1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  *****************************************************************************/
67 #ifndef __iwl_trans_h__
68 #define __iwl_trans_h__
69 
70 #include <linux/ieee80211.h>
71 #include <linux/mm.h> /* for page_address */
72 #include <linux/lockdep.h>
73 #include <linux/kernel.h>
74 
75 #include "iwl-debug.h"
76 #include "iwl-config.h"
77 #include "fw/img.h"
78 #include "iwl-op-mode.h"
79 #include "fw/api/cmdhdr.h"
80 #include "fw/api/txq.h"
81 
82 /**
83  * DOC: Transport layer - what is it ?
84  *
85  * The transport layer is the layer that deals with the HW directly. It provides
86  * an abstraction of the underlying HW to the upper layer. The transport layer
87  * doesn't provide any policy, algorithm or anything of this kind, but only
88  * mechanisms to make the HW do something. It is not completely stateless but
89  * close to it.
90  * We will have an implementation for each different supported bus.
91  */
92 
93 /**
94  * DOC: Life cycle of the transport layer
95  *
96  * The transport layer has a very precise life cycle.
97  *
98  *	1) A helper function is called during the module initialization and
99  *	   registers the bus driver's ops with the transport's alloc function.
100  *	2) Bus's probe calls to the transport layer's allocation functions.
101  *	   Of course this function is bus specific.
102  *	3) This allocation functions will spawn the upper layer which will
103  *	   register mac80211.
104  *
105  *	4) At some point (i.e. mac80211's start call), the op_mode will call
106  *	   the following sequence:
107  *	   start_hw
108  *	   start_fw
109  *
110  *	5) Then when finished (or reset):
111  *	   stop_device
112  *
113  *	6) Eventually, the free function will be called.
114  */
115 
116 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
117 #define FH_RSCSR_FRAME_INVALID		0x55550000
118 #define FH_RSCSR_FRAME_ALIGN		0x40
119 #define FH_RSCSR_RPA_EN			BIT(25)
120 #define FH_RSCSR_RADA_EN		BIT(26)
121 #define FH_RSCSR_RXQ_POS		16
122 #define FH_RSCSR_RXQ_MASK		0x3F0000
123 
124 struct iwl_rx_packet {
125 	/*
126 	 * The first 4 bytes of the RX frame header contain both the RX frame
127 	 * size and some flags.
128 	 * Bit fields:
129 	 * 31:    flag flush RB request
130 	 * 30:    flag ignore TC (terminal counter) request
131 	 * 29:    flag fast IRQ request
132 	 * 28-27: Reserved
133 	 * 26:    RADA enabled
134 	 * 25:    Offload enabled
135 	 * 24:    RPF enabled
136 	 * 23:    RSS enabled
137 	 * 22:    Checksum enabled
138 	 * 21-16: RX queue
139 	 * 15-14: Reserved
140 	 * 13-00: RX frame size
141 	 */
142 	__le32 len_n_flags;
143 	struct iwl_cmd_header hdr;
144 	u8 data[];
145 } __packed;
146 
147 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
148 {
149 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
150 }
151 
152 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
153 {
154 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
155 }
156 
157 /**
158  * enum CMD_MODE - how to send the host commands ?
159  *
160  * @CMD_ASYNC: Return right away and don't wait for the response
161  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
162  *	the response. The caller needs to call iwl_free_resp when done.
163  * @CMD_HIGH_PRIO: The command is high priority - it goes to the front of the
164  *	command queue, but after other high priority commands. Valid only
165  *	with CMD_ASYNC.
166  * @CMD_SEND_IN_IDLE: The command should be sent even when the trans is idle.
167  * @CMD_MAKE_TRANS_IDLE: The command response should mark the trans as idle.
168  * @CMD_WAKE_UP_TRANS: The command response should wake up the trans
169  *	(i.e. mark it as non-idle).
170  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
171  *	called after this command completes. Valid only with CMD_ASYNC.
172  */
173 enum CMD_MODE {
174 	CMD_ASYNC		= BIT(0),
175 	CMD_WANT_SKB		= BIT(1),
176 	CMD_SEND_IN_RFKILL	= BIT(2),
177 	CMD_HIGH_PRIO		= BIT(3),
178 	CMD_SEND_IN_IDLE	= BIT(4),
179 	CMD_MAKE_TRANS_IDLE	= BIT(5),
180 	CMD_WAKE_UP_TRANS	= BIT(6),
181 	CMD_WANT_ASYNC_CALLBACK	= BIT(7),
182 };
183 
184 #define DEF_CMD_PAYLOAD_SIZE 320
185 
186 /**
187  * struct iwl_device_cmd
188  *
189  * For allocation of the command and tx queues, this establishes the overall
190  * size of the largest command we send to uCode, except for commands that
191  * aren't fully copied and use other TFD space.
