xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/iwl-trans.h (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014, 2018-2020 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9 
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14 
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24 
25 /**
26  * DOC: Transport layer - what is it ?
27  *
28  * The transport layer is the layer that deals with the HW directly. It provides
29  * an abstraction of the underlying HW to the upper layer. The transport layer
30  * doesn't provide any policy, algorithm or anything of this kind, but only
31  * mechanisms to make the HW do something. It is not completely stateless but
32  * close to it.
33  * We will have an implementation for each different supported bus.
34  */
35 
36 /**
37  * DOC: Life cycle of the transport layer
38  *
39  * The transport layer has a very precise life cycle.
40  *
41  *	1) A helper function is called during the module initialization and
42  *	   registers the bus driver's ops with the transport's alloc function.
43  *	2) Bus's probe calls to the transport layer's allocation functions.
44  *	   Of course this function is bus specific.
45  *	3) This allocation functions will spawn the upper layer which will
46  *	   register mac80211.
47  *
48  *	4) At some point (i.e. mac80211's start call), the op_mode will call
49  *	   the following sequence:
50  *	   start_hw
51  *	   start_fw
52  *
53  *	5) Then when finished (or reset):
54  *	   stop_device
55  *
56  *	6) Eventually, the free function will be called.
57  */
58 
59 #define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
60 
61 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
62 #define FH_RSCSR_FRAME_INVALID		0x55550000
63 #define FH_RSCSR_FRAME_ALIGN		0x40
64 #define FH_RSCSR_RPA_EN			BIT(25)
65 #define FH_RSCSR_RADA_EN		BIT(26)
66 #define FH_RSCSR_RXQ_POS		16
67 #define FH_RSCSR_RXQ_MASK		0x3F0000
68 
69 struct iwl_rx_packet {
70 	/*
71 	 * The first 4 bytes of the RX frame header contain both the RX frame
72 	 * size and some flags.
73 	 * Bit fields:
74 	 * 31:    flag flush RB request
75 	 * 30:    flag ignore TC (terminal counter) request
76 	 * 29:    flag fast IRQ request
77 	 * 28-27: Reserved
78 	 * 26:    RADA enabled
79 	 * 25:    Offload enabled
80 	 * 24:    RPF enabled
81 	 * 23:    RSS enabled
82 	 * 22:    Checksum enabled
83 	 * 21-16: RX queue
84 	 * 15-14: Reserved
85 	 * 13-00: RX frame size
86 	 */
87 	__le32 len_n_flags;
88 	struct iwl_cmd_header hdr;
89 	u8 data[];
90 } __packed;
91 
92 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
93 {
94 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
95 }
96 
97 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
98 {
99 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
100 }
101 
102 /**
103  * enum CMD_MODE - how to send the host commands ?
104  *
105  * @CMD_ASYNC: Return right away and don't wait for the response
106  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
107  *	the response. The caller needs to call iwl_free_resp when done.
108  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
109  *	called after this command completes. Valid only with CMD_ASYNC.
110  */
111 enum CMD_MODE {
112 	CMD_ASYNC		= BIT(0),
113 	CMD_WANT_SKB		= BIT(1),
114 	CMD_SEND_IN_RFKILL	= BIT(2),
115 	CMD_WANT_ASYNC_CALLBACK	= BIT(3),
116 };
117 
118 #define DEF_CMD_PAYLOAD_SIZE 320
119 
120 /**
121  * struct iwl_device_cmd
122  *
123  * For allocation of the command and tx queues, this establishes the overall
124  * size of the largest command we send to uCode, except for commands that
125  * aren't fully copied and use other TFD space.
126  */
127 struct iwl_device_cmd {
128 	union {
129 		struct {
130 			struct iwl_cmd_header hdr;	/* uCode API */
131 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
132 		};
133 		struct {
134 			struct iwl_cmd_header_wide hdr_wide;
135 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
136 					sizeof(struct iwl_cmd_header_wide) +
137 					sizeof(struct iwl_cmd_header)];
138 		};
139 	};
140 } __packed;
141 
142 /**
143  * struct iwl_device_tx_cmd - buffer for TX command
144  * @hdr: the header
145  * @payload: the payload placeholder
146  *
147  * The actual structure is sized dynamically according to need.
148  */
149 struct iwl_device_tx_cmd {
150 	struct iwl_cmd_header hdr;
151 	u8 payload[];
152 } __packed;
153 
154 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
155 
156 /*
157  * number of transfer buffers (fragments) per transmit frame descriptor;
158  * this is just the driver's idea, the hardware supports 20
159  */
160 #define IWL_MAX_CMD_TBS_PER_TFD	2
161 
162 /* We need 2 entries for the TX command and header, and another one might
163  * be needed for potential data in the SKB's head. The remaining ones can
164  * be used for frags.
165  */
166 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
167 
168 /**
169  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
170  *
171  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
172  *	ring. The transport layer doesn't map the command's buffer to DMA, but
173  *	rather copies it to a previously allocated DMA buffer. This flag tells
174  *	the transport layer not to copy the command, but to map the existing
175  *	buffer (that is passed in) instead. This saves the memcpy and allows
176  *	commands that are bigger than the fixed buffer to be submitted.
177  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
178  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
179  *	chunk internally and free it again after the command completes. This
180  *	can (currently) be used only once per command.
