iwl_trans_h__
68 #define __iwl_trans_h__
69 
70 #include <linux/ieee80211.h>
71 #include <linux/mm.h> /* for page_address */
72 #include <linux/lockdep.h>
73 #include <linux/kernel.h>
74 
75 #include "iwl-debug.h"
76 #include "iwl-config.h"
77 #include "fw/img.h"
78 #include "iwl-op-mode.h"
79 #include "fw/api/cmdhdr.h"
80 #include "fw/api/txq.h"
81 
82 /**
83  * DOC: Transport layer - what is it ?
84  *
85  * The transport layer is the layer that deals with the HW directly. It provides
86  * an abstraction of the underlying HW to the upper layer. The transport layer
87  * doesn't provide any policy, algorithm or anything of this kind, but only
88  * mechanisms to make the HW do something. It is not completely stateless but
89  * close to it.
90  * We will have an implementation for each different supported bus.
91  */
92 
93 /**
94  * DOC: Life cycle of the transport layer
95  *
96  * The transport layer has a very precise life cycle.
97  *
98  *	1) A helper function is called during the module initialization and
99  *	   registers the bus driver's ops with the transport's alloc function.
100  *	2) Bus's probe calls to the transport layer's allocation functions.
101  *	   Of course this function is bus specific.
102  *	3) This allocation functions will spawn the upper layer which will
103  *	   register mac80211.
104  *
105  *	4) At some point (i.e. mac80211's start call), the op_mode will call
106  *	   the following sequence:
107  *	   start_hw
108  *	   start_fw
109  *
110  *	5) Then when finished (or reset):
111  *	   stop_device
112  *
113  *	6) Eventually, the free function will be called.
114  */
115 
116 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
117 #define FH_RSCSR_FRAME_INVALID		0x55550000
118 #define FH_RSCSR_FRAME_ALIGN		0x40
119 #define FH_RSCSR_RPA_EN			BIT(25)
120 #define FH_RSCSR_RADA_EN		BIT(26)
121 #define FH_RSCSR_RXQ_POS		16
122 #define FH_RSCSR_RXQ_MASK		0x3F0000
123 
124 struct iwl_rx_packet {
125 	/*
126 	 * The first 4 bytes of the RX frame header contain both the RX frame
127 	 * size and some flags.
128 	 * Bit fields:
129 	 * 31:    flag flush RB request
130 	 * 30:    flag ignore TC (terminal counter) request
131 	 * 29:    flag fast IRQ request
132 	 * 28-27: Reserved
133 	 * 26:    RADA enabled
134 	 * 25:    Offload enabled
135 	 * 24:    RPF enabled
136 	 * 23:    RSS enabled
137 	 * 22:    Checksum enabled
138 	 * 21-16: RX queue
139 	 * 15-14: Reserved
140 	 * 13-00: RX frame size
141 	 */
142 	__le32 len_n_flags;
143 	struct iwl_cmd_header hdr;
144 	u8 data[];
145 } __packed;
146 
147 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
148 {
149 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
150 }
151 
152 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
153 {
154 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
155 }
156 
157 /**
158  * enum CMD_MODE - how to send the host commands ?
159  *
160  * @CMD_ASYNC: Return right away and don't wait for the response
161  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
162  *	the response. The caller needs to call iwl_free_resp when done.
163  * @CMD_HIGH_PRIO: The command is high priority - it goes to the front of the
164  *	command queue, but after other high priority commands. Valid only
165  *	with CMD_ASYNC.
166  * @CMD_SEND_IN_IDLE: The command should be sent even when the trans is idle.
167  * @CMD_MAKE_TRANS_IDLE: The command response should mark the trans as idle.
168  * @CMD_WAKE_UP_TRANS: The command response should wake up the trans
169  *	(i.e. mark it as non-idle).
170  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
171  *	called after this command completes. Valid only with CMD_ASYNC.
172  */
173 enum CMD_MODE {
174 	CMD_ASYNC		= BIT(0),
175 	CMD_WANT_SKB		= BIT(1),
176 	CMD_SEND_IN_RFKILL	= BIT(2),
177 	CMD_HIGH_PRIO		= BIT(3),
178 	CMD_SEND_IN_IDLE	= BIT(4),
179 	CMD_MAKE_TRANS_IDLE	= BIT(5),
180 	CMD_WAKE_UP_TRANS	= BIT(6),
181 	CMD_WANT_ASYNC_CALLBACK	= BIT(7),
182 };
183 
184 #define DEF_CMD_PAYLOAD_SIZE 320
185 
186 /**
187  * struct iwl_device_cmd
188  *
189  * For allocation of the command and tx queues, this establishes the overall
190  * size of the largest command we send to uCode, except for commands that
191  * aren't fully copied and use other TFD space.