192  */
193 struct iwl_device_cmd {
194 	union {
195 		struct {
196 			struct iwl_cmd_header hdr;	/* uCode API */
197 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
198 		};
199 		struct {
200 			struct iwl_cmd_header_wide hdr_wide;
201 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
202 					sizeof(struct iwl_cmd_header_wide) +
203 					sizeof(struct iwl_cmd_header)];
204 		};
205 	};
206 } __packed;
207 
208 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
209 
210 /*
211  * number of transfer buffers (fragments) per transmit frame descriptor;
212  * this is just the driver's idea, the hardware supports 20
213  */
214 #define IWL_MAX_CMD_TBS_PER_TFD	2
215 
216 /**
217  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
218  *
219  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
220  *	ring. The transport layer doesn't map the command's buffer to DMA, but
221  *	rather copies it to a previously allocated DMA buffer. This flag tells
222  *	the transport layer not to copy the command, but to map the existing
223  *	buffer (that is passed in) instead. This saves the memcpy and allows
224  *	commands that are bigger than the fixed buffer to be submitted.
225  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
226  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
227  *	chunk internally and free it again after the command completes. This
228  *	can (currently) be used only once per command.
229  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
230  */
231 enum iwl_hcmd_dataflag {
232 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
233 	IWL_HCMD_DFL_DUP	= BIT(1),
234 };
235 
236 /**
237  * struct iwl_host_cmd - Host command to the uCode
238  *
239  * @data: array of chunks that composes the data of the host command
240  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
241  * @_rx_page_order: (internally used to free response packet)
242  * @_rx_page_addr: (internally used to free response packet)
243  * @flags: can be CMD_*
244  * @len: array of the lengths of the chunks in data
245  * @dataflags: IWL_HCMD_DFL_*
246  * @id: command id of the host command, for wide commands encoding the
247  *	version and group as well
248  */
249 struct iwl_host_cmd {
250 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
251 	struct iwl_rx_packet *resp_pkt;
252 	unsigned long _rx_page_addr;
253 	u32 _rx_page_order;
254 
255 	u32 flags;
256 	u32 id;
257 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
258 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
259 };
260 
261 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
262 {
263 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
264 }
265 
266 struct iwl_rx_cmd_buffer {
267 	struct page *_page;
268 	int _offset;
269 	bool _page_stolen;
270 	u32 _rx_page_order;
271 	unsigned int truesize;
272 };
273 
274 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
275 {
276 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
277 }
278 
279 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
280 {
281 	return r->_offset;
282 }
283 
284 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
285 {
286 	r->_page_stolen = true;
287 	get_page(r->_page);
288 	return r->_page;
289 }
290 
291 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
292 {
293 	__free_pages(r->_page, r->_rx_page_order);
294 }
295 
296 #define MAX_NO_RECLAIM_CMDS	6
297 
298 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
299 
300 /*
301  * Maximum number of HW queues the transport layer
302  * currently supports
303  */
304 #define IWL_MAX_HW_QUEUES		32
305 #define IWL_MAX_TVQM_QUEUES		512
306 
307 #define IWL_MAX_TID_COUNT	8
308 #define IWL_MGMT_TID		15
309 #define IWL_FRAME_LIMIT	64
310 #define IWL_MAX_RX_HW_QUEUES	16
311 
312 /**
313  * enum iwl_wowlan_status - WoWLAN image/device status
314  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
315  * @IWL_D3_STATUS_RESET: device was reset while suspended
316  */
317 enum iwl_d3_status {
318 	IWL_D3_STATUS_ALIVE,
319 	IWL_D3_STATUS_RESET,
320 };
321 
322 /**
323  * enum iwl_trans_status: transport status flags
324  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
325  * @STATUS_DEVICE_ENABLED: APM is enabled
326  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
327  * @STATUS_INT_ENABLED: interrupts are enabled
