1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ 2 /* 3 * Copyright (C) 2005-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #ifndef __iwl_trans_h__ 8 #define __iwl_trans_h__ 9 10 #include <linux/ieee80211.h> 11 #include <linux/mm.h> /* for page_address */ 12 #include <linux/lockdep.h> 13 #include <linux/kernel.h> 14 15 #include "iwl-debug.h" 16 #include "iwl-config.h" 17 #include "fw/img.h" 18 #include "iwl-op-mode.h" 19 #include <linux/firmware.h> 20 #include "fw/api/cmdhdr.h" 21 #include "fw/api/txq.h" 22 #include "fw/api/dbg-tlv.h" 23 #include "iwl-dbg-tlv.h" 24 25 /** 26 * DOC: Transport layer - what is it ? 27 * 28 * The transport layer is the layer that deals with the HW directly. It provides 29 * an abstraction of the underlying HW to the upper layer. The transport layer 30 * doesn't provide any policy, algorithm or anything of this kind, but only 31 * mechanisms to make the HW do something. It is not completely stateless but 32 * close to it. 33 * We will have an implementation for each different supported bus. 34 */ 35 36 /** 37 * DOC: Life cycle of the transport layer 38 * 39 * The transport layer has a very precise life cycle. 40 * 41 * 1) A helper function is called during the module initialization and 42 * registers the bus driver's ops with the transport's alloc function. 43 * 2) Bus's probe calls to the transport layer's allocation functions. 44 * Of course this function is bus specific. 45 * 3) This allocation functions will spawn the upper layer which will 46 * register mac80211. 47 * 48 * 4) At some point (i.e. mac80211's start call), the op_mode will call 49 * the following sequence: 50 * start_hw 51 * start_fw 52 * 53 * 5) Then when finished (or reset): 54 * stop_device 55 * 56 * 6) Eventually, the free function will be called. 57 */ 58 59 #define IWL_TRANS_FW_DBG_DOMAIN(trans) IWL_FW_INI_DOMAIN_ALWAYS_ON 60 61 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ 62 #define FH_RSCSR_FRAME_INVALID 0x55550000 63 #define FH_RSCSR_FRAME_ALIGN 0x40 64 #define FH_RSCSR_RPA_EN BIT(25) 65 #define FH_RSCSR_RADA_EN BIT(26) 66 #define FH_RSCSR_RXQ_POS 16 67 #define FH_RSCSR_RXQ_MASK 0x3F0000 68 69 struct iwl_rx_packet { 70 /* 71 * The first 4 bytes of the RX frame header contain both the RX frame 72 * size and some flags. 73 * Bit fields: 74 * 31: flag flush RB request 75 * 30: flag ignore TC (terminal counter) request 76 * 29: flag fast IRQ request 77 * 28-27: Reserved 78 * 26: RADA enabled 79 * 25: Offload enabled 80 * 24: RPF enabled 81 * 23: RSS enabled 82 * 22: Checksum enabled 83 * 21-16: RX queue 84 * 15-14: Reserved 85 * 13-00: RX frame size 86 */ 87 __le32 len_n_flags; 88 struct iwl_cmd_header hdr; 89 u8 data[]; 90 } __packed; 91 92 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) 93 { 94 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; 95 } 96 97 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) 98 { 99 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); 100 } 101 102 /** 103 * enum CMD_MODE - how to send the host commands ? 104 * 105 * @CMD_ASYNC: Return right away and don't wait for the response 106 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of 107 * the response. The caller needs to call iwl_free_resp when done. 108 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be 109 * called after this command completes. Valid only with CMD_ASYNC. 110 * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to 111 * SUSPEND and RESUME commands. We are in D3 mode when we set 112 * trans->system_pm_mode to IWL_PLAT_PM_MODE_D3. 113 */ 114 enum CMD_MODE { 115 CMD_ASYNC = BIT(0), 116 CMD_WANT_SKB = BIT(1), 117 CMD_SEND_IN_RFKILL = BIT(2), 118 CMD_WANT_ASYNC_CALLBACK = BIT(3), 119 CMD_SEND_IN_D3 = BIT(4), 120 }; 121 122 #define DEF_CMD_PAYLOAD_SIZE 320 123 124 /** 125 * struct iwl_device_cmd 126 * 127 * For allocation of the command and tx queues, this establishes the overall 128 * size of the largest command we send to uCode, except for commands that 129 * aren't fully copied and use other TFD space. 130 */ 131 struct iwl_device_cmd { 132 union { 133 struct { 134 struct iwl_cmd_header hdr; /* uCode API */ 135 u8 payload[DEF_CMD_PAYLOAD_SIZE]; 136 }; 137 struct { 138 struct iwl_cmd_header_wide hdr_wide; 139 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE - 140 sizeof(struct iwl_cmd_header_wide) + 141 sizeof(struct iwl_cmd_header)]; 142 }; 143 }; 144 } __packed; 145 146 /** 147 * struct iwl_device_tx_cmd - buffer for TX command 148 * @hdr: the header 149 * @payload: the payload placeholder 150 * 151 * The actual structure is sized dynamically according to need. 152 */ 153 struct iwl_device_tx_cmd { 154 struct iwl_cmd_header hdr; 155 u8 payload[]; 156 } __packed; 157 158 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) 159 160 /* 161 * number of transfer buffers (fragments) per transmit frame descriptor; 162 * this is just the driver's idea, the hardware supports 20 163 */ 164 #define IWL_MAX_CMD_TBS_PER_TFD 2 165 166 /* We need 2 entries for the TX command and header, and another one might 167 * be needed for potential data in the SKB's head. The remaining ones can 168 * be used for frags. 169 */ 170 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3) 171 172 /** 173 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command 174 * 175 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's 176 * ring. The transport layer doesn't map the command's buffer to DMA, but 177 * rather copies it to a previously allocated DMA buffer. This flag tells 178 * the transport layer not to copy the command, but to map the existing 179 * buffer (that is passed in) instead. This saves the memcpy and allows 180 * commands that are bigger than the fixed buffer to be submitted. 181 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. 182 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this 183 * chunk internally and free it again after the command completes. This 184 * can (currently) be used only once per command. 