1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9 
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14 
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24 
25 /**
26  * DOC: Transport layer - what is it ?
27  *
28  * The transport layer is the layer that deals with the HW directly. It provides
29  * an abstraction of the underlying HW to the upper layer. The transport layer
30  * doesn't provide any policy, algorithm or anything of this kind, but only
31  * mechanisms to make the HW do something. It is not completely stateless but
32  * close to it.
33  * We will have an implementation for each different supported bus.
34  */
35 
36 /**
37  * DOC: Life cycle of the transport layer
38  *
39  * The transport layer has a very precise life cycle.
40  *
41  *	1) A helper function is called during the module initialization and
42  *	   registers the bus driver's ops with the transport's alloc function.
43  *	2) Bus's probe calls to the transport layer's allocation functions.
44  *	   Of course this function is bus specific.
45  *	3) This allocation functions will spawn the upper layer which will
46  *	   register mac80211.
47  *
48  *	4) At some point (i.e. mac80211's start call), the op_mode will call
49  *	   the following sequence:
50  *	   start_hw
51  *	   start_fw
52  *
53  *	5) Then when finished (or reset):
54  *	   stop_device
55  *
56  *	6) Eventually, the free function will be called.
57  */
58 
59 #define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
60 
61 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
62 #define FH_RSCSR_FRAME_INVALID		0x55550000
63 #define FH_RSCSR_FRAME_ALIGN		0x40
64 #define FH_RSCSR_RPA_EN			BIT(25)
65 #define FH_RSCSR_RADA_EN		BIT(26)
66 #define FH_RSCSR_RXQ_POS		16
67 #define FH_RSCSR_RXQ_MASK		0x3F0000
68 
69 struct iwl_rx_packet {
70 	/*
71 	 * The first 4 bytes of the RX frame header contain both the RX frame
72 	 * size and some flags.
73 	 * Bit fields:
74 	 * 31:    flag flush RB request
75 	 * 30:    flag ignore TC (terminal counter) request
76 	 * 29:    flag fast IRQ request
77 	 * 28-27: Reserved
78 	 * 26:    RADA enabled
79 	 * 25:    Offload enabled
80 	 * 24:    RPF enabled
81 	 * 23:    RSS enabled
82 	 * 22:    Checksum enabled
83 	 * 21-16: RX queue
84 	 * 15-14: Reserved
85 	 * 13-00: RX frame size
86 	 */
87 	__le32 len_n_flags;
88 	struct iwl_cmd_header hdr;
89 	u8 data[];
90 } __packed;
91 
92 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
93 {
94 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
95 }
96 
97 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
98 {
99 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
100 }
101 
102 /**
103  * enum CMD_MODE - how to send the host commands ?
104  *
105  * @CMD_ASYNC: Return right away and don't wait for the response
106  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
107  *	the response. The caller needs to call iwl_free_resp when done.
108  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
109  *	called after this command completes. Valid only with CMD_ASYNC.
110  * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
111  *	SUSPEND and RESUME commands. We are in D3 mode when we set
112  *	trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
113  */
114 enum CMD_MODE {
115 	CMD_ASYNC		= BIT(0),
116 	CMD_WANT_SKB		= BIT(1),
117 	CMD_SEND_IN_RFKILL	= BIT(2),
118 	CMD_WANT_ASYNC_CALLBACK	= BIT(3),
119 	CMD_SEND_IN_D3          = BIT(4),
120 };
121 
122 #define DEF_CMD_PAYLOAD_SIZE 320
123 
124 /**
125  * struct iwl_device_cmd
126  *
127  * For allocation of the command and tx queues, this establishes the overall
128  * size of the largest command we send to uCode, except for commands that
129  * aren't fully copied and use other TFD space.
130  */
131 struct iwl_device_cmd {
132 	union {
133 		struct {
134 			struct iwl_cmd_header hdr;	/* uCode API */
135 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
136 		};
137 		struct {
138 			struct iwl_cmd_header_wide hdr_wide;
139 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
140 					sizeof(struct iwl_cmd_header_wide) +
141 					sizeof(struct iwl_cmd_header)];
142 		};
143 	};
144 } __packed;
145 
146 /**
147  * struct iwl_device_tx_cmd - buffer for TX command
148  * @hdr: the header
149  * @payload: the payload placeholder
150  *
151  * The actual structure is sized dynamically according to need.
152  */
153 struct iwl_device_tx_cmd {
154 	struct iwl_cmd_header hdr;
155 	u8 payload[];
156 } __packed;
157 
158 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
159 
160 /*
161  * number of transfer buffers (fragments) per transmit frame descriptor;
162  * this is just the driver's idea, the hardware supports 20
163  */
164 #define IWL_MAX_CMD_TBS_PER_TFD	2
165 
166 /* We need 2 entries for the TX command and header, and another one might
167  * be needed for potential data in the SKB's head. The remaining ones can
168  * be used for frags.
169  */
170 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
171 
172 /**
173  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
174  *
175  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
176  *	ring. The transport layer doesn't map the command's buffer to DMA, but
177  *	rather copies it to a previously allocated DMA buffer. This flag tells
178  *	the transport layer not to copy the command, but to map the existing
179  *	buffer (that is passed in) instead. This saves the memcpy and allows
180  *	commands that are bigger than the fixed buffer to be submitted.
181  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
182  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
183  *	chunk internally and free it again after the command completes. This
184  *	can (currently) be used only once per command.