192  */
193 struct iwl_device_cmd {
194 	union {
195 		struct {
196 			struct iwl_cmd_header hdr;	/* uCode API */
197 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
198 		};
199 		struct {
200 			struct iwl_cmd_header_wide hdr_wide;
201 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
202 					sizeof(struct iwl_cmd_header_wide) +
203 					sizeof(struct iwl_cmd_header)];
204 		};
205 	};
206 } __packed;
207 
208 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
209 
210 /*
211  * number of transfer buffers (fragments) per transmit frame descriptor;
212  * this is just the driver's idea, the hardware supports 20
213  */
214 #define IWL_MAX_CMD_TBS_PER_TFD	2
215 
216 /**
217  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
218  *
219  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
220  *	ring. The transport layer doesn't map the command's buffer to DMA, but
221  *	rather copies it to a previously allocated DMA buffer. This flag tells
222  *	the transport layer not to copy the command, but to map the existing
223  *	buffer (that is passed in) instead. This saves the memcpy and allows
224  *	commands that are bigger than the fixed buffer to be submitted.
225  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
226  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
227  *	chunk internally and free it again after the command completes. This
228  *	can (currently) be used only once per command.
229  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
230  */
231 enum iwl_hcmd_dataflag {
232 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
233 	IWL_HCMD_DFL_DUP	= BIT(1),
234 };
235 
236 /**
237  * struct iwl_host_cmd - Host command to the uCode
238  *
239  * @data: array of chunks that composes the data of the host command
240  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
241  * @_rx_page_order: (internally used to free response packet)
242  * @_rx_page_addr: (internally used to free response packet)
243  * @flags: can be CMD_*
244  * @len: array of the lengths of the chunks in data
245  * @dataflags: IWL_HCMD_DFL_*
246  * @id: command id of the host command, for wide commands encoding the
247  *	version and group as well
248  */
249 struct iwl_host_cmd {
250 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
251 	struct iwl_rx_packet *resp_pkt;
252 	unsigned long _rx_page_addr;
253 	u32 _rx_page_order;
254 
255 	u32 flags;
256 	u32 id;
257 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
258 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
259 };
260 
261 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
262 {
263 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
264 }
265 
266 struct iwl_rx_cmd_buffer {
267 	struct page *_page;
268 	int _offset;
269 	bool _page_stolen;
270 	u32 _rx_page_order;
271 	unsigned int truesize;
272 };
273 
274 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
275 {
276 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
277 }
278 
279 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
280 {
281 	return r->_offset;
282 }
283 
284 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
285 {
286 	r->_page_stolen = true;
287 	get_page(r->_page);
288 	return r->_page;
289 }
290 
291 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
292 {
293 	__free_pages(r->_page, r->_rx_page_order);
294 }
295 
296 #define MAX_NO_RECLAIM_CMDS	6
297 
298 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
299 
300 /*
301  * Maximum number of HW queues the transport layer
302  * currently supports
303  */
304 #define IWL_MAX_HW_QUEUES		32
305 #define IWL_MAX_TVQM_QUEUES		512
306 
307 #define IWL_MAX_TID_COUNT	8
308 #define IWL_MGMT_TID		15
309 #define IWL_FRAME_LIMIT	64
310 #define IWL_MAX_RX_HW_QUEUES	16
311 
312 /**
313  * enum iwl_wowlan_status - WoWLAN image/device status
314  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
315  * @IWL_D3_STATUS_RESET: device was reset while suspended
316  */
317 enum iwl_d3_status {
318 	IWL_D3_STATUS_ALIVE,
319 	IWL_D3_STATUS_RESET,
320 };
321 
322 /**
323  * enum iwl_trans_status: transport status flags
324  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
325  * @STATUS_DEVICE_ENABLED: APM is enabled
326  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
327  * @STATUS_INT_ENABLED: interrupts are enabled
328  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
329  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
330  * @STATUS_FW_ERROR: the fw is in error state
331  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
332  *	are sent
333  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
334  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
335  */
336 enum iwl_trans_status {
337 	STATUS_SYNC_HCMD_ACTIVE,
338 	STATUS_DEVICE_ENABLED,
339 	STATUS_TPOWER_PMI,
340 	STATUS_INT_ENABLED,
341 	STATUS_RFKILL_HW,
342 	STATUS_RFKILL_OPMODE,
343 	STATUS_FW_ERROR,
344 	STATUS_TRANS_GOING_IDLE,
345 	STATUS_TRANS_IDLE,
346 	STATUS_TRANS_DEAD,
347 };
348 
349 static inline int
350 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
351 {
352 	switch (rb_size) {
353 	case IWL_AMSDU_2K:
354 		return get_order(2 * 1024);
355 	case IWL_AMSDU_4K:
356 		return get_order(4 * 1024);
357 	case IWL_AMSDU_8K:
358 		return get_order(8 * 1024);
359 	case IWL_AMSDU_12K:
360 		return get_order(12 * 1024);
361 	default:
362 		WARN_ON(1);
363 		return -1;
364 	}
365 }
366 
367 struct iwl_hcmd_names {
368 	u8 cmd_id;
369 	const char *const cmd_name;
370 };
371 
372 #define HCMD_NAME(x)	\
373 	{ .cmd_id = x, .cmd_name = #x }
374 
375 struct iwl_hcmd_arr {
376 	const struct iwl_hcmd_names *arr;
377 	int size;
378 };
379 
380 #define HCMD_ARR(x)	\
381 	{ .arr = x, .size = ARRAY_SIZE(x) }
382 
383 /**
384  * struct iwl_trans_config - transport configuration
385  *
386  * @op_mode: pointer to the upper layer.
