1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ 2 /* 3 * Copyright (C) 2005-2014, 2018-2022 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #ifndef __iwl_trans_h__ 8 #define __iwl_trans_h__ 9 10 #include <linux/ieee80211.h> 11 #include <linux/mm.h> /* for page_address */ 12 #include <linux/lockdep.h> 13 #include <linux/kernel.h> 14 15 #include "iwl-debug.h" 16 #include "iwl-config.h" 17 #include "fw/img.h" 18 #include "iwl-op-mode.h" 19 #include <linux/firmware.h> 20 #include "fw/api/cmdhdr.h" 21 #include "fw/api/txq.h" 22 #include "fw/api/dbg-tlv.h" 23 #include "iwl-dbg-tlv.h" 24 25 /** 26 * DOC: Transport layer - what is it ? 27 * 28 * The transport layer is the layer that deals with the HW directly. It provides 29 * an abstraction of the underlying HW to the upper layer. The transport layer 30 * doesn't provide any policy, algorithm or anything of this kind, but only 31 * mechanisms to make the HW do something. It is not completely stateless but 32 * close to it. 33 * We will have an implementation for each different supported bus. 34 */ 35 36 /** 37 * DOC: Life cycle of the transport layer 38 * 39 * The transport layer has a very precise life cycle. 40 * 41 * 1) A helper function is called during the module initialization and 42 * registers the bus driver's ops with the transport's alloc function. 43 * 2) Bus's probe calls to the transport layer's allocation functions. 44 * Of course this function is bus specific. 45 * 3) This allocation functions will spawn the upper layer which will 46 * register mac80211. 47 * 48 * 4) At some point (i.e. mac80211's start call), the op_mode will call 49 * the following sequence: 50 * start_hw 51 * start_fw 52 * 53 * 5) Then when finished (or reset): 54 * stop_device 55 * 56 * 6) Eventually, the free function will be called. 57 */ 58 59 #define IWL_TRANS_FW_DBG_DOMAIN(trans) IWL_FW_INI_DOMAIN_ALWAYS_ON 60 61 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ 62 #define FH_RSCSR_FRAME_INVALID 0x55550000 63 #define FH_RSCSR_FRAME_ALIGN 0x40 64 #define FH_RSCSR_RPA_EN BIT(25) 65 #define FH_RSCSR_RADA_EN BIT(26) 66 #define FH_RSCSR_RXQ_POS 16 67 #define FH_RSCSR_RXQ_MASK 0x3F0000 68 69 struct iwl_rx_packet { 70 /* 71 * The first 4 bytes of the RX frame header contain both the RX frame 72 * size and some flags. 73 * Bit fields: 74 * 31: flag flush RB request 75 * 30: flag ignore TC (terminal counter) request 76 * 29: flag fast IRQ request 77 * 28-27: Reserved 78 * 26: RADA enabled 79 * 25: Offload enabled 80 * 24: RPF enabled 81 * 23: RSS enabled 82 * 22: Checksum enabled 83 * 21-16: RX queue 84 * 15-14: Reserved 85 * 13-00: RX frame size 86 */ 87 __le32 len_n_flags; 88 struct iwl_cmd_header hdr; 89 u8 data[]; 90 } __packed; 91 92 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) 93 { 94 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; 95 } 96 97 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) 98 { 99 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); 100 } 101 102 /** 103 * enum CMD_MODE - how to send the host commands ? 104 * 105 * @CMD_ASYNC: Return right away and don't wait for the response 106 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of 107 * the response. The caller needs to call iwl_free_resp when done. 108 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be 109 * called after this command completes. Valid only with CMD_ASYNC. 110 * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to 111 * SUSPEND and RESUME commands. We are in D3 mode when we set 112 * trans->system_pm_mode to IWL_PLAT_PM_MODE_D3. 113 */ 114 enum CMD_MODE { 115 CMD_ASYNC = BIT(0), 116 CMD_WANT_SKB = BIT(1), 117 CMD_SEND_IN_RFKILL = BIT(2), 118 CMD_WANT_ASYNC_CALLBACK = BIT(3), 119 CMD_SEND_IN_D3 = BIT(4), 120 }; 121 122 #define DEF_CMD_PAYLOAD_SIZE 320 123 124 /** 125 * struct iwl_device_cmd 126 * 127 * For allocation of the command and tx queues, this establishes the overall 128 * size of the largest command we send to uCode, except for commands that 129 * aren't fully copied and use other TFD space. 130 */ 131 struct iwl_device_cmd { 132 union { 133 struct { 134 struct iwl_cmd_header hdr; /* uCode API */ 135 u8 payload[DEF_CMD_PAYLOAD_SIZE]; 136 }; 137 struct { 138 struct iwl_cmd_header_wide hdr_wide; 139 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE - 140 sizeof(struct iwl_cmd_header_wide) + 141 sizeof(struct iwl_cmd_header)]; 142 }; 143 }; 144 } __packed; 145 146 /** 147 * struct iwl_device_tx_cmd - buffer for TX command 148 * @hdr: the header 149 * @payload: the payload placeholder 150 * 151 * The actual structure is sized dynamically according to need. 152 */ 153 struct iwl_device_tx_cmd { 154 struct iwl_cmd_header hdr; 155 u8 payload[]; 156 } __packed; 157 158 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) 159 160 /* 161 * number of transfer buffers (fragments) per transmit frame descriptor; 162 * this is just the driver's idea, the hardware supports 20 163 */ 164 #define IWL_MAX_CMD_TBS_PER_TFD 2 165 166 /* We need 2 entries for the TX command and header, and another one might 167 * be needed for potential data in the SKB's head. The remaining ones can 168 * be used for frags. 169 */ 170 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3) 171 172 /** 173 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command 174 * 175 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's 176 * ring. The transport layer doesn't map the command's buffer to DMA, but 177 * rather copies it to a previously allocated DMA buffer. This flag tells 178 * the transport layer not to copy the command, but to map the existing 179 * buffer (that is passed in) instead. This saves the memcpy and allows 180 * commands that are bigger than the fixed buffer to be submitted. 181 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. 182 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this 183 * chunk internally and free it again after the command completes. This 184 * can (currently) be used only once per command. 