328  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
329  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
330  * @STATUS_FW_ERROR: the fw is in error state
331  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
332  *	are sent
333  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
334  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
335  */
336 enum iwl_trans_status {
337 	STATUS_SYNC_HCMD_ACTIVE,
338 	STATUS_DEVICE_ENABLED,
339 	STATUS_TPOWER_PMI,
340 	STATUS_INT_ENABLED,
341 	STATUS_RFKILL_HW,
342 	STATUS_RFKILL_OPMODE,
343 	STATUS_FW_ERROR,
344 	STATUS_TRANS_GOING_IDLE,
345 	STATUS_TRANS_IDLE,
346 	STATUS_TRANS_DEAD,
347 };
348 
349 static inline int
350 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
351 {
352 	switch (rb_size) {
353 	case IWL_AMSDU_4K:
354 		return get_order(4 * 1024);
355 	case IWL_AMSDU_8K:
356 		return get_order(8 * 1024);
357 	case IWL_AMSDU_12K:
358 		return get_order(12 * 1024);
359 	default:
360 		WARN_ON(1);
361 		return -1;
362 	}
363 }
364 
365 struct iwl_hcmd_names {
366 	u8 cmd_id;
367 	const char *const cmd_name;
368 };
369 
370 #define HCMD_NAME(x)	\
371 	{ .cmd_id = x, .cmd_name = #x }
372 
373 struct iwl_hcmd_arr {
374 	const struct iwl_hcmd_names *arr;
375 	int size;
376 };
377 
378 #define HCMD_ARR(x)	\
379 	{ .arr = x, .size = ARRAY_SIZE(x) }
380 
381 /**
382  * struct iwl_trans_config - transport configuration
383  *
384  * @op_mode: pointer to the upper layer.
385  * @cmd_queue: the index of the command queue.
386  *	Must be set before start_fw.
387  * @cmd_fifo: the fifo for host commands
388  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
389  * @no_reclaim_cmds: Some devices erroneously don't set the
390  *	SEQ_RX_FRAME bit on some notifications, this is the
391  *	list of such notifications to filter. Max length is
392  *	%MAX_NO_RECLAIM_CMDS.
393  * @n_no_reclaim_cmds: # of commands in list
394  * @rx_buf_size: RX buffer size needed for A-MSDUs
395  *	if unset 4k will be the RX buffer size
396  * @bc_table_dword: set to true if the BC table expects the byte count to be
397  *	in DWORD (as opposed to bytes)
398  * @scd_set_active: should the transport configure the SCD for HCMD queue
399  * @sw_csum_tx: transport should compute the TCP checksum
400  * @command_groups: array of command groups, each member is an array of the
401  *	commands in the group; for debugging only
402  * @command_groups_size: number of command groups, to avoid illegal access
403  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
404  *	space for at least two pointers
405  */
406 struct iwl_trans_config {
407 	struct iwl_op_mode *op_mode;
408 
409 	u8 cmd_queue;
410 	u8 cmd_fifo;
411 	unsigned int cmd_q_wdg_timeout;
412 	const u8 *no_reclaim_cmds;
413 	unsigned int n_no_reclaim_cmds;
414 
415 	enum iwl_amsdu_size rx_buf_size;
416 	bool bc_table_dword;
417 	bool scd_set_active;
418 	bool sw_csum_tx;
419 	const struct iwl_hcmd_arr *command_groups;
420 	int command_groups_size;
421 
422 	u8 cb_data_offs;
423 };
424 
425 struct iwl_trans_dump_data {
426 	u32 len;
427 	u8 data[];
428 };
429 
430 struct iwl_trans;
431 
432 struct iwl_trans_txq_scd_cfg {
433 	u8 fifo;
434 	u8 sta_id;
435 	u8 tid;
436 	bool aggregate;
437 	int frame_limit;
438 };
439 
440 /**
441  * struct iwl_trans_ops - transport specific operations
442  *
443  * All the handlers MUST be implemented
444  *
445  * @start_hw: starts the HW. If low_power is true, the NIC needs to be taken
446  *	out of a low power state. From that point on, the HW can send
447  *	interrupts. May sleep.
448  * @op_mode_leave: Turn off the HW RF kill indication if on
449  *	May sleep
450  * @start_fw: allocates and inits all the resources for the transport
451  *	layer. Also kick a fw image.
452  *	May sleep
453  * @fw_alive: called when the fw sends alive notification. If the fw provides
454  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
455  *	May sleep
456  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
457  *	the HW. If low_power is true, the NIC will be put in low power state.
458  *	From that point on, the HW will be stopped but will still issue an
459  *	interrupt if the HW RF kill switch is triggered.
460  *	This callback must do the right thing and not crash even if %start_hw()
461  *	was called but not &start_fw(). May sleep.