387  * @cmd_queue: the index of the command queue.
388  *	Must be set before start_fw.
389  * @cmd_fifo: the fifo for host commands
390  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
391  * @no_reclaim_cmds: Some devices erroneously don't set the
392  *	SEQ_RX_FRAME bit on some notifications, this is the
393  *	list of such notifications to filter. Max length is
394  *	%MAX_NO_RECLAIM_CMDS.
395  * @n_no_reclaim_cmds: # of commands in list
396  * @rx_buf_size: RX buffer size needed for A-MSDUs
397  *	if unset 4k will be the RX buffer size
398  * @bc_table_dword: set to true if the BC table expects the byte count to be
399  *	in DWORD (as opposed to bytes)
400  * @scd_set_active: should the transport configure the SCD for HCMD queue
401  * @sw_csum_tx: transport should compute the TCP checksum
402  * @command_groups: array of command groups, each member is an array of the
403  *	commands in the group; for debugging only
404  * @command_groups_size: number of command groups, to avoid illegal access
405  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
406  *	space for at least two pointers
407  */
408 struct iwl_trans_config {
409 	struct iwl_op_mode *op_mode;
410 
411 	u8 cmd_queue;
412 	u8 cmd_fifo;
413 	unsigned int cmd_q_wdg_timeout;
414 	const u8 *no_reclaim_cmds;
415 	unsigned int n_no_reclaim_cmds;
416 
417 	enum iwl_amsdu_size rx_buf_size;
418 	bool bc_table_dword;
419 	bool scd_set_active;
420 	bool sw_csum_tx;
421 	const struct iwl_hcmd_arr *command_groups;
422 	int command_groups_size;
423 
424 	u8 cb_data_offs;
425 };
426 
427 struct iwl_trans_dump_data {
428 	u32 len;
429 	u8 data[];
430 };
431 
432 struct iwl_trans;
433 
434 struct iwl_trans_txq_scd_cfg {
435 	u8 fifo;
436 	u8 sta_id;
437 	u8 tid;
438 	bool aggregate;
439 	int frame_limit;
440 };
441 
442 /**
443  * struct iwl_trans_rxq_dma_data - RX queue DMA data
444  * @fr_bd_cb: DMA address of free BD cyclic buffer
445  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
446  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
447  * @ur_bd_cb: DMA address of used BD cyclic buffer
448  */
449 struct iwl_trans_rxq_dma_data {
450 	u64 fr_bd_cb;
451 	u32 fr_bd_wid;
452 	u64 urbd_stts_wrptr;
453 	u64 ur_bd_cb;
454 };
455 
456 /**
457  * struct iwl_trans_ops - transport specific operations
458  *
459  * All the handlers MUST be implemented
460  *
461  * @start_hw: starts the HW. If low_power is true, the NIC needs to be taken
462  *	out of a low power state. From that point on, the HW can send
463  *	interrupts. May sleep.
464  * @op_mode_leave: Turn off the HW RF kill indication if on
465  *	May sleep
466  * @start_fw: allocates and inits all the resources for the transport
467  *	layer. Also kick a fw image.
468  *	May sleep
469  * @fw_alive: called when the fw sends alive notification. If the fw provides
470  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
471  *	May sleep
472  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
473  *	the HW. If low_power is true, the NIC will be put in low power state.
474  *	From that point on, the HW will be stopped but will still issue an
475  *	interrupt if the HW RF kill switch is triggered.
476  *	This callback must do the right thing and not crash even if %start_hw()
477  *	was called but not &start_fw(). May sleep.