185 * Note that a TFD entry after a DUP one cannot be a normal copied one. 186 */ 187 enum iwl_hcmd_dataflag { 188 IWL_HCMD_DFL_NOCOPY = BIT(0), 189 IWL_HCMD_DFL_DUP = BIT(1), 190 }; 191 192 enum iwl_error_event_table_status { 193 IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0), 194 IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1), 195 IWL_ERROR_EVENT_TABLE_UMAC = BIT(2), 196 IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3), 197 IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4), 198 IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5), 199 IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6), 200 }; 201 202 /** 203 * struct iwl_host_cmd - Host command to the uCode 204 * 205 * @data: array of chunks that composes the data of the host command 206 * @resp_pkt: response packet, if %CMD_WANT_SKB was set 207 * @_rx_page_order: (internally used to free response packet) 208 * @_rx_page_addr: (internally used to free response packet) 209 * @flags: can be CMD_* 210 * @len: array of the lengths of the chunks in data 211 * @dataflags: IWL_HCMD_DFL_* 212 * @id: command id of the host command, for wide commands encoding the 213 * version and group as well 214 */ 215 struct iwl_host_cmd { 216 const void *data[IWL_MAX_CMD_TBS_PER_TFD]; 217 struct iwl_rx_packet *resp_pkt; 218 unsigned long _rx_page_addr; 219 u32 _rx_page_order; 220 221 u32 flags; 222 u32 id; 223 u16 len[IWL_MAX_CMD_TBS_PER_TFD]; 224 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; 225 }; 226 227 static inline void iwl_free_resp(struct iwl_host_cmd *cmd) 228 { 229 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); 230 } 231 232 struct iwl_rx_cmd_buffer { 233 struct page *_page; 234 int _offset; 235 bool _page_stolen; 236 u32 _rx_page_order; 237 unsigned int truesize; 238 }; 239 240 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) 241 { 242 return (void *)((unsigned long)page_address(r->_page) + r->_offset); 243 } 244 245 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) 246 { 247 return r->_offset; 248 } 249 250 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) 251 { 252 r->_page_stolen = true; 253 get_page(r->_page); 254 return r->_page; 255 } 256 257 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) 258 { 259 __free_pages(r->_page, r->_rx_page_order); 260 } 261 262 #define MAX_NO_RECLAIM_CMDS 6 263 264 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) 265 266 /* 267 * Maximum number of HW queues the transport layer 268 * currently supports 269 */ 270 #define IWL_MAX_HW_QUEUES 32 271 #define IWL_MAX_TVQM_QUEUES 512 272 273 #define IWL_MAX_TID_COUNT 8 274 #define IWL_MGMT_TID 15 275 #define IWL_FRAME_LIMIT 64 276 #define IWL_MAX_RX_HW_QUEUES 16 277 #define IWL_9000_MAX_RX_HW_QUEUES 6 278 279 /** 280 * enum iwl_wowlan_status - WoWLAN image/device status 281 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume 282 * @IWL_D3_STATUS_RESET: device was reset while suspended 283 */ 284 enum iwl_d3_status { 285 IWL_D3_STATUS_ALIVE, 286 IWL_D3_STATUS_RESET, 287 }; 288 289 /** 290 * enum iwl_trans_status: transport status flags 291 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed 292 * @STATUS_DEVICE_ENABLED: APM is enabled 293 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) 294 * @STATUS_INT_ENABLED: interrupts are enabled 295 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch 296 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode 297 * @STATUS_FW_ERROR: the fw is in error state 298 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands 299 * are sent 300 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent 301 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation 302 * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once, 303 * e.g. for testing 304 */ 305 enum iwl_trans_status { 306 STATUS_SYNC_HCMD_ACTIVE, 307 STATUS_DEVICE_ENABLED, 308 STATUS_TPOWER_PMI, 309 STATUS_INT_ENABLED, 310 STATUS_RFKILL_HW, 311 STATUS_RFKILL_OPMODE, 312 STATUS_FW_ERROR, 313 STATUS_TRANS_GOING_IDLE, 314 STATUS_TRANS_IDLE, 315 STATUS_TRANS_DEAD, 316 STATUS_SUPPRESS_CMD_ERROR_ONCE, 317 }; 318 319 static inline int 320 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size) 321 { 322 switch (rb_size) { 323 case IWL_AMSDU_2K: 324 return get_order(2 * 1024); 325 case IWL_AMSDU_4K: 326 return get_order(4 * 1024); 327 case IWL_AMSDU_8K: 328 return get_order(8 * 1024); 329 case IWL_AMSDU_12K: 330 return get_order(16 * 1024); 331 default: 332 WARN_ON(1); 333 return -1; 334 } 335 } 336 337 static inline int 338 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size) 339 { 340 switch (rb_size) { 341 case IWL_AMSDU_2K: 342 return 2 * 1024; 343 case IWL_AMSDU_4K: 344 return 4 * 1024; 345 case IWL_AMSDU_8K: 346 return 8 * 1024; 347 case IWL_AMSDU_12K: 348 return 16 * 1024; 349 default: 350 WARN_ON(1); 351 return 0; 352 } 353 } 354 355 struct iwl_hcmd_names { 356 u8 cmd_id; 357 const char *const cmd_name; 358 }; 359 360 #define HCMD_NAME(x) \ 361 { .cmd_id = x, .cmd_name = #x } 362 363 struct iwl_hcmd_arr { 364 const struct iwl_hcmd_names *arr; 365 int size; 366 }; 367 368 #define HCMD_ARR(x) \ 369 { .arr = x, .size = ARRAY_SIZE(x) } 370 371 /** 372 * struct iwl_dump_sanitize_ops - dump sanitization operations 373 * @frob_txf: Scrub the TX FIFO data 374 * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header 375 * but that might be short or long (&struct iwl_cmd_header or 376 * &struct iwl_cmd_header_wide) 377 * @frob_mem: Scrub memory data 378 */ 379 struct iwl_dump_sanitize_ops { 380 void (*frob_txf)(void *ctx, void *buf, size_t buflen); 381 void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen); 382 void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen); 383 }; 384 385 /** 386 * struct iwl_trans_config - transport configuration 387 * 388 * @op_mode: pointer to the upper layer. 389 * @cmd_queue: the index of the command queue. 390 * Must be set before start_fw. 391 * @cmd_fifo: the fifo for host commands 392 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue. 393 * @no_reclaim_cmds: Some devices erroneously don't set the 394 * SEQ_RX_FRAME bit on some notifications, this is the 395 * list of such notifications to filter. Max length is 396 * %MAX_NO_RECLAIM_CMDS. 397 * @n_no_reclaim_cmds: # of commands in list 398 * @rx_buf_size: RX buffer size needed for A-MSDUs 399 * if unset 4k will be the RX buffer size 400 * @bc_table_dword: set to true if the BC table expects the byte count to be 401 * in DWORD (as opposed to bytes) 402 * @scd_set_active: should the transport configure the SCD for HCMD queue 403 * @command_groups: array of command groups, each member is an array of the 404 * commands in the group; for debugging only 405 * @command_groups_size: number of command groups, to avoid illegal access 406 * @cb_data_offs: offset inside skb->cb to store transport data at, must have 407 * space for at least two pointers 408 * @fw_reset_handshake: firmware supports reset flow handshake 409 * @queue_alloc_cmd_ver: queue allocation command version, set to 0 410 * for using the older SCD_QUEUE_CFG, set to the version of 411 * SCD_QUEUE_CONFIG_CMD otherwise. 