462  * @d3_suspend: put the device into the correct mode for WoWLAN during
463  *	suspend. This is optional, if not implemented WoWLAN will not be
464  *	supported. This callback may sleep.
465  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
466  *	talk to the WoWLAN image to get its status. This is optional, if not
467  *	implemented WoWLAN will not be supported. This callback may sleep.
468  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
469  *	If RFkill is asserted in the middle of a SYNC host command, it must
470  *	return -ERFKILL straight away.
471  *	May sleep only if CMD_ASYNC is not set
472  * @tx: send an skb. The transport relies on the op_mode to zero the
473  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
474  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
475  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
476  *	header if it is IPv4.
477  *	Must be atomic
478  * @reclaim: free packet until ssn. Returns a list of freed packets.
479  *	Must be atomic
480  * @txq_enable: setup a queue. To setup an AC queue, use the
481  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
482  *	this one. The op_mode must not configure the HCMD queue. The scheduler
483  *	configuration may be %NULL, in which case the hardware will not be
484  *	configured. If true is returned, the operation mode needs to increment
485  *	the sequence number of the packets routed to this queue because of a
486  *	hardware scheduler bug. May sleep.
487  * @txq_disable: de-configure a Tx queue to send AMPDUs
488  *	Must be atomic
489  * @txq_set_shared_mode: change Tx queue shared/unshared marking
490  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
491  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
492  * @freeze_txq_timer: prevents the timer of the queue from firing until the
493  *	queue is set to awake. Must be atomic.
494  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
495  *	that the transport needs to refcount the calls since this function
496  *	will be called several times with block = true, and then the queues
497  *	need to be unblocked only after the same number of calls with
498  *	block = false.
499  * @write8: write a u8 to a register at offset ofs from the BAR
500  * @write32: write a u32 to a register at offset ofs from the BAR
501  * @read32: read a u32 register at offset ofs from the BAR
502  * @read_prph: read a DWORD from a periphery register
503  * @write_prph: write a DWORD to a periphery register
504  * @read_mem: read device's SRAM in DWORD
505  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
506  *	will be zeroed.
507  * @configure: configure parameters required by the transport layer from
508  *	the op_mode. May be called several times before start_fw, can't be
509  *	called after that.
510  * @set_pmi: set the power pmi state
511  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
512  *	Sleeping is not allowed between grab_nic_access and
513  *	release_nic_access.
514  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
515  *	must be the same one that was sent before to the grab_nic_access.
516  * @set_bits_mask - set SRAM register according to value and mask.
517  * @ref: grab a reference to the transport/FW layers, disallowing
518  *	certain low power states
519  * @unref: release a reference previously taken with @ref. Note that
520  *	initially the reference count is 1, making an initial @unref
521  *	necessary to allow low power states.
522  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
523  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
524  *	Note that the transport must fill in the proper file headers.
525  * @dump_regs: dump using IWL_ERR configuration space and memory mapped
526  *	registers of the device to diagnose failure, e.g., when HW becomes
527  *	inaccessible.
528  */
529 struct iwl_trans_ops {
530 
531 	int (*start_hw)(struct iwl_trans *iwl_trans, bool low_power);
532 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
533 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
534 			bool run_in_rfkill);
535 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
536 	void (*stop_device)(struct iwl_trans *trans, bool low_power);
537 
538 	void (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
539 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
540 			 bool test, bool reset);
541 
542 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
543 
544 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
545 		  struct iwl_device_cmd *dev_cmd, int queue);
546 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
547 			struct sk_buff_head *skbs);
548 
549 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
550 			   const struct iwl_trans_txq_scd_cfg *cfg,
551 			   unsigned int queue_wdg_timeout);
552 	void (*txq_disable)(struct iwl_trans *trans, int queue,
553 			    bool configure_scd);
554 	/* a000 functions */
555 	int (*txq_alloc)(struct iwl_trans *trans,
556 			 struct iwl_tx_queue_cfg_cmd *cmd,
557 			 int cmd_id,
558 			 unsigned int queue_wdg_timeout);
559 	void (*txq_free)(struct iwl_trans *trans, int queue);
560 
561 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
562 				    bool shared);
563 
564 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
565 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
566 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
567 				 bool freeze);
568 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
569 
570 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
571 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
572 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
573 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
574 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
575 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
576 			void *buf, int dwords);
577 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
578 			 const void *buf, int dwords);
579 	void (*configure)(struct iwl_trans *trans,
580 			  const struct iwl_trans_config *trans_cfg);
581 	void (*set_pmi)(struct iwl_trans *trans, bool state);
582 	bool (*grab_nic_access)(struct iwl_trans *trans, unsigned long *flags);
583 	void (*release_nic_access)(struct iwl_trans *trans,
584 				   unsigned long *flags);
585 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
586 			      u32 value);
587 	void (*ref)(struct iwl_trans *trans);
588 	void (*unref)(struct iwl_trans *trans);
589 	int  (*suspend)(struct iwl_trans *trans);
590 	void (*resume)(struct iwl_trans *trans);
591 
592 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
593 						 const struct iwl_fw_dbg_trigger_tlv
594 						 *trigger);
595 
596 	void (*dump_regs)(struct iwl_trans *trans);
597 };
598 
599 /**
600  * enum iwl_trans_state - state of the transport layer
601  *
602  * @IWL_TRANS_NO_FW: no fw has sent an alive response
603  * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response
604  */
605 enum iwl_trans_state {
606 	IWL_TRANS_NO_FW = 0,
607 	IWL_TRANS_FW_ALIVE	= 1,
608 };
609 
610 /**
611  * DOC: Platform power management
612  *
613  * There are two types of platform power management: system-wide
614  * (WoWLAN) and runtime.
