1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016        Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * Copyright(c) 2016        Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  *****************************************************************************/
67 #ifndef __iwl_trans_h__
68 #define __iwl_trans_h__
69 
70 #include <linux/ieee80211.h>
71 #include <linux/mm.h> /* for page_address */
72 #include <linux/lockdep.h>
73 #include <linux/kernel.h>
74 
75 #include "iwl-debug.h"
76 #include "iwl-config.h"
77 #include "iwl-fw.h"
78 #include "iwl-op-mode.h"
79 
80 /**
81  * DOC: Transport layer - what is it ?
82  *
83  * The transport layer is the layer that deals with the HW directly. It provides
84  * an abstraction of the underlying HW to the upper layer. The transport layer
85  * doesn't provide any policy, algorithm or anything of this kind, but only
86  * mechanisms to make the HW do something. It is not completely stateless but
87  * close to it.
88  * We will have an implementation for each different supported bus.
89  */
90 
91 /**
92  * DOC: Life cycle of the transport layer
93  *
94  * The transport layer has a very precise life cycle.
95  *
96  *	1) A helper function is called during the module initialization and
97  *	   registers the bus driver's ops with the transport's alloc function.
98  *	2) Bus's probe calls to the transport layer's allocation functions.
99  *	   Of course this function is bus specific.
100  *	3) This allocation functions will spawn the upper layer which will
101  *	   register mac80211.
102  *
103  *	4) At some point (i.e. mac80211's start call), the op_mode will call
104  *	   the following sequence:
105  *	   start_hw
106  *	   start_fw
107  *
108  *	5) Then when finished (or reset):
109  *	   stop_device
110  *
111  *	6) Eventually, the free function will be called.
112  */
113 
114 /**
115  * DOC: Host command section
116  *
117  * A host command is a command issued by the upper layer to the fw. There are
118  * several versions of fw that have several APIs. The transport layer is
119  * completely agnostic to these differences.
120  * The transport does provide helper functionality (i.e. SYNC / ASYNC mode),
121  */
122 #define SEQ_TO_QUEUE(s)	(((s) >> 8) & 0x1f)
123 #define QUEUE_TO_SEQ(q)	(((q) & 0x1f) << 8)
124 #define SEQ_TO_INDEX(s)	((s) & 0xff)
125 #define INDEX_TO_SEQ(i)	((i) & 0xff)
126 #define SEQ_RX_FRAME	cpu_to_le16(0x8000)
127 
128 /*
129  * those functions retrieve specific information from
130  * the id field in the iwl_host_cmd struct which contains
131  * the command id, the group id and the version of the command
132  * and vice versa
133 */
134 static inline u8 iwl_cmd_opcode(u32 cmdid)
135 {
136 	return cmdid & 0xFF;
137 }
138 
139 static inline u8 iwl_cmd_groupid(u32 cmdid)
140 {
141 	return ((cmdid & 0xFF00) >> 8);
142 }
143 
144 static inline u8 iwl_cmd_version(u32 cmdid)
145 {
146 	return ((cmdid & 0xFF0000) >> 16);
147 }
148 
149 static inline u32 iwl_cmd_id(u8 opcode, u8 groupid, u8 version)
150 {
151 	return opcode + (groupid << 8) + (version << 16);
152 }
153 
154 /* make u16 wide id out of u8 group and opcode */
155 #define WIDE_ID(grp, opcode) ((grp << 8) | opcode)
156 
157 /* due to the conversion, this group is special; new groups
158  * should be defined in the appropriate fw-api header files
159  */
160 #define IWL_ALWAYS_LONG_GROUP	1
161 
162 /**
163  * struct iwl_cmd_header
164  *
165  * This header format appears in the beginning of each command sent from the
166  * driver, and each response/notification received from uCode.
167  */
168 struct iwl_cmd_header {
169 	u8 cmd;		/* Command ID:  REPLY_RXON, etc. */
170 	u8 group_id;
171 	/*
172 	 * The driver sets up the sequence number to values of its choosing.
173 	 * uCode does not use this value, but passes it back to the driver
174 	 * when sending the response to each driver-originated command, so
175 	 * the driver can match the response to the command.  Since the values
176 	 * don't get used by uCode, the driver may set up an arbitrary format.
177 	 *
178 	 * There is one exception:  uCode sets bit 15 when it originates
179 	 * the response/notification, i.e. when the response/notification
180 	 * is not a direct response to a command sent by the driver.  For
181 	 * example, uCode issues REPLY_RX when it sends a received frame
182 	 * to the driver; it is not a direct response to any driver command.
183 	 *
184 	 * The Linux driver uses the following format:
185 	 *
186 	 *  0:7		tfd index - position within TX queue
187 	 *  8:12	TX queue id
188 	 *  13:14	reserved
189 	 *  15		unsolicited RX or uCode-originated notification
190 	 */
191 	__le16 sequence;
192 } __packed;
193 
194 /**
195  * struct iwl_cmd_header_wide
196  *
197  * This header format appears in the beginning of each command sent from the
198  * driver, and each response/notification received from uCode.