412 */ 413 struct iwl_trans_config { 414 struct iwl_op_mode *op_mode; 415 416 u8 cmd_queue; 417 u8 cmd_fifo; 418 unsigned int cmd_q_wdg_timeout; 419 const u8 *no_reclaim_cmds; 420 unsigned int n_no_reclaim_cmds; 421 422 enum iwl_amsdu_size rx_buf_size; 423 bool bc_table_dword; 424 bool scd_set_active; 425 const struct iwl_hcmd_arr *command_groups; 426 int command_groups_size; 427 428 u8 cb_data_offs; 429 bool fw_reset_handshake; 430 u8 queue_alloc_cmd_ver; 431 }; 432 433 struct iwl_trans_dump_data { 434 u32 len; 435 u8 data[]; 436 }; 437 438 struct iwl_trans; 439 440 struct iwl_trans_txq_scd_cfg { 441 u8 fifo; 442 u8 sta_id; 443 u8 tid; 444 bool aggregate; 445 int frame_limit; 446 }; 447 448 /** 449 * struct iwl_trans_rxq_dma_data - RX queue DMA data 450 * @fr_bd_cb: DMA address of free BD cyclic buffer 451 * @fr_bd_wid: Initial write index of the free BD cyclic buffer 452 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr 453 * @ur_bd_cb: DMA address of used BD cyclic buffer 454 */ 455 struct iwl_trans_rxq_dma_data { 456 u64 fr_bd_cb; 457 u32 fr_bd_wid; 458 u64 urbd_stts_wrptr; 459 u64 ur_bd_cb; 460 }; 461 462 /* maximal number of DRAM MAP entries supported by FW */ 463 #define IPC_DRAM_MAP_ENTRY_NUM_MAX 64 464 465 /** 466 * struct iwl_pnvm_image - contains info about the parsed pnvm image 467 * @chunks: array of pointers to pnvm payloads and their sizes 468 * @n_chunks: the number of the pnvm payloads. 469 * @version: the version of the loaded PNVM image 470 */ 471 struct iwl_pnvm_image { 472 struct { 473 const void *data; 474 u32 len; 475 } chunks[IPC_DRAM_MAP_ENTRY_NUM_MAX]; 476 u32 n_chunks; 477 u32 version; 478 }; 479 480 /** 481 * struct iwl_trans_ops - transport specific operations 482 * 483 * All the handlers MUST be implemented 484 * 485 * @start_hw: starts the HW. From that point on, the HW can send interrupts. 486 * May sleep. 487 * @op_mode_leave: Turn off the HW RF kill indication if on 488 * May sleep 489 * @start_fw: allocates and inits all the resources for the transport 490 * layer. Also kick a fw image. 491 * May sleep 492 * @fw_alive: called when the fw sends alive notification. If the fw provides 493 * the SCD base address in SRAM, then provide it here, or 0 otherwise. 494 * May sleep 495 * @stop_device: stops the whole device (embedded CPU put to reset) and stops 496 * the HW. From that point on, the HW will be stopped but will still issue 497 * an interrupt if the HW RF kill switch is triggered. 498 * This callback must do the right thing and not crash even if %start_hw() 499 * was called but not &start_fw(). May sleep. 500 * @d3_suspend: put the device into the correct mode for WoWLAN during 501 * suspend. This is optional, if not implemented WoWLAN will not be 502 * supported. This callback may sleep. 503 * @d3_resume: resume the device after WoWLAN, enabling the opmode to 504 * talk to the WoWLAN image to get its status. This is optional, if not 505 * implemented WoWLAN will not be supported. This callback may sleep. 506 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. 507 * If RFkill is asserted in the middle of a SYNC host command, it must 508 * return -ERFKILL straight away. 509 * May sleep only if CMD_ASYNC is not set 510 * @tx: send an skb. The transport relies on the op_mode to zero the 511 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all 512 * the CSUM will be taken care of (TCP CSUM and IP header in case of 513 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP 514 * header if it is IPv4. 515 * Must be atomic 516 * @reclaim: free packet until ssn. Returns a list of freed packets. 517 * Must be atomic 518 * @txq_enable: setup a queue. To setup an AC queue, use the 519 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before 520 * this one. The op_mode must not configure the HCMD queue. The scheduler 521 * configuration may be %NULL, in which case the hardware will not be 522 * configured. If true is returned, the operation mode needs to increment 523 * the sequence number of the packets routed to this queue because of a 524 * hardware scheduler bug. May sleep. 525 * @txq_disable: de-configure a Tx queue to send AMPDUs 526 * Must be atomic 527 * @txq_set_shared_mode: change Tx queue shared/unshared marking 528 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep. 529 * @wait_txq_empty: wait until specific tx queue is empty. May sleep. 530 * @freeze_txq_timer: prevents the timer of the queue from firing until the 531 * queue is set to awake. Must be atomic. 532 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note 533 * that the transport needs to refcount the calls since this function 534 * will be called several times with block = true, and then the queues 535 * need to be unblocked only after the same number of calls with 536 * block = false. 537 * @write8: write a u8 to a register at offset ofs from the BAR 538 * @write32: write a u32 to a register at offset ofs from the BAR 539 * @read32: read a u32 register at offset ofs from the BAR 540 * @read_prph: read a DWORD from a periphery register 541 * @write_prph: write a DWORD to a periphery register 542 * @read_mem: read device's SRAM in DWORD 543 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory 544 * will be zeroed. 545 * @read_config32: read a u32 value from the device's config space at 546 * the given offset. 547 * @configure: configure parameters required by the transport layer from 548 * the op_mode. May be called several times before start_fw, can't be 549 * called after that. 550 * @set_pmi: set the power pmi state 551 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. 552 * Sleeping is not allowed between grab_nic_access and 553 * release_nic_access. 554 * @release_nic_access: let the NIC go to sleep. The "flags" parameter 555 * must be the same one that was sent before to the grab_nic_access. 556 * @set_bits_mask - set SRAM register according to value and mask. 557 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last 558 * TX'ed commands and similar. The buffer will be vfree'd by the caller. 559 * Note that the transport must fill in the proper file headers. 