1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of version 2 of the GNU General Public License as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 23 * USA 24 * 25 * The full GNU General Public License is included in this distribution 26 * in the file called COPYING. 27 * 28 * Contact Information: 29 * Intel Linux Wireless <linuxwifi@intel.com> 30 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 31 * 32 * BSD LICENSE 33 * 34 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 35 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 42 * * Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * * Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in 46 * the documentation and/or other materials provided with the 47 * distribution. 48 * * Neither the name Intel Corporation nor the names of its 49 * contributors may be used to endorse or promote products derived 50 * from this software without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 53 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 54 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 55 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 56 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 58 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 59 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 60 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 61 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 62 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 63 * 64 *****************************************************************************/ 65 #ifndef __iwl_trans_h__ 66 #define __iwl_trans_h__ 67 68 #include <linux/ieee80211.h> 69 #include <linux/mm.h> /* for page_address */ 70 #include <linux/lockdep.h> 71 #include <linux/kernel.h> 72 73 #include "iwl-debug.h" 74 #include "iwl-config.h" 75 #include "iwl-fw.h" 76 #include "iwl-op-mode.h" 77 78 /** 79 * DOC: Transport layer - what is it ? 80 * 81 * The transport layer is the layer that deals with the HW directly. It provides 82 * an abstraction of the underlying HW to the upper layer. The transport layer 83 * doesn't provide any policy, algorithm or anything of this kind, but only 84 * mechanisms to make the HW do something. It is not completely stateless but 85 * close to it. 86 * We will have an implementation for each different supported bus. 87 */ 88 89 /** 90 * DOC: Life cycle of the transport layer 91 * 92 * The transport layer has a very precise life cycle. 93 * 94 * 1) A helper function is called during the module initialization and 95 * registers the bus driver's ops with the transport's alloc function. 96 * 2) Bus's probe calls to the transport layer's allocation functions. 97 * Of course this function is bus specific. 98 * 3) This allocation functions will spawn the upper layer which will 99 * register mac80211. 100 * 101 * 4) At some point (i.e. mac80211's start call), the op_mode will call 102 * the following sequence: 103 * start_hw 104 * start_fw 105 * 106 * 5) Then when finished (or reset): 107 * stop_device 108 * 109 * 6) Eventually, the free function will be called. 110 */ 111 112 /** 113 * DOC: Host command section 114 * 115 * A host command is a command issued by the upper layer to the fw. There are 116 * several versions of fw that have several APIs. The transport layer is 117 * completely agnostic to these differences. 118 * The transport does provide helper functionality (i.e. SYNC / ASYNC mode), 119 */ 120 #define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f) 121 #define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8) 122 #define SEQ_TO_INDEX(s) ((s) & 0xff) 123 #define INDEX_TO_SEQ(i) ((i) & 0xff) 124 #define SEQ_RX_FRAME cpu_to_le16(0x8000) 125 126 /* 127 * those functions retrieve specific information from 128 * the id field in the iwl_host_cmd struct which contains 129 * the command id, the group id and the version of the command 130 * and vice versa 131 */ 132 static inline u8 iwl_cmd_opcode(u32 cmdid) 133 { 134 return cmdid & 0xFF; 135 } 136 137 static inline u8 iwl_cmd_groupid(u32 cmdid) 138 { 139 return ((cmdid & 0xFF00) >> 8); 140 } 141 142 static inline u8 iwl_cmd_version(u32 cmdid) 143 { 144 return ((cmdid & 0xFF0000) >> 16); 145 } 146 147 static inline u32 iwl_cmd_id(u8 opcode, u8 groupid, u8 version) 148 { 149 return opcode + (groupid << 8) + (version << 16); 150 } 151 152 /* make u16 wide id out of u8 group and opcode */ 153 #define WIDE_ID(grp, opcode) ((grp << 8) | opcode) 154 155 /* due to the conversion, this group is special; new groups 156 * should be defined in the appropriate fw-api header files 157 */ 158 #define IWL_ALWAYS_LONG_GROUP 1 159 160 /** 161 * struct iwl_cmd_header 162 * 163 * This header format appears in the beginning of each command sent from the 164 * driver, and each response/notification received from uCode. 165 */ 166 struct iwl_cmd_header { 167 u8 cmd; /* Command ID: REPLY_RXON, etc. */ 168 u8 group_id; 169 /* 170 * The driver sets up the sequence number to values of its choosing. 