185 * Note that a TFD entry after a DUP one cannot be a normal copied one. 186 */ 187 enum iwl_hcmd_dataflag { 188 IWL_HCMD_DFL_NOCOPY = BIT(0), 189 IWL_HCMD_DFL_DUP = BIT(1), 190 }; 191 192 enum iwl_error_event_table_status { 193 IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0), 194 IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1), 195 IWL_ERROR_EVENT_TABLE_UMAC = BIT(2), 196 IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3), 197 IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4), 198 IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5), 199 IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6), 200 }; 201 202 /** 203 * struct iwl_host_cmd - Host command to the uCode 204 * 205 * @data: array of chunks that composes the data of the host command 206 * @resp_pkt: response packet, if %CMD_WANT_SKB was set 207 * @_rx_page_order: (internally used to free response packet) 208 * @_rx_page_addr: (internally used to free response packet) 209 * @flags: can be CMD_* 210 * @len: array of the lengths of the chunks in data 211 * @dataflags: IWL_HCMD_DFL_* 212 * @id: command id of the host command, for wide commands encoding the 213 * version and group as well 214 */ 215 struct iwl_host_cmd { 216 const void *data[IWL_MAX_CMD_TBS_PER_TFD]; 217 struct iwl_rx_packet *resp_pkt; 218 unsigned long _rx_page_addr; 219 u32 _rx_page_order; 220 221 u32 flags; 222 u32 id; 223 u16 len[IWL_MAX_CMD_TBS_PER_TFD]; 224 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; 225 }; 226 227 static inline void iwl_free_resp(struct iwl_host_cmd *cmd) 228 { 229 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); 230 } 231 232 struct iwl_rx_cmd_buffer { 233 struct page *_page; 234 int _offset; 235 bool _page_stolen; 236 u32 _rx_page_order; 237 unsigned int truesize; 238 }; 239 240 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) 241 { 242 return (void *)((unsigned long)page_address(r->_page) + r->_offset); 243 } 244 245 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) 246 { 247 return r->_offset; 248 } 249 250 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) 251 { 252 r->_page_stolen = true; 253 get_page(r->_page); 254 return r->_page; 255 } 256 257 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) 258 { 259 __free_pages(r->_page, r->_rx_page_order); 260 } 261 262 #define MAX_NO_RECLAIM_CMDS 6 263 264 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) 265 266 /* 267 * Maximum number of HW queues the transport layer 268 * currently supports 269 */ 270 #define IWL_MAX_HW_QUEUES 32 271 #define IWL_MAX_TVQM_QUEUES 512 272 273 #define IWL_MAX_TID_COUNT 8 274 #define IWL_MGMT_TID 15 275 #define IWL_FRAME_LIMIT 64 276 #define IWL_MAX_RX_HW_QUEUES 16 277 #define IWL_9000_MAX_RX_HW_QUEUES 6 278 279 /** 280 * enum iwl_wowlan_status - WoWLAN image/device status 281 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume 282 * @IWL_D3_STATUS_RESET: device was reset while suspended 283 */ 284 enum iwl_d3_status { 285 IWL_D3_STATUS_ALIVE, 286 IWL_D3_STATUS_RESET, 287 }; 288 289 /** 290 * enum iwl_trans_status: transport status flags 291 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed 292 * @STATUS_DEVICE_ENABLED: APM is enabled 293 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) 294 * @STATUS_INT_ENABLED: interrupts are enabled 295 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch 296 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode 297 * @STATUS_FW_ERROR: the fw is in error state 298 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands 299 * are sent 300 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent 301 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation 302 * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once, 303 * e.g. for testing 304 */ 305 enum iwl_trans_status { 306 STATUS_SYNC_HCMD_ACTIVE, 307 STATUS_DEVICE_ENABLED, 308 STATUS_TPOWER_PMI, 309 STATUS_INT_ENABLED, 310 STATUS_RFKILL_HW, 311 STATUS_RFKILL_OPMODE, 312 STATUS_FW_ERROR, 313 STATUS_TRANS_GOING_IDLE, 314 STATUS_TRANS_IDLE, 315 STATUS_TRANS_DEAD, 316 STATUS_SUPPRESS_CMD_ERROR_ONCE, 317 }; 318 319 static inline int 320 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size) 321 { 322 switch (rb_size) { 323 case IWL_AMSDU_2K: 324 return get_order(2 * 1024); 325 case IWL_AMSDU_4K: 326 return get_order(4 * 1024); 327 case IWL_AMSDU_8K: 328 return get_order(8 * 1024); 329 case IWL_AMSDU_12K: 330 return get_order(16 * 1024); 331 default: 332 WARN_ON(1); 333 return -1; 334 } 335 } 336 337 static inline int 338 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size) 339 { 340 switch (rb_size) { 341 case IWL_AMSDU_2K: 342 return 2 * 1024; 343 case IWL_AMSDU_4K: 344 return 4 * 1024; 345 case IWL_AMSDU_8K: 346 return 8 * 1024; 347 case IWL_AMSDU_12K: 348 return 16 * 1024; 349 default: 350 WARN_ON(1); 351 return 0; 352 } 353 } 354 355 struct iwl_hcmd_names { 356 u8 cmd_id; 357 const char *const cmd_name; 358 }; 359 360 #define HCMD_NAME(x) \ 361 { .cmd_id = x, .cmd_name = #x } 362 363 struct iwl_hcmd_arr { 364 const struct iwl_hcmd_names *arr; 365 int size; 366 }; 367 368 #define HCMD_ARR(x) \ 369 { .arr = x, .size = ARRAY_SIZE(x) } 370 371 /** 372 * struct iwl_dump_sanitize_ops - dump sanitization operations 373 * @frob_txf: Scrub the TX FIFO data 374 * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header 375 * but that might be short or long (&struct iwl_cmd_header or 376 * &struct iwl_cmd_header_wide) 377 * @frob_mem: Scrub memory data 378 */ 379 struct iwl_dump_sanitize_ops { 380 void (*frob_txf)(void *ctx, void *buf, size_t buflen); 381 void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen); 382 void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen); 383 }; 384 385 /** 386 * struct iwl_trans_config - transport configuration 387 * 388 * @op_mode: pointer to the upper layer. 389 * @cmd_queue: the index of the command queue. 