xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/iwl-trans.h (revision 25ebbc57ca56df3cf9149e9da6b1d3169c8487db)
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014, 2018-2022 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9 
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14 
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24 
25 /**
26  * DOC: Transport layer - what is it ?
27  *
28  * The transport layer is the layer that deals with the HW directly. It provides
29  * an abstraction of the underlying HW to the upper layer. The transport layer
30  * doesn't provide any policy, algorithm or anything of this kind, but only
31  * mechanisms to make the HW do something. It is not completely stateless but
32  * close to it.
33  * We will have an implementation for each different supported bus.
34  */
35 
36 /**
37  * DOC: Life cycle of the transport layer
38  *
39  * The transport layer has a very precise life cycle.
40  *
41  *	1) A helper function is called during the module initialization and
42  *	   registers the bus driver's ops with the transport's alloc function.
43  *	2) Bus's probe calls to the transport layer's allocation functions.
44  *	   Of course this function is bus specific.
45  *	3) This allocation functions will spawn the upper layer which will
46  *	   register mac80211.
47  *
48  *	4) At some point (i.e. mac80211's start call), the op_mode will call
49  *	   the following sequence:
50  *	   start_hw
51  *	   start_fw
52  *
53  *	5) Then when finished (or reset):
54  *	   stop_device
55  *
56  *	6) Eventually, the free function will be called.
57  */
58 
59 #define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
60 
61 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
62 #define FH_RSCSR_FRAME_INVALID		0x55550000
63 #define FH_RSCSR_FRAME_ALIGN		0x40
64 #define FH_RSCSR_RPA_EN			BIT(25)
65 #define FH_RSCSR_RADA_EN		BIT(26)
66 #define FH_RSCSR_RXQ_POS		16
67 #define FH_RSCSR_RXQ_MASK		0x3F0000
68 
69 struct iwl_rx_packet {
70 	/*
71 	 * The first 4 bytes of the RX frame header contain both the RX frame
72 	 * size and some flags.
73 	 * Bit fields:
74 	 * 31:    flag flush RB request
75 	 * 30:    flag ignore TC (terminal counter) request
76 	 * 29:    flag fast IRQ request
77 	 * 28-27: Reserved
78 	 * 26:    RADA enabled
79 	 * 25:    Offload enabled
80 	 * 24:    RPF enabled
81 	 * 23:    RSS enabled
82 	 * 22:    Checksum enabled
83 	 * 21-16: RX queue
84 	 * 15-14: Reserved
85 	 * 13-00: RX frame size
86 	 */
87 	__le32 len_n_flags;
88 	struct iwl_cmd_header hdr;
89 	u8 data[];
90 } __packed;
91 
92 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
93 {
94 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
95 }
96 
97 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
98 {
99 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
100 }
101 
102 /**
103  * enum CMD_MODE - how to send the host commands ?
104  *
105  * @CMD_ASYNC: Return right away and don't wait for the response
106  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
107  *	the response. The caller needs to call iwl_free_resp when done.
108  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
109  *	called after this command completes. Valid only with CMD_ASYNC.
110  * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
111  *	SUSPEND and RESUME commands. We are in D3 mode when we set
112  *	trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
113  */
114 enum CMD_MODE {
115 	CMD_ASYNC		= BIT(0),
116 	CMD_WANT_SKB		= BIT(1),
117 	CMD_SEND_IN_RFKILL	= BIT(2),
118 	CMD_WANT_ASYNC_CALLBACK	= BIT(3),
119 	CMD_SEND_IN_D3          = BIT(4),
120 };
121 
122 #define DEF_CMD_PAYLOAD_SIZE 320
123 
124 /**
125  * struct iwl_device_cmd
126  *
127  * For allocation of the command and tx queues, this establishes the overall
128  * size of the largest command we send to uCode, except for commands that
129  * aren't fully copied and use other TFD space.
