xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/iwl-trans.h (revision 2a24da4cf6753ee4c1f5b9e16d526a4a115e8562)
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9 
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14 
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24 
25 /**
26  * DOC: Transport layer - what is it ?
27  *
28  * The transport layer is the layer that deals with the HW directly. It provides
29  * an abstraction of the underlying HW to the upper layer. The transport layer
30  * doesn't provide any policy, algorithm or anything of this kind, but only
31  * mechanisms to make the HW do something. It is not completely stateless but
32  * close to it.
33  * We will have an implementation for each different supported bus.
34  */
35 
36 /**
37  * DOC: Life cycle of the transport layer
38  *
39  * The transport layer has a very precise life cycle.
40  *
41  *	1) A helper function is called during the module initialization and
42  *	   registers the bus driver's ops with the transport's alloc function.
43  *	2) Bus's probe calls to the transport layer's allocation functions.
44  *	   Of course this function is bus specific.
45  *	3) This allocation functions will spawn the upper layer which will
46  *	   register mac80211.
47  *
48  *	4) At some point (i.e. mac80211's start call), the op_mode will call
49  *	   the following sequence:
50  *	   start_hw
51  *	   start_fw
52  *
53  *	5) Then when finished (or reset):
54  *	   stop_device
55  *
56  *	6) Eventually, the free function will be called.
57  */
58 
59 /* default preset 0 (start from bit 16)*/
60 #define IWL_FW_DBG_DOMAIN_POS	16
61 #define IWL_FW_DBG_DOMAIN	BIT(IWL_FW_DBG_DOMAIN_POS)
62 
63 #define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
64 
65 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
66 #define FH_RSCSR_FRAME_INVALID		0x55550000
67 #define FH_RSCSR_FRAME_ALIGN		0x40
68 #define FH_RSCSR_RPA_EN			BIT(25)
69 #define FH_RSCSR_RADA_EN		BIT(26)
70 #define FH_RSCSR_RXQ_POS		16
71 #define FH_RSCSR_RXQ_MASK		0x3F0000
72 
73 struct iwl_rx_packet {
74 	/*
75 	 * The first 4 bytes of the RX frame header contain both the RX frame
76 	 * size and some flags.
77 	 * Bit fields:
78 	 * 31:    flag flush RB request
79 	 * 30:    flag ignore TC (terminal counter) request
80 	 * 29:    flag fast IRQ request
81 	 * 28-27: Reserved
82 	 * 26:    RADA enabled
83 	 * 25:    Offload enabled
84 	 * 24:    RPF enabled
85 	 * 23:    RSS enabled
86 	 * 22:    Checksum enabled
87 	 * 21-16: RX queue
88 	 * 15-14: Reserved
89 	 * 13-00: RX frame size
90 	 */
91 	__le32 len_n_flags;
92 	struct iwl_cmd_header hdr;
93 	u8 data[];
94 } __packed;
95 
96 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
97 {
98 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
99 }
100 
101 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
102 {
103 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
104 }
105 
106 /**
107  * enum CMD_MODE - how to send the host commands ?
108  *
109  * @CMD_ASYNC: Return right away and don't wait for the response
110  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
111  *	the response. The caller needs to call iwl_free_resp when done.
112  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
113  *	called after this command completes. Valid only with CMD_ASYNC.
114  * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
115  *	SUSPEND and RESUME commands. We are in D3 mode when we set
116  *	trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
117  */
118 enum CMD_MODE {
119 	CMD_ASYNC		= BIT(0),
120 	CMD_WANT_SKB		= BIT(1),
121 	CMD_SEND_IN_RFKILL	= BIT(2),
122 	CMD_WANT_ASYNC_CALLBACK	= BIT(3),
123 	CMD_SEND_IN_D3          = BIT(4),
124 };
125 
126 #define DEF_CMD_PAYLOAD_SIZE 320
127 
128 /**
129  * struct iwl_device_cmd
130  *
131  * For allocation of the command and tx queues, this establishes the overall
132  * size of the largest command we send to uCode, except for commands that
133  * aren't fully copied and use other TFD space.
134  */
135 struct iwl_device_cmd {
136 	union {
137 		struct {
138 			struct iwl_cmd_header hdr;	/* uCode API */
139 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
140 		};
141 		struct {
142 			struct iwl_cmd_header_wide hdr_wide;
143 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
144 					sizeof(struct iwl_cmd_header_wide) +
145 					sizeof(struct iwl_cmd_header)];
146 		};
147 	};
148 } __packed;
149 
150 /**
151  * struct iwl_device_tx_cmd - buffer for TX command
152  * @hdr: the header
153  * @payload: the payload placeholder
154  *
155  * The actual structure is sized dynamically according to need.
156  */
157 struct iwl_device_tx_cmd {
158 	struct iwl_cmd_header hdr;
159 	u8 payload[];
160 } __packed;
161 
162 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
163 
164 /*
165  * number of transfer buffers (fragments) per transmit frame descriptor;
166  * this is just the driver's idea, the hardware supports 20
167  */
168 #define IWL_MAX_CMD_TBS_PER_TFD	2
169 
170 /* We need 2 entries for the TX command and header, and another one might
171  * be needed for potential data in the SKB's head. The remaining ones can
172  * be used for frags.
173  */
174 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
175 
176 /**
177  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
178  *
179  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
180  *	ring. The transport layer doesn't map the command's buffer to DMA, but
181  *	rather copies it to a previously allocated DMA buffer. This flag tells
182  *	the transport layer not to copy the command, but to map the existing
183  *	buffer (that is passed in) instead. This saves the memcpy and allows
184  *	commands that are bigger than the fixed buffer to be submitted.
185  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
186  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
187  *	chunk internally and free it again after the command completes. This
188  *	can (currently) be used only once per command.