560 * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup 561 * of the trans debugfs 562 * @load_pnvm: save the pnvm data in DRAM 563 * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the 564 * context info. 565 * @load_reduce_power: copy reduce power table to the corresponding DRAM memory 566 * @set_reduce_power: set reduce power table addresses in the sratch buffer 567 * @interrupts: disable/enable interrupts to transport 568 */ 569 struct iwl_trans_ops { 570 571 int (*start_hw)(struct iwl_trans *iwl_trans); 572 void (*op_mode_leave)(struct iwl_trans *iwl_trans); 573 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, 574 bool run_in_rfkill); 575 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); 576 void (*stop_device)(struct iwl_trans *trans); 577 578 int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset); 579 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, 580 bool test, bool reset); 581 582 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 583 584 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, 585 struct iwl_device_tx_cmd *dev_cmd, int queue); 586 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, 587 struct sk_buff_head *skbs); 588 589 void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr); 590 591 bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn, 592 const struct iwl_trans_txq_scd_cfg *cfg, 593 unsigned int queue_wdg_timeout); 594 void (*txq_disable)(struct iwl_trans *trans, int queue, 595 bool configure_scd); 596 /* 22000 functions */ 597 int (*txq_alloc)(struct iwl_trans *trans, u32 flags, 598 u32 sta_mask, u8 tid, 599 int size, unsigned int queue_wdg_timeout); 600 void (*txq_free)(struct iwl_trans *trans, int queue); 601 int (*rxq_dma_data)(struct iwl_trans *trans, int queue, 602 struct iwl_trans_rxq_dma_data *data); 603 604 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id, 605 bool shared); 606 607 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm); 608 int (*wait_txq_empty)(struct iwl_trans *trans, int queue); 609 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs, 610 bool freeze); 611 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block); 612 613 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); 614 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); 615 u32 (*read32)(struct iwl_trans *trans, u32 ofs); 616 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); 617 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); 618 int (*read_mem)(struct iwl_trans *trans, u32 addr, 619 void *buf, int dwords); 620 int (*write_mem)(struct iwl_trans *trans, u32 addr, 621 const void *buf, int dwords); 622 int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val); 623 void (*configure)(struct iwl_trans *trans, 624 const struct iwl_trans_config *trans_cfg); 625 void (*set_pmi)(struct iwl_trans *trans, bool state); 626 int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership); 627 bool (*grab_nic_access)(struct iwl_trans *trans); 628 void (*release_nic_access)(struct iwl_trans *trans); 629 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, 630 u32 value); 631 632 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans, 633 u32 dump_mask, 634 const struct iwl_dump_sanitize_ops *sanitize_ops, 635 void *sanitize_ctx); 636 void (*debugfs_cleanup)(struct iwl_trans *trans); 637 void (*sync_nmi)(struct iwl_trans *trans); 638 int (*load_pnvm)(struct iwl_trans *trans, 639 const struct iwl_pnvm_image *pnvm_payloads, 640 const struct iwl_ucode_capabilities *capa); 641 void (*set_pnvm)(struct iwl_trans *trans, 642 const struct iwl_ucode_capabilities *capa); 643 int (*load_reduce_power)(struct iwl_trans *trans, 644 const struct iwl_pnvm_image *payloads, 645 const struct iwl_ucode_capabilities *capa); 646 void (*set_reduce_power)(struct iwl_trans *trans, 647 const struct iwl_ucode_capabilities *capa); 648 649 void (*interrupts)(struct iwl_trans *trans, bool enable); 650 int (*imr_dma_data)(struct iwl_trans *trans, 651 u32 dst_addr, u64 src_addr, 652 u32 byte_cnt); 653 654 }; 655 656 /** 657 * enum iwl_trans_state - state of the transport layer 658 * 659 * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed 660 * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet 661 * @IWL_TRANS_FW_ALIVE: FW has sent an alive response 662 */ 663 enum iwl_trans_state { 664 IWL_TRANS_NO_FW, 665 IWL_TRANS_FW_STARTED, 666 IWL_TRANS_FW_ALIVE, 667 }; 668 669 /** 670 * DOC: Platform power management 671 * 672 * In system-wide power management the entire platform goes into a low 673 * power state (e.g. idle or suspend to RAM) at the same time and the 674 * device is configured as a wakeup source for the entire platform. 675 * This is usually triggered by userspace activity (e.g. the user 676 * presses the suspend button or a power management daemon decides to 677 * put the platform in low power mode). The device's behavior in this 678 * mode is dictated by the wake-on-WLAN configuration. 679 * 680 * The terms used for the device's behavior are as follows: 681 * 682 * - D0: the device is fully powered and the host is awake; 683 * - D3: the device is in low power mode and only reacts to 684 * specific events (e.g. magic-packet received or scan 685 * results found); 686 * 687 * These terms reflect the power modes in the firmware and are not to 688 * be confused with the physical device power state. 689 */ 690 691 /** 692 * enum iwl_plat_pm_mode - platform power management mode 693 * 694 * This enumeration describes the device's platform power management 695 * behavior when in system-wide suspend (i.e WoWLAN). 696 * 697 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this 698 * device. In system-wide suspend mode, it means that the all 699 * connections will be closed automatically by mac80211 before 700 * the platform is suspended. 701 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN). 702 */ 703 enum iwl_plat_pm_mode { 704 IWL_PLAT_PM_MODE_DISABLED, 705 IWL_PLAT_PM_MODE_D3, 706 }; 707 708 /** 709 * enum iwl_ini_cfg_state 710 * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given 711 * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded 712 * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs 713 * are corrupted. The rest of the debug TLVs will still be used 714 */ 715 enum iwl_ini_cfg_state { 716 IWL_INI_CFG_STATE_NOT_LOADED, 717 IWL_INI_CFG_STATE_LOADED, 718 IWL_INI_CFG_STATE_CORRUPTED, 719 }; 720 721 /* Max time to wait for nmi interrupt */ 722 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4) 723 724 /** 725 * struct iwl_dram_data 726 * @physical: page phy pointer 727 * @block: pointer to the allocated block/page 728 * @size: size of the block/page 729 */ 730 struct iwl_dram_data { 731 dma_addr_t physical; 732 void *block; 733 int size; 734 }; 735 736 /** 737 * @drams: array of several DRAM areas that contains the pnvm and power 738 * reduction table payloads. 