478  * @d3_suspend: put the device into the correct mode for WoWLAN during
479  *	suspend. This is optional, if not implemented WoWLAN will not be
480  *	supported. This callback may sleep.
481  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
482  *	talk to the WoWLAN image to get its status. This is optional, if not
483  *	implemented WoWLAN will not be supported. This callback may sleep.
484  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
485  *	If RFkill is asserted in the middle of a SYNC host command, it must
486  *	return -ERFKILL straight away.
487  *	May sleep only if CMD_ASYNC is not set
488  * @tx: send an skb. The transport relies on the op_mode to zero the
489  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
490  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
491  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
492  *	header if it is IPv4.
493  *	Must be atomic
494  * @reclaim: free packet until ssn. Returns a list of freed packets.
495  *	Must be atomic
496  * @txq_enable: setup a queue. To setup an AC queue, use the
497  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
498  *	this one. The op_mode must not configure the HCMD queue. The scheduler
499  *	configuration may be %NULL, in which case the hardware will not be
500  *	configured. If true is returned, the operation mode needs to increment
501  *	the sequence number of the packets routed to this queue because of a
502  *	hardware scheduler bug. May sleep.
503  * @txq_disable: de-configure a Tx queue to send AMPDUs
504  *	Must be atomic
505  * @txq_set_shared_mode: change Tx queue shared/unshared marking
506  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
507  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
508  * @freeze_txq_timer: prevents the timer of the queue from firing until the
509  *	queue is set to awake. Must be atomic.
510  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
511  *	that the transport needs to refcount the calls since this function
512  *	will be called several times with block = true, and then the queues
513  *	need to be unblocked only after the same number of calls with
514  *	block = false.
515  * @write8: write a u8 to a register at offset ofs from the BAR
516  * @write32: write a u32 to a register at offset ofs from the BAR
517  * @read32: read a u32 register at offset ofs from the BAR
518  * @read_prph: read a DWORD from a periphery register
519  * @write_prph: write a DWORD to a periphery register
520  * @read_mem: read device's SRAM in DWORD
521  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
522  *	will be zeroed.
523  * @configure: configure parameters required by the transport layer from
524  *	the op_mode. May be called several times before start_fw, can't be
525  *	called after that.
526  * @set_pmi: set the power pmi state
527  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
528  *	Sleeping is not allowed between grab_nic_access and
529  *	release_nic_access.
530  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
531  *	must be the same one that was sent before to the grab_nic_access.
532  * @set_bits_mask - set SRAM register according to value and mask.
533  * @ref: grab a reference to the transport/FW layers, disallowing
534  *	certain low power states
535  * @unref: release a reference previously taken with @ref. Note that
536  *	initially the reference count is 1, making an initial @unref
537  *	necessary to allow low power states.
538  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
539  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
540  *	Note that the transport must fill in the proper file headers.
541  * @dump_regs: dump using IWL_ERR configuration space and memory mapped
542  *	registers of the device to diagnose failure, e.g., when HW becomes
543  *	inaccessible.
544  */
545 struct iwl_trans_ops {
546 
547 	int (*start_hw)(struct iwl_trans *iwl_trans, bool low_power);
548 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
549 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
550 			bool run_in_rfkill);
551 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
552 	void (*stop_device)(struct iwl_trans *trans, bool low_power);
553 
554 	void (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
555 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
556 			 bool test, bool reset);
557 
558 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
559 
560 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
561 		  struct iwl_device_cmd *dev_cmd, int queue);
562 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
563 			struct sk_buff_head *skbs);
564 
565 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
566 			   const struct iwl_trans_txq_scd_cfg *cfg,
567 			   unsigned int queue_wdg_timeout);
568 	void (*txq_disable)(struct iwl_trans *trans, int queue,
569 			    bool configure_scd);
570 	/* 22000 functions */
571 	int (*txq_alloc)(struct iwl_trans *trans,
572 			 struct iwl_tx_queue_cfg_cmd *cmd,
573 			 int cmd_id, int size,
574 			 unsigned int queue_wdg_timeout);
575 	void (*txq_free)(struct iwl_trans *trans, int queue);
576 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
577 			    struct iwl_trans_rxq_dma_data *data);
578 
579 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
580 				    bool shared);
581 
582 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
583 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
584 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
585 				 bool freeze);
586 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
587 
588 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
589 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
590 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
591 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
592 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
593 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
594 			void *buf, int dwords);
595 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
596 			 const void *buf, int dwords);
597 	void (*configure)(struct iwl_trans *trans,
598 			  const struct iwl_trans_config *trans_cfg);
599 	void (*set_pmi)(struct iwl_trans *trans, bool state);
600 	void (*sw_reset)(struct iwl_trans *trans);
601 	bool (*grab_nic_access)(struct iwl_trans *trans, unsigned long *flags);
602 	void (*release_nic_access)(struct iwl_trans *trans,
603 				   unsigned long *flags);
604 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
605 			      u32 value);
606 	void (*ref)(struct iwl_trans *trans);
607 	void (*unref)(struct iwl_trans *trans);
608 	int  (*suspend)(struct iwl_trans *trans);
609 	void (*resume)(struct iwl_trans *trans);
610 
611 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
612 						 const struct iwl_fw_dbg_trigger_tlv
613 						 *trigger);
614 
615 	void (*dump_regs)(struct iwl_trans *trans);
616 };
617 
618 /**
619  * enum iwl_trans_state - state of the transport layer
620  *
621  * @IWL_TRANS_NO_FW: no fw has sent an alive response
622  * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response
623  */
624 enum iwl_trans_state {
625 	IWL_TRANS_NO_FW = 0,
626 	IWL_TRANS_FW_ALIVE	= 1,
627 };
628 
629 /**
630  * DOC: Platform power management
631  *
632  * There are two types of platform power management: system-wide
633  * (WoWLAN) and runtime.