130  */
131 struct iwl_device_cmd {
132 	union {
133 		struct {
134 			struct iwl_cmd_header hdr;	/* uCode API */
135 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
136 		};
137 		struct {
138 			struct iwl_cmd_header_wide hdr_wide;
139 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
140 					sizeof(struct iwl_cmd_header_wide) +
141 					sizeof(struct iwl_cmd_header)];
142 		};
143 	};
144 } __packed;
145 
146 /**
147  * struct iwl_device_tx_cmd - buffer for TX command
148  * @hdr: the header
149  * @payload: the payload placeholder
150  *
151  * The actual structure is sized dynamically according to need.
152  */
153 struct iwl_device_tx_cmd {
154 	struct iwl_cmd_header hdr;
155 	u8 payload[];
156 } __packed;
157 
158 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
159 
160 /*
161  * number of transfer buffers (fragments) per transmit frame descriptor;
162  * this is just the driver's idea, the hardware supports 20
163  */
164 #define IWL_MAX_CMD_TBS_PER_TFD	2
165 
166 /* We need 2 entries for the TX command and header, and another one might
167  * be needed for potential data in the SKB's head. The remaining ones can
168  * be used for frags.
169  */
170 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
171 
172 /**
173  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
174  *
175  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
176  *	ring. The transport layer doesn't map the command's buffer to DMA, but
177  *	rather copies it to a previously allocated DMA buffer. This flag tells
178  *	the transport layer not to copy the command, but to map the existing
179  *	buffer (that is passed in) instead. This saves the memcpy and allows
180  *	commands that are bigger than the fixed buffer to be submitted.
181  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
182  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
183  *	chunk internally and free it again after the command completes. This
184  *	can (currently) be used only once per command.
185  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
186  */
187 enum iwl_hcmd_dataflag {
188 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
189 	IWL_HCMD_DFL_DUP	= BIT(1),
190 };
191 
192 enum iwl_error_event_table_status {
193 	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
194 	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
195 	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
196 	IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
197 	IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
198 	IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
199 	IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
200 };
201 
202 /**
203  * struct iwl_host_cmd - Host command to the uCode
204  *
205  * @data: array of chunks that composes the data of the host command
206  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
207  * @_rx_page_order: (internally used to free response packet)
208  * @_rx_page_addr: (internally used to free response packet)
209  * @flags: can be CMD_*
210  * @len: array of the lengths of the chunks in data
211  * @dataflags: IWL_HCMD_DFL_*
212  * @id: command id of the host command, for wide commands encoding the
213  *	version and group as well
214  */
215 struct iwl_host_cmd {
216 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
217 	struct iwl_rx_packet *resp_pkt;
218 	unsigned long _rx_page_addr;
219 	u32 _rx_page_order;
220 
221 	u32 flags;
222 	u32 id;
223 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
224 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
225 };
226 
227 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
228 {
229 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
230 }
231 
232 struct iwl_rx_cmd_buffer {
233 	struct page *_page;
234 	int _offset;
235 	bool _page_stolen;
236 	u32 _rx_page_order;
237 	unsigned int truesize;
238 };
239 
240 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
241 {
242 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
243 }
244 
245 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
246 {
247 	return r->_offset;
248 }
249 
250 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
251 {