615  *
616  * In system-wide power management the entire platform goes into a low
617  * power state (e.g. idle or suspend to RAM) at the same time and the
618  * device is configured as a wakeup source for the entire platform.
619  * This is usually triggered by userspace activity (e.g. the user
620  * presses the suspend button or a power management daemon decides to
621  * put the platform in low power mode).  The device's behavior in this
622  * mode is dictated by the wake-on-WLAN configuration.
623  *
624  * In runtime power management, only the devices which are themselves
625  * idle enter a low power state.  This is done at runtime, which means
626  * that the entire system is still running normally.  This mode is
627  * usually triggered automatically by the device driver and requires
628  * the ability to enter and exit the low power modes in a very short
629  * time, so there is not much impact in usability.
630  *
631  * The terms used for the device's behavior are as follows:
632  *
633  *	- D0: the device is fully powered and the host is awake;
634  *	- D3: the device is in low power mode and only reacts to
635  *		specific events (e.g. magic-packet received or scan
636  *		results found);
637  *	- D0I3: the device is in low power mode and reacts to any
638  *		activity (e.g. RX);
639  *
640  * These terms reflect the power modes in the firmware and are not to
641  * be confused with the physical device power state.  The NIC can be
642  * in D0I3 mode even if, for instance, the PCI device is in D3 state.
643  */
644 
645 /**
646  * enum iwl_plat_pm_mode - platform power management mode
647  *
648  * This enumeration describes the device's platform power management
649  * behavior when in idle mode (i.e. runtime power management) or when
650  * in system-wide suspend (i.e WoWLAN).
651  *
652  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
653  *	device.  At runtime, this means that nothing happens and the
654  *	device always remains in active.  In system-wide suspend mode,
655  *	it means that the all connections will be closed automatically
656  *	by mac80211 before the platform is suspended.
657  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
658  *	For runtime power management, this mode is not officially
659  *	supported.
660  * @IWL_PLAT_PM_MODE_D0I3: the device goes into D0I3 mode.
661  */
662 enum iwl_plat_pm_mode {
663 	IWL_PLAT_PM_MODE_DISABLED,
664 	IWL_PLAT_PM_MODE_D3,
665 	IWL_PLAT_PM_MODE_D0I3,
666 };
667 
668 /* Max time to wait for trans to become idle/non-idle on d0i3
669  * enter/exit (in msecs).
670  */
671 #define IWL_TRANS_IDLE_TIMEOUT 2000
672 
673 /**
674  * struct iwl_trans - transport common data
675  *
676  * @ops - pointer to iwl_trans_ops
677  * @op_mode - pointer to the op_mode
678  * @cfg - pointer to the configuration
679  * @drv - pointer to iwl_drv
680  * @status: a bit-mask of transport status flags
681  * @dev - pointer to struct device * that represents the device
682  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
683  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
684  * @hw_rf_id a u32 with the device RF ID
685  * @hw_id: a u32 with the ID of the device / sub-device.
686  *	Set during transport allocation.