634  *
635  * In system-wide power management the entire platform goes into a low
636  * power state (e.g. idle or suspend to RAM) at the same time and the
637  * device is configured as a wakeup source for the entire platform.
638  * This is usually triggered by userspace activity (e.g. the user
639  * presses the suspend button or a power management daemon decides to
640  * put the platform in low power mode).  The device's behavior in this
641  * mode is dictated by the wake-on-WLAN configuration.
642  *
643  * In runtime power management, only the devices which are themselves
644  * idle enter a low power state.  This is done at runtime, which means
645  * that the entire system is still running normally.  This mode is
646  * usually triggered automatically by the device driver and requires
647  * the ability to enter and exit the low power modes in a very short
648  * time, so there is not much impact in usability.
649  *
650  * The terms used for the device's behavior are as follows:
651  *
652  *	- D0: the device is fully powered and the host is awake;
653  *	- D3: the device is in low power mode and only reacts to
654  *		specific events (e.g. magic-packet received or scan
655  *		results found);
656  *	- D0I3: the device is in low power mode and reacts to any
657  *		activity (e.g. RX);
658  *
659  * These terms reflect the power modes in the firmware and are not to
660  * be confused with the physical device power state.  The NIC can be
661  * in D0I3 mode even if, for instance, the PCI device is in D3 state.
662  */
663 
664 /**
665  * enum iwl_plat_pm_mode - platform power management mode
666  *
667  * This enumeration describes the device's platform power management
668  * behavior when in idle mode (i.e. runtime power management) or when
669  * in system-wide suspend (i.e WoWLAN).
670  *
671  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
672  *	device.  At runtime, this means that nothing happens and the
673  *	device always remains in active.  In system-wide suspend mode,
674  *	it means that the all connections will be closed automatically
675  *	by mac80211 before the platform is suspended.
676  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
677  *	For runtime power management, this mode is not officially
678  *	supported.
679  * @IWL_PLAT_PM_MODE_D0I3: the device goes into D0I3 mode.
680  */
681 enum iwl_plat_pm_mode {
682 	IWL_PLAT_PM_MODE_DISABLED,
683 	IWL_PLAT_PM_MODE_D3,
684 	IWL_PLAT_PM_MODE_D0I3,
685 };
686 
687 /* Max time to wait for trans to become idle/non-idle on d0i3
688  * enter/exit (in msecs).
689  */
690 #define IWL_TRANS_IDLE_TIMEOUT 2000
691 
692 /**
693  * struct iwl_trans - transport common data
694  *
695  * @ops - pointer to iwl_trans_ops
696  * @op_mode - pointer to the op_mode
697  * @cfg - pointer to the configuration
698  * @drv - pointer to iwl_drv
699  * @status: a bit-mask of transport status flags
700  * @dev - pointer to struct device * that represents the device
701  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
702  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
703  * @hw_rf_id a u32 with the device RF ID
704  * @hw_id: a u32 with the ID of the device / sub-device.
705  *	Set during transport allocation.