171 * uCode does not use this value, but passes it back to the driver 172 * when sending the response to each driver-originated command, so 173 * the driver can match the response to the command. Since the values 174 * don't get used by uCode, the driver may set up an arbitrary format. 175 * 176 * There is one exception: uCode sets bit 15 when it originates 177 * the response/notification, i.e. when the response/notification 178 * is not a direct response to a command sent by the driver. For 179 * example, uCode issues REPLY_RX when it sends a received frame 180 * to the driver; it is not a direct response to any driver command. 181 * 182 * The Linux driver uses the following format: 183 * 184 * 0:7 tfd index - position within TX queue 185 * 8:12 TX queue id 186 * 13:14 reserved 187 * 15 unsolicited RX or uCode-originated notification 188 */ 189 __le16 sequence; 190 } __packed; 191 192 /** 193 * struct iwl_cmd_header_wide 194 * 195 * This header format appears in the beginning of each command sent from the 196 * driver, and each response/notification received from uCode. 197 * this is the wide version that contains more information about the command 198 * like length, version and command type 199 */ 200 struct iwl_cmd_header_wide { 201 u8 cmd; 202 u8 group_id; 203 __le16 sequence; 204 __le16 length; 205 u8 reserved; 206 u8 version; 207 } __packed; 208 209 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ 210 #define FH_RSCSR_FRAME_INVALID 0x55550000 211 #define FH_RSCSR_FRAME_ALIGN 0x40 212 213 struct iwl_rx_packet { 214 /* 215 * The first 4 bytes of the RX frame header contain both the RX frame 216 * size and some flags. 217 * Bit fields: 218 * 31: flag flush RB request 219 * 30: flag ignore TC (terminal counter) request 220 * 29: flag fast IRQ request 221 * 28-14: Reserved 222 * 13-00: RX frame size 223 */ 224 __le32 len_n_flags; 225 struct iwl_cmd_header hdr; 226 u8 data[]; 227 } __packed; 228 229 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) 230 { 231 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; 232 } 233 234 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) 235 { 236 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); 237 } 238 239 /** 240 * enum CMD_MODE - how to send the host commands ? 241 * 242 * @CMD_ASYNC: Return right away and don't wait for the response 243 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of 244 * the response. The caller needs to call iwl_free_resp when done. 245 * @CMD_HIGH_PRIO: The command is high priority - it goes to the front of the 246 * command queue, but after other high priority commands. Valid only 247 * with CMD_ASYNC. 248 * @CMD_SEND_IN_IDLE: The command should be sent even when the trans is idle. 249 * @CMD_MAKE_TRANS_IDLE: The command response should mark the trans as idle. 250 * @CMD_WAKE_UP_TRANS: The command response should wake up the trans 251 * (i.e. mark it as non-idle). 252 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be 253 * called after this command completes. Valid only with CMD_ASYNC. 254 * @CMD_TB_BITMAP_POS: Position of the first bit for the TB bitmap. We need to 255 * check that we leave enough room for the TBs bitmap which needs 20 bits. 256 */ 257 enum CMD_MODE { 258 CMD_ASYNC = BIT(0), 259 CMD_WANT_SKB = BIT(1), 260 CMD_SEND_IN_RFKILL = BIT(2), 261 CMD_HIGH_PRIO = BIT(3), 262 CMD_SEND_IN_IDLE = BIT(4), 263 CMD_MAKE_TRANS_IDLE = BIT(5), 264 CMD_WAKE_UP_TRANS = BIT(6), 265 CMD_WANT_ASYNC_CALLBACK = BIT(7), 266 267 CMD_TB_BITMAP_POS = 11, 268 }; 269 270 #define DEF_CMD_PAYLOAD_SIZE 320 271 272 /** 273 * struct iwl_device_cmd 274 * 275 * For allocation of the command and tx queues, this establishes the overall 276 * size of the largest command we send to uCode, except for commands that 277 * aren't fully copied and use other TFD space. 278 */ 279 struct iwl_device_cmd { 280 union { 281 struct { 282 struct iwl_cmd_header hdr; /* uCode API */ 283 u8 payload[DEF_CMD_PAYLOAD_SIZE]; 284 }; 285 struct { 286 struct iwl_cmd_header_wide hdr_wide; 287 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE - 288 sizeof(struct iwl_cmd_header_wide) + 289 sizeof(struct iwl_cmd_header)]; 290 }; 291 }; 292 } __packed; 293 294 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) 295 296 /* 297 * number of transfer buffers (fragments) per transmit frame descriptor; 298 * this is just the driver's idea, the hardware supports 20 299 */ 300 #define IWL_MAX_CMD_TBS_PER_TFD 2 301 302 /** 303 * struct iwl_hcmd_dataflag - flag for each one of the chunks of the command 304 * 305 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's 306 * ring. The transport layer doesn't map the command's buffer to DMA, but 307 * rather copies it to a previously allocated DMA buffer. This flag tells 308 * the transport layer not to copy the command, but to map the existing 309 * buffer (that is passed in) instead. This saves the memcpy and allows 310 * commands that are bigger than the fixed buffer to be submitted. 311 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. 312 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this 313 * chunk internally and free it again after the command completes. This 314 * can (currently) be used only once per command. 