185  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
186  */
187 enum iwl_hcmd_dataflag {
188 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
189 	IWL_HCMD_DFL_DUP	= BIT(1),
190 };
191 
192 enum iwl_error_event_table_status {
193 	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
194 	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
195 	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
196 	IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
197 	IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
198 	IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
199 	IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
200 };
201 
202 /**
203  * struct iwl_host_cmd - Host command to the uCode
204  *
205  * @data: array of chunks that composes the data of the host command
206  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
207  * @_rx_page_order: (internally used to free response packet)
208  * @_rx_page_addr: (internally used to free response packet)
209  * @flags: can be CMD_*
210  * @len: array of the lengths of the chunks in data
211  * @dataflags: IWL_HCMD_DFL_*
212  * @id: command id of the host command, for wide commands encoding the
213  *	version and group as well
214  */
215 struct iwl_host_cmd {
216 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
217 	struct iwl_rx_packet *resp_pkt;
218 	unsigned long _rx_page_addr;
219 	u32 _rx_page_order;
220 
221 	u32 flags;
222 	u32 id;
223 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
224 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
225 };
226 
227 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
228 {
229 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
230 }
231 
232 struct iwl_rx_cmd_buffer {
233 	struct page *_page;
234 	int _offset;
235 	bool _page_stolen;
236 	u32 _rx_page_order;
237 	unsigned int truesize;
238 };
239 
240 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
241 {
242 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
243 }
244 
245 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
246 {
247 	return r->_offset;
248 }
249 
250 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
251 {
252 	r->_page_stolen = true;
253 	get_page(r->_page);
254 	return r->_page;
255 }
256 
257 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
258 {
259 	__free_pages(r->_page, r->_rx_page_order);
260 }
261 
262 #define MAX_NO_RECLAIM_CMDS	6
263 
264 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
265 
266 /*
267  * Maximum number of HW queues the transport layer
268  * currently supports
269  */
270 #define IWL_MAX_HW_QUEUES		32
271 #define IWL_MAX_TVQM_QUEUES		512
272 
273 #define IWL_MAX_TID_COUNT	8
274 #define IWL_MGMT_TID		15
275 #define IWL_FRAME_LIMIT	64
276 #define IWL_MAX_RX_HW_QUEUES	16
277 #define IWL_9000_MAX_RX_HW_QUEUES	6
278 
279 /**
280  * enum iwl_wowlan_status - WoWLAN image/device status
281  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
282  * @IWL_D3_STATUS_RESET: device was reset while suspended
283  */
284 enum iwl_d3_status {
285 	IWL_D3_STATUS_ALIVE,
286 	IWL_D3_STATUS_RESET,
287 };
288 
289 /**
290  * enum iwl_trans_status: transport status flags
291  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
292  * @STATUS_DEVICE_ENABLED: APM is enabled
293  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
294  * @STATUS_INT_ENABLED: interrupts are enabled
295  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
296  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
297  * @STATUS_FW_ERROR: the fw is in error state
298  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
299  *	are sent
300  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
301  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
302  * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
303  *	e.g. for testing
304  */
305 enum iwl_trans_status {
306 	STATUS_SYNC_HCMD_ACTIVE,
307 	STATUS_DEVICE_ENABLED,
308 	STATUS_TPOWER_PMI,
309 	STATUS_INT_ENABLED,
310 	STATUS_RFKILL_HW,
311 	STATUS_RFKILL_OPMODE,
312 	STATUS_FW_ERROR,
313 	STATUS_TRANS_GOING_IDLE,
314 	STATUS_TRANS_IDLE,
315 	STATUS_TRANS_DEAD,
316 	STATUS_SUPPRESS_CMD_ERROR_ONCE,
317 };
318 
319 static inline int
320 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
321 {
322 	switch (rb_size) {
323 	case IWL_AMSDU_2K:
324 		return get_order(2 * 1024);
325 	case IWL_AMSDU_4K:
326 		return get_order(4 * 1024);
327 	case IWL_AMSDU_8K:
328 		return get_order(8 * 1024);
329 	case IWL_AMSDU_12K:
330 		return get_order(16 * 1024);
331 	default:
332 		WARN_ON(1);
333 		return -1;
334 	}
335 }
336 
337 static inline int
338 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
339 {
340 	switch (rb_size) {
341 	case IWL_AMSDU_2K:
342 		return 2 * 1024;
343 	case IWL_AMSDU_4K:
344 		return 4 * 1024;
345 	case IWL_AMSDU_8K:
346 		return 8 * 1024;
347 	case IWL_AMSDU_12K:
348 		return 16 * 1024;
349 	default:
350 		WARN_ON(1);
351 		return 0;
352 	}
353 }
354 
355 struct iwl_hcmd_names {
356 	u8 cmd_id;
357 	const char *const cmd_name;
358 };
359 
360 #define HCMD_NAME(x)	\
361 	{ .cmd_id = x, .cmd_name = #x }
362 
363 struct iwl_hcmd_arr {
364 	const struct iwl_hcmd_names *arr;
365 	int size;
366 };
367 
368 #define HCMD_ARR(x)	\
369 	{ .arr = x, .size = ARRAY_SIZE(x) }
370 
371 /**
372  * struct iwl_dump_sanitize_ops - dump sanitization operations
373  * @frob_txf: Scrub the TX FIFO data
374  * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
375  *	but that might be short or long (&struct iwl_cmd_header or
376  *	&struct iwl_cmd_header_wide)
377  * @frob_mem: Scrub memory data
378  */
379 struct iwl_dump_sanitize_ops {
380 	void (*frob_txf)(void *ctx, void *buf, size_t buflen);
381 	void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
382 	void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
383 };
384 
385 /**
386  * struct iwl_trans_config - transport configuration
387  *
388  * @op_mode: pointer to the upper layer.
389  * @cmd_queue: the index of the command queue.
390  *	Must be set before start_fw.