189  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
190  */
191 enum iwl_hcmd_dataflag {
192 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
193 	IWL_HCMD_DFL_DUP	= BIT(1),
194 };
195 
196 enum iwl_error_event_table_status {
197 	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
198 	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
199 	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
200 	IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
201 	IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
202 	IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
203 	IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
204 };
205 
206 /**
207  * struct iwl_host_cmd - Host command to the uCode
208  *
209  * @data: array of chunks that composes the data of the host command
210  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
211  * @_rx_page_order: (internally used to free response packet)
212  * @_rx_page_addr: (internally used to free response packet)
213  * @flags: can be CMD_*
214  * @len: array of the lengths of the chunks in data
215  * @dataflags: IWL_HCMD_DFL_*
216  * @id: command id of the host command, for wide commands encoding the
217  *	version and group as well
218  */
219 struct iwl_host_cmd {
220 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
221 	struct iwl_rx_packet *resp_pkt;
222 	unsigned long _rx_page_addr;
223 	u32 _rx_page_order;
224 
225 	u32 flags;
226 	u32 id;
227 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
228 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
229 };
230 
231 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
232 {
233 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
234 }
235 
236 struct iwl_rx_cmd_buffer {
237 	struct page *_page;
238 	int _offset;
239 	bool _page_stolen;
240 	u32 _rx_page_order;
241 	unsigned int truesize;
242 };
243 
244 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
245 {
246 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
247 }
248 
249 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
250 {
251 	return r->_offset;
252 }
253 
254 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
255 {
256 	r->_page_stolen = true;
257 	get_page(r->_page);
258 	return r->_page;
259 }
260 
261 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
262 {
263 	__free_pages(r->_page, r->_rx_page_order);
264 }
265 
266 #define MAX_NO_RECLAIM_CMDS	6
267 
268 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
269 
270 /*
271  * Maximum number of HW queues the transport layer
272  * currently supports
273  */
274 #define IWL_MAX_HW_QUEUES		32
275 #define IWL_MAX_TVQM_QUEUES		512
276 
277 #define IWL_MAX_TID_COUNT	8
278 #define IWL_MGMT_TID		15
279 #define IWL_FRAME_LIMIT	64
280 #define IWL_MAX_RX_HW_QUEUES	16
281 #define IWL_9000_MAX_RX_HW_QUEUES	1
282 
283 /**
284  * enum iwl_wowlan_status - WoWLAN image/device status
285  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
286  * @IWL_D3_STATUS_RESET: device was reset while suspended
287  */
288 enum iwl_d3_status {
289 	IWL_D3_STATUS_ALIVE,
290 	IWL_D3_STATUS_RESET,
291 };
292 
293 /**
294  * enum iwl_trans_status: transport status flags
295  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
296  * @STATUS_DEVICE_ENABLED: APM is enabled
297  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
298  * @STATUS_INT_ENABLED: interrupts are enabled
299  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
300  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
301  * @STATUS_FW_ERROR: the fw is in error state
302  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
303  *	are sent
304  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
305  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
306  * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
307  *	e.g. for testing
308  */
309 enum iwl_trans_status {
310 	STATUS_SYNC_HCMD_ACTIVE,
311 	STATUS_DEVICE_ENABLED,
312 	STATUS_TPOWER_PMI,
313 	STATUS_INT_ENABLED,
314 	STATUS_RFKILL_HW,
315 	STATUS_RFKILL_OPMODE,
316 	STATUS_FW_ERROR,
317 	STATUS_TRANS_GOING_IDLE,
318 	STATUS_TRANS_IDLE,
319 	STATUS_TRANS_DEAD,
320 	STATUS_SUPPRESS_CMD_ERROR_ONCE,
321 };
322 
323 static inline int
324 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
325 {
326 	switch (rb_size) {
327 	case IWL_AMSDU_2K:
328 		return get_order(2 * 1024);
329 	case IWL_AMSDU_4K:
330 		return get_order(4 * 1024);
331 	case IWL_AMSDU_8K:
332 		return get_order(8 * 1024);
333 	case IWL_AMSDU_12K:
334 		return get_order(16 * 1024);
335 	default:
336 		WARN_ON(1);
337 		return -1;
338 	}
339 }
340 
341 static inline int
342 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
343 {
344 	switch (rb_size) {
345 	case IWL_AMSDU_2K:
346 		return 2 * 1024;
347 	case IWL_AMSDU_4K:
348 		return 4 * 1024;
349 	case IWL_AMSDU_8K:
350 		return 8 * 1024;
351 	case IWL_AMSDU_12K:
352 		return 16 * 1024;
353 	default:
354 		WARN_ON(1);
355 		return 0;
356 	}
357 }
358 
359 struct iwl_hcmd_names {
360 	u8 cmd_id;
361 	const char *const cmd_name;
362 };
363 
364 #define HCMD_NAME(x)	\
365 	{ .cmd_id = x, .cmd_name = #x }
366 
367 struct iwl_hcmd_arr {
368 	const struct iwl_hcmd_names *arr;
369 	int size;
370 };
371 
372 #define HCMD_ARR(x)	\
373 	{ .arr = x, .size = ARRAY_SIZE(x) }
374 
375 /**
376  * struct iwl_dump_sanitize_ops - dump sanitization operations
377  * @frob_txf: Scrub the TX FIFO data
378  * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
379  *	but that might be short or long (&struct iwl_cmd_header or
380  *	&struct iwl_cmd_header_wide)
381  * @frob_mem: Scrub memory data
382  */
383 struct iwl_dump_sanitize_ops {
384 	void (*frob_txf)(void *ctx, void *buf, size_t buflen);
385 	void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
386 	void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
387 };
388 
389 /**
390  * struct iwl_trans_config - transport configuration
391  *
392  * @op_mode: pointer to the upper layer.
393  * @cmd_queue: the index of the command queue.
394  *	Must be set before start_fw.
395  * @cmd_fifo: the fifo for host commands
396  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
397  * @no_reclaim_cmds: Some devices erroneously don't set the
398  *	SEQ_RX_FRAME bit on some notifications, this is the
399  *	list of such notifications to filter. Max length is
400  *	%MAX_NO_RECLAIM_CMDS.
401  * @n_no_reclaim_cmds: # of commands in list
402  * @rx_buf_size: RX buffer size needed for A-MSDUs
403  *	if unset 4k will be the RX buffer size
404  * @bc_table_dword: set to true if the BC table expects the byte count to be
405  *	in DWORD (as opposed to bytes)
406  * @scd_set_active: should the transport configure the SCD for HCMD queue
407  * @command_groups: array of command groups, each member is an array of the
408  *	commands in the group; for debugging only
409  * @command_groups_size: number of command groups, to avoid illegal access
410  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
411  *	space for at least two pointers
412  * @fw_reset_handshake: firmware supports reset flow handshake
413  * @queue_alloc_cmd_ver: queue allocation command version, set to 0
414  *	for using the older SCD_QUEUE_CFG, set to the version of
415  *	SCD_QUEUE_CONFIG_CMD otherwise.