199  * this is the wide version that contains more information about the command
200  * like length, version and command type
201  */
202 struct iwl_cmd_header_wide {
203 	u8 cmd;
204 	u8 group_id;
205 	__le16 sequence;
206 	__le16 length;
207 	u8 reserved;
208 	u8 version;
209 } __packed;
210 
211 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
212 #define FH_RSCSR_FRAME_INVALID		0x55550000
213 #define FH_RSCSR_FRAME_ALIGN		0x40
214 #define FH_RSCSR_RPA_EN			BIT(25)
215 #define FH_RSCSR_RXQ_POS		16
216 #define FH_RSCSR_RXQ_MASK		0x3F0000
217 
218 struct iwl_rx_packet {
219 	/*
220 	 * The first 4 bytes of the RX frame header contain both the RX frame
221 	 * size and some flags.
222 	 * Bit fields:
223 	 * 31:    flag flush RB request
224 	 * 30:    flag ignore TC (terminal counter) request
225 	 * 29:    flag fast IRQ request
226 	 * 28-26: Reserved
227 	 * 25:    Offload enabled
228 	 * 24:    RPF enabled
229 	 * 23:    RSS enabled
230 	 * 22:    Checksum enabled
231 	 * 21-16: RX queue
232 	 * 15-14: Reserved
233 	 * 13-00: RX frame size
234 	 */
235 	__le32 len_n_flags;
236 	struct iwl_cmd_header hdr;
237 	u8 data[];
238 } __packed;
239 
240 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
241 {
242 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
243 }
244 
245 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
246 {
247 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
248 }
249 
250 /**
251  * enum CMD_MODE - how to send the host commands ?
252  *
253  * @CMD_ASYNC: Return right away and don't wait for the response
254  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
255  *	the response. The caller needs to call iwl_free_resp when done.
256  * @CMD_HIGH_PRIO: The command is high priority - it goes to the front of the
257  *	command queue, but after other high priority commands. Valid only
258  *	with CMD_ASYNC.
259  * @CMD_SEND_IN_IDLE: The command should be sent even when the trans is idle.
260  * @CMD_MAKE_TRANS_IDLE: The command response should mark the trans as idle.
261  * @CMD_WAKE_UP_TRANS: The command response should wake up the trans
262  *	(i.e. mark it as non-idle).
263  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
264  *	called after this command completes. Valid only with CMD_ASYNC.
265  * @CMD_TB_BITMAP_POS: Position of the first bit for the TB bitmap. We need to
266  *	check that we leave enough room for the TBs bitmap which needs 20 bits.
267  */
268 enum CMD_MODE {
269 	CMD_ASYNC		= BIT(0),
270 	CMD_WANT_SKB		= BIT(1),
271 	CMD_SEND_IN_RFKILL	= BIT(2),
272 	CMD_HIGH_PRIO		= BIT(3),
273 	CMD_SEND_IN_IDLE	= BIT(4),
274 	CMD_MAKE_TRANS_IDLE	= BIT(5),
275 	CMD_WAKE_UP_TRANS	= BIT(6),
276 	CMD_WANT_ASYNC_CALLBACK	= BIT(7),
277 
278 	CMD_TB_BITMAP_POS	= 11,
279 };
280 
281 #define DEF_CMD_PAYLOAD_SIZE 320
282 
283 /**
284  * struct iwl_device_cmd
285  *
286  * For allocation of the command and tx queues, this establishes the overall
287  * size of the largest command we send to uCode, except for commands that
288  * aren't fully copied and use other TFD space.
289  */
290 struct iwl_device_cmd {
291 	union {
292 		struct {
293 			struct iwl_cmd_header hdr;	/* uCode API */
294 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
295 		};
296 		struct {
297 			struct iwl_cmd_header_wide hdr_wide;
298 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
299 					sizeof(struct iwl_cmd_header_wide) +
300 					sizeof(struct iwl_cmd_header)];
301 		};
302 	};
303 } __packed;
304 
305 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
306 
307 /*
308  * number of transfer buffers (fragments) per transmit frame descriptor;
309  * this is just the driver's idea, the hardware supports 20
310  */
311 #define IWL_MAX_CMD_TBS_PER_TFD	2
312 
313 /**
314  * struct iwl_hcmd_dataflag - flag for each one of the chunks of the command
315  *
316  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
317  *	ring. The transport layer doesn't map the command's buffer to DMA, but
318  *	rather copies it to a previously allocated DMA buffer. This flag tells
319  *	the transport layer not to copy the command, but to map the existing
320  *	buffer (that is passed in) instead. This saves the memcpy and allows
321  *	commands that are bigger than the fixed buffer to be submitted.
322  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
323  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
324  *	chunk internally and free it again after the command completes. This
325  *	can (currently) be used only once per command.