391  * @cmd_fifo: the fifo for host commands
392  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
393  * @no_reclaim_cmds: Some devices erroneously don't set the
394  *	SEQ_RX_FRAME bit on some notifications, this is the
395  *	list of such notifications to filter. Max length is
396  *	%MAX_NO_RECLAIM_CMDS.
397  * @n_no_reclaim_cmds: # of commands in list
398  * @rx_buf_size: RX buffer size needed for A-MSDUs
399  *	if unset 4k will be the RX buffer size
400  * @bc_table_dword: set to true if the BC table expects the byte count to be
401  *	in DWORD (as opposed to bytes)
402  * @scd_set_active: should the transport configure the SCD for HCMD queue
403  * @command_groups: array of command groups, each member is an array of the
404  *	commands in the group; for debugging only
405  * @command_groups_size: number of command groups, to avoid illegal access
406  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
407  *	space for at least two pointers
408  * @fw_reset_handshake: firmware supports reset flow handshake
409  */
410 struct iwl_trans_config {
411 	struct iwl_op_mode *op_mode;
412 
413 	u8 cmd_queue;
414 	u8 cmd_fifo;
415 	unsigned int cmd_q_wdg_timeout;
416 	const u8 *no_reclaim_cmds;
417 	unsigned int n_no_reclaim_cmds;
418 
419 	enum iwl_amsdu_size rx_buf_size;
420 	bool bc_table_dword;
421 	bool scd_set_active;
422 	const struct iwl_hcmd_arr *command_groups;
423 	int command_groups_size;
424 
425 	u8 cb_data_offs;
426 	bool fw_reset_handshake;
427 };
428 
429 struct iwl_trans_dump_data {
430 	u32 len;
431 	u8 data[];
432 };
433 
434 struct iwl_trans;
435 
436 struct iwl_trans_txq_scd_cfg {
437 	u8 fifo;
438 	u8 sta_id;
439 	u8 tid;
440 	bool aggregate;
441 	int frame_limit;
442 };
443 
444 /**
445  * struct iwl_trans_rxq_dma_data - RX queue DMA data
446  * @fr_bd_cb: DMA address of free BD cyclic buffer
447  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
448  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
449  * @ur_bd_cb: DMA address of used BD cyclic buffer
450  */
451 struct iwl_trans_rxq_dma_data {
452 	u64 fr_bd_cb;
453 	u32 fr_bd_wid;
454 	u64 urbd_stts_wrptr;
455 	u64 ur_bd_cb;
456 };
457 
458 /**
459  * struct iwl_trans_ops - transport specific operations
460  *
461  * All the handlers MUST be implemented
462  *
463  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
464  *	May sleep.
465  * @op_mode_leave: Turn off the HW RF kill indication if on
466  *	May sleep
467  * @start_fw: allocates and inits all the resources for the transport
468  *	layer. Also kick a fw image.
469  *	May sleep
470  * @fw_alive: called when the fw sends alive notification. If the fw provides
471  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
472  *	May sleep
473  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
474  *	the HW. From that point on, the HW will be stopped but will still issue
475  *	an interrupt if the HW RF kill switch is triggered.
476  *	This callback must do the right thing and not crash even if %start_hw()
477  *	was called but not &start_fw(). May sleep.
478  * @d3_suspend: put the device into the correct mode for WoWLAN during
479  *	suspend. This is optional, if not implemented WoWLAN will not be
480  *	supported. This callback may sleep.
481  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
482  *	talk to the WoWLAN image to get its status. This is optional, if not
483  *	implemented WoWLAN will not be supported. This callback may sleep.
484  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
485  *	If RFkill is asserted in the middle of a SYNC host command, it must
486  *	return -ERFKILL straight away.
487  *	May sleep only if CMD_ASYNC is not set
488  * @tx: send an skb. The transport relies on the op_mode to zero the
489  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
490  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
491  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
492  *	header if it is IPv4.
493  *	Must be atomic
494  * @reclaim: free packet until ssn. Returns a list of freed packets.
495  *	Must be atomic
496  * @txq_enable: setup a queue. To setup an AC queue, use the
497  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
498  *	this one. The op_mode must not configure the HCMD queue. The scheduler
499  *	configuration may be %NULL, in which case the hardware will not be
500  *	configured. If true is returned, the operation mode needs to increment
501  *	the sequence number of the packets routed to this queue because of a
502  *	hardware scheduler bug. May sleep.
503  * @txq_disable: de-configure a Tx queue to send AMPDUs
504  *	Must be atomic
505  * @txq_set_shared_mode: change Tx queue shared/unshared marking
506  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
507  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
508  * @freeze_txq_timer: prevents the timer of the queue from firing until the
509  *	queue is set to awake. Must be atomic.
510  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
511  *	that the transport needs to refcount the calls since this function
512  *	will be called several times with block = true, and then the queues
513  *	need to be unblocked only after the same number of calls with
514  *	block = false.
515  * @write8: write a u8 to a register at offset ofs from the BAR
516  * @write32: write a u32 to a register at offset ofs from the BAR
517  * @read32: read a u32 register at offset ofs from the BAR
518  * @read_prph: read a DWORD from a periphery register
519  * @write_prph: write a DWORD to a periphery register
520  * @read_mem: read device's SRAM in DWORD
521  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
522  *	will be zeroed.
523  * @read_config32: read a u32 value from the device's config space at
524  *	the given offset.
525  * @configure: configure parameters required by the transport layer from
526  *	the op_mode. May be called several times before start_fw, can't be
527  *	called after that.
528  * @set_pmi: set the power pmi state
529  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
530  *	Sleeping is not allowed between grab_nic_access and
531  *	release_nic_access.
532  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
533  *	must be the same one that was sent before to the grab_nic_access.
534  * @set_bits_mask - set SRAM register according to value and mask.
535  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
536  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
537  *	Note that the transport must fill in the proper file headers.