416  */
417 struct iwl_trans_config {
418 	struct iwl_op_mode *op_mode;
419 
420 	u8 cmd_queue;
421 	u8 cmd_fifo;
422 	unsigned int cmd_q_wdg_timeout;
423 	const u8 *no_reclaim_cmds;
424 	unsigned int n_no_reclaim_cmds;
425 
426 	enum iwl_amsdu_size rx_buf_size;
427 	bool bc_table_dword;
428 	bool scd_set_active;
429 	const struct iwl_hcmd_arr *command_groups;
430 	int command_groups_size;
431 
432 	u8 cb_data_offs;
433 	bool fw_reset_handshake;
434 	u8 queue_alloc_cmd_ver;
435 };
436 
437 struct iwl_trans_dump_data {
438 	u32 len;
439 	u8 data[];
440 };
441 
442 struct iwl_trans;
443 
444 struct iwl_trans_txq_scd_cfg {
445 	u8 fifo;
446 	u8 sta_id;
447 	u8 tid;
448 	bool aggregate;
449 	int frame_limit;
450 };
451 
452 /**
453  * struct iwl_trans_rxq_dma_data - RX queue DMA data
454  * @fr_bd_cb: DMA address of free BD cyclic buffer
455  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
456  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
457  * @ur_bd_cb: DMA address of used BD cyclic buffer
458  */
459 struct iwl_trans_rxq_dma_data {
460 	u64 fr_bd_cb;
461 	u32 fr_bd_wid;
462 	u64 urbd_stts_wrptr;
463 	u64 ur_bd_cb;
464 };
465 
466 /* maximal number of DRAM MAP entries supported by FW */
467 #define IPC_DRAM_MAP_ENTRY_NUM_MAX 64
468 
469 /**
470  * struct iwl_pnvm_image - contains info about the parsed pnvm image
471  * @chunks: array of pointers to pnvm payloads and their sizes
472  * @n_chunks: the number of the pnvm payloads.
473  * @version: the version of the loaded PNVM image
474  */
475 struct iwl_pnvm_image {
476 	struct {
477 		const void *data;
478 		u32 len;
479 	} chunks[IPC_DRAM_MAP_ENTRY_NUM_MAX];
480 	u32 n_chunks;
481 	u32 version;
482 };
483 
484 /**
485  * struct iwl_trans_ops - transport specific operations
486  *
487  * All the handlers MUST be implemented
488  *
489  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
490  *	May sleep.
491  * @op_mode_leave: Turn off the HW RF kill indication if on
492  *	May sleep
493  * @start_fw: allocates and inits all the resources for the transport
494  *	layer. Also kick a fw image.
495  *	May sleep
496  * @fw_alive: called when the fw sends alive notification. If the fw provides
497  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
498  *	May sleep
499  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
500  *	the HW. From that point on, the HW will be stopped but will still issue
501  *	an interrupt if the HW RF kill switch is triggered.
502  *	This callback must do the right thing and not crash even if %start_hw()
503  *	was called but not &start_fw(). May sleep.
504  * @d3_suspend: put the device into the correct mode for WoWLAN during
505  *	suspend. This is optional, if not implemented WoWLAN will not be
506  *	supported. This callback may sleep.
507  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
508  *	talk to the WoWLAN image to get its status. This is optional, if not
509  *	implemented WoWLAN will not be supported. This callback may sleep.
510  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
511  *	If RFkill is asserted in the middle of a SYNC host command, it must
512  *	return -ERFKILL straight away.
513  *	May sleep only if CMD_ASYNC is not set
514  * @tx: send an skb. The transport relies on the op_mode to zero the
515  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
516  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
517  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
518  *	header if it is IPv4.
519  *	Must be atomic
520  * @reclaim: free packet until ssn. Returns a list of freed packets.
521  *	Must be atomic
522  * @txq_enable: setup a queue. To setup an AC queue, use the
523  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
524  *	this one. The op_mode must not configure the HCMD queue. The scheduler
525  *	configuration may be %NULL, in which case the hardware will not be
526  *	configured. If true is returned, the operation mode needs to increment
527  *	the sequence number of the packets routed to this queue because of a
528  *	hardware scheduler bug. May sleep.
529  * @txq_disable: de-configure a Tx queue to send AMPDUs
530  *	Must be atomic
531  * @txq_set_shared_mode: change Tx queue shared/unshared marking
532  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
533  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
534  * @freeze_txq_timer: prevents the timer of the queue from firing until the
535  *	queue is set to awake. Must be atomic.
536  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
537  *	that the transport needs to refcount the calls since this function
538  *	will be called several times with block = true, and then the queues
539  *	need to be unblocked only after the same number of calls with
540  *	block = false.
541  * @write8: write a u8 to a register at offset ofs from the BAR
542  * @write32: write a u32 to a register at offset ofs from the BAR
543  * @read32: read a u32 register at offset ofs from the BAR
544  * @read_prph: read a DWORD from a periphery register
545  * @write_prph: write a DWORD to a periphery register
546  * @read_mem: read device's SRAM in DWORD
547  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
548  *	will be zeroed.
549  * @read_config32: read a u32 value from the device's config space at
550  *	the given offset.
551  * @configure: configure parameters required by the transport layer from
552  *	the op_mode. May be called several times before start_fw, can't be
553  *	called after that.
554  * @set_pmi: set the power pmi state
555  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
556  *	Sleeping is not allowed between grab_nic_access and
557  *	release_nic_access.
558  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
559  *	must be the same one that was sent before to the grab_nic_access.
560  * @set_bits_mask - set SRAM register according to value and mask.
561  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
562  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
563  *	Note that the transport must fill in the proper file headers.
564  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
565  *	of the trans debugfs
566  * @load_pnvm: save the pnvm data in DRAM
567  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
568  *	context info.