252 	r->_page_stolen = true;
253 	get_page(r->_page);
254 	return r->_page;
255 }
256 
257 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
258 {
259 	__free_pages(r->_page, r->_rx_page_order);
260 }
261 
262 #define MAX_NO_RECLAIM_CMDS	6
263 
264 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
265 
266 /*
267  * Maximum number of HW queues the transport layer
268  * currently supports
269  */
270 #define IWL_MAX_HW_QUEUES		32
271 #define IWL_MAX_TVQM_QUEUES		512
272 
273 #define IWL_MAX_TID_COUNT	8
274 #define IWL_MGMT_TID		15
275 #define IWL_FRAME_LIMIT	64
276 #define IWL_MAX_RX_HW_QUEUES	16
277 #define IWL_9000_MAX_RX_HW_QUEUES	6
278 
279 /**
280  * enum iwl_wowlan_status - WoWLAN image/device status
281  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
282  * @IWL_D3_STATUS_RESET: device was reset while suspended
283  */
284 enum iwl_d3_status {
285 	IWL_D3_STATUS_ALIVE,
286 	IWL_D3_STATUS_RESET,
287 };
288 
289 /**
290  * enum iwl_trans_status: transport status flags
291  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
292  * @STATUS_DEVICE_ENABLED: APM is enabled
293  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
294  * @STATUS_INT_ENABLED: interrupts are enabled
295  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
296  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
297  * @STATUS_FW_ERROR: the fw is in error state
298  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
299  *	are sent
300  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
301  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
302  * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
303  *	e.g. for testing
304  */
305 enum iwl_trans_status {
306 	STATUS_SYNC_HCMD_ACTIVE,
307 	STATUS_DEVICE_ENABLED,
308 	STATUS_TPOWER_PMI,
309 	STATUS_INT_ENABLED,
310 	STATUS_RFKILL_HW,
311 	STATUS_RFKILL_OPMODE,
312 	STATUS_FW_ERROR,
313 	STATUS_TRANS_GOING_IDLE,
314 	STATUS_TRANS_IDLE,
315 	STATUS_TRANS_DEAD,
316 	STATUS_SUPPRESS_CMD_ERROR_ONCE,
317 };
318 
319 static inline int
320 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
321 {
322 	switch (rb_size) {
323 	case IWL_AMSDU_2K:
324 		return get_order(2 * 1024);
325 	case IWL_AMSDU_4K:
326 		return get_order(4 * 1024);
327 	case IWL_AMSDU_8K:
328 		return get_order(8 * 1024);
329 	case IWL_AMSDU_12K:
330 		return get_order(16 * 1024);
331 	default:
332 		WARN_ON(1);
333 		return -1;
334 	}
335 }
336 
337 static inline int
338 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
339 {
340 	switch (rb_size) {
341 	case IWL_AMSDU_2K:
342 		return 2 * 1024;
343 	case IWL_AMSDU_4K:
344 		return 4 * 1024;
345 	case IWL_AMSDU_8K:
346 		return 8 * 1024;
347 	case IWL_AMSDU_12K:
348 		return 16 * 1024;
349 	default:
350 		WARN_ON(1);
351 		return 0;
352 	}
353 }
354 
355 struct iwl_hcmd_names {
356 	u8 cmd_id;
357 	const char *const cmd_name;
358 };
359 
360 #define HCMD_NAME(x)	\
361 	{ .cmd_id = x, .cmd_name = #x }
362 
363 struct iwl_hcmd_arr {
364 	const struct iwl_hcmd_names *arr;
365 	int size;
366 };
367 
368 #define HCMD_ARR(x)	\
369 	{ .arr = x, .size = ARRAY_SIZE(x) }
370 
371 /**
372  * struct iwl_dump_sanitize_ops - dump sanitization operations
373  * @frob_txf: Scrub the TX FIFO data
374  * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
375  *	but that might be short or long (&struct iwl_cmd_header or
376  *	&struct iwl_cmd_header_wide)
377  * @frob_mem: Scrub memory data
378  */
379 struct iwl_dump_sanitize_ops {
380 	void (*frob_txf)(void *ctx, void *buf, size_t buflen);
381 	void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
382 	void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
383 };
384 
385 /**
386  * struct iwl_trans_config - transport configuration
387  *
388  * @op_mode: pointer to the upper layer.
389  * @cmd_queue: the index of the command queue.
390  *	Must be set before start_fw.
391  * @cmd_fifo: the fifo for host commands
392  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
393  * @no_reclaim_cmds: Some devices erroneously don't set the
394  *	SEQ_RX_FRAME bit on some notifications, this is the
395  *	list of such notifications to filter. Max length is
396  *	%MAX_NO_RECLAIM_CMDS.