538  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
539  *	of the trans debugfs
540  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
541  *	context info.
542  * @interrupts: disable/enable interrupts to transport
543  */
544 struct iwl_trans_ops {
545 
546 	int (*start_hw)(struct iwl_trans *iwl_trans);
547 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
548 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
549 			bool run_in_rfkill);
550 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
551 	void (*stop_device)(struct iwl_trans *trans);
552 
553 	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
554 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
555 			 bool test, bool reset);
556 
557 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
558 
559 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
560 		  struct iwl_device_tx_cmd *dev_cmd, int queue);
561 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
562 			struct sk_buff_head *skbs);
563 
564 	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
565 
566 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
567 			   const struct iwl_trans_txq_scd_cfg *cfg,
568 			   unsigned int queue_wdg_timeout);
569 	void (*txq_disable)(struct iwl_trans *trans, int queue,
570 			    bool configure_scd);
571 	/* 22000 functions */
572 	int (*txq_alloc)(struct iwl_trans *trans,
573 			 __le16 flags, u8 sta_id, u8 tid,
574 			 int cmd_id, int size,
575 			 unsigned int queue_wdg_timeout);
576 	void (*txq_free)(struct iwl_trans *trans, int queue);
577 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
578 			    struct iwl_trans_rxq_dma_data *data);
579 
580 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
581 				    bool shared);
582 
583 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
584 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
585 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
586 				 bool freeze);
587 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
588 
589 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
590 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
591 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
592 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
593 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
594 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
595 			void *buf, int dwords);
596 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
597 			 const void *buf, int dwords);
598 	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
599 	void (*configure)(struct iwl_trans *trans,
600 			  const struct iwl_trans_config *trans_cfg);
601 	void (*set_pmi)(struct iwl_trans *trans, bool state);
602 	int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
603 	bool (*grab_nic_access)(struct iwl_trans *trans);
604 	void (*release_nic_access)(struct iwl_trans *trans);
605 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
606 			      u32 value);
607 
608 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
609 						 u32 dump_mask,
610 						 const struct iwl_dump_sanitize_ops *sanitize_ops,
611 						 void *sanitize_ctx);
612 	void (*debugfs_cleanup)(struct iwl_trans *trans);
613 	void (*sync_nmi)(struct iwl_trans *trans);
614 	int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
615 	int (*set_reduce_power)(struct iwl_trans *trans,
616 				const void *data, u32 len);
617 	void (*interrupts)(struct iwl_trans *trans, bool enable);
618 };
619 
620 /**
621  * enum iwl_trans_state - state of the transport layer
622  *
623  * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
624  * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
625  * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
626  */
627 enum iwl_trans_state {
628 	IWL_TRANS_NO_FW,
629 	IWL_TRANS_FW_STARTED,
630 	IWL_TRANS_FW_ALIVE,
631 };
632 
633 /**
634  * DOC: Platform power management
635  *
636  * In system-wide power management the entire platform goes into a low
637  * power state (e.g. idle or suspend to RAM) at the same time and the
638  * device is configured as a wakeup source for the entire platform.
639  * This is usually triggered by userspace activity (e.g. the user
640  * presses the suspend button or a power management daemon decides to
641  * put the platform in low power mode).  The device's behavior in this
642  * mode is dictated by the wake-on-WLAN configuration.
643  *
644  * The terms used for the device's behavior are as follows:
645  *
646  *	- D0: the device is fully powered and the host is awake;
647  *	- D3: the device is in low power mode and only reacts to
648  *		specific events (e.g. magic-packet received or scan
649  *		results found);
650  *
651  * These terms reflect the power modes in the firmware and are not to
652  * be confused with the physical device power state.
653  */
654 
655 /**
656  * enum iwl_plat_pm_mode - platform power management mode
657  *
658  * This enumeration describes the device's platform power management
659  * behavior when in system-wide suspend (i.e WoWLAN).
660  *
661  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
662  *	device.  In system-wide suspend mode, it means that the all
663  *	connections will be closed automatically by mac80211 before
664  *	the platform is suspended.