569  * @load_reduce_power: copy reduce power table to the corresponding DRAM memory
570  * @set_reduce_power: set reduce power table addresses in the sratch buffer
571  * @interrupts: disable/enable interrupts to transport
572  */
573 struct iwl_trans_ops {
574 
575 	int (*start_hw)(struct iwl_trans *iwl_trans);
576 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
577 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
578 			bool run_in_rfkill);
579 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
580 	void (*stop_device)(struct iwl_trans *trans);
581 
582 	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
583 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
584 			 bool test, bool reset);
585 
586 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
587 
588 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
589 		  struct iwl_device_tx_cmd *dev_cmd, int queue);
590 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
591 			struct sk_buff_head *skbs, bool is_flush);
592 
593 	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
594 
595 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
596 			   const struct iwl_trans_txq_scd_cfg *cfg,
597 			   unsigned int queue_wdg_timeout);
598 	void (*txq_disable)(struct iwl_trans *trans, int queue,
599 			    bool configure_scd);
600 	/* 22000 functions */
601 	int (*txq_alloc)(struct iwl_trans *trans, u32 flags,
602 			 u32 sta_mask, u8 tid,
603 			 int size, unsigned int queue_wdg_timeout);
604 	void (*txq_free)(struct iwl_trans *trans, int queue);
605 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
606 			    struct iwl_trans_rxq_dma_data *data);
607 
608 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
609 				    bool shared);
610 
611 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
612 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
613 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
614 				 bool freeze);
615 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
616 
617 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
618 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
619 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
620 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
621 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
622 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
623 			void *buf, int dwords);
624 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
625 			 const void *buf, int dwords);
626 	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
627 	void (*configure)(struct iwl_trans *trans,
628 			  const struct iwl_trans_config *trans_cfg);
629 	void (*set_pmi)(struct iwl_trans *trans, bool state);
630 	int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
631 	bool (*grab_nic_access)(struct iwl_trans *trans);
632 	void (*release_nic_access)(struct iwl_trans *trans);
633 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
634 			      u32 value);
635 
636 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
637 						 u32 dump_mask,
638 						 const struct iwl_dump_sanitize_ops *sanitize_ops,
639 						 void *sanitize_ctx);
640 	void (*debugfs_cleanup)(struct iwl_trans *trans);
641 	void (*sync_nmi)(struct iwl_trans *trans);
642 	int (*load_pnvm)(struct iwl_trans *trans,
643 			 const struct iwl_pnvm_image *pnvm_payloads,
644 			 const struct iwl_ucode_capabilities *capa);
645 	void (*set_pnvm)(struct iwl_trans *trans,
646 			 const struct iwl_ucode_capabilities *capa);
647 	int (*load_reduce_power)(struct iwl_trans *trans,
648 				 const struct iwl_pnvm_image *payloads,
649 				 const struct iwl_ucode_capabilities *capa);
650 	void (*set_reduce_power)(struct iwl_trans *trans,
651 				 const struct iwl_ucode_capabilities *capa);
652 
653 	void (*interrupts)(struct iwl_trans *trans, bool enable);
654 	int (*imr_dma_data)(struct iwl_trans *trans,
655 			    u32 dst_addr, u64 src_addr,
656 			    u32 byte_cnt);
657 
658 };
659 
660 /**
661  * enum iwl_trans_state - state of the transport layer
662  *
663  * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
664  * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
665  * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
666  */
667 enum iwl_trans_state {
668 	IWL_TRANS_NO_FW,
669 	IWL_TRANS_FW_STARTED,
670 	IWL_TRANS_FW_ALIVE,
671 };
672 
673 /**
674  * DOC: Platform power management
675  *
676  * In system-wide power management the entire platform goes into a low
677  * power state (e.g. idle or suspend to RAM) at the same time and the
678  * device is configured as a wakeup source for the entire platform.
679  * This is usually triggered by userspace activity (e.g. the user
680  * presses the suspend button or a power management daemon decides to
681  * put the platform in low power mode).  The device's behavior in this
682  * mode is dictated by the wake-on-WLAN configuration.
683  *
684  * The terms used for the device's behavior are as follows:
685  *
686  *	- D0: the device is fully powered and the host is awake;
687  *	- D3: the device is in low power mode and only reacts to
688  *		specific events (e.g. magic-packet received or scan
689  *		results found);
690  *
691  * These terms reflect the power modes in the firmware and are not to
692  * be confused with the physical device power state.
693  */
694 
695 /**
696  * enum iwl_plat_pm_mode - platform power management mode
697  *
698  * This enumeration describes the device's platform power management
699  * behavior when in system-wide suspend (i.e WoWLAN).
700  *
701  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
702  *	device.  In system-wide suspend mode, it means that the all
703  *	connections will be closed automatically by mac80211 before
704  *	the platform is suspended.
705  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
706  */
707 enum iwl_plat_pm_mode {
708 	IWL_PLAT_PM_MODE_DISABLED,
709 	IWL_PLAT_PM_MODE_D3,
710 };
711 
712 /**
713  * enum iwl_ini_cfg_state
714  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
715  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
716  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
717  *	are corrupted. The rest of the debug TLVs will still be used
718  */
719 enum iwl_ini_cfg_state {
720 	IWL_INI_CFG_STATE_NOT_LOADED,
721 	IWL_INI_CFG_STATE_LOADED,
722 	IWL_INI_CFG_STATE_CORRUPTED,
723 };
724 
725 /* Max time to wait for nmi interrupt */
726 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
727 
728 /**
729  * struct iwl_dram_data
730  * @physical: page phy pointer
731  * @block: pointer to the allocated block/page
732  * @size: size of the block/page
733  */
734 struct iwl_dram_data {
735 	dma_addr_t physical;
736 	void *block;
737 	int size;
738 };
739 
740 /**
741  * @drams: array of several DRAM areas that contains the pnvm and power
742  *	reduction table payloads.
743  * @n_regions: number of DRAM regions that were allocated
744  * @prph_scratch_mem_desc: points to a structure allocated in dram,
745  *	designed to show FW where all the payloads are.