687  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
688  * @pm_support: set to true in start_hw if link pm is supported
689  * @ltr_enabled: set to true if the LTR is enabled
690  * @wide_cmd_header: true when ucode supports wide command header format
691  * @num_rx_queues: number of RX queues allocated by the transport;
692  *	the transport must set this before calling iwl_drv_start()
693  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
694  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
695  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
696  *	starting the firmware, used for tracing
697  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
698  *	start of the 802.11 header in the @rx_mpdu_cmd
699  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
700  * @dbg_dest_tlv: points to the destination TLV for debug
701  * @dbg_conf_tlv: array of pointers to configuration TLVs for debug
702  * @dbg_trigger_tlv: array of pointers to triggers TLVs for debug
703  * @dbg_dest_reg_num: num of reg_ops in %dbg_dest_tlv
704  * @system_pm_mode: the system-wide power management mode in use.
705  *	This mode is set dynamically, depending on the WoWLAN values
706  *	configured from the userspace at runtime.
707  * @runtime_pm_mode: the runtime power management mode in use.  This
708  *	mode is set during the initialization phase and is not
709  *	supposed to change during runtime.
710  */
711 struct iwl_trans {
712 	const struct iwl_trans_ops *ops;
713 	struct iwl_op_mode *op_mode;
714 	const struct iwl_cfg *cfg;
715 	struct iwl_drv *drv;
716 	enum iwl_trans_state state;
717 	unsigned long status;
718 
719 	struct device *dev;
720 	u32 max_skb_frags;
721 	u32 hw_rev;
722 	u32 hw_rf_id;
723 	u32 hw_id;
724 	char hw_id_str[52];
725 
726 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
727 
728 	bool pm_support;
729 	bool ltr_enabled;
730 
731 	const struct iwl_hcmd_arr *command_groups;
732 	int command_groups_size;
733 	bool wide_cmd_header;
734 
735 	u8 num_rx_queues;
736 
737 	/* The following fields are internal only */
738 	struct kmem_cache *dev_cmd_pool;
739 	char dev_cmd_pool_name[50];
740 
741 	struct dentry *dbgfs_dir;
742 
743 #ifdef CONFIG_LOCKDEP
744 	struct lockdep_map sync_cmd_lockdep_map;
745 #endif
746 
747 	const struct iwl_fw_dbg_dest_tlv *dbg_dest_tlv;
748 	const struct iwl_fw_dbg_conf_tlv *dbg_conf_tlv[FW_DBG_CONF_MAX];
749 	struct iwl_fw_dbg_trigger_tlv * const *dbg_trigger_tlv;
750 	u8 dbg_dest_reg_num;
751 
752 	enum iwl_plat_pm_mode system_pm_mode;
753 	enum iwl_plat_pm_mode runtime_pm_mode;
754 	bool suspending;
755 
756 	/* pointer to trans specific struct */
757 	/*Ensure that this pointer will always be aligned to sizeof pointer */
758 	char trans_specific[0] __aligned(sizeof(void *));
759 };
760 
761 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
762 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
763 
764 static inline void iwl_trans_configure(struct iwl_trans *trans,
765 				       const struct iwl_trans_config *trans_cfg)
766 {
767 	trans->op_mode = trans_cfg->op_mode;
768 
769 	trans->ops->configure(trans, trans_cfg);
770 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
771 }
772 
773 static inline int _iwl_trans_start_hw(struct iwl_trans *trans, bool low_power)
774 {
775 	might_sleep();
776 
777 	return trans->ops->start_hw(trans, low_power);
778 }
779 
780 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
781 {
782 	return trans->ops->start_hw(trans, true);
783 }
784 
785 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
786 {
787 	might_sleep();
788 
789 	if (trans->ops->op_mode_leave)
790 		trans->ops->op_mode_leave(trans);
791 
792 	trans->op_mode = NULL;
793 
794 	trans->state = IWL_TRANS_NO_FW;
795 }
796 
797 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
798 {
799 	might_sleep();
800 
801 	trans->state = IWL_TRANS_FW_ALIVE;
802 
803 	trans->ops->fw_alive(trans, scd_addr);
804 }
805 
806 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
807 				     const struct fw_img *fw,
808 				     bool run_in_rfkill)
809 {
810 	might_sleep();
811 
812 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
813 
814 	clear_bit(STATUS_FW_ERROR, &trans->status);
815 	return trans->ops->start_fw(trans, fw, run_in_rfkill);
816 }
817 
818 static inline void _iwl_trans_stop_device(struct iwl_trans *trans,
819 					  bool low_power)
820 {
821 	might_sleep();
822 
823 	trans->ops->stop_device(trans, low_power);
824 
825 	trans->state = IWL_TRANS_NO_FW;
826 }
827 
828 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
829 {
830 	_iwl_trans_stop_device(trans, true);
831 }
832 
833 static inline void iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
834 					bool reset)
835 {
836 	might_sleep();
837 	if (trans->ops->d3_suspend)