665  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
666  */
667 enum iwl_plat_pm_mode {
668 	IWL_PLAT_PM_MODE_DISABLED,
669 	IWL_PLAT_PM_MODE_D3,
670 };
671 
672 /**
673  * enum iwl_ini_cfg_state
674  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
675  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
676  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
677  *	are corrupted. The rest of the debug TLVs will still be used
678  */
679 enum iwl_ini_cfg_state {
680 	IWL_INI_CFG_STATE_NOT_LOADED,
681 	IWL_INI_CFG_STATE_LOADED,
682 	IWL_INI_CFG_STATE_CORRUPTED,
683 };
684 
685 /* Max time to wait for nmi interrupt */
686 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
687 
688 /**
689  * struct iwl_dram_data
690  * @physical: page phy pointer
691  * @block: pointer to the allocated block/page
692  * @size: size of the block/page
693  */
694 struct iwl_dram_data {
695 	dma_addr_t physical;
696 	void *block;
697 	int size;
698 };
699 
700 /**
701  * struct iwl_fw_mon - fw monitor per allocation id
702  * @num_frags: number of fragments
703  * @frags: an array of DRAM buffer fragments
704  */
705 struct iwl_fw_mon {
706 	u32 num_frags;
707 	struct iwl_dram_data *frags;
708 };
709 
710 /**
711  * struct iwl_self_init_dram - dram data used by self init process
712  * @fw: lmac and umac dram data
713  * @fw_cnt: total number of items in array
714  * @paging: paging dram data
715  * @paging_cnt: total number of items in array
716  */
717 struct iwl_self_init_dram {
718 	struct iwl_dram_data *fw;
719 	int fw_cnt;
720 	struct iwl_dram_data *paging;
721 	int paging_cnt;
722 };
723 
724 /**
725  * struct iwl_trans_debug - transport debug related data
726  *
727  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
728  * @rec_on: true iff there is a fw debug recording currently active
729  * @dest_tlv: points to the destination TLV for debug
730  * @conf_tlv: array of pointers to configuration TLVs for debug
731  * @trigger_tlv: array of pointers to triggers TLVs for debug
732  * @lmac_error_event_table: addrs of lmacs error tables
733  * @umac_error_event_table: addr of umac error table
734  * @tcm_error_event_table: address(es) of TCM error table(s)
735  * @rcm_error_event_table: address(es) of RCM error table(s)
736  * @error_event_table_tlv_status: bitmap that indicates what error table
737  *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
738  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
739  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
740  * @fw_mon_cfg: debug buffer allocation configuration
741  * @fw_mon_ini: DRAM buffer fragments per allocation id
742  * @fw_mon: DRAM buffer for firmware monitor
743  * @hw_error: equals true if hw error interrupt was received from the FW
744  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
745  * @active_regions: active regions
746  * @debug_info_tlv_list: list of debug info TLVs
747  * @time_point: array of debug time points
748  * @periodic_trig_list: periodic triggers list
749  * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
750  * @ucode_preset: preset based on ucode
751  */
752 struct iwl_trans_debug {
753 	u8 n_dest_reg;
754 	bool rec_on;
755 
756 	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
757 	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
758 	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
759 
760 	u32 lmac_error_event_table[2];
761 	u32 umac_error_event_table;
762 	u32 tcm_error_event_table[2];
763 	u32 rcm_error_event_table[2];
764 	unsigned int error_event_table_tlv_status;
765 
766 	enum iwl_ini_cfg_state internal_ini_cfg;
767 	enum iwl_ini_cfg_state external_ini_cfg;
768 
769 	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
770 	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
771 
772 	struct iwl_dram_data fw_mon;
773 
774 	bool hw_error;
775 	enum iwl_fw_ini_buffer_location ini_dest;
776 
777 	u64 unsupported_region_msk;
778 	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
779 	struct list_head debug_info_tlv_list;
780 	struct iwl_dbg_tlv_time_point_data
781 		time_point[IWL_FW_INI_TIME_POINT_NUM];
782 	struct list_head periodic_trig_list;
783 
784 	u32 domains_bitmap;
785 	u32 ucode_preset;
786 	bool restart_required;
787 	u32 last_tp_resetfw;
788 };
789 
790 struct iwl_dma_ptr {
791 	dma_addr_t dma;
792 	void *addr;
793 	size_t size;
794 };
795 
796 struct iwl_cmd_meta {
797 	/* only for SYNC commands, iff the reply skb is wanted */
798 	struct iwl_host_cmd *source;
799 	u32 flags;
800 	u32 tbs;
801 };
802 
803 /*
804  * The FH will write back to the first TB only, so we need to copy some data
805  * into the buffer regardless of whether it should be mapped or not.
806  * This indicates how big the first TB must be to include the scratch buffer
807  * and the assigned PN.
808  * Since PN location is 8 bytes at offset 12, it's 20 now.
809  * If we make it bigger then allocations will be bigger and copy slower, so
810  * that's probably not useful.
811  */
812 #define IWL_FIRST_TB_SIZE	20
813 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
814 
815 struct iwl_pcie_txq_entry {
816 	void *cmd;
817 	struct sk_buff *skb;
818 	/* buffer to free after command completes */
819 	const void *free_buf;
820 	struct iwl_cmd_meta meta;
821 };
822 
823 struct iwl_pcie_first_tb_buf {
824 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
825 };
826 
827 /**
828  * struct iwl_txq - Tx Queue for DMA
829  * @q: generic Rx/Tx queue descriptor
830  * @tfds: transmit frame descriptors (DMA memory)
831  * @first_tb_bufs: start of command headers, including scratch buffers, for
832  *	the writeback -- this is DMA memory and an array holding one buffer
833  *	for each command on the queue
834  * @first_tb_dma: DMA address for the first_tb_bufs start
835  * @entries: transmit entries (driver state)
836  * @lock: queue lock
837  * @stuck_timer: timer that fires if queue gets stuck
838  * @trans: pointer back to transport (for timer)
839  * @need_update: indicates need to update read/write index
840  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
841  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
842  * @frozen: tx stuck queue timer is frozen
843  * @frozen_expiry_remainder: remember how long until the timer fires
844  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
845  * @write_ptr: 1-st empty entry (index) host_w
846  * @read_ptr: last used entry (index) host_r
847  * @dma_addr:  physical addr for BD's
848  * @n_window: safe queue window
849  * @id: queue id
850  * @low_mark: low watermark, resume queue if free space more than this
851  * @high_mark: high watermark, stop queue if free space less than this
852  *
853  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
854  * descriptors) and required locking structures.
855  *
856  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
857  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
858  * there might be HW changes in the future). For the normal TX
859  * queues, n_window, which is the size of the software queue data
860  * is also 256; however, for the command queue, n_window is only
861  * 32 since we don't need so many commands pending. Since the HW
862  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
863  * This means that we end up with the following:
864  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
865  *  SW entries:           | 0      | ... | 31          |
866  * where N is a number between 0 and 7. This means that the SW
867  * data is a window overlayed over the HW queue.