746  */
747 struct iwl_dram_regions {
748 	struct iwl_dram_data drams[IPC_DRAM_MAP_ENTRY_NUM_MAX];
749 	struct iwl_dram_data prph_scratch_mem_desc;
750 	u8 n_regions;
751 };
752 
753 /**
754  * struct iwl_fw_mon - fw monitor per allocation id
755  * @num_frags: number of fragments
756  * @frags: an array of DRAM buffer fragments
757  */
758 struct iwl_fw_mon {
759 	u32 num_frags;
760 	struct iwl_dram_data *frags;
761 };
762 
763 /**
764  * struct iwl_self_init_dram - dram data used by self init process
765  * @fw: lmac and umac dram data
766  * @fw_cnt: total number of items in array
767  * @paging: paging dram data
768  * @paging_cnt: total number of items in array
769  */
770 struct iwl_self_init_dram {
771 	struct iwl_dram_data *fw;
772 	int fw_cnt;
773 	struct iwl_dram_data *paging;
774 	int paging_cnt;
775 };
776 
777 /**
778  * struct iwl_imr_data - imr dram data used during debug process
779  * @imr_enable: imr enable status received from fw
780  * @imr_size: imr dram size received from fw
781  * @sram_addr: sram address from debug tlv
782  * @sram_size: sram size from debug tlv
783  * @imr2sram_remainbyte`: size remained after each dma transfer
784  * @imr_curr_addr: current dst address used during dma transfer
785  * @imr_base_addr: imr address received from fw
786  */
787 struct iwl_imr_data {
788 	u32 imr_enable;
789 	u32 imr_size;
790 	u32 sram_addr;
791 	u32 sram_size;
792 	u32 imr2sram_remainbyte;
793 	u64 imr_curr_addr;
794 	__le64 imr_base_addr;
795 };
796 
797 #define IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES      32
798 
799 /**
800  * struct iwl_pc_data - program counter details
801  * @pc_name: cpu name
802  * @pc_address: cpu program counter
803  */
804 struct iwl_pc_data {
805 	u8  pc_name[IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES];
806 	u32 pc_address;
807 };
808 
809 /**
810  * struct iwl_trans_debug - transport debug related data
811  *
812  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
813  * @rec_on: true iff there is a fw debug recording currently active
814  * @dest_tlv: points to the destination TLV for debug
815  * @conf_tlv: array of pointers to configuration TLVs for debug
816  * @trigger_tlv: array of pointers to triggers TLVs for debug
817  * @lmac_error_event_table: addrs of lmacs error tables
818  * @umac_error_event_table: addr of umac error table
819  * @tcm_error_event_table: address(es) of TCM error table(s)
820  * @rcm_error_event_table: address(es) of RCM error table(s)
821  * @error_event_table_tlv_status: bitmap that indicates what error table
822  *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
823  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
824  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
825  * @fw_mon_cfg: debug buffer allocation configuration
826  * @fw_mon_ini: DRAM buffer fragments per allocation id
827  * @fw_mon: DRAM buffer for firmware monitor
828  * @hw_error: equals true if hw error interrupt was received from the FW
829  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
830  * @active_regions: active regions
831  * @debug_info_tlv_list: list of debug info TLVs
832  * @time_point: array of debug time points
833  * @periodic_trig_list: periodic triggers list
834  * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
835  * @ucode_preset: preset based on ucode
836  * @dump_file_name_ext: dump file name extension
837  * @dump_file_name_ext_valid: dump file name extension if valid or not
838  * @num_pc: number of program counter for cpu
839  * @pc_data: details of the program counter
840  */
841 struct iwl_trans_debug {
842 	u8 n_dest_reg;
843 	bool rec_on;
844 
845 	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
846 	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
847 	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
848 
849 	u32 lmac_error_event_table[2];
850 	u32 umac_error_event_table;
851 	u32 tcm_error_event_table[2];
852 	u32 rcm_error_event_table[2];
853 	unsigned int error_event_table_tlv_status;
854 
855 	enum iwl_ini_cfg_state internal_ini_cfg;
856 	enum iwl_ini_cfg_state external_ini_cfg;
857 
858 	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
859 	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
860 
861 	struct iwl_dram_data fw_mon;
862 
863 	bool hw_error;
864 	enum iwl_fw_ini_buffer_location ini_dest;
865 
866 	u64 unsupported_region_msk;
867 	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
868 	struct list_head debug_info_tlv_list;
869 	struct iwl_dbg_tlv_time_point_data
870 		time_point[IWL_FW_INI_TIME_POINT_NUM];
871 	struct list_head periodic_trig_list;
872 
873 	u32 domains_bitmap;
874 	u32 ucode_preset;
875 	bool restart_required;
876 	u32 last_tp_resetfw;
877 	struct iwl_imr_data imr_data;
878 	u8 dump_file_name_ext[IWL_FW_INI_MAX_NAME];
879 	bool dump_file_name_ext_valid;
880 	u32 num_pc;
881 	struct iwl_pc_data *pc_data;
882 };
883 
884 struct iwl_dma_ptr {
885 	dma_addr_t dma;
886 	void *addr;
887 	size_t size;
888 };
889 
890 struct iwl_cmd_meta {
891 	/* only for SYNC commands, iff the reply skb is wanted */
892 	struct iwl_host_cmd *source;
893 	u32 flags;
894 	u32 tbs;
895 };
896 
897 /*
898  * The FH will write back to the first TB only, so we need to copy some data
899  * into the buffer regardless of whether it should be mapped or not.
900  * This indicates how big the first TB must be to include the scratch buffer
901  * and the assigned PN.
902  * Since PN location is 8 bytes at offset 12, it's 20 now.
903  * If we make it bigger then allocations will be bigger and copy slower, so
904  * that's probably not useful.
905  */
906 #define IWL_FIRST_TB_SIZE	20
907 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
908 
909 struct iwl_pcie_txq_entry {
910 	void *cmd;
911 	struct sk_buff *skb;
912 	/* buffer to free after command completes */
913 	const void *free_buf;
914 	struct iwl_cmd_meta meta;
915 };
916 
917 struct iwl_pcie_first_tb_buf {
918 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
919 };
920 
921 /**
922  * struct iwl_txq - Tx Queue for DMA
923  * @q: generic Rx/Tx queue descriptor
924  * @tfds: transmit frame descriptors (DMA memory)
925  * @first_tb_bufs: start of command headers, including scratch buffers, for
926  *	the writeback -- this is DMA memory and an array holding one buffer
927  *	for each command on the queue
928  * @first_tb_dma: DMA address for the first_tb_bufs start
929  * @entries: transmit entries (driver state)
930  * @lock: queue lock
931  * @stuck_timer: timer that fires if queue gets stuck
932  * @trans: pointer back to transport (for timer)
933  * @need_update: indicates need to update read/write index
934  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
935  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
936  * @frozen: tx stuck queue timer is frozen
937  * @frozen_expiry_remainder: remember how long until the timer fires
938  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
939  * @write_ptr: 1-st empty entry (index) host_w
940  * @read_ptr: last used entry (index) host_r
941  * @dma_addr:  physical addr for BD's
942  * @n_window: safe queue window
943  * @id: queue id
944  * @low_mark: low watermark, resume queue if free space more than this
945  * @high_mark: high watermark, stop queue if free space less than this
946  *
947  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
948  * descriptors) and required locking structures.
949  *
950  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
951  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
952  * there might be HW changes in the future). For the normal TX
953  * queues, n_window, which is the size of the software queue data
954  * is also 256; however, for the command queue, n_window is only
955  * 32 since we don't need so many commands pending. Since the HW
956  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
957  * This means that we end up with the following:
958  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
959  *  SW entries:           | 0      | ... | 31          |
960  * where N is a number between 0 and 7. This means that the SW
961  * data is a window overlayed over the HW queue.