181  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
182  */
183 enum iwl_hcmd_dataflag {
184 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
185 	IWL_HCMD_DFL_DUP	= BIT(1),
186 };
187 
188 enum iwl_error_event_table_status {
189 	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
190 	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
191 	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
192 };
193 
194 /**
195  * struct iwl_host_cmd - Host command to the uCode
196  *
197  * @data: array of chunks that composes the data of the host command
198  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
199  * @_rx_page_order: (internally used to free response packet)
200  * @_rx_page_addr: (internally used to free response packet)
201  * @flags: can be CMD_*
202  * @len: array of the lengths of the chunks in data
203  * @dataflags: IWL_HCMD_DFL_*
204  * @id: command id of the host command, for wide commands encoding the
205  *	version and group as well
206  */
207 struct iwl_host_cmd {
208 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
209 	struct iwl_rx_packet *resp_pkt;
210 	unsigned long _rx_page_addr;
211 	u32 _rx_page_order;
212 
213 	u32 flags;
214 	u32 id;
215 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
216 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
217 };
218 
219 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
220 {
221 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
222 }
223 
224 struct iwl_rx_cmd_buffer {
225 	struct page *_page;
226 	int _offset;
227 	bool _page_stolen;
228 	u32 _rx_page_order;
229 	unsigned int truesize;
230 };
231 
232 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
233 {
234 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
235 }
236 
237 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
238 {
239 	return r->_offset;
240 }
241 
242 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
243 {
244 	r->_page_stolen = true;
245 	get_page(r->_page);
246 	return r->_page;
247 }
248 
249 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
250 {
251 	__free_pages(r->_page, r->_rx_page_order);
252 }
253 
254 #define MAX_NO_RECLAIM_CMDS	6
255 
256 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
257 
258 /*
259  * Maximum number of HW queues the transport layer
260  * currently supports
261  */
262 #define IWL_MAX_HW_QUEUES		32
263 #define IWL_MAX_TVQM_QUEUES		512
264 
265 #define IWL_MAX_TID_COUNT	8
266 #define IWL_MGMT_TID		15
267 #define IWL_FRAME_LIMIT	64
268 #define IWL_MAX_RX_HW_QUEUES	16
269 #define IWL_9000_MAX_RX_HW_QUEUES	6
270 
271 /**
272  * enum iwl_wowlan_status - WoWLAN image/device status
273  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
274  * @IWL_D3_STATUS_RESET: device was reset while suspended
275  */
276 enum iwl_d3_status {
277 	IWL_D3_STATUS_ALIVE,
278 	IWL_D3_STATUS_RESET,
279 };
280 
281 /**
282  * enum iwl_trans_status: transport status flags
283  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
284  * @STATUS_DEVICE_ENABLED: APM is enabled
285  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
286  * @STATUS_INT_ENABLED: interrupts are enabled
287  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
288  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
289  * @STATUS_FW_ERROR: the fw is in error state
290  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
291  *	are sent
292  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
293  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
294  */
295 enum iwl_trans_status {
296 	STATUS_SYNC_HCMD_ACTIVE,
297 	STATUS_DEVICE_ENABLED,
298 	STATUS_TPOWER_PMI,
299 	STATUS_INT_ENABLED,
300 	STATUS_RFKILL_HW,
301 	STATUS_RFKILL_OPMODE,
302 	STATUS_FW_ERROR,
303 	STATUS_TRANS_GOING_IDLE,
304 	STATUS_TRANS_IDLE,
305 	STATUS_TRANS_DEAD,
306 };
307 
308 static inline int
309 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
310 {
311 	switch (rb_size) {
312 	case IWL_AMSDU_2K:
313 		return get_order(2 * 1024);
314 	case IWL_AMSDU_4K:
315 		return get_order(4 * 1024);
316 	case IWL_AMSDU_8K:
317 		return get_order(8 * 1024);
318 	case IWL_AMSDU_12K:
319 		return get_order(16 * 1024);
320 	default:
321 		WARN_ON(1);
322 		return -1;
323 	}
324 }
325 
326 static inline int
327 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
328 {
329 	switch (rb_size) {
330 	case IWL_AMSDU_2K:
331 		return 2 * 1024;
332 	case IWL_AMSDU_4K:
333 		return 4 * 1024;
334 	case IWL_AMSDU_8K:
335 		return 8 * 1024;
336 	case IWL_AMSDU_12K:
337 		return 16 * 1024;
338 	default:
339 		WARN_ON(1);
340 		return 0;
341 	}
342 }
343 
344 struct iwl_hcmd_names {
345 	u8 cmd_id;
346 	const char *const cmd_name;
347 };
348 
349 #define HCMD_NAME(x)	\
350 	{ .cmd_id = x, .cmd_name = #x }
351 
352 struct iwl_hcmd_arr {
353 	const struct iwl_hcmd_names *arr;
354 	int size;
355 };
356 
357 #define HCMD_ARR(x)	\
358 	{ .arr = x, .size = ARRAY_SIZE(x) }
359 
360 /**
361  * struct iwl_trans_config - transport configuration
362  *
363  * @op_mode: pointer to the upper layer.
364  * @cmd_queue: the index of the command queue.
365  *	Must be set before start_fw.
366  * @cmd_fifo: the fifo for host commands
367  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
368  * @no_reclaim_cmds: Some devices erroneously don't set the
369  *	SEQ_RX_FRAME bit on some notifications, this is the
370  *	list of such notifications to filter. Max length is
371  *	%MAX_NO_RECLAIM_CMDS.