315 * Note that a TFD entry after a DUP one cannot be a normal copied one. 316 */ 317 enum iwl_hcmd_dataflag { 318 IWL_HCMD_DFL_NOCOPY = BIT(0), 319 IWL_HCMD_DFL_DUP = BIT(1), 320 }; 321 322 /** 323 * struct iwl_host_cmd - Host command to the uCode 324 * 325 * @data: array of chunks that composes the data of the host command 326 * @resp_pkt: response packet, if %CMD_WANT_SKB was set 327 * @_rx_page_order: (internally used to free response packet) 328 * @_rx_page_addr: (internally used to free response packet) 329 * @flags: can be CMD_* 330 * @len: array of the lengths of the chunks in data 331 * @dataflags: IWL_HCMD_DFL_* 332 * @id: command id of the host command, for wide commands encoding the 333 * version and group as well 334 */ 335 struct iwl_host_cmd { 336 const void *data[IWL_MAX_CMD_TBS_PER_TFD]; 337 struct iwl_rx_packet *resp_pkt; 338 unsigned long _rx_page_addr; 339 u32 _rx_page_order; 340 341 u32 flags; 342 u32 id; 343 u16 len[IWL_MAX_CMD_TBS_PER_TFD]; 344 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; 345 }; 346 347 static inline void iwl_free_resp(struct iwl_host_cmd *cmd) 348 { 349 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); 350 } 351 352 struct iwl_rx_cmd_buffer { 353 struct page *_page; 354 int _offset; 355 bool _page_stolen; 356 u32 _rx_page_order; 357 unsigned int truesize; 358 }; 359 360 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) 361 { 362 return (void *)((unsigned long)page_address(r->_page) + r->_offset); 363 } 364 365 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) 366 { 367 return r->_offset; 368 } 369 370 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) 371 { 372 r->_page_stolen = true; 373 get_page(r->_page); 374 return r->_page; 375 } 376 377 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) 378 { 379 __free_pages(r->_page, r->_rx_page_order); 380 } 381 382 #define MAX_NO_RECLAIM_CMDS 6 383 384 /* 385 * The first entry in driver_data array in ieee80211_tx_info 386 * that can be used by the transport. 387 */ 388 #define IWL_TRANS_FIRST_DRIVER_DATA 2 389 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) 390 391 /* 392 * Maximum number of HW queues the transport layer 393 * currently supports 394 */ 395 #define IWL_MAX_HW_QUEUES 32 396 #define IWL_MAX_TID_COUNT 8 397 #define IWL_FRAME_LIMIT 64 398 #define IWL_MAX_RX_HW_QUEUES 16 399 400 /** 401 * enum iwl_wowlan_status - WoWLAN image/device status 402 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume 403 * @IWL_D3_STATUS_RESET: device was reset while suspended 404 */ 405 enum iwl_d3_status { 406 IWL_D3_STATUS_ALIVE, 407 IWL_D3_STATUS_RESET, 408 }; 409 410 /** 411 * enum iwl_trans_status: transport status flags 412 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed 413 * @STATUS_DEVICE_ENABLED: APM is enabled 414 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) 415 * @STATUS_INT_ENABLED: interrupts are enabled 416 * @STATUS_RFKILL: the HW RFkill switch is in KILL position 417 * @STATUS_FW_ERROR: the fw is in error state 418 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands 419 * are sent 420 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent 421 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation 422 */ 423 enum iwl_trans_status { 424 STATUS_SYNC_HCMD_ACTIVE, 425 STATUS_DEVICE_ENABLED, 426 STATUS_TPOWER_PMI, 427 STATUS_INT_ENABLED, 428 STATUS_RFKILL, 429 STATUS_FW_ERROR, 430 STATUS_TRANS_GOING_IDLE, 431 STATUS_TRANS_IDLE, 432 STATUS_TRANS_DEAD, 433 }; 434 435 static inline int 436 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size) 437 { 438 switch (rb_size) { 439 case IWL_AMSDU_4K: 440 return get_order(4 * 1024); 441 case IWL_AMSDU_8K: 442 return get_order(8 * 1024); 443 case IWL_AMSDU_12K: 444 return get_order(12 * 1024); 445 default: 446 WARN_ON(1); 447 return -1; 448 } 449 } 450 451 struct iwl_hcmd_names { 452 u8 cmd_id; 453 const char *const cmd_name; 454 }; 455 456 #define HCMD_NAME(x) \ 457 { .cmd_id = x, .cmd_name = #x } 458 459 struct iwl_hcmd_arr { 460 const struct iwl_hcmd_names *arr; 461 int size; 462 }; 463 464 #define HCMD_ARR(x) \ 465 { .arr = x, .size = ARRAY_SIZE(x) } 466 467 /** 468 * struct iwl_trans_config - transport configuration 469 * 470 * @op_mode: pointer to the upper layer. 471 * @cmd_queue: the index of the command queue. 