326  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
327  */
328 enum iwl_hcmd_dataflag {
329 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
330 	IWL_HCMD_DFL_DUP	= BIT(1),
331 };
332 
333 /**
334  * struct iwl_host_cmd - Host command to the uCode
335  *
336  * @data: array of chunks that composes the data of the host command
337  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
338  * @_rx_page_order: (internally used to free response packet)
339  * @_rx_page_addr: (internally used to free response packet)
340  * @flags: can be CMD_*
341  * @len: array of the lengths of the chunks in data
342  * @dataflags: IWL_HCMD_DFL_*
343  * @id: command id of the host command, for wide commands encoding the
344  *	version and group as well
345  */
346 struct iwl_host_cmd {
347 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
348 	struct iwl_rx_packet *resp_pkt;
349 	unsigned long _rx_page_addr;
350 	u32 _rx_page_order;
351 
352 	u32 flags;
353 	u32 id;
354 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
355 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
356 };
357 
358 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
359 {
360 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
361 }
362 
363 struct iwl_rx_cmd_buffer {
364 	struct page *_page;
365 	int _offset;
366 	bool _page_stolen;
367 	u32 _rx_page_order;
368 	unsigned int truesize;
369 };
370 
371 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
372 {
373 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
374 }
375 
376 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
377 {
378 	return r->_offset;
379 }
380 
381 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
382 {
383 	r->_page_stolen = true;
384 	get_page(r->_page);
385 	return r->_page;
386 }
387 
388 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
389 {
390 	__free_pages(r->_page, r->_rx_page_order);
391 }
392 
393 #define MAX_NO_RECLAIM_CMDS	6
394 
395 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
396 
397 /*
398  * Maximum number of HW queues the transport layer
399  * currently supports
400  */
401 #define IWL_MAX_HW_QUEUES		32
402 #define IWL_MAX_TID_COUNT	8
403 #define IWL_FRAME_LIMIT	64
404 #define IWL_MAX_RX_HW_QUEUES	16
405 
406 /**
407  * enum iwl_wowlan_status - WoWLAN image/device status
408  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
409  * @IWL_D3_STATUS_RESET: device was reset while suspended
410  */
411 enum iwl_d3_status {
412 	IWL_D3_STATUS_ALIVE,
413 	IWL_D3_STATUS_RESET,
414 };
415 
416 /**
417  * enum iwl_trans_status: transport status flags
418  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
419  * @STATUS_DEVICE_ENABLED: APM is enabled
420  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
421  * @STATUS_INT_ENABLED: interrupts are enabled
422  * @STATUS_RFKILL: the HW RFkill switch is in KILL position
423  * @STATUS_FW_ERROR: the fw is in error state
424  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
425  *	are sent
426  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
427  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
428  */
429 enum iwl_trans_status {
430 	STATUS_SYNC_HCMD_ACTIVE,
431 	STATUS_DEVICE_ENABLED,
432 	STATUS_TPOWER_PMI,
433 	STATUS_INT_ENABLED,
434 	STATUS_RFKILL,
435 	STATUS_FW_ERROR,
436 	STATUS_TRANS_GOING_IDLE,
437 	STATUS_TRANS_IDLE,
438 	STATUS_TRANS_DEAD,
439 };
440 
441 static inline int
442 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
443 {
444 	switch (rb_size) {
445 	case IWL_AMSDU_4K:
446 		return get_order(4 * 1024);
447 	case IWL_AMSDU_8K:
448 		return get_order(8 * 1024);
449 	case IWL_AMSDU_12K:
450 		return get_order(12 * 1024);
451 	default:
452 		WARN_ON(1);
453 		return -1;
454 	}
455 }
456 
457 struct iwl_hcmd_names {
458 	u8 cmd_id;
459 	const char *const cmd_name;
460 };
461 
462 #define HCMD_NAME(x)	\
463 	{ .cmd_id = x, .cmd_name = #x }
464 
465 struct iwl_hcmd_arr {
466 	const struct iwl_hcmd_names *arr;
467 	int size;
468 };
469 
470 #define HCMD_ARR(x)	\
471 	{ .arr = x, .size = ARRAY_SIZE(x) }
472 
473 /**
474  * struct iwl_trans_config - transport configuration
475  *
476  * @op_mode: pointer to the upper layer.
477  * @cmd_queue: the index of the command queue.
478  *	Must be set before start_fw.
479  * @cmd_fifo: the fifo for host commands
480  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
481  * @no_reclaim_cmds: Some devices erroneously don't set the
482  *	SEQ_RX_FRAME bit on some notifications, this is the
483  *	list of such notifications to filter. Max length is
484  *	%MAX_NO_RECLAIM_CMDS.