739 * @n_regions: number of DRAM regions that were allocated 740 * @prph_scratch_mem_desc: points to a structure allocated in dram, 741 * designed to show FW where all the payloads are. 742 */ 743 struct iwl_dram_regions { 744 struct iwl_dram_data drams[IPC_DRAM_MAP_ENTRY_NUM_MAX]; 745 struct iwl_dram_data prph_scratch_mem_desc; 746 u8 n_regions; 747 }; 748 749 /** 750 * struct iwl_fw_mon - fw monitor per allocation id 751 * @num_frags: number of fragments 752 * @frags: an array of DRAM buffer fragments 753 */ 754 struct iwl_fw_mon { 755 u32 num_frags; 756 struct iwl_dram_data *frags; 757 }; 758 759 /** 760 * struct iwl_self_init_dram - dram data used by self init process 761 * @fw: lmac and umac dram data 762 * @fw_cnt: total number of items in array 763 * @paging: paging dram data 764 * @paging_cnt: total number of items in array 765 */ 766 struct iwl_self_init_dram { 767 struct iwl_dram_data *fw; 768 int fw_cnt; 769 struct iwl_dram_data *paging; 770 int paging_cnt; 771 }; 772 773 /** 774 * struct iwl_imr_data - imr dram data used during debug process 775 * @imr_enable: imr enable status received from fw 776 * @imr_size: imr dram size received from fw 777 * @sram_addr: sram address from debug tlv 778 * @sram_size: sram size from debug tlv 779 * @imr2sram_remainbyte`: size remained after each dma transfer 780 * @imr_curr_addr: current dst address used during dma transfer 781 * @imr_base_addr: imr address received from fw 782 */ 783 struct iwl_imr_data { 784 u32 imr_enable; 785 u32 imr_size; 786 u32 sram_addr; 787 u32 sram_size; 788 u32 imr2sram_remainbyte; 789 u64 imr_curr_addr; 790 __le64 imr_base_addr; 791 }; 792 793 #define IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES 32 794 795 /** 796 * struct iwl_pc_data - program counter details 797 * @pc_name: cpu name 798 * @pc_address: cpu program counter 799 */ 800 struct iwl_pc_data { 801 u8 pc_name[IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES]; 802 u32 pc_address; 803 }; 804 805 /** 806 * struct iwl_trans_debug - transport debug related data 807 * 808 * @n_dest_reg: num of reg_ops in %dbg_dest_tlv 809 * @rec_on: true iff there is a fw debug recording currently active 810 * @dest_tlv: points to the destination TLV for debug 811 * @conf_tlv: array of pointers to configuration TLVs for debug 812 * @trigger_tlv: array of pointers to triggers TLVs for debug 813 * @lmac_error_event_table: addrs of lmacs error tables 814 * @umac_error_event_table: addr of umac error table 815 * @tcm_error_event_table: address(es) of TCM error table(s) 816 * @rcm_error_event_table: address(es) of RCM error table(s) 817 * @error_event_table_tlv_status: bitmap that indicates what error table 818 * pointers was recevied via TLV. uses enum &iwl_error_event_table_status 819 * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state 820 * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state 821 * @fw_mon_cfg: debug buffer allocation configuration 822 * @fw_mon_ini: DRAM buffer fragments per allocation id 823 * @fw_mon: DRAM buffer for firmware monitor 824 * @hw_error: equals true if hw error interrupt was received from the FW 825 * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location 826 * @active_regions: active regions 827 * @debug_info_tlv_list: list of debug info TLVs 828 * @time_point: array of debug time points 829 * @periodic_trig_list: periodic triggers list 830 * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON 831 * @ucode_preset: preset based on ucode 832 * @dump_file_name_ext: dump file name extension 833 * @dump_file_name_ext_valid: dump file name extension if valid or not 834 * @num_pc: number of program counter for cpu 835 * @pc_data: details of the program counter 836 */ 837 struct iwl_trans_debug { 838 u8 n_dest_reg; 839 bool rec_on; 840 841 const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv; 842 const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX]; 843 struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv; 844 845 u32 lmac_error_event_table[2]; 846 u32 umac_error_event_table; 847 u32 tcm_error_event_table[2]; 848 u32 rcm_error_event_table[2]; 849 unsigned int error_event_table_tlv_status; 850 851 enum iwl_ini_cfg_state internal_ini_cfg; 852 enum iwl_ini_cfg_state external_ini_cfg; 853 854 struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM]; 855 struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM]; 856 857 struct iwl_dram_data fw_mon; 858 859 bool hw_error; 860 enum iwl_fw_ini_buffer_location ini_dest; 861 862 u64 unsupported_region_msk; 863 struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID]; 864 struct list_head debug_info_tlv_list; 865 struct iwl_dbg_tlv_time_point_data 866 time_point[IWL_FW_INI_TIME_POINT_NUM]; 867 struct list_head periodic_trig_list; 868 869 u32 domains_bitmap; 870 u32 ucode_preset; 871 bool restart_required; 872 u32 last_tp_resetfw; 873 struct iwl_imr_data imr_data; 874 u8 dump_file_name_ext[IWL_FW_INI_MAX_NAME]; 875 bool dump_file_name_ext_valid; 876 u32 num_pc; 877 struct iwl_pc_data *pc_data; 878 }; 879 880 struct iwl_dma_ptr { 881 dma_addr_t dma; 882 void *addr; 883 size_t size; 884 }; 885 886 struct iwl_cmd_meta { 887 /* only for SYNC commands, iff the reply skb is wanted */ 888 struct iwl_host_cmd *source; 889 u32 flags; 890 u32 tbs; 891 }; 892 893 /* 894 * The FH will write back to the first TB only, so we need to copy some data 895 * into the buffer regardless of whether it should be mapped or not. 896 * This indicates how big the first TB must be to include the scratch buffer 897 * and the assigned PN. 898 * Since PN location is 8 bytes at offset 12, it's 20 now. 899 * If we make it bigger then allocations will be bigger and copy slower, so 900 * that's probably not useful. 901 */ 902 #define IWL_FIRST_TB_SIZE 20 903 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64) 904 905 struct iwl_pcie_txq_entry { 906 void *cmd; 907 struct sk_buff *skb; 908 /* buffer to free after command completes */ 909 const void *free_buf; 910 struct iwl_cmd_meta meta; 911 }; 912 913 struct iwl_pcie_first_tb_buf { 914 u8 buf[IWL_FIRST_TB_SIZE_ALIGN]; 915 }; 916 917 /** 918 * struct iwl_txq - Tx Queue for DMA 919 * @q: generic Rx/Tx queue descriptor 920 * @tfds: transmit frame descriptors (DMA memory) 921 * @first_tb_bufs: start of command headers, including scratch buffers, for 922 * the writeback -- this is DMA memory and an array holding one buffer 923 * for each command on the queue 924 * @first_tb_dma: DMA address for the first_tb_bufs start 925 * @entries: transmit entries (driver state) 926 * @lock: queue lock 927 * @stuck_timer: timer that fires if queue gets stuck 928 * @trans: pointer back to transport (for timer) 929 * @need_update: indicates need to update read/write index 930 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID 931 * @wd_timeout: queue watchdog timeout (jiffies) - per queue 932 * @frozen: tx stuck queue timer is frozen 933 * @frozen_expiry_remainder: remember how long until the timer fires 934 * @bc_tbl: byte count table of the queue (relevant only for gen2 transport) 935 * @write_ptr: 1-st empty entry (index) host_w 936 * @read_ptr: last used entry (index) host_r 937 * @dma_addr: physical addr for BD's 938 * @n_window: safe queue window 939 * @id: queue id 940 * @low_mark: low watermark, resume queue if free space more than this 941 * @high_mark: high watermark, stop queue if free space less than this 942 * 943 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame 944 * descriptors) and required locking structures. 