472 * Must be set before start_fw. 473 * @cmd_fifo: the fifo for host commands 474 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue. 475 * @no_reclaim_cmds: Some devices erroneously don't set the 476 * SEQ_RX_FRAME bit on some notifications, this is the 477 * list of such notifications to filter. Max length is 478 * %MAX_NO_RECLAIM_CMDS. 479 * @n_no_reclaim_cmds: # of commands in list 480 * @rx_buf_size: RX buffer size needed for A-MSDUs 481 * if unset 4k will be the RX buffer size 482 * @bc_table_dword: set to true if the BC table expects the byte count to be 483 * in DWORD (as opposed to bytes) 484 * @scd_set_active: should the transport configure the SCD for HCMD queue 485 * @wide_cmd_header: firmware supports wide host command header 486 * @sw_csum_tx: transport should compute the TCP checksum 487 * @command_groups: array of command groups, each member is an array of the 488 * commands in the group; for debugging only 489 * @command_groups_size: number of command groups, to avoid illegal access 490 * @sdio_adma_addr: the default address to set for the ADMA in SDIO mode until 491 * we get the ALIVE from the uCode 492 */ 493 struct iwl_trans_config { 494 struct iwl_op_mode *op_mode; 495 496 u8 cmd_queue; 497 u8 cmd_fifo; 498 unsigned int cmd_q_wdg_timeout; 499 const u8 *no_reclaim_cmds; 500 unsigned int n_no_reclaim_cmds; 501 502 enum iwl_amsdu_size rx_buf_size; 503 bool bc_table_dword; 504 bool scd_set_active; 505 bool wide_cmd_header; 506 bool sw_csum_tx; 507 const struct iwl_hcmd_arr *command_groups; 508 int command_groups_size; 509 510 u32 sdio_adma_addr; 511 }; 512 513 struct iwl_trans_dump_data { 514 u32 len; 515 u8 data[]; 516 }; 517 518 struct iwl_trans; 519 520 struct iwl_trans_txq_scd_cfg { 521 u8 fifo; 522 s8 sta_id; 523 u8 tid; 524 bool aggregate; 525 int frame_limit; 526 }; 527 528 /** 529 * struct iwl_trans_ops - transport specific operations 530 * 531 * All the handlers MUST be implemented 532 * 533 * @start_hw: starts the HW. If low_power is true, the NIC needs to be taken 534 * out of a low power state. From that point on, the HW can send 535 * interrupts. May sleep. 536 * @op_mode_leave: Turn off the HW RF kill indication if on 537 * May sleep 538 * @start_fw: allocates and inits all the resources for the transport 539 * layer. Also kick a fw image. 540 * May sleep 541 * @fw_alive: called when the fw sends alive notification. If the fw provides 542 * the SCD base address in SRAM, then provide it here, or 0 otherwise. 543 * May sleep 544 * @stop_device: stops the whole device (embedded CPU put to reset) and stops 545 * the HW. If low_power is true, the NIC will be put in low power state. 546 * From that point on, the HW will be stopped but will still issue an 547 * interrupt if the HW RF kill switch is triggered. 548 * This callback must do the right thing and not crash even if %start_hw() 549 * was called but not &start_fw(). May sleep. 550 * @d3_suspend: put the device into the correct mode for WoWLAN during 551 * suspend. This is optional, if not implemented WoWLAN will not be 552 * supported. This callback may sleep. 553 * @d3_resume: resume the device after WoWLAN, enabling the opmode to 554 * talk to the WoWLAN image to get its status. This is optional, if not 555 * implemented WoWLAN will not be supported. This callback may sleep. 556 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. 557 * If RFkill is asserted in the middle of a SYNC host command, it must 558 * return -ERFKILL straight away. 559 * May sleep only if CMD_ASYNC is not set 560 * @tx: send an skb. The transport relies on the op_mode to zero the 561 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all 562 * the CSUM will be taken care of (TCP CSUM and IP header in case of 563 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP 564 * header if it is IPv4. 565 * Must be atomic 566 * @reclaim: free packet until ssn. Returns a list of freed packets. 567 * Must be atomic 568 * @txq_enable: setup a queue. To setup an AC queue, use the 569 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before 570 * this one. The op_mode must not configure the HCMD queue. The scheduler 571 * configuration may be %NULL, in which case the hardware will not be 572 * configured. May sleep. 573 * @txq_disable: de-configure a Tx queue to send AMPDUs 574 * Must be atomic 575 * @wait_tx_queue_empty: wait until tx queues are empty. May sleep. 576 * @freeze_txq_timer: prevents the timer of the queue from firing until the 577 * queue is set to awake. Must be atomic. 578 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note 579 * that the transport needs to refcount the calls since this function 580 * will be called several times with block = true, and then the queues 581 * need to be unblocked only after the same number of calls with 582 * block = false. 583 * @write8: write a u8 to a register at offset ofs from the BAR 584 * @write32: write a u32 to a register at offset ofs from the BAR 585 * @read32: read a u32 register at offset ofs from the BAR 586 * @read_prph: read a DWORD from a periphery register 587 * @write_prph: write a DWORD to a periphery register 588 * @read_mem: read device's SRAM in DWORD 589 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory 590 * will be zeroed. 591 * @configure: configure parameters required by the transport layer from 592 * the op_mode. May be called several times before start_fw, can't be 593 * called after that. 594 * @set_pmi: set the power pmi state 595 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. 596 * Sleeping is not allowed between grab_nic_access and 597 * release_nic_access. 598 * @release_nic_access: let the NIC go to sleep. The "flags" parameter 599 * must be the same one that was sent before to the grab_nic_access. 