485  * @n_no_reclaim_cmds: # of commands in list
486  * @rx_buf_size: RX buffer size needed for A-MSDUs
487  *	if unset 4k will be the RX buffer size
488  * @bc_table_dword: set to true if the BC table expects the byte count to be
489  *	in DWORD (as opposed to bytes)
490  * @scd_set_active: should the transport configure the SCD for HCMD queue
491  * @wide_cmd_header: firmware supports wide host command header
492  * @sw_csum_tx: transport should compute the TCP checksum
493  * @command_groups: array of command groups, each member is an array of the
494  *	commands in the group; for debugging only
495  * @command_groups_size: number of command groups, to avoid illegal access
496  * @sdio_adma_addr: the default address to set for the ADMA in SDIO mode until
497  *	we get the ALIVE from the uCode
498  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
499  *	space for at least two pointers
500  */
501 struct iwl_trans_config {
502 	struct iwl_op_mode *op_mode;
503 
504 	u8 cmd_queue;
505 	u8 cmd_fifo;
506 	unsigned int cmd_q_wdg_timeout;
507 	const u8 *no_reclaim_cmds;
508 	unsigned int n_no_reclaim_cmds;
509 
510 	enum iwl_amsdu_size rx_buf_size;
511 	bool bc_table_dword;
512 	bool scd_set_active;
513 	bool wide_cmd_header;
514 	bool sw_csum_tx;
515 	const struct iwl_hcmd_arr *command_groups;
516 	int command_groups_size;
517 
518 	u32 sdio_adma_addr;
519 
520 	u8 cb_data_offs;
521 };
522 
523 struct iwl_trans_dump_data {
524 	u32 len;
525 	u8 data[];
526 };
527 
528 struct iwl_trans;
529 
530 struct iwl_trans_txq_scd_cfg {
531 	u8 fifo;
532 	u8 sta_id;
533 	u8 tid;
534 	bool aggregate;
535 	int frame_limit;
536 };
537 
538 /**
539  * struct iwl_trans_ops - transport specific operations
540  *
541  * All the handlers MUST be implemented
542  *
543  * @start_hw: starts the HW. If low_power is true, the NIC needs to be taken
544  *	out of a low power state. From that point on, the HW can send
545  *	interrupts. May sleep.
546  * @op_mode_leave: Turn off the HW RF kill indication if on
547  *	May sleep
548  * @start_fw: allocates and inits all the resources for the transport
549  *	layer. Also kick a fw image.
550  *	May sleep
551  * @fw_alive: called when the fw sends alive notification. If the fw provides
552  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
553  *	May sleep
554  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
555  *	the HW. If low_power is true, the NIC will be put in low power state.
556  *	From that point on, the HW will be stopped but will still issue an
557  *	interrupt if the HW RF kill switch is triggered.
558  *	This callback must do the right thing and not crash even if %start_hw()
559  *	was called but not &start_fw(). May sleep.
560  * @d3_suspend: put the device into the correct mode for WoWLAN during
561  *	suspend. This is optional, if not implemented WoWLAN will not be
562  *	supported. This callback may sleep.
563  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
564  *	talk to the WoWLAN image to get its status. This is optional, if not
565  *	implemented WoWLAN will not be supported. This callback may sleep.
566  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
567  *	If RFkill is asserted in the middle of a SYNC host command, it must
568  *	return -ERFKILL straight away.
569  *	May sleep only if CMD_ASYNC is not set
570  * @tx: send an skb. The transport relies on the op_mode to zero the
571  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
572  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
573  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
574  *	header if it is IPv4.
575  *	Must be atomic
576  * @reclaim: free packet until ssn. Returns a list of freed packets.
577  *	Must be atomic
578  * @txq_enable: setup a queue. To setup an AC queue, use the
579  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
580  *	this one. The op_mode must not configure the HCMD queue. The scheduler
581  *	configuration may be %NULL, in which case the hardware will not be
582  *	configured. May sleep.
583  * @txq_disable: de-configure a Tx queue to send AMPDUs
584  *	Must be atomic
585  * @txq_set_shared_mode: change Tx queue shared/unshared marking
586  * @wait_tx_queue_empty: wait until tx queues are empty. May sleep.
587  * @freeze_txq_timer: prevents the timer of the queue from firing until the
588  *	queue is set to awake. Must be atomic.
589  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
590  *	that the transport needs to refcount the calls since this function
591  *	will be called several times with block = true, and then the queues
592  *	need to be unblocked only after the same number of calls with
593  *	block = false.
594  * @write8: write a u8 to a register at offset ofs from the BAR
595  * @write32: write a u32 to a register at offset ofs from the BAR
596  * @read32: read a u32 register at offset ofs from the BAR
597  * @read_prph: read a DWORD from a periphery register
598  * @write_prph: write a DWORD to a periphery register
599  * @read_mem: read device's SRAM in DWORD
600  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
601  *	will be zeroed.
602  * @configure: configure parameters required by the transport layer from
603  *	the op_mode. May be called several times before start_fw, can't be
604  *	called after that.
605  * @set_pmi: set the power pmi state
606  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
607  *	Sleeping is not allowed between grab_nic_access and
608  *	release_nic_access.
609  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
610  *	must be the same one that was sent before to the grab_nic_access.
611  * @set_bits_mask - set SRAM register according to value and mask.
612  * @ref: grab a reference to the transport/FW layers, disallowing
613  *	certain low power states
614  * @unref: release a reference previously taken with @ref. Note that
615  *	initially the reference count is 1, making an initial @unref
616  *	necessary to allow low power states.