397  * @n_no_reclaim_cmds: # of commands in list
398  * @rx_buf_size: RX buffer size needed for A-MSDUs
399  *	if unset 4k will be the RX buffer size
400  * @bc_table_dword: set to true if the BC table expects the byte count to be
401  *	in DWORD (as opposed to bytes)
402  * @scd_set_active: should the transport configure the SCD for HCMD queue
403  * @command_groups: array of command groups, each member is an array of the
404  *	commands in the group; for debugging only
405  * @command_groups_size: number of command groups, to avoid illegal access
406  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
407  *	space for at least two pointers
408  * @fw_reset_handshake: firmware supports reset flow handshake
409  * @queue_alloc_cmd_ver: queue allocation command version, set to 0
410  *	for using the older SCD_QUEUE_CFG, set to the version of
411  *	SCD_QUEUE_CONFIG_CMD otherwise.
412  */
413 struct iwl_trans_config {
414 	struct iwl_op_mode *op_mode;
415 
416 	u8 cmd_queue;
417 	u8 cmd_fifo;
418 	unsigned int cmd_q_wdg_timeout;
419 	const u8 *no_reclaim_cmds;
420 	unsigned int n_no_reclaim_cmds;
421 
422 	enum iwl_amsdu_size rx_buf_size;
423 	bool bc_table_dword;
424 	bool scd_set_active;
425 	const struct iwl_hcmd_arr *command_groups;
426 	int command_groups_size;
427 
428 	u8 cb_data_offs;
429 	bool fw_reset_handshake;
430 	u8 queue_alloc_cmd_ver;
431 };
432 
433 struct iwl_trans_dump_data {
434 	u32 len;
435 	u8 data[];
436 };
437 
438 struct iwl_trans;
439 
440 struct iwl_trans_txq_scd_cfg {
441 	u8 fifo;
442 	u8 sta_id;
443 	u8 tid;
444 	bool aggregate;
445 	int frame_limit;
446 };
447 
448 /**
449  * struct iwl_trans_rxq_dma_data - RX queue DMA data
450  * @fr_bd_cb: DMA address of free BD cyclic buffer
451  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
452  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
453  * @ur_bd_cb: DMA address of used BD cyclic buffer
454  */
455 struct iwl_trans_rxq_dma_data {
456 	u64 fr_bd_cb;
457 	u32 fr_bd_wid;
458 	u64 urbd_stts_wrptr;
459 	u64 ur_bd_cb;
460 };
461 
462 /**
463  * struct iwl_trans_ops - transport specific operations
464  *
465  * All the handlers MUST be implemented
466  *
467  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
468  *	May sleep.
469  * @op_mode_leave: Turn off the HW RF kill indication if on
470  *	May sleep
471  * @start_fw: allocates and inits all the resources for the transport
472  *	layer. Also kick a fw image.
473  *	May sleep
474  * @fw_alive: called when the fw sends alive notification. If the fw provides
475  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
476  *	May sleep
477  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
478  *	the HW. From that point on, the HW will be stopped but will still issue
479  *	an interrupt if the HW RF kill switch is triggered.
480  *	This callback must do the right thing and not crash even if %start_hw()
481  *	was called but not &start_fw(). May sleep.
482  * @d3_suspend: put the device into the correct mode for WoWLAN during
483  *	suspend. This is optional, if not implemented WoWLAN will not be
484  *	supported. This callback may sleep.
485  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
486  *	talk to the WoWLAN image to get its status. This is optional, if not
487  *	implemented WoWLAN will not be supported. This callback may sleep.
488  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
489  *	If RFkill is asserted in the middle of a SYNC host command, it must
490  *	return -ERFKILL straight away.
491  *	May sleep only if CMD_ASYNC is not set
492  * @tx: send an skb. The transport relies on the op_mode to zero the
493  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
494  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
495  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
496  *	header if it is IPv4.
497  *	Must be atomic
498  * @reclaim: free packet until ssn. Returns a list of freed packets.
499  *	Must be atomic
500  * @txq_enable: setup a queue. To setup an AC queue, use the
501  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
502  *	this one. The op_mode must not configure the HCMD queue. The scheduler
503  *	configuration may be %NULL, in which case the hardware will not be
504  *	configured. If true is returned, the operation mode needs to increment
505  *	the sequence number of the packets routed to this queue because of a
506  *	hardware scheduler bug. May sleep.