600 * @set_bits_mask - set SRAM register according to value and mask. 601 * @ref: grab a reference to the transport/FW layers, disallowing 602 * certain low power states 603 * @unref: release a reference previously taken with @ref. Note that 604 * initially the reference count is 1, making an initial @unref 605 * necessary to allow low power states. 606 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last 607 * TX'ed commands and similar. The buffer will be vfree'd by the caller. 608 * Note that the transport must fill in the proper file headers. 609 */ 610 struct iwl_trans_ops { 611 612 int (*start_hw)(struct iwl_trans *iwl_trans, bool low_power); 613 void (*op_mode_leave)(struct iwl_trans *iwl_trans); 614 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, 615 bool run_in_rfkill); 616 int (*update_sf)(struct iwl_trans *trans, 617 struct iwl_sf_region *st_fwrd_space); 618 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); 619 void (*stop_device)(struct iwl_trans *trans, bool low_power); 620 621 void (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset); 622 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, 623 bool test, bool reset); 624 625 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 626 627 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, 628 struct iwl_device_cmd *dev_cmd, int queue); 629 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, 630 struct sk_buff_head *skbs); 631 632 void (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn, 633 const struct iwl_trans_txq_scd_cfg *cfg, 634 unsigned int queue_wdg_timeout); 635 void (*txq_disable)(struct iwl_trans *trans, int queue, 636 bool configure_scd); 637 638 int (*wait_tx_queue_empty)(struct iwl_trans *trans, u32 txq_bm); 639 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs, 640 bool freeze); 641 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block); 642 643 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); 644 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); 645 u32 (*read32)(struct iwl_trans *trans, u32 ofs); 646 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); 647 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); 648 int (*read_mem)(struct iwl_trans *trans, u32 addr, 649 void *buf, int dwords); 650 int (*write_mem)(struct iwl_trans *trans, u32 addr, 651 const void *buf, int dwords); 652 void (*configure)(struct iwl_trans *trans, 653 const struct iwl_trans_config *trans_cfg); 654 void (*set_pmi)(struct iwl_trans *trans, bool state); 655 bool (*grab_nic_access)(struct iwl_trans *trans, unsigned long *flags); 656 void (*release_nic_access)(struct iwl_trans *trans, 657 unsigned long *flags); 658 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, 659 u32 value); 660 void (*ref)(struct iwl_trans *trans); 661 void (*unref)(struct iwl_trans *trans); 662 int (*suspend)(struct iwl_trans *trans); 663 void (*resume)(struct iwl_trans *trans); 664 665 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans, 666 const struct iwl_fw_dbg_trigger_tlv 667 *trigger); 668 }; 669 670 /** 671 * enum iwl_trans_state - state of the transport layer 672 * 673 * @IWL_TRANS_NO_FW: no fw has sent an alive response 674 * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response 675 */ 676 enum iwl_trans_state { 677 IWL_TRANS_NO_FW = 0, 678 IWL_TRANS_FW_ALIVE = 1, 679 }; 680 681 /** 682 * DOC: Platform power management 683 * 684 * There are two types of platform power management: system-wide 685 * (WoWLAN) and runtime. 686 * 687 * In system-wide power management the entire platform goes into a low 688 * power state (e.g. idle or suspend to RAM) at the same time and the 689 * device is configured as a wakeup source for the entire platform. 690 * This is usually triggered by userspace activity (e.g. the user 691 * presses the suspend button or a power management daemon decides to 692 * put the platform in low power mode). The device's behavior in this 693 * mode is dictated by the wake-on-WLAN configuration. 694 * 695 * In runtime power management, only the devices which are themselves 696 * idle enter a low power state. This is done at runtime, which means 697 * that the entire system is still running normally. This mode is 698 * usually triggered automatically by the device driver and requires 699 * the ability to enter and exit the low power modes in a very short 700 * time, so there is not much impact in usability. 701 * 702 * The terms used for the device's behavior are as follows: 703 * 704 * - D0: the device is fully powered and the host is awake; 705 * - D3: the device is in low power mode and only reacts to 706 * specific events (e.g. magic-packet received or scan 707 * results found); 708 * - D0I3: the device is in low power mode and reacts to any 709 * activity (e.g. RX); 710 * 711 * These terms reflect the power modes in the firmware and are not to 712 * be confused with the physical device power state. The NIC can be 713 * in D0I3 mode even if, for instance, the PCI device is in D3 state. 714 */ 715 716 /** 717 * enum iwl_plat_pm_mode - platform power management mode 718 * 719 * This enumeration describes the device's platform power management 720 * behavior when in idle mode (i.e. runtime power management) or when 721 * in system-wide suspend (i.e WoWLAN). 