617  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
618  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
619  *	Note that the transport must fill in the proper file headers.
620  */
621 struct iwl_trans_ops {
622 
623 	int (*start_hw)(struct iwl_trans *iwl_trans, bool low_power);
624 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
625 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
626 			bool run_in_rfkill);
627 	int (*update_sf)(struct iwl_trans *trans,
628 			 struct iwl_sf_region *st_fwrd_space);
629 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
630 	void (*stop_device)(struct iwl_trans *trans, bool low_power);
631 
632 	void (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
633 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
634 			 bool test, bool reset);
635 
636 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
637 
638 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
639 		  struct iwl_device_cmd *dev_cmd, int queue);
640 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
641 			struct sk_buff_head *skbs);
642 
643 	void (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
644 			   const struct iwl_trans_txq_scd_cfg *cfg,
645 			   unsigned int queue_wdg_timeout);
646 	void (*txq_disable)(struct iwl_trans *trans, int queue,
647 			    bool configure_scd);
648 
649 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
650 				    bool shared);
651 
652 	int (*wait_tx_queue_empty)(struct iwl_trans *trans, u32 txq_bm);
653 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
654 				 bool freeze);
655 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
656 
657 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
658 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
659 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
660 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
661 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
662 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
663 			void *buf, int dwords);
664 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
665 			 const void *buf, int dwords);
666 	void (*configure)(struct iwl_trans *trans,
667 			  const struct iwl_trans_config *trans_cfg);
668 	void (*set_pmi)(struct iwl_trans *trans, bool state);
669 	bool (*grab_nic_access)(struct iwl_trans *trans, unsigned long *flags);
670 	void (*release_nic_access)(struct iwl_trans *trans,
671 				   unsigned long *flags);
672 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
673 			      u32 value);
674 	void (*ref)(struct iwl_trans *trans);
675 	void (*unref)(struct iwl_trans *trans);
676 	int  (*suspend)(struct iwl_trans *trans);
677 	void (*resume)(struct iwl_trans *trans);
678 
679 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
680 						 const struct iwl_fw_dbg_trigger_tlv
681 						 *trigger);
682 };
683 
684 /**
685  * enum iwl_trans_state - state of the transport layer
686  *
687  * @IWL_TRANS_NO_FW: no fw has sent an alive response
688  * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response
689  */
690 enum iwl_trans_state {
691 	IWL_TRANS_NO_FW = 0,
692 	IWL_TRANS_FW_ALIVE	= 1,
693 };
694 
695 /**
696  * DOC: Platform power management
697  *
698  * There are two types of platform power management: system-wide
699  * (WoWLAN) and runtime.
700  *
701  * In system-wide power management the entire platform goes into a low
702  * power state (e.g. idle or suspend to RAM) at the same time and the
703  * device is configured as a wakeup source for the entire platform.
704  * This is usually triggered by userspace activity (e.g. the user
705  * presses the suspend button or a power management daemon decides to
706  * put the platform in low power mode).  The device's behavior in this
707  * mode is dictated by the wake-on-WLAN configuration.
708  *
709  * In runtime power management, only the devices which are themselves
710  * idle enter a low power state.  This is done at runtime, which means
711  * that the entire system is still running normally.  This mode is
712  * usually triggered automatically by the device driver and requires
713  * the ability to enter and exit the low power modes in a very short
714  * time, so there is not much impact in usability.
715  *
716  * The terms used for the device's behavior are as follows:
717  *
718  *	- D0: the device is fully powered and the host is awake;
719  *	- D3: the device is in low power mode and only reacts to
720  *		specific events (e.g. magic-packet received or scan
721  *		results found);
722  *	- D0I3: the device is in low power mode and reacts to any
723  *		activity (e.g. RX);
724  *
725  * These terms reflect the power modes in the firmware and are not to
726  * be confused with the physical device power state.  The NIC can be
727  * in D0I3 mode even if, for instance, the PCI device is in D3 state.
728  */
729 
730 /**
731  * enum iwl_plat_pm_mode - platform power management mode
732  *
733  * This enumeration describes the device's platform power management
734  * behavior when in idle mode (i.e. runtime power management) or when
735  * in system-wide suspend (i.e WoWLAN).
736  *
737  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
738  *	device.  At runtime, this means that nothing happens and the
739  *	device always remains in active.  In system-wide suspend mode,
740  *	it means that the all connections will be closed automatically
741  *	by mac80211 before the platform is suspended.
742  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
743  *	For runtime power management, this mode is not officially
744  *	supported.
745  * @IWL_PLAT_PM_MODE_D0I3: the device goes into D0I3 mode.
746  */
747 enum iwl_plat_pm_mode {
748 	IWL_PLAT_PM_MODE_DISABLED,
749 	IWL_PLAT_PM_MODE_D3,
750 	IWL_PLAT_PM_MODE_D0I3,
751 };
752 
753 /* Max time to wait for trans to become idle/non-idle on d0i3
754  * enter/exit (in msecs).