507  * @txq_disable: de-configure a Tx queue to send AMPDUs
508  *	Must be atomic
509  * @txq_set_shared_mode: change Tx queue shared/unshared marking
510  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
511  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
512  * @freeze_txq_timer: prevents the timer of the queue from firing until the
513  *	queue is set to awake. Must be atomic.
514  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
515  *	that the transport needs to refcount the calls since this function
516  *	will be called several times with block = true, and then the queues
517  *	need to be unblocked only after the same number of calls with
518  *	block = false.
519  * @write8: write a u8 to a register at offset ofs from the BAR
520  * @write32: write a u32 to a register at offset ofs from the BAR
521  * @read32: read a u32 register at offset ofs from the BAR
522  * @read_prph: read a DWORD from a periphery register
523  * @write_prph: write a DWORD to a periphery register
524  * @read_mem: read device's SRAM in DWORD
525  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
526  *	will be zeroed.
527  * @read_config32: read a u32 value from the device's config space at
528  *	the given offset.
529  * @configure: configure parameters required by the transport layer from
530  *	the op_mode. May be called several times before start_fw, can't be
531  *	called after that.
532  * @set_pmi: set the power pmi state
533  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
534  *	Sleeping is not allowed between grab_nic_access and
535  *	release_nic_access.
536  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
537  *	must be the same one that was sent before to the grab_nic_access.
538  * @set_bits_mask - set SRAM register according to value and mask.
539  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
540  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
541  *	Note that the transport must fill in the proper file headers.
542  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
543  *	of the trans debugfs
544  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
545  *	context info.
546  * @interrupts: disable/enable interrupts to transport
547  */
548 struct iwl_trans_ops {
549 
550 	int (*start_hw)(struct iwl_trans *iwl_trans);
551 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
552 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
553 			bool run_in_rfkill);
554 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
555 	void (*stop_device)(struct iwl_trans *trans);
556 
557 	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
558 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
559 			 bool test, bool reset);
560 
561 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
562 
563 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
564 		  struct iwl_device_tx_cmd *dev_cmd, int queue);
565 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
566 			struct sk_buff_head *skbs);
567 
568 	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
569 
570 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
571 			   const struct iwl_trans_txq_scd_cfg *cfg,
572 			   unsigned int queue_wdg_timeout);
573 	void (*txq_disable)(struct iwl_trans *trans, int queue,
574 			    bool configure_scd);
575 	/* 22000 functions */
576 	int (*txq_alloc)(struct iwl_trans *trans, u32 flags,
577 			 u32 sta_mask, u8 tid,
578 			 int size, unsigned int queue_wdg_timeout);
579 	void (*txq_free)(struct iwl_trans *trans, int queue);
580 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
581 			    struct iwl_trans_rxq_dma_data *data);
582 
583 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
584 				    bool shared);
585 
586 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
587 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
588 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
589 				 bool freeze);
590 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
591 
592 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
593 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
594 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
595 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
596 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
597 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
598 			void *buf, int dwords);
599 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
600 			 const void *buf, int dwords);
601 	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
602 	void (*configure)(struct iwl_trans *trans,
603 			  const struct iwl_trans_config *trans_cfg);
604 	void (*set_pmi)(struct iwl_trans *trans, bool state);
605 	int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
606 	bool (*grab_nic_access)(struct iwl_trans *trans);
607 	void (*release_nic_access)(struct iwl_trans *trans);
608 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
609 			      u32 value);
610 
611 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
612 						 u32 dump_mask,
613 						 const struct iwl_dump_sanitize_ops *sanitize_ops,
614 						 void *sanitize_ctx);
615 	void (*debugfs_cleanup)(struct iwl_trans *trans);
616 	void (*sync_nmi)(struct iwl_trans *trans);
617 	int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
618 	int (*set_reduce_power)(struct iwl_trans *trans,
619 				const void *data, u32 len);
620 	void (*interrupts)(struct iwl_trans *trans, bool enable);
621 	int (*imr_dma_data)(struct iwl_trans *trans,
622 			    u32 dst_addr, u64 src_addr,
623 			    u32 byte_cnt);
624 
625 };
626 
627 /**
628  * enum iwl_trans_state - state of the transport layer
629  *
630  * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
631  * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
632  * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
633  */
634 enum iwl_trans_state {
635 	IWL_TRANS_NO_FW,
636 	IWL_TRANS_FW_STARTED,
637 	IWL_TRANS_FW_ALIVE,
638 };
639 
640 /**
641  * DOC: Platform power management
642  *
643  * In system-wide power management the entire platform goes into a low
644  * power state (e.g. idle or suspend to RAM) at the same time and the
645  * device is configured as a wakeup source for the entire platform.