722 * 723 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this 724 * device. At runtime, this means that nothing happens and the 725 * device always remains in active. In system-wide suspend mode, 726 * it means that the all connections will be closed automatically 727 * by mac80211 before the platform is suspended. 728 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN). 729 * For runtime power management, this mode is not officially 730 * supported. 731 * @IWL_PLAT_PM_MODE_D0I3: the device goes into D0I3 mode. 732 */ 733 enum iwl_plat_pm_mode { 734 IWL_PLAT_PM_MODE_DISABLED, 735 IWL_PLAT_PM_MODE_D3, 736 IWL_PLAT_PM_MODE_D0I3, 737 }; 738 739 /* Max time to wait for trans to become idle/non-idle on d0i3 740 * enter/exit (in msecs). 741 */ 742 #define IWL_TRANS_IDLE_TIMEOUT 2000 743 744 /** 745 * struct iwl_trans - transport common data 746 * 747 * @ops - pointer to iwl_trans_ops 748 * @op_mode - pointer to the op_mode 749 * @cfg - pointer to the configuration 750 * @status: a bit-mask of transport status flags 751 * @dev - pointer to struct device * that represents the device 752 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted. 753 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported. 754 * @hw_id: a u32 with the ID of the device / sub-device. 755 * Set during transport allocation. 756 * @hw_id_str: a string with info about HW ID. Set during transport allocation. 757 * @pm_support: set to true in start_hw if link pm is supported 758 * @ltr_enabled: set to true if the LTR is enabled 759 * @num_rx_queues: number of RX queues allocated by the transport; 760 * the transport must set this before calling iwl_drv_start() 761 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. 762 * The user should use iwl_trans_{alloc,free}_tx_cmd. 763 * @dev_cmd_headroom: room needed for the transport's private use before the 764 * device_cmd for Tx - for internal use only 765 * The user should use iwl_trans_{alloc,free}_tx_cmd. 766 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before 767 * starting the firmware, used for tracing 768 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the 769 * start of the 802.11 header in the @rx_mpdu_cmd 770 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI) 771 * @dbg_dest_tlv: points to the destination TLV for debug 772 * @dbg_conf_tlv: array of pointers to configuration TLVs for debug 773 * @dbg_trigger_tlv: array of pointers to triggers TLVs for debug 774 * @dbg_dest_reg_num: num of reg_ops in %dbg_dest_tlv 775 * @paging_req_addr: The location were the FW will upload / download the pages 776 * from. The address is set by the opmode 777 * @paging_db: Pointer to the opmode paging data base, the pointer is set by 778 * the opmode. 779 * @paging_download_buf: Buffer used for copying all of the pages before 780 * downloading them to the FW. The buffer is allocated in the opmode 781 * @system_pm_mode: the system-wide power management mode in use. 782 * This mode is set dynamically, depending on the WoWLAN values 783 * configured from the userspace at runtime. 784 * @runtime_pm_mode: the runtime power management mode in use. This 785 * mode is set during the initialization phase and is not 786 * supposed to change during runtime. 787 */ 788 struct iwl_trans { 789 const struct iwl_trans_ops *ops; 790 struct iwl_op_mode *op_mode; 791 const struct iwl_cfg *cfg; 792 enum iwl_trans_state state; 793 unsigned long status; 794 795 struct device *dev; 796 u32 max_skb_frags; 797 u32 hw_rev; 798 u32 hw_id; 799 char hw_id_str[52]; 800 801 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; 802 803 bool pm_support; 804 bool ltr_enabled; 805 806 const struct iwl_hcmd_arr *command_groups; 807 int command_groups_size; 808 809 u8 num_rx_queues; 810 811 /* The following fields are internal only */ 812 struct kmem_cache *dev_cmd_pool; 813 size_t dev_cmd_headroom; 814 char dev_cmd_pool_name[50]; 815 816 struct dentry *dbgfs_dir; 817 818 #ifdef CONFIG_LOCKDEP 819 struct lockdep_map sync_cmd_lockdep_map; 820 #endif 821 822 u64 dflt_pwr_limit; 823 824 const struct iwl_fw_dbg_dest_tlv *dbg_dest_tlv; 825 const struct iwl_fw_dbg_conf_tlv *dbg_conf_tlv[FW_DBG_CONF_MAX]; 826 struct iwl_fw_dbg_trigger_tlv * const *dbg_trigger_tlv; 827 u8 dbg_dest_reg_num; 828 829 /* 830 * Paging parameters - All of the parameters should be set by the 831 * opmode when paging is enabled 832 */ 833 u32 paging_req_addr; 834 struct iwl_fw_paging *paging_db; 835 void *paging_download_buf; 836 837 enum iwl_plat_pm_mode system_pm_mode; 838 enum iwl_plat_pm_mode runtime_pm_mode; 839 bool suspending; 840 841 /* pointer to trans specific struct */ 842 /*Ensure that this pointer will always be aligned to sizeof pointer */ 843 char trans_specific[0] __aligned(sizeof(void *)); 844 }; 845 846 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id); 847 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans); 848 849 static inline void iwl_trans_configure(struct iwl_trans *trans, 850 const