755  */
756 #define IWL_TRANS_IDLE_TIMEOUT 2000
757 
758 /**
759  * struct iwl_trans - transport common data
760  *
761  * @ops - pointer to iwl_trans_ops
762  * @op_mode - pointer to the op_mode
763  * @cfg - pointer to the configuration
764  * @drv - pointer to iwl_drv
765  * @status: a bit-mask of transport status flags
766  * @dev - pointer to struct device * that represents the device
767  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
768  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
769  * @hw_rf_id a u32 with the device RF ID
770  * @hw_id: a u32 with the ID of the device / sub-device.
771  *	Set during transport allocation.
772  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
773  * @pm_support: set to true in start_hw if link pm is supported
774  * @ltr_enabled: set to true if the LTR is enabled
775  * @num_rx_queues: number of RX queues allocated by the transport;
776  *	the transport must set this before calling iwl_drv_start()
777  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
778  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
779  * @dev_cmd_headroom: room needed for the transport's private use before the
780  *	device_cmd for Tx - for internal use only
781  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
782  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
783  *	starting the firmware, used for tracing
784  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
785  *	start of the 802.11 header in the @rx_mpdu_cmd
786  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
787  * @dbg_dest_tlv: points to the destination TLV for debug
788  * @dbg_conf_tlv: array of pointers to configuration TLVs for debug
789  * @dbg_trigger_tlv: array of pointers to triggers TLVs for debug
790  * @dbg_dest_reg_num: num of reg_ops in %dbg_dest_tlv
791  * @paging_req_addr: The location were the FW will upload / download the pages
792  *	from. The address is set by the opmode
793  * @paging_db: Pointer to the opmode paging data base, the pointer is set by
794  *	the opmode.
795  * @paging_download_buf: Buffer used for copying all of the pages before
796  *	downloading them to the FW. The buffer is allocated in the opmode
797  * @system_pm_mode: the system-wide power management mode in use.
798  *	This mode is set dynamically, depending on the WoWLAN values
799  *	configured from the userspace at runtime.
800  * @runtime_pm_mode: the runtime power management mode in use.  This
801  *	mode is set during the initialization phase and is not
802  *	supposed to change during runtime.
803  */
804 struct iwl_trans {
805 	const struct iwl_trans_ops *ops;
806 	struct iwl_op_mode *op_mode;
807 	const struct iwl_cfg *cfg;
808 	struct iwl_drv *drv;
809 	enum iwl_trans_state state;
810 	unsigned long status;
811 
812 	struct device *dev;
813 	u32 max_skb_frags;
814 	u32 hw_rev;
815 	u32 hw_rf_id;
816 	u32 hw_id;
817 	char hw_id_str[52];
818 
819 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
820 
821 	bool pm_support;
822 	bool ltr_enabled;
823 
824 	const struct iwl_hcmd_arr *command_groups;
825 	int command_groups_size;
826 
827 	u8 num_rx_queues;
828 
829 	/* The following fields are internal only */
830 	struct kmem_cache *dev_cmd_pool;
831 	size_t dev_cmd_headroom;
832 	char dev_cmd_pool_name[50];
833 
834 	struct dentry *dbgfs_dir;
835 
836 #ifdef CONFIG_LOCKDEP
837 	struct lockdep_map sync_cmd_lockdep_map;
838 #endif
839 
840 	u64 dflt_pwr_limit;
841 
842 	const struct iwl_fw_dbg_dest_tlv *dbg_dest_tlv;
843 	const struct iwl_fw_dbg_conf_tlv *dbg_conf_tlv[FW_DBG_CONF_MAX];
844 	struct iwl_fw_dbg_trigger_tlv * const *dbg_trigger_tlv;
845 	u8 dbg_dest_reg_num;
846 
847 	/*
848 	 * Paging parameters - All of the parameters should be set by the
849 	 * opmode when paging is enabled
850 	 */
851 	u32 paging_req_addr;
852 	struct iwl_fw_paging *paging_db;
853 	void *paging_download_buf;
854 
855 	enum iwl_plat_pm_mode system_pm_mode;
856 	enum iwl_plat_pm_mode runtime_pm_mode;
857 	bool suspending;
858 
859 	/* pointer to trans specific struct */
860 	/*Ensure that this pointer will always be aligned to sizeof pointer */
861 	char trans_specific[0] __aligned(sizeof(void *));
862 };
863 
864 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
865 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
866 
867 static inline void iwl_trans_configure(struct iwl_trans *trans,
868 				       const struct iwl_trans_config *trans_cfg)
869 {
870 	trans->op_mode = trans_cfg->op_mode;
871 
872 	trans->ops->configure(trans, trans_cfg);
873 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
874 }
875 
876 static inline int _iwl_trans_start_hw(struct iwl_trans *trans, bool low_power)
877 {
878 	might_sleep();
879 
880 	return trans->ops->start_hw(trans, low_power);
881 }
882 
883 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
884 {
885 	return trans->ops->start_hw(trans, true);
886 }
887 
888 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
889 {
890 	might_sleep();
891 
892 	if (trans->ops->op_mode_leave)
893 		trans->ops->op_mode_leave(trans);