372  * @n_no_reclaim_cmds: # of commands in list
373  * @rx_buf_size: RX buffer size needed for A-MSDUs
374  *	if unset 4k will be the RX buffer size
375  * @bc_table_dword: set to true if the BC table expects the byte count to be
376  *	in DWORD (as opposed to bytes)
377  * @scd_set_active: should the transport configure the SCD for HCMD queue
378  * @command_groups: array of command groups, each member is an array of the
379  *	commands in the group; for debugging only
380  * @command_groups_size: number of command groups, to avoid illegal access
381  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
382  *	space for at least two pointers
383  * @fw_reset_handshake: firmware supports reset flow handshake
384  */
385 struct iwl_trans_config {
386 	struct iwl_op_mode *op_mode;
387 
388 	u8 cmd_queue;
389 	u8 cmd_fifo;
390 	unsigned int cmd_q_wdg_timeout;
391 	const u8 *no_reclaim_cmds;
392 	unsigned int n_no_reclaim_cmds;
393 
394 	enum iwl_amsdu_size rx_buf_size;
395 	bool bc_table_dword;
396 	bool scd_set_active;
397 	const struct iwl_hcmd_arr *command_groups;
398 	int command_groups_size;
399 
400 	u8 cb_data_offs;
401 	bool fw_reset_handshake;
402 };
403 
404 struct iwl_trans_dump_data {
405 	u32 len;
406 	u8 data[];
407 };
408 
409 struct iwl_trans;
410 
411 struct iwl_trans_txq_scd_cfg {
412 	u8 fifo;
413 	u8 sta_id;
414 	u8 tid;
415 	bool aggregate;
416 	int frame_limit;
417 };
418 
419 /**
420  * struct iwl_trans_rxq_dma_data - RX queue DMA data
421  * @fr_bd_cb: DMA address of free BD cyclic buffer
422  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
423  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
424  * @ur_bd_cb: DMA address of used BD cyclic buffer
425  */
426 struct iwl_trans_rxq_dma_data {
427 	u64 fr_bd_cb;
428 	u32 fr_bd_wid;
429 	u64 urbd_stts_wrptr;
430 	u64 ur_bd_cb;
431 };
432 
433 /**
434  * struct iwl_trans_ops - transport specific operations
435  *
436  * All the handlers MUST be implemented
437  *
438  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
439  *	May sleep.
440  * @op_mode_leave: Turn off the HW RF kill indication if on
441  *	May sleep
442  * @start_fw: allocates and inits all the resources for the transport
443  *	layer. Also kick a fw image.
444  *	May sleep
445  * @fw_alive: called when the fw sends alive notification. If the fw provides
446  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
447  *	May sleep
448  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
449  *	the HW. From that point on, the HW will be stopped but will still issue
450  *	an interrupt if the HW RF kill switch is triggered.
451  *	This callback must do the right thing and not crash even if %start_hw()
452  *	was called but not &start_fw(). May sleep.
453  * @d3_suspend: put the device into the correct mode for WoWLAN during
454  *	suspend. This is optional, if not implemented WoWLAN will not be
455  *	supported. This callback may sleep.
456  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
457  *	talk to the WoWLAN image to get its status. This is optional, if not
458  *	implemented WoWLAN will not be supported. This callback may sleep.
459  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
460  *	If RFkill is asserted in the middle of a SYNC host command, it must
461  *	return -ERFKILL straight away.
462  *	May sleep only if CMD_ASYNC is not set
463  * @tx: send an skb. The transport relies on the op_mode to zero the
464  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
465  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
466  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
467  *	header if it is IPv4.
468  *	Must be atomic
469  * @reclaim: free packet until ssn. Returns a list of freed packets.
470  *	Must be atomic
471  * @txq_enable: setup a queue. To setup an AC queue, use the
472  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
473  *	this one. The op_mode must not configure the HCMD queue. The scheduler
474  *	configuration may be %NULL, in which case the hardware will not be
475  *	configured. If true is returned, the operation mode needs to increment
476  *	the sequence number of the packets routed to this queue because of a
477  *	hardware scheduler bug. May sleep.
478  * @txq_disable: de-configure a Tx queue to send AMPDUs
479  *	Must be atomic
480  * @txq_set_shared_mode: change Tx queue shared/unshared marking
481  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
482  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
483  * @freeze_txq_timer: prevents the timer of the queue from firing until the
484  *	queue is set to awake. Must be atomic.
485  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
486  *	that the transport needs to refcount the calls since this function
487  *	will be called several times with block = true, and then the queues
488  *	need to be unblocked only after the same number of calls with
489  *	block = false.
490  * @write8: write a u8 to a register at offset ofs from the BAR
491  * @write32: write a u32 to a register at offset ofs from the BAR
492  * @read32: read a u32 register at offset ofs from the BAR
493  * @read_prph: read a DWORD from a periphery register
494  * @write_prph: write a DWORD to a periphery register
495  * @read_mem: read device's SRAM in DWORD
496  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
497  *	will be zeroed.
498  * @read_config32: read a u32 value from the device's config space at
499  *	the given offset.
500  * @configure: configure parameters required by the transport layer from
501  *	the op_mode. May be called several times before start_fw, can't be
502  *	called after that.
503  * @set_pmi: set the power pmi state
504  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
505  *	Sleeping is not allowed between grab_nic_access and
506  *	release_nic_access.
507  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
508  *	must be the same one that was sent before to the grab_nic_access.
509  * @set_bits_mask - set SRAM register according to value and mask.
510  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
511  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
512  *	Note that the transport must fill in the proper file headers.