646  * This is usually triggered by userspace activity (e.g. the user
647  * presses the suspend button or a power management daemon decides to
648  * put the platform in low power mode).  The device's behavior in this
649  * mode is dictated by the wake-on-WLAN configuration.
650  *
651  * The terms used for the device's behavior are as follows:
652  *
653  *	- D0: the device is fully powered and the host is awake;
654  *	- D3: the device is in low power mode and only reacts to
655  *		specific events (e.g. magic-packet received or scan
656  *		results found);
657  *
658  * These terms reflect the power modes in the firmware and are not to
659  * be confused with the physical device power state.
660  */
661 
662 /**
663  * enum iwl_plat_pm_mode - platform power management mode
664  *
665  * This enumeration describes the device's platform power management
666  * behavior when in system-wide suspend (i.e WoWLAN).
667  *
668  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
669  *	device.  In system-wide suspend mode, it means that the all
670  *	connections will be closed automatically by mac80211 before
671  *	the platform is suspended.
672  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
673  */
674 enum iwl_plat_pm_mode {
675 	IWL_PLAT_PM_MODE_DISABLED,
676 	IWL_PLAT_PM_MODE_D3,
677 };
678 
679 /**
680  * enum iwl_ini_cfg_state
681  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
682  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
683  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
684  *	are corrupted. The rest of the debug TLVs will still be used
685  */
686 enum iwl_ini_cfg_state {
687 	IWL_INI_CFG_STATE_NOT_LOADED,
688 	IWL_INI_CFG_STATE_LOADED,
689 	IWL_INI_CFG_STATE_CORRUPTED,
690 };
691 
692 /* Max time to wait for nmi interrupt */
693 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
694 
695 /**
696  * struct iwl_dram_data
697  * @physical: page phy pointer
698  * @block: pointer to the allocated block/page
699  * @size: size of the block/page
700  */
701 struct iwl_dram_data {
702 	dma_addr_t physical;
703 	void *block;
704 	int size;
705 };
706 
707 /**
708  * struct iwl_fw_mon - fw monitor per allocation id
709  * @num_frags: number of fragments
710  * @frags: an array of DRAM buffer fragments
711  */
712 struct iwl_fw_mon {
713 	u32 num_frags;
714 	struct iwl_dram_data *frags;
715 };
716 
717 /**
718  * struct iwl_self_init_dram - dram data used by self init process
719  * @fw: lmac and umac dram data
720  * @fw_cnt: total number of items in array
721  * @paging: paging dram data
722  * @paging_cnt: total number of items in array
723  */
724 struct iwl_self_init_dram {
725 	struct iwl_dram_data *fw;
726 	int fw_cnt;
727 	struct iwl_dram_data *paging;
728 	int paging_cnt;
729 };
730 
731 /**
732  * struct iwl_imr_data - imr dram data used during debug process
733  * @imr_enable: imr enable status received from fw
734  * @imr_size: imr dram size received from fw
735  * @sram_addr: sram address from debug tlv
736  * @sram_size: sram size from debug tlv
737  * @imr2sram_remainbyte`: size remained after each dma transfer
738  * @imr_curr_addr: current dst address used during dma transfer
739  * @imr_base_addr: imr address received from fw
740  */
741 struct iwl_imr_data {
742 	u32 imr_enable;
743 	u32 imr_size;
744 	u32 sram_addr;
745 	u32 sram_size;
746 	u32 imr2sram_remainbyte;
747 	u64 imr_curr_addr;
748 	__le64 imr_base_addr;