962  */
963 struct iwl_txq {
964 	void *tfds;
965 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
966 	dma_addr_t first_tb_dma;
967 	struct iwl_pcie_txq_entry *entries;
968 	/* lock for syncing changes on the queue */
969 	spinlock_t lock;
970 	unsigned long frozen_expiry_remainder;
971 	struct timer_list stuck_timer;
972 	struct iwl_trans *trans;
973 	bool need_update;
974 	bool frozen;
975 	bool ampdu;
976 	int block;
977 	unsigned long wd_timeout;
978 	struct sk_buff_head overflow_q;
979 	struct iwl_dma_ptr bc_tbl;
980 
981 	int write_ptr;
982 	int read_ptr;
983 	dma_addr_t dma_addr;
984 	int n_window;
985 	u32 id;
986 	int low_mark;
987 	int high_mark;
988 
989 	bool overflow_tx;
990 };
991 
992 /**
993  * struct iwl_trans_txqs - transport tx queues data
994  *
995  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
996  * @page_offs: offset from skb->cb to mac header page pointer
997  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
998  * @queue_used - bit mask of used queues
999  * @queue_stopped - bit mask of stopped queues
1000  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
1001  * @queue_alloc_cmd_ver: queue allocation command version
1002  */
1003 struct iwl_trans_txqs {
1004 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1005 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1006 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
1007 	struct dma_pool *bc_pool;
1008 	size_t bc_tbl_size;
1009 	bool bc_table_dword;
1010 	u8 page_offs;
1011 	u8 dev_cmd_offs;
1012 	struct iwl_tso_hdr_page __percpu *tso_hdr_page;
1013 
1014 	struct {
1015 		u8 fifo;
1016 		u8 q_id;
1017 		unsigned int wdg_timeout;
1018 	} cmd;
1019 
1020 	struct {
1021 		u8 max_tbs;
1022 		u16 size;
1023 		u8 addr_size;
1024 	} tfd;
1025 
1026 	struct iwl_dma_ptr scd_bc_tbls;
1027 
1028 	u8 queue_alloc_cmd_ver;
1029 };
1030 
1031 /**
1032  * struct iwl_trans - transport common data
1033  *
1034  * @csme_own - true if we couldn't get ownership on the device
1035  * @ops - pointer to iwl_trans_ops
1036  * @op_mode - pointer to the op_mode
1037  * @trans_cfg: the trans-specific configuration part
1038  * @cfg - pointer to the configuration
1039  * @drv - pointer to iwl_drv
1040  * @status: a bit-mask of transport status flags
1041  * @dev - pointer to struct device * that represents the device
1042  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
1043  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
1044  * @hw_rf_id a u32 with the device RF ID
1045  * @hw_crf_id a u32 with the device CRF ID
1046  * @hw_wfpm_id a u32 with the device wfpm ID
1047  * @hw_id: a u32 with the ID of the device / sub-device.
1048  *	Set during transport allocation.
1049  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
1050  * @hw_rev_step: The mac step of the HW
1051  * @pm_support: set to true in start_hw if link pm is supported
1052  * @ltr_enabled: set to true if the LTR is enabled
1053  * @fail_to_parse_pnvm_image: set to true if pnvm parsing failed
1054  * @failed_to_load_reduce_power_image: set to true if pnvm loading failed
1055  * @wide_cmd_header: true when ucode supports wide command header format
1056  * @wait_command_queue: wait queue for sync commands
1057  * @num_rx_queues: number of RX queues allocated by the transport;
1058  *	the transport must set this before calling iwl_drv_start()
1059  * @iml_len: the length of the image loader
1060  * @iml: a pointer to the image loader itself
1061  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
1062  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
1063  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
1064  *	starting the firmware, used for tracing
1065  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
1066  *	start of the 802.11 header in the @rx_mpdu_cmd
1067  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
1068  * @system_pm_mode: the system-wide power management mode in use.
1069  *	This mode is set dynamically, depending on the WoWLAN values
1070  *	configured from the userspace at runtime.
1071  * @iwl_trans_txqs: transport tx queues data.
1072  * @mbx_addr_0_step: step address data 0
1073  * @mbx_addr_1_step: step address data 1
1074  * @pcie_link_speed: current PCIe link speed (%PCI_EXP_LNKSTA_CLS_*),
1075  *	only valid for discrete (not integrated) NICs
1076  * @invalid_tx_cmd: invalid TX command buffer
1077  */
1078 struct iwl_trans {
1079 	bool csme_own;
1080 	const struct iwl_trans_ops *ops;
1081 	struct iwl_op_mode *op_mode;
1082 	const struct iwl_cfg_trans_params *trans_cfg;
1083 	const struct iwl_cfg *cfg;
1084 	struct iwl_drv *drv;
1085 	enum iwl_trans_state state;
1086 	unsigned long status;
1087 
1088 	struct device *dev;
1089 	u32 max_skb_frags;
1090 	u32 hw_rev;
1091 	u32 hw_rev_step;
1092 	u32 hw_rf_id;
1093 	u32 hw_crf_id;
1094 	u32 hw_cnv_id;
1095 	u32 hw_wfpm_id;
1096 	u32 hw_id;
1097 	char hw_id_str[52];
1098 	u32 sku_id[3];
1099 
1100 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
1101 
1102 	bool pm_support;
1103 	bool ltr_enabled;
1104 	u8 pnvm_loaded:1;
1105 	u8 fail_to_parse_pnvm_image:1;
1106 	u8 reduce_power_loaded:1;
1107 	u8 failed_to_load_reduce_power_image:1;
1108 
1109 	const struct iwl_hcmd_arr *command_groups;
1110 	int command_groups_size;
1111 	bool wide_cmd_header;
1112 
1113 	wait_queue_head_t wait_command_queue;
1114 	u8 num_rx_queues;
1115 
1116 	size_t iml_len;
1117 	u8 *iml;
1118 
1119 	/* The following fields are internal only */
1120 	struct kmem_cache *dev_cmd_pool;
1121 	char dev_cmd_pool_name[50];
1122 
1123 	struct dentry *dbgfs_dir;
1124 
1125 #ifdef CONFIG_LOCKDEP
1126 	struct lockdep_map sync_cmd_lockdep_map;
1127 #endif
1128 
1129 	struct iwl_trans_debug dbg;
1130 	struct iwl_self_init_dram init_dram;
1131 
1132 	enum iwl_plat_pm_mode system_pm_mode;
1133 
1134 	const char *name;
1135 	struct iwl_trans_txqs txqs;
1136 	u32 mbx_addr_0_step;
1137 	u32 mbx_addr_1_step;
1138 
1139 	u8 pcie_link_speed;
1140 
1141 	struct iwl_dma_ptr invalid_tx_cmd;
1142 
1143 	/* pointer to trans specific struct */
1144 	/*Ensure that this pointer will always be aligned to sizeof pointer */
1145 	char trans_specific[] __aligned(sizeof(void *));
1146 };
1147 
1148 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1149 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1150 
1151 static inline void iwl_trans_configure(struct iwl_trans *trans,
1152 				       const struct iwl_trans_config *trans_cfg)
1153 {
1154 	trans->op_mode = trans_cfg->op_mode;
1155 
1156 	trans->ops->configure(trans, trans_cfg);
1157 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1158 }
1159 
1160 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1161 {
1162 	might_sleep();
1163 
1164 	return trans->ops->start_hw(trans);
1165 }
1166 
1167 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1168 {