868  */
869 struct iwl_txq {
870 	void *tfds;
871 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
872 	dma_addr_t first_tb_dma;
873 	struct iwl_pcie_txq_entry *entries;
874 	/* lock for syncing changes on the queue */
875 	spinlock_t lock;
876 	unsigned long frozen_expiry_remainder;
877 	struct timer_list stuck_timer;
878 	struct iwl_trans *trans;
879 	bool need_update;
880 	bool frozen;
881 	bool ampdu;
882 	int block;
883 	unsigned long wd_timeout;
884 	struct sk_buff_head overflow_q;
885 	struct iwl_dma_ptr bc_tbl;
886 
887 	int write_ptr;
888 	int read_ptr;
889 	dma_addr_t dma_addr;
890 	int n_window;
891 	u32 id;
892 	int low_mark;
893 	int high_mark;
894 
895 	bool overflow_tx;
896 };
897 
898 /**
899  * struct iwl_trans_txqs - transport tx queues data
900  *
901  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
902  * @page_offs: offset from skb->cb to mac header page pointer
903  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
904  * @queue_used - bit mask of used queues
905  * @queue_stopped - bit mask of stopped queues
906  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
907  */
908 struct iwl_trans_txqs {
909 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
910 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
911 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
912 	struct dma_pool *bc_pool;
913 	size_t bc_tbl_size;
914 	bool bc_table_dword;
915 	u8 page_offs;
916 	u8 dev_cmd_offs;
917 	struct iwl_tso_hdr_page __percpu *tso_hdr_page;
918 
919 	struct {
920 		u8 fifo;
921 		u8 q_id;
922 		unsigned int wdg_timeout;
923 	} cmd;
924 
925 	struct {
926 		u8 max_tbs;
927 		u16 size;
928 		u8 addr_size;
929 	} tfd;
930 
931 	struct iwl_dma_ptr scd_bc_tbls;
932 };
933 
934 /**
935  * struct iwl_trans - transport common data
936  *
937  * @csme_own - true if we couldn't get ownership on the device
938  * @ops - pointer to iwl_trans_ops
939  * @op_mode - pointer to the op_mode
940  * @trans_cfg: the trans-specific configuration part
941  * @cfg - pointer to the configuration
942  * @drv - pointer to iwl_drv
943  * @status: a bit-mask of transport status flags
944  * @dev - pointer to struct device * that represents the device
945  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
946  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
947  * @hw_rf_id a u32 with the device RF ID
948  * @hw_id: a u32 with the ID of the device / sub-device.
949  *	Set during transport allocation.
950  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
951  * @hw_rev_step: The mac step of the HW
952  * @pm_support: set to true in start_hw if link pm is supported
953  * @ltr_enabled: set to true if the LTR is enabled
954  * @wide_cmd_header: true when ucode supports wide command header format
955  * @wait_command_queue: wait queue for sync commands
956  * @num_rx_queues: number of RX queues allocated by the transport;
957  *	the transport must set this before calling iwl_drv_start()
958  * @iml_len: the length of the image loader
959  * @iml: a pointer to the image loader itself
960  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
961  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
962  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
963  *	starting the firmware, used for tracing
964  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
965  *	start of the 802.11 header in the @rx_mpdu_cmd
966  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
967  * @system_pm_mode: the system-wide power management mode in use.
968  *	This mode is set dynamically, depending on the WoWLAN values
969  *	configured from the userspace at runtime.
970  * @iwl_trans_txqs: transport tx queues data.
971  */
972 struct iwl_trans {
973 	bool csme_own;
974 	const struct iwl_trans_ops *ops;
975 	struct iwl_op_mode *op_mode;
976 	const struct iwl_cfg_trans_params *trans_cfg;
977 	const struct iwl_cfg *cfg;
978 	struct iwl_drv *drv;
979 	enum iwl_trans_state state;
980 	unsigned long status;
981 
982 	struct device *dev;
983 	u32 max_skb_frags;
984 	u32 hw_rev;
985 	u32 hw_rev_step;
986 	u32 hw_rf_id;
987 	u32 hw_id;
988 	char hw_id_str[52];
989 	u32 sku_id[3];
990 
991 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
992 
993 	bool pm_support;
994 	bool ltr_enabled;
995 	u8 pnvm_loaded:1;
996 	u8 reduce_power_loaded:1;
997 
998 	const struct iwl_hcmd_arr *command_groups;
999 	int command_groups_size;
1000 	bool wide_cmd_header;
1001 
1002 	wait_queue_head_t wait_command_queue;
1003 	u8 num_rx_queues;
1004 
1005 	size_t iml_len;
1006 	u8 *iml;
1007 
1008 	/* The following fields are internal only */
1009 	struct kmem_cache *dev_cmd_pool;
1010 	char dev_cmd_pool_name[50];
1011 
1012 	struct dentry *dbgfs_dir;
1013 
1014 #ifdef CONFIG_LOCKDEP
1015 	struct lockdep_map sync_cmd_lockdep_map;
1016 #endif
1017 
1018 	struct iwl_trans_debug dbg;
1019 	struct iwl_self_init_dram init_dram;
1020 
1021 	enum iwl_plat_pm_mode system_pm_mode;
1022 
1023 	const char *name;
1024 	struct iwl_trans_txqs txqs;
1025 
1026 	/* pointer to trans specific struct */
1027 	/*Ensure that this pointer will always be aligned to sizeof pointer */
1028 	char trans_specific[] __aligned(sizeof(void *));
1029 };
1030 
1031 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1032 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1033 
1034 static inline void iwl_trans_configure(struct iwl_trans *trans,
1035 				       const struct iwl_trans_config *trans_cfg)
1036 {
1037 	trans->op_mode = trans_cfg->op_mode;
1038 
1039 	trans->ops->configure(trans, trans_cfg);
1040 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1041 }
1042 
1043 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1044 {
1045 	might_sleep();
1046 
1047 	return trans->ops->start_hw(trans);
1048 }
1049 
1050 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1051 {
1052 	might_sleep();
1053 
1054 	if (trans->ops->op_mode_leave)
1055 		trans->ops->op_mode_leave(trans);
1056 
1057 	trans->op_mode = NULL;
1058 
1059 	trans->state = IWL_TRANS_NO_FW;
1060 }
1061 
1062 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1063 {
1064 	might_sleep();
1065 
1066 	trans->state = IWL_TRANS_FW_ALIVE;
1067 
1068 	trans->ops->fw_alive(trans, scd_addr);