513  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
514  *	of the trans debugfs
515  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
516  *	context info.
517  */
518 struct iwl_trans_ops {
519 
520 	int (*start_hw)(struct iwl_trans *iwl_trans);
521 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
522 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
523 			bool run_in_rfkill);
524 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
525 	void (*stop_device)(struct iwl_trans *trans);
526 
527 	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
528 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
529 			 bool test, bool reset);
530 
531 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
532 
533 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
534 		  struct iwl_device_tx_cmd *dev_cmd, int queue);
535 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
536 			struct sk_buff_head *skbs);
537 
538 	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
539 
540 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
541 			   const struct iwl_trans_txq_scd_cfg *cfg,
542 			   unsigned int queue_wdg_timeout);
543 	void (*txq_disable)(struct iwl_trans *trans, int queue,
544 			    bool configure_scd);
545 	/* 22000 functions */
546 	int (*txq_alloc)(struct iwl_trans *trans,
547 			 __le16 flags, u8 sta_id, u8 tid,
548 			 int cmd_id, int size,
549 			 unsigned int queue_wdg_timeout);
550 	void (*txq_free)(struct iwl_trans *trans, int queue);
551 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
552 			    struct iwl_trans_rxq_dma_data *data);
553 
554 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
555 				    bool shared);
556 
557 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
558 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
559 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
560 				 bool freeze);
561 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
562 
563 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
564 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
565 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
566 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
567 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
568 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
569 			void *buf, int dwords);
570 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
571 			 const void *buf, int dwords);
572 	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
573 	void (*configure)(struct iwl_trans *trans,
574 			  const struct iwl_trans_config *trans_cfg);
575 	void (*set_pmi)(struct iwl_trans *trans, bool state);
576 	void (*sw_reset)(struct iwl_trans *trans);
577 	bool (*grab_nic_access)(struct iwl_trans *trans, unsigned long *flags);
578 	void (*release_nic_access)(struct iwl_trans *trans,
579 				   unsigned long *flags);
580 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
581 			      u32 value);
582 	int  (*suspend)(struct iwl_trans *trans);
583 	void (*resume)(struct iwl_trans *trans);
584 
585 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
586 						 u32 dump_mask);
587 	void (*debugfs_cleanup)(struct iwl_trans *trans);
588 	void (*sync_nmi)(struct iwl_trans *trans);
589 	int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
590 };
591 
592 /**
593  * enum iwl_trans_state - state of the transport layer
594  *
595  * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
596  * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
597  * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
598  */
599 enum iwl_trans_state {
600 	IWL_TRANS_NO_FW,
601 	IWL_TRANS_FW_STARTED,
602 	IWL_TRANS_FW_ALIVE,
603 };
604 
605 /**
606  * DOC: Platform power management
607  *
608  * In system-wide power management the entire platform goes into a low
609  * power state (e.g. idle or suspend to RAM) at the same time and the
610  * device is configured as a wakeup source for the entire platform.
611  * This is usually triggered by userspace activity (e.g. the user
612  * presses the suspend button or a power management daemon decides to
613  * put the platform in low power mode).  The device's behavior in this
614  * mode is dictated by the wake-on-WLAN configuration.
615  *
616  * The terms used for the device's behavior are as follows:
617  *
618  *	- D0: the device is fully powered and the host is awake;
619  *	- D3: the device is in low power mode and only reacts to
620  *		specific events (e.g. magic-packet received or scan
621  *		results found);
622  *
623  * These terms reflect the power modes in the firmware and are not to
624  * be confused with the physical device power state.
625  */
626 
627 /**
628  * enum iwl_plat_pm_mode - platform power management mode
629  *
630  * This enumeration describes the device's platform power management
631  * behavior when in system-wide suspend (i.e WoWLAN).
632  *
633  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
634  *	device.  In system-wide suspend mode, it means that the all
635  *	connections will be closed automatically by mac80211 before
636  *	the platform is suspended.