945 * 946 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware 947 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless 948 * there might be HW changes in the future). For the normal TX 949 * queues, n_window, which is the size of the software queue data 950 * is also 256; however, for the command queue, n_window is only 951 * 32 since we don't need so many commands pending. Since the HW 952 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256. 953 * This means that we end up with the following: 954 * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 | 955 * SW entries: | 0 | ... | 31 | 956 * where N is a number between 0 and 7. This means that the SW 957 * data is a window overlayed over the HW queue. 958 */ 959 struct iwl_txq { 960 void *tfds; 961 struct iwl_pcie_first_tb_buf *first_tb_bufs; 962 dma_addr_t first_tb_dma; 963 struct iwl_pcie_txq_entry *entries; 964 /* lock for syncing changes on the queue */ 965 spinlock_t lock; 966 unsigned long frozen_expiry_remainder; 967 struct timer_list stuck_timer; 968 struct iwl_trans *trans; 969 bool need_update; 970 bool frozen; 971 bool ampdu; 972 int block; 973 unsigned long wd_timeout; 974 struct sk_buff_head overflow_q; 975 struct iwl_dma_ptr bc_tbl; 976 977 int write_ptr; 978 int read_ptr; 979 dma_addr_t dma_addr; 980 int n_window; 981 u32 id; 982 int low_mark; 983 int high_mark; 984 985 bool overflow_tx; 986 }; 987 988 /** 989 * struct iwl_trans_txqs - transport tx queues data 990 * 991 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes) 992 * @page_offs: offset from skb->cb to mac header page pointer 993 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer 994 * @queue_used - bit mask of used queues 995 * @queue_stopped - bit mask of stopped queues 996 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler 997 * @queue_alloc_cmd_ver: queue allocation command version 998 */ 999 struct iwl_trans_txqs { 1000 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 1001 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 1002 struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES]; 1003 struct dma_pool *bc_pool; 1004 size_t bc_tbl_size; 1005 bool bc_table_dword; 1006 u8 page_offs; 1007 u8 dev_cmd_offs; 1008 struct iwl_tso_hdr_page __percpu *tso_hdr_page; 1009 1010 struct { 1011 u8 fifo; 1012 u8 q_id; 1013 unsigned int wdg_timeout; 1014 } cmd; 1015 1016 struct { 1017 u8 max_tbs; 1018 u16 size; 1019 u8 addr_size; 1020 } tfd; 1021 1022 struct iwl_dma_ptr scd_bc_tbls; 1023 1024 u8 queue_alloc_cmd_ver; 1025 }; 1026 1027 /** 1028 * struct iwl_trans - transport common data 1029 * 1030 * @csme_own - true if we couldn't get ownership on the device 1031 * @ops - pointer to iwl_trans_ops 1032 * @op_mode - pointer to the op_mode 1033 * @trans_cfg: the trans-specific configuration part 1034 * @cfg - pointer to the configuration 1035 * @drv - pointer to iwl_drv 1036 * @status: a bit-mask of transport status flags 1037 * @dev - pointer to struct device * that represents the device 1038 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted. 1039 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported. 1040 * @hw_rf_id a u32 with the device RF ID 1041 * @hw_crf_id a u32 with the device CRF ID 1042 * @hw_wfpm_id a u32 with the device wfpm ID 1043 * @hw_id: a u32 with the ID of the device / sub-device. 1044 * Set during transport allocation. 1045 * @hw_id_str: a string with info about HW ID. Set during transport allocation. 1046 * @hw_rev_step: The mac step of the HW 1047 * @pm_support: set to true in start_hw if link pm is supported 1048 * @ltr_enabled: set to true if the LTR is enabled 1049 * @fail_to_parse_pnvm_image: set to true if pnvm parsing failed 1050 * @failed_to_load_reduce_power_image: set to true if pnvm loading failed 1051 * @wide_cmd_header: true when ucode supports wide command header format 1052 * @wait_command_queue: wait queue for sync commands 1053 * @num_rx_queues: number of RX queues allocated by the transport; 1054 * the transport must set this before calling iwl_drv_start() 1055 * @iml_len: the length of the image loader 1056 * @iml: a pointer to the image loader itself 1057 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. 1058 * The user should use iwl_trans_{alloc,free}_tx_cmd. 1059 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before 1060 * starting the firmware, used for tracing 1061 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the 1062 * start of the 802.11 header in the @rx_mpdu_cmd 1063 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI) 1064 * @system_pm_mode: the system-wide power management mode in use. 1065 * This mode is set dynamically, depending on the WoWLAN values 1066 * configured from the userspace at runtime. 1067 * @iwl_trans_txqs: transport tx queues data. 1068 * @mbx_addr_0_step: step address data 0 1069 * @mbx_addr_1_step: step address data 1 1070 */ 1071 struct iwl_trans { 1072 bool csme_own; 1073 const struct iwl_trans_ops *ops; 1074 struct iwl_op_mode *op_mode; 1075 const struct iwl_cfg_trans_params *trans_cfg; 1076 const struct iwl_cfg *cfg; 1077 struct iwl_drv *drv; 1078 enum iwl_trans_state state; 1079 unsigned long status; 1080 1081 struct device *dev; 1082 u32 max_skb_frags; 1083 u32 hw_rev; 1084 u32 hw_rev_step; 1085 u32 hw_rf_id; 1086 u32 hw_crf_id; 1087 u32 hw_cnv_id; 1088 u32 hw_wfpm_id; 1089 u32 hw_id; 1090 char hw_id_str[52]; 1091 u32 sku_id[3]; 1092 1093 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; 1094 1095 bool pm_support; 1096 bool ltr_enabled; 1097 u8 pnvm_loaded:1; 1098 u8 fail_to_parse_pnvm_image:1; 1099 u8 reduce_power_loaded:1; 1100 u8 failed_to_load_reduce_power_image:1; 1101 1102 const struct iwl_hcmd_arr *command_groups; 1103 int command_groups_size; 1104 bool wide_cmd_header; 1105 1106 wait_queue_head_t wait_command_queue; 1107 u8 num_rx_queues; 1108 1109 size_t iml_len; 1110 u8 *iml; 1111 1112 /* The following fields are internal only */ 1113 struct kmem_cache *dev_cmd_pool; 1114 char dev_cmd_pool_name[50]; 1115 1116 struct dentry *dbgfs_dir; 1117 1118 #ifdef CONFIG_LOCKDEP 1119 struct lockdep_map sync_cmd_lockdep_map; 1120 #endif 1121 1122 struct iwl_trans_debug dbg; 1123 struct iwl_self_init_dram init_dram; 1124 1125 enum iwl_plat_pm_mode system_pm_mode; 1126 1127 const char *name; 1128 struct iwl_trans_txqs txqs; 1129 u32 mbx_addr_0_step; 1130 u32 mbx_addr_1_step; 1131 1132 /* pointer to trans specific struct */ 1133 /*Ensure that this pointer will always be aligned to sizeof pointer */ 1134 char trans_specific[] __aligned(sizeof(void *)); 1135 }; 1136 1137 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id); 1138 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans); 1139 1140 static inline void iwl_trans_configure(struct