706  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
707  * @pm_support: set to true in start_hw if link pm is supported
708  * @ltr_enabled: set to true if the LTR is enabled
709  * @wide_cmd_header: true when ucode supports wide command header format
710  * @num_rx_queues: number of RX queues allocated by the transport;
711  *	the transport must set this before calling iwl_drv_start()
712  * @iml_len: the length of the image loader
713  * @iml: a pointer to the image loader itself
714  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
715  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
716  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
717  *	starting the firmware, used for tracing
718  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
719  *	start of the 802.11 header in the @rx_mpdu_cmd
720  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
721  * @dbg_dest_tlv: points to the destination TLV for debug
722  * @dbg_conf_tlv: array of pointers to configuration TLVs for debug
723  * @dbg_trigger_tlv: array of pointers to triggers TLVs for debug
724  * @dbg_dest_reg_num: num of reg_ops in %dbg_dest_tlv
725  * @system_pm_mode: the system-wide power management mode in use.
726  *	This mode is set dynamically, depending on the WoWLAN values
727  *	configured from the userspace at runtime.
728  * @runtime_pm_mode: the runtime power management mode in use.  This
729  *	mode is set during the initialization phase and is not
730  *	supposed to change during runtime.
731  */
732 struct iwl_trans {
733 	const struct iwl_trans_ops *ops;
734 	struct iwl_op_mode *op_mode;
735 	const struct iwl_cfg *cfg;
736 	struct iwl_drv *drv;
737 	enum iwl_trans_state state;
738 	unsigned long status;
739 
740 	struct device *dev;
741 	u32 max_skb_frags;
742 	u32 hw_rev;
743 	u32 hw_rf_id;
744 	u32 hw_id;
745 	char hw_id_str[52];
746 
747 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
748 
749 	bool pm_support;
750 	bool ltr_enabled;
751 
752 	const struct iwl_hcmd_arr *command_groups;
753 	int command_groups_size;
754 	bool wide_cmd_header;
755 
756 	u8 num_rx_queues;
757 
758 	size_t iml_len;
759 	u8 *iml;
760 
761 	/* The following fields are internal only */
762 	struct kmem_cache *dev_cmd_pool;
763 	char dev_cmd_pool_name[50];
764 
765 	struct dentry *dbgfs_dir;
766 
767 #ifdef CONFIG_LOCKDEP
768 	struct lockdep_map sync_cmd_lockdep_map;
769 #endif
770 
771 	const struct iwl_fw_dbg_dest_tlv_v1 *dbg_dest_tlv;
772 	const struct iwl_fw_dbg_conf_tlv *dbg_conf_tlv[FW_DBG_CONF_MAX];
773 	struct iwl_fw_dbg_trigger_tlv * const *dbg_trigger_tlv;
774 	u32 dbg_dump_mask;
775 	u8 dbg_dest_reg_num;
776 
777 	enum iwl_plat_pm_mode system_pm_mode;
778 	enum iwl_plat_pm_mode runtime_pm_mode;
779 	bool suspending;
780 
781 	/* pointer to trans specific struct */
782 	/*Ensure that this pointer will always be aligned to sizeof pointer */
783 	char trans_specific[0] __aligned(sizeof(void *));
784 };
785 
786 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
787 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
788 
789 static inline void iwl_trans_configure(struct iwl_trans *trans,
790 				       const struct iwl_trans_config *trans_cfg)
791 {
792 	trans->op_mode = trans_cfg->op_mode;
793 
794 	trans->ops->configure(trans, trans_cfg);
795 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
796 }
797 
798 static inline int _iwl_trans_start_hw(struct iwl_trans *trans, bool low_power)
799 {
800 	might_sleep();
801 
802 	return trans->ops->start_hw(trans, low_power);
803 }
804 
805 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
806 {
807 	return trans->ops->start_hw(trans, true);
808 }
809 
810 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
811 {
812 	might_sleep();
813 
814 	if (trans->ops->op_mode_leave)
815 		trans->ops->op_mode_leave(trans);
816 
817 	trans->op_mode = NULL;
818 
819 	trans->state = IWL_TRANS_NO_FW;
820 }
821 
822 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
823 {
824 	might_sleep();
825 
826 	trans->state = IWL_TRANS_FW_ALIVE;
827 
828 	trans->ops->fw_alive(trans, scd_addr);
829 }
830 
831 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
832 				     const struct fw_img *fw,
833 				     bool run_in_rfkill)
834 {
835 	might_sleep();
836 
837 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
838 
839 	clear_bit(STATUS_FW_ERROR, &trans->status);
840 	return trans->ops->start_fw(trans, fw, run_in_rfkill);
841 }
842 
843 static inline void _iwl_trans_stop_device(struct iwl_trans *trans,
844 					  bool low_power)
845 {
846 	might_sleep();
847 
848 	trans->ops->stop_device(trans, low_power);
849 
850 	trans->state = IWL_TRANS_NO_FW;
851 }
852 
853 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
854 {
855 	_iwl_trans_stop_device(trans, true);
856 }
857 
858 static inline void iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
859 					bool reset)
860 {
861 	might_sleep();
862 	if (trans->ops->d3_suspend)
863 		trans->ops->d3_suspend(trans, test, reset);