637  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
638  */
639 enum iwl_plat_pm_mode {
640 	IWL_PLAT_PM_MODE_DISABLED,
641 	IWL_PLAT_PM_MODE_D3,
642 };
643 
644 /**
645  * enum iwl_ini_cfg_state
646  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
647  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
648  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
649  *	are corrupted. The rest of the debug TLVs will still be used
650  */
651 enum iwl_ini_cfg_state {
652 	IWL_INI_CFG_STATE_NOT_LOADED,
653 	IWL_INI_CFG_STATE_LOADED,
654 	IWL_INI_CFG_STATE_CORRUPTED,
655 };
656 
657 /* Max time to wait for nmi interrupt */
658 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
659 
660 /**
661  * struct iwl_dram_data
662  * @physical: page phy pointer
663  * @block: pointer to the allocated block/page
664  * @size: size of the block/page
665  */
666 struct iwl_dram_data {
667 	dma_addr_t physical;
668 	void *block;
669 	int size;
670 };
671 
672 /**
673  * struct iwl_fw_mon - fw monitor per allocation id
674  * @num_frags: number of fragments
675  * @frags: an array of DRAM buffer fragments
676  */
677 struct iwl_fw_mon {
678 	u32 num_frags;
679 	struct iwl_dram_data *frags;
680 };
681 
682 /**
683  * struct iwl_self_init_dram - dram data used by self init process
684  * @fw: lmac and umac dram data
685  * @fw_cnt: total number of items in array
686  * @paging: paging dram data
687  * @paging_cnt: total number of items in array
688  */
689 struct iwl_self_init_dram {
690 	struct iwl_dram_data *fw;
691 	int fw_cnt;
692 	struct iwl_dram_data *paging;
693 	int paging_cnt;
694 };
695 
696 /**
697  * struct iwl_trans_debug - transport debug related data
698  *
699  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
700  * @rec_on: true iff there is a fw debug recording currently active
701  * @dest_tlv: points to the destination TLV for debug
702  * @conf_tlv: array of pointers to configuration TLVs for debug
703  * @trigger_tlv: array of pointers to triggers TLVs for debug
704  * @lmac_error_event_table: addrs of lmacs error tables
705  * @umac_error_event_table: addr of umac error table
706  * @error_event_table_tlv_status: bitmap that indicates what error table
707  *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
708  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
709  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
710  * @fw_mon_cfg: debug buffer allocation configuration
711  * @fw_mon_ini: DRAM buffer fragments per allocation id
712  * @fw_mon: DRAM buffer for firmware monitor
713  * @hw_error: equals true if hw error interrupt was received from the FW
714  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
715  * @active_regions: active regions
716  * @debug_info_tlv_list: list of debug info TLVs
717  * @time_point: array of debug time points
718  * @periodic_trig_list: periodic triggers list
719  * @domains_bitmap: bitmap of active domains other than
720  *	&IWL_FW_INI_DOMAIN_ALWAYS_ON
721  */
722 struct iwl_trans_debug {
723 	u8 n_dest_reg;
724 	bool rec_on;
725 
726 	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
727 	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
728 	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
729 
730 	u32 lmac_error_event_table[2];
731 	u32 umac_error_event_table;
732 	unsigned int error_event_table_tlv_status;
733 
734 	enum iwl_ini_cfg_state internal_ini_cfg;
735 	enum iwl_ini_cfg_state external_ini_cfg;
736 
737 	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
738 	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
739 
740 	struct iwl_dram_data fw_mon;
741 
742 	bool hw_error;
743 	enum iwl_fw_ini_buffer_location ini_dest;
744 
745 	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
746 	struct list_head debug_info_tlv_list;
747 	struct iwl_dbg_tlv_time_point_data
748 		time_point[IWL_FW_INI_TIME_POINT_NUM];
749 	struct list_head periodic_trig_list;
750 
751 	u32 domains_bitmap;
752 };
753 
754 struct iwl_dma_ptr {
755 	dma_addr_t dma;
756 	void *addr;
757 	size_t size;
758 };
759 
760 struct iwl_cmd_meta {
761 	/* only for SYNC commands, iff the reply skb is wanted */
762 	struct iwl_host_cmd *source;
763 	u32 flags;
764 	u32 tbs;
765 };
766 
767 /*
768  * The FH will write back to the first TB only, so we need to copy some data
769  * into the buffer regardless of whether it should be mapped or not.
770  * This indicates how big the first TB must be to include the scratch buffer
771  * and the assigned PN.
772  * Since PN location is 8 bytes at offset 12, it's 20 now.
773  * If we make it bigger then allocations will be bigger and copy slower, so
774  * that's probably not useful.
775  */
776 #define IWL_FIRST_TB_SIZE	20
777 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
778 
779 struct iwl_pcie_txq_entry {
780 	void *cmd;
781 	struct sk_buff *skb;
782 	/* buffer to free after command completes */
783 	const void *free_buf;
784 	struct iwl_cmd_meta meta;
785 };
786 
787 struct iwl_pcie_first_tb_buf {
788 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
789 };
790 
791 /**
792  * struct iwl_txq - Tx Queue for DMA
793  * @q: generic Rx/Tx queue descriptor
794  * @tfds: transmit frame descriptors (DMA memory)
795  * @first_tb_bufs: start of command headers, including scratch buffers, for
796  *	the writeback -- this is DMA memory and an array holding one buffer
797  *	for each command on the queue
798  * @first_tb_dma: DMA address for the first_tb_bufs start
799  * @entries: transmit entries (driver state)
800  * @lock: queue lock
801  * @stuck_timer: timer that fires if queue gets stuck
802  * @trans: pointer back to transport (for timer)
803  * @need_update: indicates need to update read/write index
804  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
805  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
806  * @frozen: tx stuck queue timer is frozen
807  * @frozen_expiry_remainder: remember how long until the timer fires
808  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
809  * @write_ptr: 1-st empty entry (index) host_w
810  * @read_ptr: last used entry (index) host_r
811  * @dma_addr:  physical addr for BD's
812  * @n_window: safe queue window
813  * @id: queue id
814  * @low_mark: low watermark, resume queue if free space more than this
815  * @high_mark: high watermark, stop queue if free space less than this
816  *
817  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
818  * descriptors) and required locking structures.
819  *
820  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
821  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
822  * there might be HW changes in the future). For the normal TX
823  * queues, n_window, which is the size of the software queue data
824  * is also 256; however, for the command queue, n_window is only
825  * 32 since we don't need so many commands pending. Since the HW
826  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
827  * This means that we end up with the following:
828  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
829  *  SW entries:           | 0      | ... | 31          |
830  * where N is a number between 0 and 7. This means that the SW
831  * data is a window overlayed over the HW queue.