894 
895 	trans->op_mode = NULL;
896 
897 	trans->state = IWL_TRANS_NO_FW;
898 }
899 
900 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
901 {
902 	might_sleep();
903 
904 	trans->state = IWL_TRANS_FW_ALIVE;
905 
906 	trans->ops->fw_alive(trans, scd_addr);
907 }
908 
909 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
910 				     const struct fw_img *fw,
911 				     bool run_in_rfkill)
912 {
913 	might_sleep();
914 
915 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
916 
917 	clear_bit(STATUS_FW_ERROR, &trans->status);
918 	return trans->ops->start_fw(trans, fw, run_in_rfkill);
919 }
920 
921 static inline int iwl_trans_update_sf(struct iwl_trans *trans,
922 				      struct iwl_sf_region *st_fwrd_space)
923 {
924 	might_sleep();
925 
926 	if (trans->ops->update_sf)
927 		return trans->ops->update_sf(trans, st_fwrd_space);
928 
929 	return 0;
930 }
931 
932 static inline void _iwl_trans_stop_device(struct iwl_trans *trans,
933 					  bool low_power)
934 {
935 	might_sleep();
936 
937 	trans->ops->stop_device(trans, low_power);
938 
939 	trans->state = IWL_TRANS_NO_FW;
940 }
941 
942 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
943 {
944 	_iwl_trans_stop_device(trans, true);
945 }
946 
947 static inline void iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
948 					bool reset)
949 {
950 	might_sleep();
951 	if (trans->ops->d3_suspend)
952 		trans->ops->d3_suspend(trans, test, reset);
953 }
954 
955 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
956 				      enum iwl_d3_status *status,
957 				      bool test, bool reset)
958 {
959 	might_sleep();
960 	if (!trans->ops->d3_resume)
961 		return 0;
962 
963 	return trans->ops->d3_resume(trans, status, test, reset);
964 }
965 
966 static inline void iwl_trans_ref(struct iwl_trans *trans)
967 {
968 	if (trans->ops->ref)
969 		trans->ops->ref(trans);
970 }
971 
972 static inline void iwl_trans_unref(struct iwl_trans *trans)
973 {
974 	if (trans->ops->unref)
975 		trans->ops->unref(trans);
976 }
977 
978 static inline int iwl_trans_suspend(struct iwl_trans *trans)
979 {
980 	if (!trans->ops->suspend)
981 		return 0;
982 
983 	return trans->ops->suspend(trans);
984 }
985 
986 static inline void iwl_trans_resume(struct iwl_trans *trans)
987 {
988 	if (trans->ops->resume)
989 		trans->ops->resume(trans);
990 }
991 
992 static inline struct iwl_trans_dump_data *
993 iwl_trans_dump_data(struct iwl_trans *trans,
994 		    const struct iwl_fw_dbg_trigger_tlv *trigger)
995 {
996 	if (!trans->ops->dump_data)
997 		return NULL;
998 	return trans->ops->dump_data(trans, trigger);
999 }
1000 
1001 static inline struct iwl_device_cmd *
1002 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1003 {
1004 	u8 *dev_cmd_ptr = kmem_cache_alloc(trans->dev_cmd_pool, GFP_ATOMIC);
1005 
1006 	if (unlikely(dev_cmd_ptr == NULL))
1007 		return NULL;
1008 
1009 	return (struct iwl_device_cmd *)
1010 			(dev_cmd_ptr + trans->dev_cmd_headroom);
1011 }
1012 
1013 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1014 
1015 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1016 					 struct iwl_device_cmd *dev_cmd)
1017 {
1018 	u8 *dev_cmd_ptr = (u8 *)dev_cmd - trans->dev_cmd_headroom;
1019 
1020 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd_ptr);
1021 }
1022 
1023 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1024 			       struct iwl_device_cmd *dev_cmd, int queue)
1025 {
1026 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1027 		return -EIO;
1028 
1029 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1030 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1031 		return -EIO;
1032 	}
1033 
1034 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1035 }
1036 
1037 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1038 				     int ssn, struct sk_buff_head *skbs)
1039 {
1040 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1041 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1042 		return;
1043 	}
1044 
1045 	trans->ops->reclaim(trans, queue, ssn, skbs);
1046 }
1047 
1048 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1049 					 bool configure_scd)
1050 {
1051 	trans->ops->txq_disable(trans, queue, configure_scd);
1052 }
1053 
1054 static inline void
1055 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1056 			 const struct iwl_trans_txq_scd_cfg *cfg,
1057 			 unsigned int queue_wdg_timeout)
1058 {
1059 	might_sleep();
1060 
1061 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1062 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1063 		return;
1064 	}
1065 
1066 	trans->ops->txq_enable(trans, queue, ssn, cfg, queue_wdg_timeout);
1067 }
1068 
1069 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1070 						 int queue, bool shared_mode)
1071 {
1072 	if (trans->ops->txq_set_shared_mode)
1073 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1074 }
1075 
1076 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1077 					int fifo, int sta_id, int tid,
1078 					int frame_limit, u16 ssn,
1079 					unsigned int queue_wdg_timeout)
1080 {
1081 	struct iwl_trans_txq_scd_cfg cfg = {