1169 	might_sleep();
1170 
1171 	if (trans->ops->op_mode_leave)
1172 		trans->ops->op_mode_leave(trans);
1173 
1174 	trans->op_mode = NULL;
1175 
1176 	trans->state = IWL_TRANS_NO_FW;
1177 }
1178 
1179 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1180 {
1181 	might_sleep();
1182 
1183 	trans->state = IWL_TRANS_FW_ALIVE;
1184 
1185 	trans->ops->fw_alive(trans, scd_addr);
1186 }
1187 
1188 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1189 				     const struct fw_img *fw,
1190 				     bool run_in_rfkill)
1191 {
1192 	int ret;
1193 
1194 	might_sleep();
1195 
1196 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1197 
1198 	clear_bit(STATUS_FW_ERROR, &trans->status);
1199 	ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1200 	if (ret == 0)
1201 		trans->state = IWL_TRANS_FW_STARTED;
1202 
1203 	return ret;
1204 }
1205 
1206 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1207 {
1208 	might_sleep();
1209 
1210 	trans->ops->stop_device(trans);
1211 
1212 	trans->state = IWL_TRANS_NO_FW;
1213 }
1214 
1215 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1216 				       bool reset)
1217 {
1218 	might_sleep();
1219 	if (!trans->ops->d3_suspend)
1220 		return -EOPNOTSUPP;
1221 
1222 	return trans->ops->d3_suspend(trans, test, reset);
1223 }
1224 
1225 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1226 				      enum iwl_d3_status *status,
1227 				      bool test, bool reset)
1228 {
1229 	might_sleep();
1230 	if (!trans->ops->d3_resume)
1231 		return -EOPNOTSUPP;
1232 
1233 	return trans->ops->d3_resume(trans, status, test, reset);
1234 }
1235 
1236 static inline struct iwl_trans_dump_data *
1237 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1238 		    const struct iwl_dump_sanitize_ops *sanitize_ops,
1239 		    void *sanitize_ctx)
1240 {
1241 	if (!trans->ops->dump_data)
1242 		return NULL;
1243 	return trans->ops->dump_data(trans, dump_mask,
1244 				     sanitize_ops, sanitize_ctx);
1245 }
1246 
1247 static inline struct iwl_device_tx_cmd *
1248 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1249 {
1250 	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1251 }
1252 
1253 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1254 
1255 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1256 					 struct iwl_device_tx_cmd *dev_cmd)
1257 {
1258 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1259 }
1260 
1261 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1262 			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1263 {
1264 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1265 		return -EIO;
1266 
1267 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1268 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1269 		return -EIO;
1270 	}
1271 
1272 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1273 }
1274 
1275 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1276 				     int ssn, struct sk_buff_head *skbs,
1277 				     bool is_flush)
1278 {
1279 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1280 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1281 		return;
1282 	}
1283 
1284 	trans->ops->reclaim(trans, queue, ssn, skbs, is_flush);
1285 }
1286 
1287 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1288 					int ptr)
1289 {
1290 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1291 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1292 		return;
1293 	}
1294 
1295 	trans->ops->set_q_ptrs(trans, queue, ptr);
1296 }
1297 
1298 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1299 					 bool configure_scd)
1300 {
1301 	trans->ops->txq_disable(trans, queue, configure_scd);
1302 }
1303 
1304 static inline bool
1305 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1306 			 const struct iwl_trans_txq_scd_cfg *cfg,
1307 			 unsigned int queue_wdg_timeout)
1308 {
1309 	might_sleep();
1310 
1311 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1312 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1313 		return false;
1314 	}
1315 
1316 	return trans->ops->txq_enable(trans, queue, ssn,
1317 				      cfg, queue_wdg_timeout);
1318 }
1319 
1320 static inline int
1321 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1322 			   struct iwl_trans_rxq_dma_data *data)
1323 {
1324 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1325 		return -ENOTSUPP;
1326 
1327 	return trans->ops->rxq_dma_data(trans, queue, data);
1328 }
1329 
1330 static inline void
1331 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1332 {
1333 	if (WARN_ON_ONCE(!trans->ops->txq_free))
1334 		return;
1335 
1336 	trans->ops->txq_free(trans, queue);
1337 }
1338 
1339 static inline int
1340 iwl_trans_txq_alloc(struct iwl_trans *trans,
1341 		    u32 flags, u32 sta_mask, u8 tid,
1342 		    int size, unsigned int wdg_timeout)
1343 {
1344 	might_sleep();
1345 
1346 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1347 		return -ENOTSUPP;
1348 
1349 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1350 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1351 		return -EIO;
1352 	}
1353 
1354 	return trans->ops->txq_alloc(trans, flags, sta_mask, tid,
1355 				     size, wdg_timeout);
1356 }
1357 
1358 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1359 						 int queue, bool shared_mode)
1360 {
1361 	if (trans->ops->txq_set_shared_mode)
1362 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1363 }
1364 
1365 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1366 					int fifo, int sta_id, int tid,
1367 					int frame_limit, u16 ssn,
1368 					unsigned int queue_wdg_timeout)
1369 {
1370 	struct iwl_trans_txq_scd_cfg cfg = {
1371 		.fifo = fifo,
1372 		.sta_id = sta_id,
1373 		.tid = tid,
1374 		.frame_limit = frame_limit,
1375 		.aggregate = sta_id >= 0,
1376 	};
1377 
1378 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1379 }
1380 
1381 static inline
1382 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1383 			     unsigned int queue_wdg_timeout)
1384 {
1385 	struct iwl_trans_txq_scd_cfg cfg = {
1386 		.fifo = fifo,
1387 		.sta_id = -1,
1388 		.tid = IWL_MAX_TID_COUNT,
1389 		.frame_limit = IWL_FRAME_LIMIT,
1390 		.aggregate = false,
1391 	};
1392 
1393 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1394 }
1395 
1396 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1397 					      unsigned long txqs,
1398 					      bool freeze)
1399 {
1400 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1401 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1402 		return;
1403 	}
1404 
1405 	if (trans->ops->freeze_txq_timer)
1406 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1407 }
1408 
1409 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1410 					    bool block)
1411 {
1412 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1413 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1414 		return;