832  */
833 struct iwl_txq {
834 	void *tfds;
835 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
836 	dma_addr_t first_tb_dma;
837 	struct iwl_pcie_txq_entry *entries;
838 	/* lock for syncing changes on the queue */
839 	spinlock_t lock;
840 	unsigned long frozen_expiry_remainder;
841 	struct timer_list stuck_timer;
842 	struct iwl_trans *trans;
843 	bool need_update;
844 	bool frozen;
845 	bool ampdu;
846 	int block;
847 	unsigned long wd_timeout;
848 	struct sk_buff_head overflow_q;
849 	struct iwl_dma_ptr bc_tbl;
850 
851 	int write_ptr;
852 	int read_ptr;
853 	dma_addr_t dma_addr;
854 	int n_window;
855 	u32 id;
856 	int low_mark;
857 	int high_mark;
858 
859 	bool overflow_tx;
860 };
861 
862 /**
863  * struct iwl_trans_txqs - transport tx queues data
864  *
865  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
866  * @page_offs: offset from skb->cb to mac header page pointer
867  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
868  * @queue_used - bit mask of used queues
869  * @queue_stopped - bit mask of stopped queues
870  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
871  */
872 struct iwl_trans_txqs {
873 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
874 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
875 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
876 	struct dma_pool *bc_pool;
877 	size_t bc_tbl_size;
878 	bool bc_table_dword;
879 	u8 page_offs;
880 	u8 dev_cmd_offs;
881 	struct __percpu iwl_tso_hdr_page * tso_hdr_page;
882 
883 	struct {
884 		u8 fifo;
885 		u8 q_id;
886 		unsigned int wdg_timeout;
887 	} cmd;
888 
889 	struct {
890 		u8 max_tbs;
891 		u16 size;
892 		u8 addr_size;
893 	} tfd;
894 
895 	struct iwl_dma_ptr scd_bc_tbls;
896 };
897 
898 /**
899  * struct iwl_trans - transport common data
900  *
901  * @ops - pointer to iwl_trans_ops
902  * @op_mode - pointer to the op_mode
903  * @trans_cfg: the trans-specific configuration part
904  * @cfg - pointer to the configuration
905  * @drv - pointer to iwl_drv
906  * @status: a bit-mask of transport status flags
907  * @dev - pointer to struct device * that represents the device
908  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
909  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
910  * @hw_rf_id a u32 with the device RF ID
911  * @hw_id: a u32 with the ID of the device / sub-device.
912  *	Set during transport allocation.
913  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
914  * @pm_support: set to true in start_hw if link pm is supported
915  * @ltr_enabled: set to true if the LTR is enabled
916  * @wide_cmd_header: true when ucode supports wide command header format
917  * @num_rx_queues: number of RX queues allocated by the transport;
918  *	the transport must set this before calling iwl_drv_start()
919  * @iml_len: the length of the image loader
920  * @iml: a pointer to the image loader itself
921  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
922  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
923  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
924  *	starting the firmware, used for tracing
925  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
926  *	start of the 802.11 header in the @rx_mpdu_cmd
927  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
928  * @system_pm_mode: the system-wide power management mode in use.
929  *	This mode is set dynamically, depending on the WoWLAN values
930  *	configured from the userspace at runtime.
931  * @iwl_trans_txqs: transport tx queues data.
932  */
933 struct iwl_trans {
934 	const struct iwl_trans_ops *ops;
935 	struct iwl_op_mode *op_mode;
936 	const struct iwl_cfg_trans_params *trans_cfg;
937 	const struct iwl_cfg *cfg;
938 	struct iwl_drv *drv;
939 	enum iwl_trans_state state;
940 	unsigned long status;
941 
942 	struct device *dev;
943 	u32 max_skb_frags;
944 	u32 hw_rev;
945 	u32 hw_rf_id;
946 	u32 hw_id;
947 	char hw_id_str[52];
948 	u32 sku_id[3];
949 
950 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
951 
952 	bool pm_support;
953 	bool ltr_enabled;
954 	u8 pnvm_loaded:1;
955 
956 	const struct iwl_hcmd_arr *command_groups;
957 	int command_groups_size;
958 	bool wide_cmd_header;
959 
960 	u8 num_rx_queues;
961 
962 	size_t iml_len;
963 	u8 *iml;
964 
965 	/* The following fields are internal only */
966 	struct kmem_cache *dev_cmd_pool;
967 	char dev_cmd_pool_name[50];
968 
969 	struct dentry *dbgfs_dir;
970 
971 #ifdef CONFIG_LOCKDEP
972 	struct lockdep_map sync_cmd_lockdep_map;
973 #endif
974 
975 	struct iwl_trans_debug dbg;
976 	struct iwl_self_init_dram init_dram;
977 
978 	enum iwl_plat_pm_mode system_pm_mode;
979 
980 	const char *name;
981 	struct iwl_trans_txqs txqs;
982 
983 	/* pointer to trans specific struct */
984 	/*Ensure that this pointer will always be aligned to sizeof pointer */
985 	char trans_specific[] __aligned(sizeof(void *));
986 };
987 
988 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
989 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
990 
991 static inline void iwl_trans_configure(struct iwl_trans *trans,
992 				       const struct iwl_trans_config *trans_cfg)
993 {
994 	trans->op_mode = trans_cfg->op_mode;
995 
996 	trans->ops->configure(trans, trans_cfg);
997 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
998 }
999 
1000 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1001 {
1002 	might_sleep();
1003 
1004 	return trans->ops->start_hw(trans);
1005 }
1006 
1007 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1008 {
1009 	might_sleep();
1010 
1011 	if (trans->ops->op_mode_leave)
1012 		trans->ops->op_mode_leave(trans);
1013 
1014 	trans->op_mode = NULL;
1015 
1016 	trans->state = IWL_TRANS_NO_FW;
1017 }
1018 
1019 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1020 {
1021 	might_sleep();
1022 
1023 	trans->state = IWL_TRANS_FW_ALIVE;
1024 
1025 	trans->ops->fw_alive(trans, scd_addr);
1026 }
1027 