struct iwl_trans_config *trans_cfg) 851 { 852 trans->op_mode = trans_cfg->op_mode; 853 854 trans->ops->configure(trans, trans_cfg); 855 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg)); 856 } 857 858 static inline int _iwl_trans_start_hw(struct iwl_trans *trans, bool low_power) 859 { 860 might_sleep(); 861 862 return trans->ops->start_hw(trans, low_power); 863 } 864 865 static inline int iwl_trans_start_hw(struct iwl_trans *trans) 866 { 867 return trans->ops->start_hw(trans, true); 868 } 869 870 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) 871 { 872 might_sleep(); 873 874 if (trans->ops->op_mode_leave) 875 trans->ops->op_mode_leave(trans); 876 877 trans->op_mode = NULL; 878 879 trans->state = IWL_TRANS_NO_FW; 880 } 881 882 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) 883 { 884 might_sleep(); 885 886 trans->state = IWL_TRANS_FW_ALIVE; 887 888 trans->ops->fw_alive(trans, scd_addr); 889 } 890 891 static inline int iwl_trans_start_fw(struct iwl_trans *trans, 892 const struct fw_img *fw, 893 bool run_in_rfkill) 894 { 895 might_sleep(); 896 897 WARN_ON_ONCE(!trans->rx_mpdu_cmd); 898 899 clear_bit(STATUS_FW_ERROR, &trans->status); 900 return trans->ops->start_fw(trans, fw, run_in_rfkill); 901 } 902 903 static inline int iwl_trans_update_sf(struct iwl_trans *trans, 904 struct iwl_sf_region *st_fwrd_space) 905 { 906 might_sleep(); 907 908 if (trans->ops->update_sf) 909 return trans->ops->update_sf(trans, st_fwrd_space); 910 911 return 0; 912 } 913 914 static inline void _iwl_trans_stop_device(struct iwl_trans *trans, 915 bool low_power) 916 { 917 might_sleep(); 918 919 trans->ops->stop_device(trans, low_power); 920 921 trans->state = IWL_TRANS_NO_FW; 922 } 923 924 static inline void iwl_trans_stop_device(struct iwl_trans *trans) 925 { 926 _iwl_trans_stop_device(trans, true); 927 } 928 929 static inline void iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, 930 bool reset) 931 { 932 might_sleep(); 933 if (trans->ops->d3_suspend) 934 trans->ops->d3_suspend(trans, test, reset); 935 } 936 937 static inline int iwl_trans_d3_resume(struct iwl_trans *trans, 938 enum iwl_d3_status *status, 939 bool test, bool reset) 940 { 941 might_sleep(); 942 if (!trans->ops->d3_resume) 943 return 0; 944 945 return trans->ops->d3_resume(trans, status, test, reset); 946 } 947 948 static inline void iwl_trans_ref(struct iwl_trans *trans) 949 { 950 if (trans->ops->ref) 951 trans->ops->ref(trans); 952 } 953 954 static inline void iwl_trans_unref(struct iwl_trans *trans) 955 { 956 if (trans->ops->unref) 957 trans->ops->unref(trans); 958 } 959 960 static inline int iwl_trans_suspend(struct iwl_trans *trans) 961 { 962 if (!trans->ops->suspend) 963 return 0; 964 965 return trans->ops->suspend(trans); 966 } 967 968 static inline void iwl_trans_resume(struct iwl_trans *trans) 969 { 970 if (trans->ops->resume) 971 trans->ops->resume(trans); 972 } 973 974 static inline struct iwl_trans_dump_data * 975 iwl_trans_dump_data(struct iwl_trans *trans, 976 const struct iwl_fw_dbg_trigger_tlv *trigger) 977 { 978 if (!trans->ops->dump_data) 979 return NULL; 980 return trans->ops->dump_data(trans, trigger); 981 } 982 983 static inline struct iwl_device_cmd * 984 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) 985 { 986 u8 *dev_cmd_ptr = kmem_cache_alloc(trans->dev_cmd_pool, GFP_ATOMIC); 987 988 if (unlikely(dev_cmd_ptr == NULL)) 989 return NULL; 990 991 return (struct iwl_device_cmd *) 992 (dev_cmd_ptr + trans->dev_cmd_headroom); 993 } 994 995 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 996 997 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, 998 struct iwl_device_cmd *dev_cmd) 999 { 1000 u8 *dev_cmd_ptr = (u8 *)dev_cmd - trans->dev_cmd_headroom; 1001 1002 kmem_cache_free(trans->dev_cmd_pool, dev_cmd_ptr); 1003 } 1004 1005 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, 1006 struct iwl_device_cmd *dev_cmd, int queue) 1007 { 1008 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) 1009 return -EIO; 1010 1011 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1012 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1013 return -EIO; 1014 } 1015 1016 return trans->ops->tx(trans, skb, dev_cmd, queue); 1017 } 1018 1019 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, 1020 int ssn, struct sk_buff_head *skbs) 1021 { 1022 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1023 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1024 return; 1025 } 1026 1027 trans->ops->reclaim(trans, queue, ssn, skbs); 1028 } 1029 1030 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue, 1031 bool configure_scd) 1032 { 1033 trans->ops->txq_disable(trans, queue, configure_scd); 1034 } 1035 1036 static inline void 1037 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn, 1038 const struct iwl_trans_txq_scd_cfg *cfg, 1039 unsigned int queue_wdg_timeout) 1040 { 1041 might_sleep(); 1042 1043 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1044 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1045 return; 1046 } 1047 1048 trans->ops->txq_enable(trans, queue, ssn, cfg, queue_wdg_timeout); 