390 * Must be set before start_fw. 391 * @cmd_fifo: the fifo for host commands 392 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue. 393 * @no_reclaim_cmds: Some devices erroneously don't set the 394 * SEQ_RX_FRAME bit on some notifications, this is the 395 * list of such notifications to filter. Max length is 396 * %MAX_NO_RECLAIM_CMDS. 397 * @n_no_reclaim_cmds: # of commands in list 398 * @rx_buf_size: RX buffer size needed for A-MSDUs 399 * if unset 4k will be the RX buffer size 400 * @bc_table_dword: set to true if the BC table expects the byte count to be 401 * in DWORD (as opposed to bytes) 402 * @scd_set_active: should the transport configure the SCD for HCMD queue 403 * @command_groups: array of command groups, each member is an array of the 404 * commands in the group; for debugging only 405 * @command_groups_size: number of command groups, to avoid illegal access 406 * @cb_data_offs: offset inside skb->cb to store transport data at, must have 407 * space for at least two pointers 408 * @fw_reset_handshake: firmware supports reset flow handshake 409 */ 410 struct iwl_trans_config { 411 struct iwl_op_mode *op_mode; 412 413 u8 cmd_queue; 414 u8 cmd_fifo; 415 unsigned int cmd_q_wdg_timeout; 416 const u8 *no_reclaim_cmds; 417 unsigned int n_no_reclaim_cmds; 418 419 enum iwl_amsdu_size rx_buf_size; 420 bool bc_table_dword; 421 bool scd_set_active; 422 const struct iwl_hcmd_arr *command_groups; 423 int command_groups_size; 424 425 u8 cb_data_offs; 426 bool fw_reset_handshake; 427 }; 428 429 struct iwl_trans_dump_data { 430 u32 len; 431 u8 data[]; 432 }; 433 434 struct iwl_trans; 435 436 struct iwl_trans_txq_scd_cfg { 437 u8 fifo; 438 u8 sta_id; 439 u8 tid; 440 bool aggregate; 441 int frame_limit; 442 }; 443 444 /** 445 * struct iwl_trans_rxq_dma_data - RX queue DMA data 446 * @fr_bd_cb: DMA address of free BD cyclic buffer 447 * @fr_bd_wid: Initial write index of the free BD cyclic buffer 448 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr 449 * @ur_bd_cb: DMA address of used BD cyclic buffer 450 */ 451 struct iwl_trans_rxq_dma_data { 452 u64 fr_bd_cb; 453 u32 fr_bd_wid; 454 u64 urbd_stts_wrptr; 455 u64 ur_bd_cb; 456 }; 457 458 /** 459 * struct iwl_trans_ops - transport specific operations 460 * 461 * All the handlers MUST be implemented 462 * 463 * @start_hw: starts the HW. From that point on, the HW can send interrupts. 464 * May sleep. 465 * @op_mode_leave: Turn off the HW RF kill indication if on 466 * May sleep 467 * @start_fw: allocates and inits all the resources for the transport 468 * layer. Also kick a fw image. 469 * May sleep 470 * @fw_alive: called when the fw sends alive notification. If the fw provides 471 * the SCD base address in SRAM, then provide it here, or 0 otherwise. 472 * May sleep 473 * @stop_device: stops the whole device (embedded CPU put to reset) and stops 474 * the HW. From that point on, the HW will be stopped but will still issue 475 * an interrupt if the HW RF kill switch is triggered. 476 * This callback must do the right thing and not crash even if %start_hw() 477 * was called but not &start_fw(). May sleep. 478 * @d3_suspend: put the device into the correct mode for WoWLAN during 479 * suspend. This is optional, if not implemented WoWLAN will not be 480 * supported. This callback may sleep. 481 * @d3_resume: resume the device after WoWLAN, enabling the opmode to 482 * talk to the WoWLAN image to get its status. This is optional, if not 483 * implemented WoWLAN will not be supported. This callback may sleep. 484 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. 485 * If RFkill is asserted in the middle of a SYNC host command, it must 486 * return -ERFKILL straight away. 487 * May sleep only if CMD_ASYNC is not set 488 * @tx: send an skb. The transport relies on the op_mode to zero the 489 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all 490 * the CSUM will be taken care of (TCP CSUM and IP header in case of 491 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP 492 * header if it is IPv4. 493 * Must be atomic 494 * @reclaim: free packet until ssn. Returns a list of freed packets. 495 * Must be atomic 496 * @txq_enable: setup a queue. To setup an AC queue, use the 497 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before 498 * this one. The op_mode must not configure the HCMD queue. The scheduler 499 * configuration may be %NULL, in which case the hardware will not be 500 * configured. If true is returned, the operation mode needs to increment 501 * the sequence number of the packets routed to this queue because of a 502 * hardware scheduler bug. May sleep. 503 * @txq_disable: de-configure a Tx queue to send AMPDUs 504 * Must be atomic 505 * @txq_set_shared_mode: change Tx queue shared/unshared marking 506 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep. 507 * @wait_txq_empty: wait until specific tx queue is empty. May sleep. 508 * @freeze_txq_timer: prevents the timer of the queue from firing until the 509 * queue is set to awake. Must be atomic. 510 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note 511 * that the transport needs to refcount the calls since this function 512 * will be called several times with block = true, and then the queues 513 * need to be unblocked only after the same number of calls with 514 * block = false. 515 * @write8: write a u8 to a register at offset ofs from the BAR 516 * @write32: write a u32 to a register at offset ofs from the BAR 517 * @read32: read a u32 register at offset ofs from the BAR 518 * @read_prph: read a DWORD from a periphery register 519 * @write_prph: write a DWORD to a periphery register 520 * @read_mem: read device's SRAM in DWORD 521 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory 522 * will be zeroed. 523 * @read_config32: read a u32 value from the device's config space at 524 * the given offset. 525 * @configure: configure parameters required by the transport layer from 526 * the op_mode. May be called several times before start_fw, can't be 527 * called after that. 528 * @set_pmi: set the power pmi state 529 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. 530 * Sleeping is not allowed between grab_nic_access and 531 * release_nic_access. 532 * @release_nic_access: let the NIC go to sleep. The "flags" parameter 533 * must be the same one that was sent before to the grab_nic_access. 534 * @set_bits_mask - set SRAM register according to value and mask. 535 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last 536 * TX'ed commands and similar. The buffer will be vfree'd by the caller. 537 * Note that the transport must fill in the proper file headers. 