1069 }
1070 
1071 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1072 				     const struct fw_img *fw,
1073 				     bool run_in_rfkill)
1074 {
1075 	int ret;
1076 
1077 	might_sleep();
1078 
1079 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1080 
1081 	clear_bit(STATUS_FW_ERROR, &trans->status);
1082 	ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1083 	if (ret == 0)
1084 		trans->state = IWL_TRANS_FW_STARTED;
1085 
1086 	return ret;
1087 }
1088 
1089 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1090 {
1091 	might_sleep();
1092 
1093 	trans->ops->stop_device(trans);
1094 
1095 	trans->state = IWL_TRANS_NO_FW;
1096 }
1097 
1098 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1099 				       bool reset)
1100 {
1101 	might_sleep();
1102 	if (!trans->ops->d3_suspend)
1103 		return 0;
1104 
1105 	return trans->ops->d3_suspend(trans, test, reset);
1106 }
1107 
1108 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1109 				      enum iwl_d3_status *status,
1110 				      bool test, bool reset)
1111 {
1112 	might_sleep();
1113 	if (!trans->ops->d3_resume)
1114 		return 0;
1115 
1116 	return trans->ops->d3_resume(trans, status, test, reset);
1117 }
1118 
1119 static inline struct iwl_trans_dump_data *
1120 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1121 		    const struct iwl_dump_sanitize_ops *sanitize_ops,
1122 		    void *sanitize_ctx)
1123 {
1124 	if (!trans->ops->dump_data)
1125 		return NULL;
1126 	return trans->ops->dump_data(trans, dump_mask,
1127 				     sanitize_ops, sanitize_ctx);
1128 }
1129 
1130 static inline struct iwl_device_tx_cmd *
1131 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1132 {
1133 	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1134 }
1135 
1136 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1137 
1138 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1139 					 struct iwl_device_tx_cmd *dev_cmd)
1140 {
1141 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1142 }
1143 
1144 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1145 			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1146 {
1147 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1148 		return -EIO;
1149 
1150 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1151 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1152 		return -EIO;
1153 	}
1154 
1155 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1156 }
1157 
1158 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1159 				     int ssn, struct sk_buff_head *skbs)
1160 {
1161 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1162 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1163 		return;
1164 	}
1165 
1166 	trans->ops->reclaim(trans, queue, ssn, skbs);
1167 }
1168 
1169 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1170 					int ptr)
1171 {
1172 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1173 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1174 		return;
1175 	}
1176 
1177 	trans->ops->set_q_ptrs(trans, queue, ptr);
1178 }
1179 
1180 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1181 					 bool configure_scd)
1182 {
1183 	trans->ops->txq_disable(trans, queue, configure_scd);
1184 }
1185 
1186 static inline bool
1187 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1188 			 const struct iwl_trans_txq_scd_cfg *cfg,
1189 			 unsigned int queue_wdg_timeout)
1190 {
1191 	might_sleep();
1192 
1193 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1194 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1195 		return false;
1196 	}
1197 
1198 	return trans->ops->txq_enable(trans, queue, ssn,
1199 				      cfg, queue_wdg_timeout);
1200 }
1201 
1202 static inline int
1203 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1204 			   struct iwl_trans_rxq_dma_data *data)
1205 {
1206 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1207 		return -ENOTSUPP;
1208 
1209 	return trans->ops->rxq_dma_data(trans, queue, data);
1210 }
1211 
1212 static inline void
1213 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1214 {
1215 	if (WARN_ON_ONCE(!trans->ops->txq_free))
1216 		return;
1217 
1218 	trans->ops->txq_free(trans, queue);
1219 }
1220 
1221 static inline int
1222 iwl_trans_txq_alloc(struct iwl_trans *trans,
1223 		    __le16 flags, u8 sta_id, u8 tid,
1224 		    int cmd_id, int size,
1225 		    unsigned int wdg_timeout)
1226 {
1227 	might_sleep();
1228 
1229 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1230 		return -ENOTSUPP;
1231 
1232 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1233 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1234 		return -EIO;
1235 	}
1236 
1237 	return trans->ops->txq_alloc(trans, flags, sta_id, tid,
1238 				     cmd_id, size, wdg_timeout);
1239 }
1240 
1241 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1242 						 int queue, bool shared_mode)
1243 {
1244 	if (trans->ops->txq_set_shared_mode)
1245 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1246 }
1247 
1248 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1249 					int fifo, int sta_id, int tid,
1250 					int frame_limit, u16 ssn,
1251 					unsigned int queue_wdg_timeout)
1252 {
1253 	struct iwl_trans_txq_scd_cfg cfg = {
1254 		.fifo = fifo,
1255 		.sta_id = sta_id,
1256 		.tid = tid,
1257 		.frame_limit = frame_limit,
1258 		.aggregate = sta_id >= 0,
1259 	};
1260 
1261 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1262 }
1263 
1264 static inline
1265 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1266 			     unsigned int queue_wdg_timeout)
1267 {
1268 	struct iwl_trans_txq_scd_cfg cfg = {
1269 		.fifo = fifo,
1270 		.sta_id = -1,
1271 		.tid = IWL_MAX_TID_COUNT,
1272 		.frame_limit = IWL_FRAME_LIMIT,
1273 		.aggregate = false,
1274 	};
1275 
1276 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1277 }
1278 
1279 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1280 					      unsigned long txqs,
1281 					      bool freeze)
1282 {
1283 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1284 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1285 		return;
1286 	}
1287 
1288 	if (trans->ops->freeze_txq_timer)
1289 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1290 }