838 		trans->ops->d3_suspend(trans, test, reset);
839 }
840 
841 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
842 				      enum iwl_d3_status *status,
843 				      bool test, bool reset)
844 {
845 	might_sleep();
846 	if (!trans->ops->d3_resume)
847 		return 0;
848 
849 	return trans->ops->d3_resume(trans, status, test, reset);
850 }
851 
852 static inline int iwl_trans_suspend(struct iwl_trans *trans)
853 {
854 	if (!trans->ops->suspend)
855 		return 0;
856 
857 	return trans->ops->suspend(trans);
858 }
859 
860 static inline void iwl_trans_resume(struct iwl_trans *trans)
861 {
862 	if (trans->ops->resume)
863 		trans->ops->resume(trans);
864 }
865 
866 static inline struct iwl_trans_dump_data *
867 iwl_trans_dump_data(struct iwl_trans *trans,
868 		    const struct iwl_fw_dbg_trigger_tlv *trigger)
869 {
870 	if (!trans->ops->dump_data)
871 		return NULL;
872 	return trans->ops->dump_data(trans, trigger);
873 }
874 
875 static inline void iwl_trans_dump_regs(struct iwl_trans *trans)
876 {
877 	if (trans->ops->dump_regs)
878 		trans->ops->dump_regs(trans);
879 }
880 
881 static inline struct iwl_device_cmd *
882 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
883 {
884 	return kmem_cache_alloc(trans->dev_cmd_pool, GFP_ATOMIC);
885 }
886 
887 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
888 
889 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
890 					 struct iwl_device_cmd *dev_cmd)
891 {
892 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
893 }
894 
895 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
896 			       struct iwl_device_cmd *dev_cmd, int queue)
897 {
898 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
899 		return -EIO;
900 
901 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
902 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
903 		return -EIO;
904 	}
905 
906 	return trans->ops->tx(trans, skb, dev_cmd, queue);
907 }
908 
909 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
910 				     int ssn, struct sk_buff_head *skbs)
911 {
912 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
913 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
914 		return;
915 	}
916 
917 	trans->ops->reclaim(trans, queue, ssn, skbs);
918 }
919 
920 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
921 					 bool configure_scd)
922 {
923 	trans->ops->txq_disable(trans, queue, configure_scd);
924 }
925 
926 static inline bool
927 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
928 			 const struct iwl_trans_txq_scd_cfg *cfg,
929 			 unsigned int queue_wdg_timeout)
930 {
931 	might_sleep();
932 
933 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
934 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
935 		return false;
936 	}
937 
938 	return trans->ops->txq_enable(trans, queue, ssn,
939 				      cfg, queue_wdg_timeout);
940 }
941 
942 static inline void
943 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
944 {
945 	if (WARN_ON_ONCE(!trans->ops->txq_free))
946 		return;
947 
948 	trans->ops->txq_free(trans, queue);
949 }
950 
951 static inline int
952 iwl_trans_txq_alloc(struct iwl_trans *trans,
953 		    struct iwl_tx_queue_cfg_cmd *cmd,
954 		    int cmd_id,
955 		    unsigned int queue_wdg_timeout)
956 {
957 	might_sleep();
958 
959 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
960 		return -ENOTSUPP;
961 
962 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
963 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
964 		return -EIO;
965 	}
966 
967 	return trans->ops->txq_alloc(trans, cmd, cmd_id, queue_wdg_timeout);
968 }
969 
970 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
971 						 int queue, bool shared_mode)
972 {
973 	if (trans->ops->txq_set_shared_mode)
974 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
975 }
976 
977 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
978 					int fifo, int sta_id, int tid,
979 					int frame_limit, u16 ssn,
980 					unsigned int queue_wdg_timeout)
981 {
982 	struct iwl_trans_txq_scd_cfg cfg = {
983 		.fifo = fifo,
984 		.sta_id = sta_id,
985 		.tid = tid,
986 		.frame_limit = frame_limit,
987 		.aggregate = sta_id >= 0,
988 	};
989 
990 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
991 }
992 
993 static inline
994 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
995 			     unsigned int queue_wdg_timeout)
996 {
997 	struct iwl_trans_txq_scd_cfg cfg = {
998 		.fifo = fifo,
999 		.sta_id = -1,
1000 		.tid = IWL_MAX_TID_COUNT,
1001 		.frame_limit = IWL_FRAME_LIMIT,
1002 		.aggregate = false,
1003 	};
1004 
1005 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1006 }
1007 
1008 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1009 					      unsigned long txqs,
1010 					      bool freeze)
1011 {