864 }
865 
866 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
867 				      enum iwl_d3_status *status,
868 				      bool test, bool reset)
869 {
870 	might_sleep();
871 	if (!trans->ops->d3_resume)
872 		return 0;
873 
874 	return trans->ops->d3_resume(trans, status, test, reset);
875 }
876 
877 static inline int iwl_trans_suspend(struct iwl_trans *trans)
878 {
879 	if (!trans->ops->suspend)
880 		return 0;
881 
882 	return trans->ops->suspend(trans);
883 }
884 
885 static inline void iwl_trans_resume(struct iwl_trans *trans)
886 {
887 	if (trans->ops->resume)
888 		trans->ops->resume(trans);
889 }
890 
891 static inline struct iwl_trans_dump_data *
892 iwl_trans_dump_data(struct iwl_trans *trans,
893 		    const struct iwl_fw_dbg_trigger_tlv *trigger)
894 {
895 	if (!trans->ops->dump_data)
896 		return NULL;
897 	return trans->ops->dump_data(trans, trigger);
898 }
899 
900 static inline void iwl_trans_dump_regs(struct iwl_trans *trans)
901 {
902 	if (trans->ops->dump_regs)
903 		trans->ops->dump_regs(trans);
904 }
905 
906 static inline struct iwl_device_cmd *
907 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
908 {
909 	return kmem_cache_alloc(trans->dev_cmd_pool, GFP_ATOMIC);
910 }
911 
912 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
913 
914 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
915 					 struct iwl_device_cmd *dev_cmd)
916 {
917 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
918 }
919 
920 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
921 			       struct iwl_device_cmd *dev_cmd, int queue)
922 {
923 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
924 		return -EIO;
925 
926 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
927 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
928 		return -EIO;
929 	}
930 
931 	return trans->ops->tx(trans, skb, dev_cmd, queue);
932 }
933 
934 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
935 				     int ssn, struct sk_buff_head *skbs)
936 {
937 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
938 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
939 		return;
940 	}
941 
942 	trans->ops->reclaim(trans, queue, ssn, skbs);
943 }
944 
945 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
946 					 bool configure_scd)
947 {
948 	trans->ops->txq_disable(trans, queue, configure_scd);
949 }
950 
951 static inline bool
952 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
953 			 const struct iwl_trans_txq_scd_cfg *cfg,
954 			 unsigned int queue_wdg_timeout)
955 {
956 	might_sleep();
957 
958 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
959 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
960 		return false;
961 	}
962 
963 	return trans->ops->txq_enable(trans, queue, ssn,
964 				      cfg, queue_wdg_timeout);
965 }
966 
967 static inline int
968 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
969 			   struct iwl_trans_rxq_dma_data *data)
970 {
971 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
972 		return -ENOTSUPP;
973 
974 	return trans->ops->rxq_dma_data(trans, queue, data);
975 }
976 
977 static inline void
978 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
979 {
980 	if (WARN_ON_ONCE(!trans->ops->txq_free))
981 		return;
982 
983 	trans->ops->txq_free(trans, queue);
984 }
985 
986 static inline int
987 iwl_trans_txq_alloc(struct iwl_trans *trans,
988 		    struct iwl_tx_queue_cfg_cmd *cmd,
989 		    int cmd_id, int size,
990 		    unsigned int wdg_timeout)
991 {
992 	might_sleep();
993 
994 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
995 		return -ENOTSUPP;
996 
997 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
998 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
999 		return -EIO;
1000 	}
1001 
1002 	return trans->ops->txq_alloc(trans, cmd, cmd_id, size, wdg_timeout);
1003 }
1004 
1005 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1006 						 int queue, bool shared_mode)
1007 {
1008 	if (trans->ops->txq_set_shared_mode)
1009 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1010 }
1011 
1012 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1013 					int fifo, int sta_id, int tid,
1014 					int frame_limit, u16 ssn,
1015 					unsigned int queue_wdg_timeout)
1016 {
1017 	struct iwl_trans_txq_scd_cfg cfg = {
1018 		.fifo = fifo,
1019 		.sta_id = sta_id,
1020 		.tid = tid,
1021 		.frame_limit = frame_limit,
1022 		.aggregate = sta_id >= 0,
1023 	};
1024 
1025 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1026 }
1027 
1028 static inline
1029 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1030 			     unsigned int queue_wdg_timeout)
1031 {
1032 	struct iwl_trans_txq_scd_cfg cfg = {
1033 		.fifo = fifo,
1034 		.sta_id = -1,
1035 		.tid = IWL_MAX_TID_COUNT,
1036 		.frame_limit = IWL_FRAME_LIMIT,
1037 		.aggregate = false,
1038 	};
1039 
1040 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1041 }
1042 
1043 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1044 					      unsigned long txqs,