749 };
750 
751 /**
752  * struct iwl_trans_debug - transport debug related data
753  *
754  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
755  * @rec_on: true iff there is a fw debug recording currently active
756  * @dest_tlv: points to the destination TLV for debug
757  * @conf_tlv: array of pointers to configuration TLVs for debug
758  * @trigger_tlv: array of pointers to triggers TLVs for debug
759  * @lmac_error_event_table: addrs of lmacs error tables
760  * @umac_error_event_table: addr of umac error table
761  * @tcm_error_event_table: address(es) of TCM error table(s)
762  * @rcm_error_event_table: address(es) of RCM error table(s)
763  * @error_event_table_tlv_status: bitmap that indicates what error table
764  *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
765  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
766  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
767  * @fw_mon_cfg: debug buffer allocation configuration
768  * @fw_mon_ini: DRAM buffer fragments per allocation id
769  * @fw_mon: DRAM buffer for firmware monitor
770  * @hw_error: equals true if hw error interrupt was received from the FW
771  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
772  * @active_regions: active regions
773  * @debug_info_tlv_list: list of debug info TLVs
774  * @time_point: array of debug time points
775  * @periodic_trig_list: periodic triggers list
776  * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
777  * @ucode_preset: preset based on ucode
778  */
779 struct iwl_trans_debug {
780 	u8 n_dest_reg;
781 	bool rec_on;
782 
783 	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
784 	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
785 	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
786 
787 	u32 lmac_error_event_table[2];
788 	u32 umac_error_event_table;
789 	u32 tcm_error_event_table[2];
790 	u32 rcm_error_event_table[2];
791 	unsigned int error_event_table_tlv_status;
792 
793 	enum iwl_ini_cfg_state internal_ini_cfg;
794 	enum iwl_ini_cfg_state external_ini_cfg;
795 
796 	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
797 	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
798 
799 	struct iwl_dram_data fw_mon;
800 
801 	bool hw_error;
802 	enum iwl_fw_ini_buffer_location ini_dest;
803 
804 	u64 unsupported_region_msk;
805 	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
806 	struct list_head debug_info_tlv_list;
807 	struct iwl_dbg_tlv_time_point_data
808 		time_point[IWL_FW_INI_TIME_POINT_NUM];
809 	struct list_head periodic_trig_list;
810 
811 	u32 domains_bitmap;
812 	u32 ucode_preset;
813 	bool restart_required;
814 	u32 last_tp_resetfw;
815 	struct iwl_imr_data imr_data;
816 };
817 
818 struct iwl_dma_ptr {
819 	dma_addr_t dma;
820 	void *addr;
821 	size_t size;
822 };
823 
824 struct iwl_cmd_meta {
825 	/* only for SYNC commands, iff the reply skb is wanted */
826 	struct iwl_host_cmd *source;
827 	u32 flags;
828 	u32 tbs;
829 };
830 
831 /*
832  * The FH will write back to the first TB only, so we need to copy some data
833  * into the buffer regardless of whether it should be mapped or not.
834  * This indicates how big the first TB must be to include the scratch buffer
835  * and the assigned PN.
836  * Since PN location is 8 bytes at offset 12, it's 20 now.
837  * If we make it bigger then allocations will be bigger and copy slower, so
838  * that's probably not useful.