1082 		.fifo = fifo,
1083 		.sta_id = sta_id,
1084 		.tid = tid,
1085 		.frame_limit = frame_limit,
1086 		.aggregate = sta_id >= 0,
1087 	};
1088 
1089 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1090 }
1091 
1092 static inline
1093 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1094 			     unsigned int queue_wdg_timeout)
1095 {
1096 	struct iwl_trans_txq_scd_cfg cfg = {
1097 		.fifo = fifo,
1098 		.sta_id = -1,
1099 		.tid = IWL_MAX_TID_COUNT,
1100 		.frame_limit = IWL_FRAME_LIMIT,
1101 		.aggregate = false,
1102 	};
1103 
1104 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1105 }
1106 
1107 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1108 					      unsigned long txqs,
1109 					      bool freeze)
1110 {
1111 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1112 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1113 		return;
1114 	}
1115 
1116 	if (trans->ops->freeze_txq_timer)
1117 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1118 }
1119 
1120 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1121 					    bool block)
1122 {
1123 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1124 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1125 		return;
1126 	}
1127 
1128 	if (trans->ops->block_txq_ptrs)
1129 		trans->ops->block_txq_ptrs(trans, block);
1130 }
1131 
1132 static inline int iwl_trans_wait_tx_queue_empty(struct iwl_trans *trans,
1133 						u32 txqs)
1134 {
1135 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1136 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1137 		return -EIO;
1138 	}
1139 
1140 	return trans->ops->wait_tx_queue_empty(trans, txqs);
1141 }
1142 
1143 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1144 {
1145 	trans->ops->write8(trans, ofs, val);
1146 }
1147 
1148 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1149 {
1150 	trans->ops->write32(trans, ofs, val);
1151 }
1152 
1153 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1154 {
1155 	return trans->ops->read32(trans, ofs);
1156 }
1157 
1158 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1159 {
1160 	return trans->ops->read_prph(trans, ofs);
1161 }
1162 
1163 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1164 					u32 val)
1165 {
1166 	return trans->ops->write_prph(trans, ofs, val);
1167 }
1168 
1169 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1170 				     void *buf, int dwords)
1171 {
1172 	return trans->ops->read_mem(trans, addr, buf, dwords);
1173 }
1174 
1175 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1176 	do {								      \
1177 		if (__builtin_constant_p(bufsize))			      \
1178 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1179 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1180 	} while (0)
1181 
1182 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1183 {
1184 	u32 value;
1185 
1186 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1187 		return 0xa5a5a5a5;
1188 
1189 	return value;
1190 }
1191 
1192 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1193 				      const void *buf, int dwords)
1194 {
1195 	return trans->ops->write_mem(trans, addr, buf, dwords);
1196 }
1197 
1198 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1199 					u32 val)
1200 {
1201 	return iwl_trans_write_mem(trans, addr, &val, 1);
1202 }
1203 
1204 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1205 {
1206 	if (trans->ops->set_pmi)
1207 		trans->ops->set_pmi(trans, state);
1208 }
1209 
1210 static inline void
1211 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1212 {
1213 	trans->ops->set_bits_mask(trans, reg, mask, value);
1214 }
1215 
1216 #define iwl_trans_grab_nic_access(trans, flags)	\
1217 	__cond_lock(nic_access,				\
1218 		    likely((trans)->ops->grab_nic_access(trans, flags)))
1219 
1220 static inline void __releases(nic_access)
1221 iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags)
1222 {
1223 	trans->ops->release_nic_access(trans, flags);
1224 	__release(nic_access);
1225 }
1226 
1227 static inline void iwl_trans_fw_error(struct iwl_trans *trans)
1228 {
1229 	if (WARN_ON_ONCE(!trans->op_mode))
1230 		return;
1231 
1232 	/* prevent double restarts due to the same erroneous FW */
1233 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status))
1234 		iwl_op_mode_nic_error(trans->op_mode);
1235 }
1236 
1237 /*****************************************************
1238  * transport helper functions
1239  *****************************************************/
1240 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1241 				  struct device *dev,
1242 				  const struct iwl_cfg *cfg,
1243 				  const struct iwl_trans_ops *ops,
1244 				  size_t dev_cmd_headroom);
1245 void iwl_trans_free(struct iwl_trans *trans);
1246 
1247 /*****************************************************
1248 * driver (transport) register/unregister functions
1249 ******************************************************/
1250 int __must_check iwl_pci_register_driver(void);
1251 void iwl_pci_unregister_driver(void);
1252 
1253 #endif /* __iwl_trans_h__ */
1254