iwl_trans *trans, 1141 const struct iwl_trans_config *trans_cfg) 1142 { 1143 trans->op_mode = trans_cfg->op_mode; 1144 1145 trans->ops->configure(trans, trans_cfg); 1146 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg)); 1147 } 1148 1149 static inline int iwl_trans_start_hw(struct iwl_trans *trans) 1150 { 1151 might_sleep(); 1152 1153 return trans->ops->start_hw(trans); 1154 } 1155 1156 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) 1157 { 1158 might_sleep(); 1159 1160 if (trans->ops->op_mode_leave) 1161 trans->ops->op_mode_leave(trans); 1162 1163 trans->op_mode = NULL; 1164 1165 trans->state = IWL_TRANS_NO_FW; 1166 } 1167 1168 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) 1169 { 1170 might_sleep(); 1171 1172 trans->state = IWL_TRANS_FW_ALIVE; 1173 1174 trans->ops->fw_alive(trans, scd_addr); 1175 } 1176 1177 static inline int iwl_trans_start_fw(struct iwl_trans *trans, 1178 const struct fw_img *fw, 1179 bool run_in_rfkill) 1180 { 1181 int ret; 1182 1183 might_sleep(); 1184 1185 WARN_ON_ONCE(!trans->rx_mpdu_cmd); 1186 1187 clear_bit(STATUS_FW_ERROR, &trans->status); 1188 ret = trans->ops->start_fw(trans, fw, run_in_rfkill); 1189 if (ret == 0) 1190 trans->state = IWL_TRANS_FW_STARTED; 1191 1192 return ret; 1193 } 1194 1195 static inline void iwl_trans_stop_device(struct iwl_trans *trans) 1196 { 1197 might_sleep(); 1198 1199 trans->ops->stop_device(trans); 1200 1201 trans->state = IWL_TRANS_NO_FW; 1202 } 1203 1204 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, 1205 bool reset) 1206 { 1207 might_sleep(); 1208 if (!trans->ops->d3_suspend) 1209 return -EOPNOTSUPP; 1210 1211 return trans->ops->d3_suspend(trans, test, reset); 1212 } 1213 1214 static inline int iwl_trans_d3_resume(struct iwl_trans *trans, 1215 enum iwl_d3_status *status, 1216 bool test, bool reset) 1217 { 1218 might_sleep(); 1219 if (!trans->ops->d3_resume) 1220 return -EOPNOTSUPP; 1221 1222 return trans->ops->d3_resume(trans, status, test, reset); 1223 } 1224 1225 static inline struct iwl_trans_dump_data * 1226 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask, 1227 const struct iwl_dump_sanitize_ops *sanitize_ops, 1228 void *sanitize_ctx) 1229 { 1230 if (!trans->ops->dump_data) 1231 return NULL; 1232 return trans->ops->dump_data(trans, dump_mask, 1233 sanitize_ops, sanitize_ctx); 1234 } 1235 1236 static inline struct iwl_device_tx_cmd * 1237 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) 1238 { 1239 return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC); 1240 } 1241 1242 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 1243 1244 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, 1245 struct iwl_device_tx_cmd *dev_cmd) 1246 { 1247 kmem_cache_free(trans->dev_cmd_pool, dev_cmd); 1248 } 1249 1250 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, 1251 struct iwl_device_tx_cmd *dev_cmd, int queue) 1252 { 1253 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) 1254 return -EIO; 1255 1256 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1257 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1258 return -EIO; 1259 } 1260 1261 return trans->ops->tx(trans, skb, dev_cmd, queue); 1262 } 1263 1264 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, 1265 int ssn, struct sk_buff_head *skbs) 1266 { 1267 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1268 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1269 return; 1270 } 1271 1272 trans->ops->reclaim(trans, queue, ssn, skbs); 1273 } 1274 1275 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue, 1276 int ptr) 1277 { 1278 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1279 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1280 return; 1281 } 1282 1283 trans->ops->set_q_ptrs(trans, queue, ptr); 1284 } 1285 1286 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue, 1287 bool configure_scd) 1288 { 1289 trans->ops->txq_disable(trans, queue, configure_scd); 1290 } 1291 1292 static inline bool 1293 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn, 1294 const struct iwl_trans_txq_scd_cfg *cfg, 1295 unsigned int queue_wdg_timeout) 1296 { 1297 might_sleep(); 1298 1299 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1300 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1301 return false; 1302 } 1303 1304 return trans->ops->txq_enable(trans, queue, ssn, 1305 cfg, queue_wdg_timeout); 1306 } 1307 1308 static inline int 1309 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue, 1310 struct iwl_trans_rxq_dma_data *data) 1311 { 1312 if (WARN_ON_ONCE(!trans->ops->rxq_dma_data)) 1313 return -ENOTSUPP; 1314 1315 return trans->ops->rxq_dma_data(trans, queue, data); 1316 } 1317 1318 static inline void 1319 iwl_trans_txq_free(struct iwl_trans *trans, int queue) 1320 { 1321 if (WARN_ON_ONCE(!trans->ops->txq_free)) 1322 return; 1323 1324 trans->ops->txq_free(trans, queue); 1325 } 1326 1327 static inline int 1328 iwl_trans_txq_alloc(struct iwl_trans *trans, 1329 u32 flags, u32 sta_mask, u8 tid, 1330 int size, unsigned int wdg_timeout) 1331 { 1332 might_sleep(); 1333 1334 if (WARN_ON_ONCE(!trans->ops->txq_alloc)) 1335 return -ENOTSUPP; 1336 1337 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1338 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1339 return -EIO; 1340 } 1341 1342 return trans->ops->txq_alloc(trans, flags, sta_mask, tid, 1343 size, wdg_timeout); 1344 } 1345 1346 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans, 1347 int queue, bool shared_mode) 1348 { 1349 if (trans->ops->txq_set_shared_mode) 1350 trans->ops->txq_set_shared_mode(trans, queue, shared_mode); 1351 } 1352 1353 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, 1354 int fifo, int sta_id, int tid, 1355 int frame_limit, u16 ssn, 1356 unsigned int queue_wdg_timeout) 1357 { 1358 struct iwl_trans_txq_scd_cfg cfg = { 1359 .fifo = fifo, 1360 .sta_id = sta_id, 1361 .tid = tid, 1362 .frame_limit = frame_limit, 1363 .aggregate = sta_id >= 0, 1364 }; 1365 1366 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout); 1367 } 1368 1369 static inline 1370 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo, 1371 unsigned int queue_wdg_timeout) 1372 { 1373 struct iwl_trans_txq_scd_cfg cfg = { 1374 .fifo = fifo, 1375 .sta_id = -1, 1376 .tid = IWL_MAX_TID_COUNT, 1377 .frame_limit = IWL_FRAME_LIMIT, 1378 .aggregate = false, 1379 }; 1380 1381 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout); 1382 } 1383 1384 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans, 1385 unsigned long txqs, 1386 bool freeze) 1387 { 1388 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1389 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1390 return; 1391 } 1392 1393 if (trans->ops->freeze_txq_timer) 1394 