1028 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1029 				     const struct fw_img *fw,
1030 				     bool run_in_rfkill)
1031 {
1032 	int ret;
1033 
1034 	might_sleep();
1035 
1036 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1037 
1038 	clear_bit(STATUS_FW_ERROR, &trans->status);
1039 	ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1040 	if (ret == 0)
1041 		trans->state = IWL_TRANS_FW_STARTED;
1042 
1043 	return ret;
1044 }
1045 
1046 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1047 {
1048 	might_sleep();
1049 
1050 	trans->ops->stop_device(trans);
1051 
1052 	trans->state = IWL_TRANS_NO_FW;
1053 }
1054 
1055 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1056 				       bool reset)
1057 {
1058 	might_sleep();
1059 	if (!trans->ops->d3_suspend)
1060 		return 0;
1061 
1062 	return trans->ops->d3_suspend(trans, test, reset);
1063 }
1064 
1065 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1066 				      enum iwl_d3_status *status,
1067 				      bool test, bool reset)
1068 {
1069 	might_sleep();
1070 	if (!trans->ops->d3_resume)
1071 		return 0;
1072 
1073 	return trans->ops->d3_resume(trans, status, test, reset);
1074 }
1075 
1076 static inline int iwl_trans_suspend(struct iwl_trans *trans)
1077 {
1078 	if (!trans->ops->suspend)
1079 		return 0;
1080 
1081 	return trans->ops->suspend(trans);
1082 }
1083 
1084 static inline void iwl_trans_resume(struct iwl_trans *trans)
1085 {
1086 	if (trans->ops->resume)
1087 		trans->ops->resume(trans);
1088 }
1089 
1090 static inline struct iwl_trans_dump_data *
1091 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask)
1092 {
1093 	if (!trans->ops->dump_data)
1094 		return NULL;
1095 	return trans->ops->dump_data(trans, dump_mask);
1096 }
1097 
1098 static inline struct iwl_device_tx_cmd *
1099 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1100 {
1101 	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1102 }
1103 
1104 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1105 
1106 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1107 					 struct iwl_device_tx_cmd *dev_cmd)
1108 {
1109 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1110 }
1111 
1112 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1113 			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1114 {
1115 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1116 		return -EIO;
1117 
1118 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1119 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1120 		return -EIO;
1121 	}
1122 
1123 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1124 }
1125 
1126 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1127 				     int ssn, struct sk_buff_head *skbs)
1128 {
1129 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1130 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1131 		return;
1132 	}
1133 
1134 	trans->ops->reclaim(trans, queue, ssn, skbs);
1135 }
1136 
1137 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1138 					int ptr)
1139 {
1140 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1141 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1142 		return;
1143 	}
1144 
1145 	trans->ops->set_q_ptrs(trans, queue, ptr);
1146 }
1147 
1148 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1149 					 bool configure_scd)
1150 {
1151 	trans->ops->txq_disable(trans, queue, configure_scd);
1152 }
1153 
1154 static inline bool
1155 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1156 			 const struct iwl_trans_txq_scd_cfg *cfg,
1157 			 unsigned int queue_wdg_timeout)
1158 {
1159 	might_sleep();
1160 
1161 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1162 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1163 		return false;
1164 	}
1165 
1166 	return trans->ops->txq_enable(trans, queue, ssn,
1167 				      cfg, queue_wdg_timeout);
1168 }
1169 
1170 static inline int
1171 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1172 			   struct iwl_trans_rxq_dma_data *data)
1173 {
1174 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1175 		return -ENOTSUPP;
1176 
1177 	return trans->ops->rxq_dma_data(trans, queue, data);
1178 }
1179 
1180 static inline void
1181 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1182 {
1183 	if (WARN_ON_ONCE(!trans->ops->txq_free))
1184 		return;
1185 
1186 	trans->ops->txq_free(trans, queue);
1187 }
1188 
1189 static inline int
1190 iwl_trans_txq_alloc(struct iwl_trans *trans,
1191 		    __le16 flags, u8 sta_id, u8 tid,
1192 		    int cmd_id, int size,
1193 		    unsigned int wdg_timeout)
1194 {
1195 	might_sleep();
1196 
1197 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1198 		return -ENOTSUPP;
1199 
1200 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1201 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1202 		return -EIO;
1203 	}
1204 
1205 	return trans->ops->txq_alloc(trans, flags, sta_id, tid,
1206 				     cmd_id, size, wdg_timeout);
1207 }
1208 
1209 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1210 						 int queue, bool shared_mode)
1211 {
1212 	if (trans->ops->txq_set_shared_mode)
1213 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1214 }
1215 
1216 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1217 					int fifo, int sta_id, int tid,
1218 					int frame_limit, u16 ssn,
1219 					unsigned int queue_wdg_timeout)
1220 {
1221 	struct iwl_trans_txq_scd_cfg cfg = {
1222 		.fifo = fifo,
1223 		.sta_id = sta_id,
1224 		.tid = tid,
1225 		.frame_limit = frame_limit,
1226 		.aggregate = sta_id >= 0,
1227 	};
1228 
1229 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1230 }
1231 
1232 static inline
1233 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1234 			     unsigned int queue_wdg_timeout)
1235 {
1236 	struct iwl_trans_txq_scd_cfg cfg = {
1237 		.fifo = fifo,
1238 		.sta_id = -1,
1239 		.tid = IWL_MAX_TID_COUNT,
1240 		.frame_limit = IWL_FRAME_LIMIT,
1241 		.aggregate = false,
1242 	};