538 * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup 539 * of the trans debugfs 540 * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the 541 * context info. 542 * @interrupts: disable/enable interrupts to transport 543 */ 544 struct iwl_trans_ops { 545 546 int (*start_hw)(struct iwl_trans *iwl_trans); 547 void (*op_mode_leave)(struct iwl_trans *iwl_trans); 548 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, 549 bool run_in_rfkill); 550 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); 551 void (*stop_device)(struct iwl_trans *trans); 552 553 int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset); 554 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, 555 bool test, bool reset); 556 557 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 558 559 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, 560 struct iwl_device_tx_cmd *dev_cmd, int queue); 561 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, 562 struct sk_buff_head *skbs); 563 564 void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr); 565 566 bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn, 567 const struct iwl_trans_txq_scd_cfg *cfg, 568 unsigned int queue_wdg_timeout); 569 void (*txq_disable)(struct iwl_trans *trans, int queue, 570 bool configure_scd); 571 /* 22000 functions */ 572 int (*txq_alloc)(struct iwl_trans *trans, 573 __le16 flags, u8 sta_id, u8 tid, 574 int cmd_id, int size, 575 unsigned int queue_wdg_timeout); 576 void (*txq_free)(struct iwl_trans *trans, int queue); 577 int (*rxq_dma_data)(struct iwl_trans *trans, int queue, 578 struct iwl_trans_rxq_dma_data *data); 579 580 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id, 581 bool shared); 582 583 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm); 584 int (*wait_txq_empty)(struct iwl_trans *trans, int queue); 585 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs, 586 bool freeze); 587 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block); 588 589 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); 590 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); 591 u32 (*read32)(struct iwl_trans *trans, u32 ofs); 592 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); 593 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); 594 int (*read_mem)(struct iwl_trans *trans, u32 addr, 595 void *buf, int dwords); 596 int (*write_mem)(struct iwl_trans *trans, u32 addr, 597 const void *buf, int dwords); 598 int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val); 599 void (*configure)(struct iwl_trans *trans, 600 const struct iwl_trans_config *trans_cfg); 601 void (*set_pmi)(struct iwl_trans *trans, bool state); 602 int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership); 603 bool (*grab_nic_access)(struct iwl_trans *trans); 604 void (*release_nic_access)(struct iwl_trans *trans); 605 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, 606 u32 value); 607 608 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans, 609 u32 dump_mask, 610 const struct iwl_dump_sanitize_ops *sanitize_ops, 611 void *sanitize_ctx); 612 void (*debugfs_cleanup)(struct iwl_trans *trans); 613 void (*sync_nmi)(struct iwl_trans *trans); 614 int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len); 615 int (*set_reduce_power)(struct iwl_trans *trans, 616 const void *data, u32 len); 617 void (*interrupts)(struct iwl_trans *trans, bool enable); 618 }; 619 620 /** 621 * enum iwl_trans_state - state of the transport layer 622 * 623 * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed 624 * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet 625 * @IWL_TRANS_FW_ALIVE: FW has sent an alive response 626 */ 627 enum iwl_trans_state { 628 IWL_TRANS_NO_FW, 629 IWL_TRANS_FW_STARTED, 630 IWL_TRANS_FW_ALIVE, 631 }; 632 633 /** 634 * DOC: Platform power management 635 * 636 * In system-wide power management the entire platform goes into a low 637 * power state (e.g. idle or suspend to RAM) at the same time and the 638 * device is configured as a wakeup source for the entire platform. 639 * This is usually triggered by userspace activity (e.g. the user 640 * presses the suspend button or a power management daemon decides to 641 * put the platform in low power mode). The device's behavior in this 642 * mode is dictated by the wake-on-WLAN configuration. 643 * 644 * The terms used for the device's behavior are as follows: 645 * 646 * - D0: the device is fully powered and the host is awake; 647 * - D3: the device is in low power mode and only reacts to 648 * specific events (e.g. magic-packet received or scan 649 * results found); 650 * 651 * These terms reflect the power modes in the firmware and are not to 652 * be confused with the physical device power state. 653 */ 654 655 /** 656 * enum iwl_plat_pm_mode - platform power management mode 657 * 658 * This enumeration describes the device's platform power management 659 * behavior when in system-wide suspend (i.e WoWLAN). 660 * 661 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this 662 * device. In system-wide suspend mode, it means that the all 663 * connections will be closed automatically by mac80211 before 664 * the platform is suspended. 665 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN). 