trans->ops->freeze_txq_timer(trans, txqs, freeze); 1395 } 1396 1397 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans, 1398 bool block) 1399 { 1400 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1401 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1402 return; 1403 } 1404 1405 if (trans->ops->block_txq_ptrs) 1406 trans->ops->block_txq_ptrs(trans, block); 1407 } 1408 1409 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, 1410 u32 txqs) 1411 { 1412 if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty)) 1413 return -ENOTSUPP; 1414 1415 /* No need to wait if the firmware is not alive */ 1416 if (trans->state != IWL_TRANS_FW_ALIVE) { 1417 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1418 return -EIO; 1419 } 1420 1421 return trans->ops->wait_tx_queues_empty(trans, txqs); 1422 } 1423 1424 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue) 1425 { 1426 if (WARN_ON_ONCE(!trans->ops->wait_txq_empty)) 1427 return -ENOTSUPP; 1428 1429 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1430 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1431 return -EIO; 1432 } 1433 1434 return trans->ops->wait_txq_empty(trans, queue); 1435 } 1436 1437 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) 1438 { 1439 trans->ops->write8(trans, ofs, val); 1440 } 1441 1442 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) 1443 { 1444 trans->ops->write32(trans, ofs, val); 1445 } 1446 1447 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) 1448 { 1449 return trans->ops->read32(trans, ofs); 1450 } 1451 1452 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) 1453 { 1454 return trans->ops->read_prph(trans, ofs); 1455 } 1456 1457 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, 1458 u32 val) 1459 { 1460 return trans->ops->write_prph(trans, ofs, val); 1461 } 1462 1463 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, 1464 void *buf, int dwords) 1465 { 1466 return trans->ops->read_mem(trans, addr, buf, dwords); 1467 } 1468 1469 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ 1470 do { \ 1471 if (__builtin_constant_p(bufsize)) \ 1472 BUILD_BUG_ON((bufsize) % sizeof(u32)); \ 1473 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ 1474 } while (0) 1475 1476 static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans, 1477 u32 dst_addr, u64 src_addr, 1478 u32 byte_cnt) 1479 { 1480 if (trans->ops->imr_dma_data) 1481 return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt); 1482 return 0; 1483 } 1484 1485 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) 1486 { 1487 u32 value; 1488 1489 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) 1490 return 0xa5a5a5a5; 1491 1492 return value; 1493 } 1494 1495 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, 1496 const void *buf, int dwords) 1497 { 1498 return trans->ops->write_mem(trans, addr, buf, dwords); 1499 } 1500 1501 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, 1502 u32 val) 1503 { 1504 return iwl_trans_write_mem(trans, addr, &val, 1); 1505 } 1506 1507 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) 1508 { 1509 if (trans->ops->set_pmi) 1510 trans->ops->set_pmi(trans, state); 1511 } 1512 1513 static inline int iwl_trans_sw_reset(struct iwl_trans *trans, 1514 bool retake_ownership) 1515 { 1516 if (trans->ops->sw_reset) 1517 return trans->ops->sw_reset(trans, retake_ownership); 1518 return 0; 1519 } 1520 1521 static inline void 1522 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) 1523 { 1524 trans->ops->set_bits_mask(trans, reg, mask, value); 1525 } 1526 1527 #define iwl_trans_grab_nic_access(trans) \ 1528 __cond_lock(nic_access, \ 1529 likely((trans)->ops->grab_nic_access(trans))) 1530 1531 static inline void __releases(nic_access) 1532 iwl_trans_release_nic_access(struct iwl_trans *trans) 1533 { 1534 trans->ops->release_nic_access(trans); 1535 __release(nic_access); 1536 } 1537 1538 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync) 1539 { 1540 if (WARN_ON_ONCE(!trans->op_mode)) 1541 return; 1542 1543 /* prevent double restarts due to the same erroneous FW */ 1544 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) { 1545 iwl_op_mode_nic_error(trans->op_mode, sync); 1546 trans->state = IWL_TRANS_NO_FW; 1547 } 1548 } 1549 1550 static inline bool iwl_trans_fw_running(struct iwl_trans *trans) 1551 { 1552 return trans->state == IWL_TRANS_FW_ALIVE; 1553 } 1554 1555 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans) 1556 { 1557 if (trans->ops->sync_nmi) 1558 trans->ops->sync_nmi(trans); 1559 } 1560 1561 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr, 1562 u32 sw_err_bit); 1563 1564 static inline int iwl_trans_load_pnvm(struct iwl_trans *trans, 1565 const struct iwl_pnvm_image *pnvm_data, 1566 const struct iwl_ucode_capabilities *capa) 1567 { 1568 return trans->ops->load_pnvm(trans, pnvm_data, capa); 1569 } 1570 1571 static inline void iwl_trans_set_pnvm(struct iwl_trans *trans, 1572 const struct iwl_ucode_capabilities *capa) 1573 { 1574 if (trans->ops->set_pnvm) 1575 trans->ops->set_pnvm(trans, capa); 1576 } 1577 1578 static inline int iwl_trans_load_reduce_power 1579 (struct iwl_trans *trans, 1580 const struct iwl_pnvm_image *payloads, 1581 const struct iwl_ucode_capabilities *capa) 1582 { 1583 return trans->ops->load_reduce_power(trans, payloads, capa); 1584 } 1585 1586 static inline void 1587 iwl_trans_set_reduce_power(struct iwl_trans *trans, 1588 const struct iwl_ucode_capabilities *capa) 1589 { 1590 if (trans->ops->set_reduce_power) 1591 trans->ops->set_reduce_power(trans, capa); 1592 } 1593 1594 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans) 1595 { 1596 return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED || 1597 trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED; 1598 } 1599 1600 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable) 1601 { 1602 if (trans->ops->interrupts) 1603 trans->ops->interrupts(trans, enable); 1604 } 1605 1606 /***************************************************** 1607 * transport helper functions 1608 *****************************************************/ 1609 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, 1610 struct device *dev, 1611 const struct iwl_trans_ops *ops, 1612 const struct iwl_cfg_trans_params *cfg_trans); 1613 int iwl_trans_init(struct iwl_trans *trans); 1614 void iwl_trans_free(struct iwl_trans *trans); 1615 1616 /***************************************************** 1617 * driver (transport) register/unregister functions 1618 ******************************************************/ 1619 int __must_check iwl_pci_register_driver(void); 1620 void iwl_pci_unregister_driver(void); 1621 void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan); 1622 1623 #endif /* __iwl_trans_h__ */ 1624