1415 	}
1416 
1417 	if (trans->ops->block_txq_ptrs)
1418 		trans->ops->block_txq_ptrs(trans, block);
1419 }
1420 
1421 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1422 						 u32 txqs)
1423 {
1424 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1425 		return -ENOTSUPP;
1426 
1427 	/* No need to wait if the firmware is not alive */
1428 	if (trans->state != IWL_TRANS_FW_ALIVE) {
1429 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1430 		return -EIO;
1431 	}
1432 
1433 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1434 }
1435 
1436 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1437 {
1438 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1439 		return -ENOTSUPP;
1440 
1441 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1442 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1443 		return -EIO;
1444 	}
1445 
1446 	return trans->ops->wait_txq_empty(trans, queue);
1447 }
1448 
1449 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1450 {
1451 	trans->ops->write8(trans, ofs, val);
1452 }
1453 
1454 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1455 {
1456 	trans->ops->write32(trans, ofs, val);
1457 }
1458 
1459 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1460 {
1461 	return trans->ops->read32(trans, ofs);
1462 }
1463 
1464 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1465 {
1466 	return trans->ops->read_prph(trans, ofs);
1467 }
1468 
1469 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1470 					u32 val)
1471 {
1472 	return trans->ops->write_prph(trans, ofs, val);
1473 }
1474 
1475 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1476 				     void *buf, int dwords)
1477 {
1478 	return trans->ops->read_mem(trans, addr, buf, dwords);
1479 }
1480 
1481 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1482 	do {								      \
1483 		if (__builtin_constant_p(bufsize))			      \
1484 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1485 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1486 	} while (0)
1487 
1488 static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans,
1489 					  u32 dst_addr, u64 src_addr,
1490 					  u32 byte_cnt)
1491 {
1492 	if (trans->ops->imr_dma_data)
1493 		return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt);
1494 	return 0;
1495 }
1496 
1497 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1498 {
1499 	u32 value;
1500 
1501 	if (iwl_trans_read_mem(trans, addr, &value, 1))
1502 		return 0xa5a5a5a5;
1503 
1504 	return value;
1505 }
1506 
1507 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1508 				      const void *buf, int dwords)
1509 {
1510 	return trans->ops->write_mem(trans, addr, buf, dwords);
1511 }
1512 
1513 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1514 					u32 val)
1515 {
1516 	return iwl_trans_write_mem(trans, addr, &val, 1);
1517 }
1518 
1519 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1520 {
1521 	if (trans->ops->set_pmi)
1522 		trans->ops->set_pmi(trans, state);
1523 }
1524 
1525 static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1526 				     bool retake_ownership)
1527 {
1528 	if (trans->ops->sw_reset)
1529 		return trans->ops->sw_reset(trans, retake_ownership);
1530 	return 0;
1531 }
1532 
1533 static inline void
1534 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1535 {
1536 	trans->ops->set_bits_mask(trans, reg, mask, value);
1537 }
1538 
1539 #define iwl_trans_grab_nic_access(trans)		\
1540 	__cond_lock(nic_access,				\
1541 		    likely((trans)->ops->grab_nic_access(trans)))
1542 
1543 static inline void __releases(nic_access)
1544 iwl_trans_release_nic_access(struct iwl_trans *trans)
1545 {
1546 	trans->ops->release_nic_access(trans);
1547 	__release(nic_access);
1548 }
1549 
1550 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1551 {
1552 	if (WARN_ON_ONCE(!trans->op_mode))
1553 		return;
1554 
1555 	/* prevent double restarts due to the same erroneous FW */
1556 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1557 		iwl_op_mode_nic_error(trans->op_mode, sync);
1558 		trans->state = IWL_TRANS_NO_FW;
1559 	}
1560 }
1561 
1562 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1563 {
1564 	return trans->state == IWL_TRANS_FW_ALIVE;
1565 }
1566 
1567 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1568 {
1569 	if (trans->ops->sync_nmi)
1570 		trans->ops->sync_nmi(trans);
1571 }
1572 
1573 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1574 				  u32 sw_err_bit);
1575 
1576 static inline int iwl_trans_load_pnvm(struct iwl_trans *trans,
1577 				      const struct iwl_pnvm_image *pnvm_data,
1578 				      const struct iwl_ucode_capabilities *capa)
1579 {
1580 	return trans->ops->load_pnvm(trans, pnvm_data, capa);
1581 }
1582 
1583 static inline void iwl_trans_set_pnvm(struct iwl_trans *trans,
1584 				      const struct iwl_ucode_capabilities *capa)
1585 {
1586 	if (trans->ops->set_pnvm)
1587 		trans->ops->set_pnvm(trans, capa);
1588 }
1589 
1590 static inline int iwl_trans_load_reduce_power
1591 				(struct iwl_trans *trans,
1592 				 const struct iwl_pnvm_image *payloads,
1593 				 const struct iwl_ucode_capabilities *capa)
1594 {
1595 	return trans->ops->load_reduce_power(trans, payloads, capa);
1596 }
1597 
1598 static inline void
1599 iwl_trans_set_reduce_power(struct iwl_trans *trans,
1600 			   const struct iwl_ucode_capabilities *capa)
1601 {
1602 	if (trans->ops->set_reduce_power)
1603 		trans->ops->set_reduce_power(trans, capa);
1604 }
1605 
1606 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1607 {
1608 	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1609 		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1610 }
1611 
1612 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1613 {
1614 	if (trans->ops->interrupts)
1615 		trans->ops->interrupts(trans, enable);
1616 }
1617 
1618 /*****************************************************
1619  * transport helper functions
1620  *****************************************************/
1621 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1622 			  struct device *dev,
1623 			  const struct iwl_trans_ops *ops,
1624 			  const struct iwl_cfg_trans_params *cfg_trans);
1625 int iwl_trans_init(struct iwl_trans *trans);
1626 void iwl_trans_free(struct iwl_trans *trans);
1627 
1628 static inline bool iwl_trans_is_hw_error_value(u32 val)
1629 {
1630 	return ((val & ~0xf) == 0xa5a5a5a0) || ((val & ~0xf) == 0x5a5a5a50);
1631 }
1632 
1633 /*****************************************************
1634 * driver (transport) register/unregister functions
1635 ******************************************************/
1636 int __must_check iwl_pci_register_driver(void);
1637 void iwl_pci_unregister_driver(void);
1638 void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan);
1639 
1640 #endif /* __iwl_trans_h__ */
1641