666 */ 667 enum iwl_plat_pm_mode { 668 IWL_PLAT_PM_MODE_DISABLED, 669 IWL_PLAT_PM_MODE_D3, 670 }; 671 672 /** 673 * enum iwl_ini_cfg_state 674 * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given 675 * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded 676 * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs 677 * are corrupted. The rest of the debug TLVs will still be used 678 */ 679 enum iwl_ini_cfg_state { 680 IWL_INI_CFG_STATE_NOT_LOADED, 681 IWL_INI_CFG_STATE_LOADED, 682 IWL_INI_CFG_STATE_CORRUPTED, 683 }; 684 685 /* Max time to wait for nmi interrupt */ 686 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4) 687 688 /** 689 * struct iwl_dram_data 690 * @physical: page phy pointer 691 * @block: pointer to the allocated block/page 692 * @size: size of the block/page 693 */ 694 struct iwl_dram_data { 695 dma_addr_t physical; 696 void *block; 697 int size; 698 }; 699 700 /** 701 * struct iwl_fw_mon - fw monitor per allocation id 702 * @num_frags: number of fragments 703 * @frags: an array of DRAM buffer fragments 704 */ 705 struct iwl_fw_mon { 706 u32 num_frags; 707 struct iwl_dram_data *frags; 708 }; 709 710 /** 711 * struct iwl_self_init_dram - dram data used by self init process 712 * @fw: lmac and umac dram data 713 * @fw_cnt: total number of items in array 714 * @paging: paging dram data 715 * @paging_cnt: total number of items in array 716 */ 717 struct iwl_self_init_dram { 718 struct iwl_dram_data *fw; 719 int fw_cnt; 720 struct iwl_dram_data *paging; 721 int paging_cnt; 722 }; 723 724 /** 725 * struct iwl_trans_debug - transport debug related data 726 * 727 * @n_dest_reg: num of reg_ops in %dbg_dest_tlv 728 * @rec_on: true iff there is a fw debug recording currently active 729 * @dest_tlv: points to the destination TLV for debug 730 * @conf_tlv: array of pointers to configuration TLVs for debug 731 * @trigger_tlv: array of pointers to triggers TLVs for debug 732 * @lmac_error_event_table: addrs of lmacs error tables 733 * @umac_error_event_table: addr of umac error table 734 * @tcm_error_event_table: address(es) of TCM error table(s) 735 * @rcm_error_event_table: address(es) of RCM error table(s) 736 * @error_event_table_tlv_status: bitmap that indicates what error table 737 * pointers was recevied via TLV. uses enum &iwl_error_event_table_status 738 * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state 739 * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state 740 * @fw_mon_cfg: debug buffer allocation configuration 741 * @fw_mon_ini: DRAM buffer fragments per allocation id 742 * @fw_mon: DRAM buffer for firmware monitor 743 * @hw_error: equals true if hw error interrupt was received from the FW 744 * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location 745 * @active_regions: active regions 746 * @debug_info_tlv_list: list of debug info TLVs 747 * @time_point: array of debug time points 748 * @periodic_trig_list: periodic triggers list 749 * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON 750 * @ucode_preset: preset based on ucode 751 */ 752 struct iwl_trans_debug { 753 u8 n_dest_reg; 754 bool rec_on; 755 756 const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv; 757 const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX]; 758 struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv; 759 760 u32 lmac_error_event_table[2]; 761 u32 umac_error_event_table; 762 u32 tcm_error_event_table[2]; 763 u32 rcm_error_event_table[2]; 764 unsigned int error_event_table_tlv_status; 765 766 enum iwl_ini_cfg_state internal_ini_cfg; 767 enum iwl_ini_cfg_state external_ini_cfg; 768 769 struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM]; 770 struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM]; 771 772 struct iwl_dram_data fw_mon; 773 774 bool hw_error; 775 enum iwl_fw_ini_buffer_location ini_dest; 776 777 u64 unsupported_region_msk; 778 struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID]; 779 struct list_head debug_info_tlv_list; 780 struct iwl_dbg_tlv_time_point_data 781 time_point[IWL_FW_INI_TIME_POINT_NUM]; 782 struct list_head periodic_trig_list; 783 784 u32 domains_bitmap; 785 u32 ucode_preset; 786 bool restart_required; 787 u32 last_tp_resetfw; 788 }; 789 790 struct iwl_dma_ptr { 791 dma_addr_t dma; 792 void *addr; 793 size_t size; 794 }; 795 796 struct iwl_cmd_meta { 797 /* only for SYNC commands, iff the reply skb is wanted */ 798 struct iwl_host_cmd *source; 799 u32 flags; 800 u32 tbs; 801 }; 802 803 /* 804 * The FH will write back to the first TB only, so we need to copy some data 805 * into the buffer regardless of whether it should be mapped or not. 806 * This indicates how big the first TB must be to include the scratch buffer 807 * and the assigned PN. 808 * Since PN location is 8 bytes at offset 12, it's 20 now. 809 * If we make it bigger then allocations will be bigger and copy slower, so 810 * that's probably not useful. 811 */ 812 #define IWL_FIRST_TB_SIZE 20 813 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64) 814 815 struct iwl_pcie_txq_entry { 816 void *cmd; 817 struct sk_buff *skb; 818 /* buffer to free after command completes */ 819 const void *free_buf; 820 struct iwl_cmd_meta meta; 821 }; 822 823 struct iwl_pcie_first_tb_buf { 824 u8 buf[IWL_FIRST_TB_SIZE_ALIGN]; 825 }; 826 827 /** 828 * struct iwl_txq - Tx Queue for DMA 829 * @q: generic Rx/Tx queue descriptor 830 * @tfds: transmit frame descriptors (DMA memory) 831 * @first_tb_bufs: start of command headers, including scratch buffers, for 832 * the writeback -- this is DMA memory and an array holding one buffer 833 * for each command on the queue 834 * @first_tb_dma: DMA address for the first_tb_bufs start 835 * @entries: transmit entries (driver state) 836 * @lock: queue lock 837 * @stuck_timer: timer that fires if queue gets stuck 838 * @trans: pointer back to transport (for timer) 839 * @need_update: indicates need to update read/write index 840 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID 841 * @wd_timeout: queue watchdog timeout (jiffies) - per queue 842 * @frozen: tx stuck queue timer is frozen 843 * @frozen_expiry_remainder: remember how long until the timer fires 844 * @bc_tbl: byte count table of the queue (relevant only for gen2 transport) 845 * @write_ptr: 1-st empty entry (index) host_w 846 * @read_ptr: last used entry (index) host_r 847 * @dma_addr: physical addr for BD's 848 * @n_window: safe queue window 849 * @id: queue id 850 * @low_mark: low watermark, resume queue if free space more than this 851 * @high_mark: high watermark, stop queue if free space less than this 852 * 853 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame 854 * descriptors) and required locking structures. 855 * 856 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware 857 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless 858 * there might be HW changes in the future). For the normal TX 859 * queues, n_window, which is the size of the software queue data 860 * is also 256; however, for the command queue, n_window is only 861 * 32 since we don't need so many commands pending. Since the HW 862 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256. 