1045 					      bool freeze)
1046 {
1047 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1048 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1049 		return;
1050 	}
1051 
1052 	if (trans->ops->freeze_txq_timer)
1053 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1054 }
1055 
1056 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1057 					    bool block)
1058 {
1059 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1060 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1061 		return;
1062 	}
1063 
1064 	if (trans->ops->block_txq_ptrs)
1065 		trans->ops->block_txq_ptrs(trans, block);
1066 }
1067 
1068 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1069 						 u32 txqs)
1070 {
1071 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1072 		return -ENOTSUPP;
1073 
1074 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1075 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1076 		return -EIO;
1077 	}
1078 
1079 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1080 }
1081 
1082 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1083 {
1084 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1085 		return -ENOTSUPP;
1086 
1087 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1088 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1089 		return -EIO;
1090 	}
1091 
1092 	return trans->ops->wait_txq_empty(trans, queue);
1093 }
1094 
1095 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1096 {
1097 	trans->ops->write8(trans, ofs, val);
1098 }
1099 
1100 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1101 {
1102 	trans->ops->write32(trans, ofs, val);
1103 }
1104 
1105 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1106 {
1107 	return trans->ops->read32(trans, ofs);
1108 }
1109 
1110 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1111 {
1112 	return trans->ops->read_prph(trans, ofs);
1113 }
1114 
1115 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1116 					u32 val)
1117 {
1118 	return trans->ops->write_prph(trans, ofs, val);
1119 }
1120 
1121 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1122 				     void *buf, int dwords)
1123 {
1124 	return trans->ops->read_mem(trans, addr, buf, dwords);
1125 }
1126 
1127 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1128 	do {								      \
1129 		if (__builtin_constant_p(bufsize))			      \
1130 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1131 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1132 	} while (0)
1133 
1134 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1135 {
1136 	u32 value;
1137 
1138 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1139 		return 0xa5a5a5a5;
1140 
1141 	return value;
1142 }
1143 
1144 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1145 				      const void *buf, int dwords)
1146 {
1147 	return trans->ops->write_mem(trans, addr, buf, dwords);
1148 }
1149 
1150 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1151 					u32 val)
1152 {
1153 	return iwl_trans_write_mem(trans, addr, &val, 1);
1154 }
1155 
1156 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1157 {
1158 	if (trans->ops->set_pmi)
1159 		trans->ops->set_pmi(trans, state);
1160 }
1161 
1162 static inline void iwl_trans_sw_reset(struct iwl_trans *trans)
1163 {
1164 	if (trans->ops->sw_reset)
1165 		trans->ops->sw_reset(trans);
1166 }
1167 
1168 static inline void
1169 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1170 {
1171 	trans->ops->set_bits_mask(trans, reg, mask, value);
1172 }
1173 
1174 #define iwl_trans_grab_nic_access(trans, flags)	\
1175 	__cond_lock(nic_access,				\
1176 		    likely((trans)->ops->grab_nic_access(trans, flags)))
1177 
1178 static inline void __releases(nic_access)
1179 iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags)
1180 {
1181 	trans->ops->release_nic_access(trans, flags);
1182 	__release(nic_access);
1183 }
1184 
1185 static inline void iwl_trans_fw_error(struct iwl_trans *trans)
1186 {
1187 	if (WARN_ON_ONCE(!trans->op_mode))
1188 		return;
1189 
1190 	/* prevent double restarts due to the same erroneous FW */
1191 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status))
1192 		iwl_op_mode_nic_error(trans->op_mode);
1193 }
1194 
1195 /*****************************************************
1196  * transport helper functions
1197  *****************************************************/
1198 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1199 				  struct device *dev,
1200 				  const struct iwl_cfg *cfg,
1201 				  const struct iwl_trans_ops *ops);
1202 void iwl_trans_free(struct iwl_trans *trans);
1203 void iwl_trans_ref(struct iwl_trans *trans);
1204 void iwl_trans_unref(struct iwl_trans *trans);
1205 
1206 /*****************************************************
1207 * driver (transport) register/unregister functions
1208 ******************************************************/
1209 int __must_check iwl_pci_register_driver(void);
1210 void iwl_pci_unregister_driver(void);
1211 
1212 #endif /* __iwl_trans_h__ */
1213