1049 } 1050 1051 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, 1052 int fifo, int sta_id, int tid, 1053 int frame_limit, u16 ssn, 1054 unsigned int queue_wdg_timeout) 1055 { 1056 struct iwl_trans_txq_scd_cfg cfg = { 1057 .fifo = fifo, 1058 .sta_id = sta_id, 1059 .tid = tid, 1060 .frame_limit = frame_limit, 1061 .aggregate = sta_id >= 0, 1062 }; 1063 1064 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout); 1065 } 1066 1067 static inline 1068 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo, 1069 unsigned int queue_wdg_timeout) 1070 { 1071 struct iwl_trans_txq_scd_cfg cfg = { 1072 .fifo = fifo, 1073 .sta_id = -1, 1074 .tid = IWL_MAX_TID_COUNT, 1075 .frame_limit = IWL_FRAME_LIMIT, 1076 .aggregate = false, 1077 }; 1078 1079 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout); 1080 } 1081 1082 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans, 1083 unsigned long txqs, 1084 bool freeze) 1085 { 1086 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1087 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1088 return; 1089 } 1090 1091 if (trans->ops->freeze_txq_timer) 1092 trans->ops->freeze_txq_timer(trans, txqs, freeze); 1093 } 1094 1095 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans, 1096 bool block) 1097 { 1098 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1099 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1100 return; 1101 } 1102 1103 if (trans->ops->block_txq_ptrs) 1104 trans->ops->block_txq_ptrs(trans, block); 1105 } 1106 1107 static inline int iwl_trans_wait_tx_queue_empty(struct iwl_trans *trans, 1108 u32 txqs) 1109 { 1110 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1111 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1112 return -EIO; 1113 } 1114 1115 return trans->ops->wait_tx_queue_empty(trans, txqs); 1116 } 1117 1118 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) 1119 { 1120 trans->ops->write8(trans, ofs, val); 1121 } 1122 1123 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) 1124 { 1125 trans->ops->write32(trans, ofs, val); 1126 } 1127 1128 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) 1129 { 1130 return trans->ops->read32(trans, ofs); 1131 } 1132 1133 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) 1134 { 1135 return trans->ops->read_prph(trans, ofs); 1136 } 1137 1138 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, 1139 u32 val) 1140 { 1141 return trans->ops->write_prph(trans, ofs, val); 1142 } 1143 1144 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, 1145 void *buf, int dwords) 1146 { 1147 return trans->ops->read_mem(trans, addr, buf, dwords); 1148 } 1149 1150 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ 1151 do { \ 1152 if (__builtin_constant_p(bufsize)) \ 1153 BUILD_BUG_ON((bufsize) % sizeof(u32)); \ 1154 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ 1155 } while (0) 1156 1157 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) 1158 { 1159 u32 value; 1160 1161 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) 1162 return 0xa5a5a5a5; 1163 1164 return value; 1165 } 1166 1167 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, 1168 const void *buf, int dwords) 1169 { 1170 return trans->ops->write_mem(trans, addr, buf, dwords); 1171 } 1172 1173 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, 1174 u32 val) 1175 { 1176 return iwl_trans_write_mem(trans, addr, &val, 1); 1177 } 1178 1179 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) 1180 { 1181 if (trans->ops->set_pmi) 1182 trans->ops->set_pmi(trans, state); 1183 } 1184 1185 static inline void 1186 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) 1187 { 1188 trans->ops->set_bits_mask(trans, reg, mask, value); 1189 } 1190 1191 #define iwl_trans_grab_nic_access(trans, flags) \ 1192 __cond_lock(nic_access, \ 1193 likely((trans)->ops->grab_nic_access(trans, flags))) 1194 1195 static inline void __releases(nic_access) 1196 iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags) 1197 { 1198 trans->ops->release_nic_access(trans, flags); 1199 __release(nic_access); 1200 } 1201 1202 static inline void iwl_trans_fw_error(struct iwl_trans *trans) 1203 { 1204 if (WARN_ON_ONCE(!trans->op_mode)) 1205 return; 1206 1207 /* prevent double restarts due to the same erroneous FW */ 1208 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) 1209 iwl_op_mode_nic_error(trans->op_mode); 1210 } 1211 1212 /***************************************************** 1213 * transport helper functions 1214 *****************************************************/ 1215 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, 1216 struct device *dev, 1217 const struct iwl_cfg *cfg, 1218 const struct iwl_trans_ops *ops, 1219 size_t dev_cmd_headroom); 1220 void iwl_trans_free(struct iwl_trans *trans); 1221 1222 /***************************************************** 1223 * driver (transport) register/unregister functions 1224 ******************************************************/ 1225 int __must_check iwl_pci_register_driver(void); 1226 void iwl_pci_unregister_driver(void); 1227 1228 #endif /* __iwl_trans_h__ */ 1229