863 * This means that we end up with the following: 864 * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 | 865 * SW entries: | 0 | ... | 31 | 866 * where N is a number between 0 and 7. This means that the SW 867 * data is a window overlayed over the HW queue. 868 */ 869 struct iwl_txq { 870 void *tfds; 871 struct iwl_pcie_first_tb_buf *first_tb_bufs; 872 dma_addr_t first_tb_dma; 873 struct iwl_pcie_txq_entry *entries; 874 /* lock for syncing changes on the queue */ 875 spinlock_t lock; 876 unsigned long frozen_expiry_remainder; 877 struct timer_list stuck_timer; 878 struct iwl_trans *trans; 879 bool need_update; 880 bool frozen; 881 bool ampdu; 882 int block; 883 unsigned long wd_timeout; 884 struct sk_buff_head overflow_q; 885 struct iwl_dma_ptr bc_tbl; 886 887 int write_ptr; 888 int read_ptr; 889 dma_addr_t dma_addr; 890 int n_window; 891 u32 id; 892 int low_mark; 893 int high_mark; 894 895 bool overflow_tx; 896 }; 897 898 /** 899 * struct iwl_trans_txqs - transport tx queues data 900 * 901 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes) 902 * @page_offs: offset from skb->cb to mac header page pointer 903 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer 904 * @queue_used - bit mask of used queues 905 * @queue_stopped - bit mask of stopped queues 906 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler 907 */ 908 struct iwl_trans_txqs { 909 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 910 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 911 struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES]; 912 struct dma_pool *bc_pool; 913 size_t bc_tbl_size; 914 bool bc_table_dword; 915 u8 page_offs; 916 u8 dev_cmd_offs; 917 struct iwl_tso_hdr_page __percpu *tso_hdr_page; 918 919 struct { 920 u8 fifo; 921 u8 q_id; 922 unsigned int wdg_timeout; 923 } cmd; 924 925 struct { 926 u8 max_tbs; 927 u16 size; 928 u8 addr_size; 929 } tfd; 930 931 struct iwl_dma_ptr scd_bc_tbls; 932 }; 933 934 /** 935 * struct iwl_trans - transport common data 936 * 937 * @csme_own - true if we couldn't get ownership on the device 938 * @ops - pointer to iwl_trans_ops 939 * @op_mode - pointer to the op_mode 940 * @trans_cfg: the trans-specific configuration part 941 * @cfg - pointer to the configuration 942 * @drv - pointer to iwl_drv 943 * @status: a bit-mask of transport status flags 944 * @dev - pointer to struct device * that represents the device 945 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted. 946 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported. 947 * @hw_rf_id a u32 with the device RF ID 948 * @hw_id: a u32 with the ID of the device / sub-device. 949 * Set during transport allocation. 950 * @hw_id_str: a string with info about HW ID. Set during transport allocation. 951 * @hw_rev_step: The mac step of the HW 952 * @pm_support: set to true in start_hw if link pm is supported 953 * @ltr_enabled: set to true if the LTR is enabled 954 * @wide_cmd_header: true when ucode supports wide command header format 955 * @wait_command_queue: wait queue for sync commands 956 * @num_rx_queues: number of RX queues allocated by the transport; 957 * the transport must set this before calling iwl_drv_start() 958 * @iml_len: the length of the image loader 959 * @iml: a pointer to the image loader itself 960 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. 961 * The user should use iwl_trans_{alloc,free}_tx_cmd. 962 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before 963 * starting the firmware, used for tracing 964 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the 965 * start of the 802.11 header in the @rx_mpdu_cmd 966 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI) 967 * @system_pm_mode: the system-wide power management mode in use. 968 * This mode is set dynamically, depending on the WoWLAN values 969 * configured from the userspace at runtime. 970 * @iwl_trans_txqs: transport tx queues data. 971 */ 972 struct iwl_trans { 973 bool csme_own; 974 const struct iwl_trans_ops *ops; 975 struct iwl_op_mode *op_mode; 976 const struct iwl_cfg_trans_params *trans_cfg; 977 const struct iwl_cfg *cfg; 978 struct iwl_drv *drv; 979 enum iwl_trans_state state; 980 unsigned long status; 981 982 struct device *dev; 983 u32 max_skb_frags; 984 u32 hw_rev; 985 u32 hw_rev_step; 986 u32 hw_rf_id; 987 u32 hw_id; 988 char hw_id_str[52]; 989 u32 sku_id[3]; 990 991 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; 992 993 bool pm_support; 994 bool ltr_enabled; 995 u8 pnvm_loaded:1; 996 u8 reduce_power_loaded:1; 997 998 const struct iwl_hcmd_arr *command_groups; 999 int command_groups_size; 1000 bool wide_cmd_header; 1001 1002 wait_queue_head_t wait_command_queue; 1003 u8 num_rx_queues; 1004 1005 size_t iml_len; 1006 u8 *iml; 1007 1008 /* The following fields are internal only */ 1009 struct kmem_cache *dev_cmd_pool; 1010 char dev_cmd_pool_name[50]; 1011 1012 struct dentry *dbgfs_dir; 1013 1014 #ifdef CONFIG_LOCKDEP 1015 struct lockdep_map sync_cmd_lockdep_map; 1016 #endif 1017 1018 struct iwl_trans_debug dbg; 1019 struct iwl_self_init_dram init_dram; 1020 1021 enum iwl_plat_pm_mode system_pm_mode; 1022 1023 const char *name; 1024 struct iwl_trans_txqs txqs; 1025 1026 /* pointer to trans specific struct */ 1027 /*Ensure that this pointer will always be aligned to sizeof pointer */ 1028 char trans_specific[] __aligned(sizeof(void *)); 1029 }; 1030 1031 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id); 1032 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans); 1033 1034 static inline void iwl_trans_configure(struct iwl_trans *trans, 1035 const struct iwl_trans_config *trans_cfg) 1036 { 1037 trans->op_mode = trans_cfg->op_mode; 1038 1039 trans->ops->configure(trans, trans_cfg); 1040 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg)); 1041 } 1042 1043 static inline int iwl_trans_start_hw(struct iwl_trans *trans) 1044 { 1045 might_sleep(); 1046 1047 return trans->ops->start_hw(trans); 1048 } 1049 1050 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) 1051 { 1052 might_sleep(); 1053 1054 if (trans->ops->op_mode_leave) 1055 trans->ops->op_mode_leave(trans); 1056 1057 trans->op_mode = NULL; 1058 1059 trans->state = IWL_TRANS_NO_FW; 1060 } 1061 1062 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) 1063 { 1064 might_sleep(); 1065 1066 trans->state = IWL_TRANS_FW_ALIVE; 1067 1068 trans->ops->fw_alive(trans, scd_addr); 1069 } 1070 1071 static inline int iwl_trans_start_fw(struct iwl_trans *trans, 1072 const struct fw_img *fw, 1073 bool run_in_rfkill) 1074 { 1075 int ret; 1076 1077 might_sleep(); 1078 1079 WARN_ON_ONCE(!trans->rx_mpdu_cmd); 1080 1081 clear_bit(STATUS_FW_ERROR, &trans->status); 1082 ret = trans->ops->start_fw(trans, fw, run_in_rfkill); 1083 if (ret == 0) 1084 trans->state = IWL_TRANS_FW_STARTED; 1085 1086 return ret; 1087 } 1088 1089 static inline void iwl_trans_stop_device(struct iwl_trans *trans) 1090 { 1091 might_sleep(); 1092 1093 trans->ops->stop_device(trans); 1094 1095 trans->state = IWL_TRANS_NO_FW; 1096 } 1097 1098 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, 1099 bool reset) 1100 { 1101 might_sleep(); 1102 if (!trans->ops->d3_suspend) 1103 return 0; 1104 1105 return trans->ops->d3_suspend(trans, test, reset); 1106 } 1107 1108 static inline int iwl_trans_d3_resume(struct iwl_trans *trans, 1109 enum iwl_d3_status *status, 1110 bool test, bool reset) 1111 { 1112 might_sleep(); 1113 if (!trans->ops->d3_resume) 1114 return 0; 1115 1116 return trans->ops->d3_resume(trans, status, test, reset); 1117 } 1118 1119 static inline struct iwl_trans_dump_data * 1120 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask, 1121 const struct iwl_dump_sanitize_ops *sanitize_ops, 1122 void *sanitize_ctx) 1123 { 1124 if (!trans->ops->dump_data) 1125 return NULL; 1126 return trans->ops->dump_data(trans, dump_mask, 1127 sanitize_ops, sanitize_ctx); 1128 } 1129 1130 static inline struct iwl_device_tx_cmd * 1131 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) 1132 { 1133 return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC); 1134 } 1135 1136 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 1137 1138 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, 1139 struct iwl_device_tx_cmd *dev_cmd) 1140 { 1141 kmem_cache_free(trans->dev_cmd_pool, dev_cmd); 1142 } 1143 1144 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, 1145 struct iwl_device_tx_cmd *dev_cmd, int queue) 1146 { 1147 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) 1148 return -EIO; 1149 1150 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1151 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1152 return -EIO; 1153 } 1154 1155 return trans->ops->tx(trans, skb, dev_cmd, queue); 1156 } 1157 1158 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, 1159 int ssn, struct sk_buff_head *skbs) 1160 { 1161 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1162 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1163 return; 1164 } 1165 1166 trans->ops->reclaim(trans, queue, ssn, skbs); 1167 } 1168 1169 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue, 1170 int ptr) 1171 { 1172 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1173 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1174 return; 1175 } 1176 1177 trans->ops->set_q_ptrs(trans, queue, ptr); 1178 } 1179 1180 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue, 1181 bool configure_scd) 1182 { 1183 trans->ops->txq_disable(trans, queue, configure_scd); 1184 } 1185 1186 static inline bool 1187 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn, 1188 const struct iwl_trans_txq_scd_cfg *cfg, 1189 unsigned int queue_wdg_timeout) 1190 { 1191 might_sleep(); 1192 1193 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1194 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1195 return false; 1196 } 1197 1198 return trans->ops->txq_enable(trans, queue, ssn, 1199 cfg, queue_wdg_timeout); 1200 } 1201 1202 static inline int 1203 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue, 1204 struct iwl_trans_rxq_dma_data *data) 1205 { 1206 if (WARN_ON_ONCE(!trans->ops->rxq_dma_data)) 1207 return -ENOTSUPP; 1208 1209 return trans->ops->rxq_dma_data(trans, queue, data); 1210 } 1211 1212 static inline void 1213 iwl_trans_txq_free(struct iwl_trans *trans, int queue) 1214 { 1215 if (WARN_ON_ONCE(!trans->ops->txq_free)) 1216 return; 1217 1218 trans->ops->txq_free(trans, queue); 1219 } 1220 1221 static inline int 1222 iwl_trans_txq_alloc(struct iwl_trans *trans, 1223 __le16 flags, u8 sta_id, u8 tid, 1224 int cmd_id, int size, 1225 unsigned int wdg_timeout) 1226 { 1227 might_sleep(); 1228 1229 if (WARN_ON_ONCE(!trans->ops->txq_alloc)) 1230 return -ENOTSUPP; 1231 1232 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1233 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1234 return -EIO; 1235 } 1236 1237 return trans->ops->txq_alloc(trans, flags, sta_id, tid, 1238 cmd_id, size, wdg_timeout); 1239 } 1240 1241 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans, 1242 int queue, bool shared_mode) 1243 { 1244 if (trans->ops->txq_set_shared_mode) 1245 trans->ops->txq_set_shared_mode(trans, queue, shared_mode); 1246 } 1247 1248 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, 1249 int fifo, int sta_id, int tid, 1250 int frame_limit, u16 ssn, 1251 unsigned int queue_wdg_timeout) 1252 { 1253 struct iwl_trans_txq_scd_cfg cfg = { 1254 .fifo = fifo, 1255 .sta_id = sta_id, 1256 .tid = tid, 1257 .frame_limit = frame_limit, 1258 .aggregate = sta_id >= 0, 1259 }; 1260 1261 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout); 1262 } 1263 1264 static inline 1265 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo, 1266 unsigned int queue_wdg_timeout) 1267 { 1268 struct iwl_trans_txq_scd_cfg cfg = { 1269 .fifo = fifo, 1270 .sta_id = -1, 1271 .tid = IWL_MAX_TID_COUNT, 1272 .frame_limit = IWL_FRAME_LIMIT, 1273 .aggregate = false, 1274 }; 1275 1276 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout); 1277 } 1278 1279 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans, 1280 unsigned long txqs, 1281 bool freeze) 1282 { 1283 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1284 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1285 return; 1286 } 1287 1288 if (trans->ops->freeze_txq_timer) 1289 trans->ops->freeze_txq_timer(trans, txqs, freeze); 1290 } 1291 1292 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans, 1293 bool block) 1294 { 1295 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1296 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1297 return; 1298 } 1299 1300 if (trans->ops->block_txq_ptrs) 1301 trans->ops->block_txq_ptrs(trans, block); 1302 } 1303 1304 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, 1305 u32 txqs) 1306 { 1307 if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty)) 1308 return -ENOTSUPP; 1309 1310 /* No need to wait if the firmware is not alive */ 1311 if (trans->state != IWL_TRANS_FW_ALIVE) { 1312 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1313 return -EIO; 1314 } 1315 1316 return trans->ops->wait_tx_queues_empty(trans, txqs); 1317 } 1318 1319 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue) 1320 { 1321 if (WARN_ON_ONCE(!trans->ops->wait_txq_empty)) 1322 return -ENOTSUPP; 1323 1324 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1325 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1326 return -EIO; 1327 } 1328 1329 return trans->ops->wait_txq_empty(trans, queue); 1330 } 1331 1332 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) 1333 { 1334 trans->ops->write8(trans, ofs, val); 1335 } 1336 1337 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) 1338 { 1339 trans->ops->write32(trans, ofs, val); 1340 } 1341 1342 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) 1343 { 1344 return trans->ops->read32(trans, ofs); 1345 } 1346 1347 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) 1348 { 1349 return trans->ops->read_prph(trans, ofs); 1350 } 1351 1352 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, 1353 u32 val) 1354 { 1355 return trans->ops->write_prph(trans, ofs, val); 1356 } 1357 1358 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, 1359 void *buf, int dwords) 1360 { 1361 return trans->ops->read_mem(trans, addr, buf, dwords); 1362 } 1363 1364 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ 1365 do { \ 1366 if (__builtin_constant_p(bufsize)) \ 1367 BUILD_BUG_ON((bufsize) % sizeof(u32)); \ 1368 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ 1369 } while (0) 1370 1371 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) 1372 { 1373 u32 value; 1374 1375 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) 1376 return 0xa5a5a5a5; 1377 1378 return value; 1379 } 1380 1381 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, 1382 const void *buf, int dwords) 1383 { 1384 return trans->ops->write_mem(trans, addr, buf, dwords); 1385 } 1386 1387 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, 1388 u32 val) 1389 { 1390 return iwl_trans_write_mem(trans, addr, &val, 1); 1391 } 1392 1393 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) 1394 { 1395 if (trans->ops->set_pmi) 1396 trans->ops->set_pmi(trans, state); 1397 } 1398 1399 static inline int iwl_trans_sw_reset(struct iwl_trans *trans, 1400 bool retake_ownership) 1401 { 1402 if (trans->ops->sw_reset) 1403 return trans->ops->sw_reset(trans, retake_ownership); 1404 return 0; 1405 } 1406 1407 static inline void 1408 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) 1409 { 1410 trans->ops->set_bits_mask(trans, reg, mask, value); 1411 } 1412 1413 #define iwl_trans_grab_nic_access(trans) \ 1414 __cond_lock(nic_access, \ 1415 likely((trans)->ops->grab_nic_access(trans))) 1416 1417 static inline void __releases(nic_access) 1418 iwl_trans_release_nic_access(struct iwl_trans *trans) 1419 { 1420 trans->ops->release_nic_access(trans); 1421 __release(nic_access); 1422 } 1423 1424 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync) 1425 { 1426 if (WARN_ON_ONCE(!trans->op_mode)) 1427 return; 1428 1429 /* prevent double restarts due to the same erroneous FW */ 1430 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) { 1431 iwl_op_mode_nic_error(trans->op_mode, sync); 1432 trans->state = IWL_TRANS_NO_FW; 1433 } 1434 } 1435 1436 static inline bool iwl_trans_fw_running(struct iwl_trans *trans) 1437 { 1438 return trans->state == IWL_TRANS_FW_ALIVE; 1439 } 1440 1441 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans) 1442 { 1443 if (trans->ops->sync_nmi) 1444 trans->ops->sync_nmi(trans); 1445 } 1446 1447 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr, 1448 u32 sw_err_bit); 1449 1450 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans, 1451 const void *data, u32 len) 1452 { 1453 if (trans->ops->set_pnvm) { 1454 int ret = trans->ops->set_pnvm(trans, data, len); 1455 1456 if (ret) 1457 return ret; 1458 } 1459 1460 trans->pnvm_loaded = true; 1461 1462 return 0; 1463 } 1464 1465 static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans, 1466 const void *data, u32 len) 1467 { 1468 if (trans->ops->set_reduce_power) { 1469 int ret = trans->ops->set_reduce_power(trans, data, len); 1470 1471 if (ret) 1472 return ret; 1473 } 1474 1475 trans->reduce_power_loaded = true; 1476 return 0; 1477 } 1478 1479 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans) 1480 { 1481 return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED || 1482 trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED; 1483 } 1484 1485 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable) 1486 { 1487 if (trans->ops->interrupts) 1488 trans->ops->interrupts(trans, enable); 1489 } 1490 1491 /***************************************************** 1492 * transport helper functions 1493 *****************************************************/ 1494 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, 1495 struct device *dev, 1496 const struct iwl_trans_ops *ops, 1497 const struct iwl_cfg_trans_params *cfg_trans); 1498 int iwl_trans_init(struct iwl_trans *trans); 1499 void iwl_trans_free(struct iwl_trans *trans); 1500 1501 /***************************************************** 1502 * driver (transport) register/unregister functions 1503 ******************************************************/ 1504 int __must_check iwl_pci_register_driver(void); 1505 void iwl_pci_unregister_driver(void); 1506 1507 #endif /* __iwl_trans_h__ */ 1508