1243 
1244 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1245 }
1246 
1247 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1248 					      unsigned long txqs,
1249 					      bool freeze)
1250 {
1251 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1252 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1253 		return;
1254 	}
1255 
1256 	if (trans->ops->freeze_txq_timer)
1257 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1258 }
1259 
1260 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1261 					    bool block)
1262 {
1263 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1264 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1265 		return;
1266 	}
1267 
1268 	if (trans->ops->block_txq_ptrs)
1269 		trans->ops->block_txq_ptrs(trans, block);
1270 }
1271 
1272 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1273 						 u32 txqs)
1274 {
1275 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1276 		return -ENOTSUPP;
1277 
1278 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1279 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1280 		return -EIO;
1281 	}
1282 
1283 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1284 }
1285 
1286 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1287 {
1288 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1289 		return -ENOTSUPP;
1290 
1291 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1292 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1293 		return -EIO;
1294 	}
1295 
1296 	return trans->ops->wait_txq_empty(trans, queue);
1297 }
1298 
1299 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1300 {
1301 	trans->ops->write8(trans, ofs, val);
1302 }
1303 
1304 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1305 {
1306 	trans->ops->write32(trans, ofs, val);
1307 }
1308 
1309 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1310 {
1311 	return trans->ops->read32(trans, ofs);
1312 }
1313 
1314 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1315 {
1316 	return trans->ops->read_prph(trans, ofs);
1317 }
1318 
1319 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1320 					u32 val)
1321 {
1322 	return trans->ops->write_prph(trans, ofs, val);
1323 }
1324 
1325 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1326 				     void *buf, int dwords)
1327 {
1328 	return trans->ops->read_mem(trans, addr, buf, dwords);
1329 }
1330 
1331 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1332 	do {								      \
1333 		if (__builtin_constant_p(bufsize))			      \
1334 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1335 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1336 	} while (0)
1337 
1338 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1339 {
1340 	u32 value;
1341 
1342 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1343 		return 0xa5a5a5a5;
1344 
1345 	return value;
1346 }
1347 
1348 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1349 				      const void *buf, int dwords)
1350 {
1351 	return trans->ops->write_mem(trans, addr, buf, dwords);
1352 }
1353 
1354 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1355 					u32 val)
1356 {
1357 	return iwl_trans_write_mem(trans, addr, &val, 1);
1358 }
1359 
1360 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1361 {
1362 	if (trans->ops->set_pmi)
1363 		trans->ops->set_pmi(trans, state);
1364 }
1365 
1366 static inline void iwl_trans_sw_reset(struct iwl_trans *trans)
1367 {
1368 	if (trans->ops->sw_reset)
1369 		trans->ops->sw_reset(trans);
1370 }
1371 
1372 static inline void
1373 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1374 {
1375 	trans->ops->set_bits_mask(trans, reg, mask, value);
1376 }
1377 
1378 #define iwl_trans_grab_nic_access(trans, flags)	\
1379 	__cond_lock(nic_access,				\
1380 		    likely((trans)->ops->grab_nic_access(trans, flags)))
1381 
1382 static inline void __releases(nic_access)
1383 iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags)
1384 {
1385 	trans->ops->release_nic_access(trans, flags);
1386 	__release(nic_access);
1387 }
1388 
1389 static inline void iwl_trans_fw_error(struct iwl_trans *trans)
1390 {
1391 	if (WARN_ON_ONCE(!trans->op_mode))
1392 		return;
1393 
1394 	/* prevent double restarts due to the same erroneous FW */
1395 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1396 		iwl_op_mode_nic_error(trans->op_mode);
1397 		trans->state = IWL_TRANS_NO_FW;
1398 	}
1399 }
1400 
1401 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1402 {
1403 	return trans->state == IWL_TRANS_FW_ALIVE;
1404 }
1405 
1406 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1407 {
1408 	if (trans->ops->sync_nmi)
1409 		trans->ops->sync_nmi(trans);
1410 }
1411 
1412 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1413 				     const void *data, u32 len)
1414 {
1415 	if (trans->ops->set_pnvm) {
1416 		int ret = trans->ops->set_pnvm(trans, data, len);
1417 
1418 		if (ret)
1419 			return ret;
1420 	}
1421 
1422 	trans->pnvm_loaded = true;
1423 
1424 	return 0;
1425 }
1426 
1427 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1428 {
1429 	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1430 		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1431 }
1432 
1433 /*****************************************************
1434  * transport helper functions
1435  *****************************************************/
1436 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1437 			  struct device *dev,
1438 			  const struct iwl_trans_ops *ops,
1439 			  const struct iwl_cfg_trans_params *cfg_trans);
1440 void iwl_trans_free(struct iwl_trans *trans);
1441 
1442 /*****************************************************
1443 * driver (transport) register/unregister functions
1444 ******************************************************/
1445 int __must_check iwl_pci_register_driver(void);
1446 void iwl_pci_unregister_driver(void);
1447 
1448 #endif /* __iwl_trans_h__ */
1449