1291 
1292 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1293 					    bool block)
1294 {
1295 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1296 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1297 		return;
1298 	}
1299 
1300 	if (trans->ops->block_txq_ptrs)
1301 		trans->ops->block_txq_ptrs(trans, block);
1302 }
1303 
1304 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1305 						 u32 txqs)
1306 {
1307 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1308 		return -ENOTSUPP;
1309 
1310 	/* No need to wait if the firmware is not alive */
1311 	if (trans->state != IWL_TRANS_FW_ALIVE) {
1312 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1313 		return -EIO;
1314 	}
1315 
1316 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1317 }
1318 
1319 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1320 {
1321 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1322 		return -ENOTSUPP;
1323 
1324 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1325 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1326 		return -EIO;
1327 	}
1328 
1329 	return trans->ops->wait_txq_empty(trans, queue);
1330 }
1331 
1332 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1333 {
1334 	trans->ops->write8(trans, ofs, val);
1335 }
1336 
1337 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1338 {
1339 	trans->ops->write32(trans, ofs, val);
1340 }
1341 
1342 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1343 {
1344 	return trans->ops->read32(trans, ofs);
1345 }
1346 
1347 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1348 {
1349 	return trans->ops->read_prph(trans, ofs);
1350 }
1351 
1352 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1353 					u32 val)
1354 {
1355 	return trans->ops->write_prph(trans, ofs, val);
1356 }
1357 
1358 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1359 				     void *buf, int dwords)
1360 {
1361 	return trans->ops->read_mem(trans, addr, buf, dwords);
1362 }
1363 
1364 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1365 	do {								      \
1366 		if (__builtin_constant_p(bufsize))			      \
1367 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1368 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1369 	} while (0)
1370 
1371 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1372 {
1373 	u32 value;
1374 
1375 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1376 		return 0xa5a5a5a5;
1377 
1378 	return value;
1379 }
1380 
1381 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1382 				      const void *buf, int dwords)
1383 {
1384 	return trans->ops->write_mem(trans, addr, buf, dwords);
1385 }
1386 
1387 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1388 					u32 val)
1389 {
1390 	return iwl_trans_write_mem(trans, addr, &val, 1);
1391 }
1392 
1393 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1394 {
1395 	if (trans->ops->set_pmi)
1396 		trans->ops->set_pmi(trans, state);
1397 }
1398 
1399 static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1400 				     bool retake_ownership)
1401 {
1402 	if (trans->ops->sw_reset)
1403 		return trans->ops->sw_reset(trans, retake_ownership);
1404 	return 0;
1405 }
1406 
1407 static inline void
1408 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1409 {
1410 	trans->ops->set_bits_mask(trans, reg, mask, value);
1411 }
1412 
1413 #define iwl_trans_grab_nic_access(trans)		\
1414 	__cond_lock(nic_access,				\
1415 		    likely((trans)->ops->grab_nic_access(trans)))
1416 
1417 static inline void __releases(nic_access)
1418 iwl_trans_release_nic_access(struct iwl_trans *trans)
1419 {
1420 	trans->ops->release_nic_access(trans);
1421 	__release(nic_access);
1422 }
1423 
1424 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1425 {
1426 	if (WARN_ON_ONCE(!trans->op_mode))
1427 		return;
1428 
1429 	/* prevent double restarts due to the same erroneous FW */
1430 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1431 		iwl_op_mode_nic_error(trans->op_mode, sync);
1432 		trans->state = IWL_TRANS_NO_FW;
1433 	}
1434 }
1435 
1436 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1437 {
1438 	return trans->state == IWL_TRANS_FW_ALIVE;
1439 }
1440 
1441 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1442 {
1443 	if (trans->ops->sync_nmi)
1444 		trans->ops->sync_nmi(trans);
1445 }
1446 
1447 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1448 				  u32 sw_err_bit);
1449 
1450 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1451 				     const void *data, u32 len)
1452 {
1453 	if (trans->ops->set_pnvm) {
1454 		int ret = trans->ops->set_pnvm(trans, data, len);
1455 
1456 		if (ret)
1457 			return ret;
1458 	}
1459 
1460 	trans->pnvm_loaded = true;
1461 
1462 	return 0;
1463 }
1464 
1465 static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans,
1466 					     const void *data, u32 len)
1467 {
1468 	if (trans->ops->set_reduce_power) {
1469 		int ret = trans->ops->set_reduce_power(trans, data, len);
1470 
1471 		if (ret)
1472 			return ret;
1473 	}
1474 
1475 	trans->reduce_power_loaded = true;
1476 	return 0;
1477 }
1478 
1479 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1480 {
1481 	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1482 		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1483 }
1484 
1485 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1486 {
1487 	if (trans->ops->interrupts)
1488 		trans->ops->interrupts(trans, enable);
1489 }
1490 
1491 /*****************************************************
1492  * transport helper functions
1493  *****************************************************/
1494 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1495 			  struct device *dev,
1496 			  const struct iwl_trans_ops *ops,
1497 			  const struct iwl_cfg_trans_params *cfg_trans);
1498 int iwl_trans_init(struct iwl_trans *trans);
1499 void iwl_trans_free(struct iwl_trans *trans);
1500 
1501 /*****************************************************
1502 * driver (transport) register/unregister functions
1503 ******************************************************/
1504 int __must_check iwl_pci_register_driver(void);
1505 void iwl_pci_unregister_driver(void);
1506 
1507 #endif /* __iwl_trans_h__ */
1508