1012 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1013 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1014 		return;
1015 	}
1016 
1017 	if (trans->ops->freeze_txq_timer)
1018 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1019 }
1020 
1021 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1022 					    bool block)
1023 {
1024 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1025 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1026 		return;
1027 	}
1028 
1029 	if (trans->ops->block_txq_ptrs)
1030 		trans->ops->block_txq_ptrs(trans, block);
1031 }
1032 
1033 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1034 						 u32 txqs)
1035 {
1036 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1037 		return -ENOTSUPP;
1038 
1039 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1040 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1041 		return -EIO;
1042 	}
1043 
1044 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1045 }
1046 
1047 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1048 {
1049 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1050 		return -ENOTSUPP;
1051 
1052 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1053 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1054 		return -EIO;
1055 	}
1056 
1057 	return trans->ops->wait_txq_empty(trans, queue);
1058 }
1059 
1060 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1061 {
1062 	trans->ops->write8(trans, ofs, val);
1063 }
1064 
1065 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1066 {
1067 	trans->ops->write32(trans, ofs, val);
1068 }
1069 
1070 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1071 {
1072 	return trans->ops->read32(trans, ofs);
1073 }
1074 
1075 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1076 {
1077 	return trans->ops->read_prph(trans, ofs);
1078 }
1079 
1080 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1081 					u32 val)
1082 {
1083 	return trans->ops->write_prph(trans, ofs, val);
1084 }
1085 
1086 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1087 				     void *buf, int dwords)
1088 {
1089 	return trans->ops->read_mem(trans, addr, buf, dwords);
1090 }
1091 
1092 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1093 	do {								      \
1094 		if (__builtin_constant_p(bufsize))			      \
1095 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1096 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1097 	} while (0)
1098 
1099 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1100 {
1101 	u32 value;
1102 
1103 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1104 		return 0xa5a5a5a5;
1105 
1106 	return value;
1107 }
1108 
1109 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1110 				      const void *buf, int dwords)
1111 {
1112 	return trans->ops->write_mem(trans, addr, buf, dwords);
1113 }
1114 
1115 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1116 					u32 val)
1117 {
1118 	return iwl_trans_write_mem(trans, addr, &val, 1);
1119 }
1120 
1121 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1122 {
1123 	if (trans->ops->set_pmi)
1124 		trans->ops->set_pmi(trans, state);
1125 }
1126 
1127 static inline void
1128 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1129 {
1130 	trans->ops->set_bits_mask(trans, reg, mask, value);
1131 }
1132 
1133 #define iwl_trans_grab_nic_access(trans, flags)	\
1134 	__cond_lock(nic_access,				\
1135 		    likely((trans)->ops->grab_nic_access(trans, flags)))
1136 
1137 static inline void __releases(nic_access)
1138 iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags)
1139 {
1140 	trans->ops->release_nic_access(trans, flags);
1141 	__release(nic_access);
1142 }
1143 
1144 static inline void iwl_trans_fw_error(struct iwl_trans *trans)
1145 {
1146 	if (WARN_ON_ONCE(!trans->op_mode))
1147 		return;
1148 
1149 	/* prevent double restarts due to the same erroneous FW */
1150 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status))
1151 		iwl_op_mode_nic_error(trans->op_mode);
1152 }
1153 
1154 /*****************************************************
1155  * transport helper functions
1156  *****************************************************/
1157 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1158 				  struct device *dev,
1159 				  const struct iwl_cfg *cfg,
1160 				  const struct iwl_trans_ops *ops);
1161 void iwl_trans_free(struct iwl_trans *trans);
1162 void iwl_trans_ref(struct iwl_trans *trans);
1163 void iwl_trans_unref(struct iwl_trans *trans);
1164 
1165 /*****************************************************
1166 * driver (transport) register/unregister functions
1167 ******************************************************/
1168 int __must_check iwl_pci_register_driver(void);
1169 void iwl_pci_unregister_driver(void);
1170 
1171 #endif /* __iwl_trans_h__ */
1172