839  */
840 #define IWL_FIRST_TB_SIZE	20
841 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
842 
843 struct iwl_pcie_txq_entry {
844 	void *cmd;
845 	struct sk_buff *skb;
846 	/* buffer to free after command completes */
847 	const void *free_buf;
848 	struct iwl_cmd_meta meta;
849 };
850 
851 struct iwl_pcie_first_tb_buf {
852 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
853 };
854 
855 /**
856  * struct iwl_txq - Tx Queue for DMA
857  * @q: generic Rx/Tx queue descriptor
858  * @tfds: transmit frame descriptors (DMA memory)
859  * @first_tb_bufs: start of command headers, including scratch buffers, for
860  *	the writeback -- this is DMA memory and an array holding one buffer
861  *	for each command on the queue
862  * @first_tb_dma: DMA address for the first_tb_bufs start
863  * @entries: transmit entries (driver state)
864  * @lock: queue lock
865  * @stuck_timer: timer that fires if queue gets stuck
866  * @trans: pointer back to transport (for timer)
867  * @need_update: indicates need to update read/write index
868  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
869  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
870  * @frozen: tx stuck queue timer is frozen
871  * @frozen_expiry_remainder: remember how long until the timer fires
872  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
873  * @write_ptr: 1-st empty entry (index) host_w
874  * @read_ptr: last used entry (index) host_r
875  * @dma_addr:  physical addr for BD's
876  * @n_window: safe queue window
877  * @id: queue id
878  * @low_mark: low watermark, resume queue if free space more than this
879  * @high_mark: high watermark, stop queue if free space less than this
880  *
881  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
882  * descriptors) and required locking structures.
883  *
884  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
885  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
886  * there might be HW changes in the future). For the normal TX
887  * queues, n_window, which is the size of the software queue data
888  * is also 256; however, for the command queue, n_window is only
889  * 32 since we don't need so many commands pending. Since the HW
890  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
891  * This means that we end up with the following:
892  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
893  *  SW entries:           | 0      | ... | 31          |
894  * where N is a number between 0 and 7. This means that the SW
895  * data is a window overlayed over the HW queue.
896  */
897 struct iwl_txq {
898 	void *tfds;
899 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
900 	dma_addr_t first_tb_dma;
901 	struct iwl_pcie_txq_entry *entries;
902 	/* lock for syncing changes on the queue */
903 	spinlock_t lock;
904 	unsigned long frozen_expiry_remainder;
905 	struct timer_list stuck_timer;
906 	struct iwl_trans *trans;
907 	bool need_update;
908 	bool frozen;
909 	bool ampdu;
910 	int block;
911 	unsigned long wd_timeout;
912 	struct sk_buff_head overflow_q;
913 	struct iwl_dma_ptr bc_tbl;
914 
915 	int write_ptr;
916 	int read_ptr;
917 	dma_addr_t dma_addr;
918 	int n_window;
919 	u32 id;
920 	int low_mark;
921 	int high_mark;
922 
923 	bool overflow_tx;
924 };
925 
926 /**
927  * struct iwl_trans_txqs - transport tx queues data
928  *
929  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
930  * @page_offs: offset from skb->cb to mac header page pointer
931  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
932  * @queue_used - bit mask of used queues
933  * @queue_stopped - bit mask of stopped queues
934  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
935  * @queue_alloc_cmd_ver: queue allocation command version
936  */
937 struct iwl_trans_txqs {
938 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
939 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
940 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
941 	struct dma_pool *bc_pool;
942 	size_t bc_tbl_size;
943 	bool bc_table_dword;
944 	u8 page_offs;
945 	u8 dev_cmd_offs;
946 	struct iwl_tso_hdr_page __percpu *tso_hdr_page;
947 
948 	struct {
949 		u8 fifo;
950 		u8 q_id;
951 		unsigned int wdg_timeout;
952 	} cmd;
953 
954 	struct {
955 		u8 max_tbs;
956 		u16 size;
957 		u8 addr_size;
958 	} tfd;
959 
960 	struct iwl_dma_ptr scd_bc_tbls;
961 
962 	u8 queue_alloc_cmd_ver;
963 };
964 
965 /**
966  * struct iwl_trans - transport common data
967  *
968  * @csme_own - true if we couldn't get ownership on the device
969  * @ops - pointer to iwl_trans_ops
970  * @op_mode - pointer to the op_mode
971  * @trans_cfg: the trans-specific configuration part
972  * @cfg - pointer to the configuration
973  * @drv - pointer to iwl_drv
974  * @status: a bit-mask of transport status flags
975  * @dev - pointer to struct device * that represents the device
976  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
977  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
978  * @hw_rf_id a u32 with the device RF ID
979  * @hw_crf_id a u32 with the device CRF ID
980  * @hw_cdb_id a u32 with the device CDB ID
981  * @hw_id: a u32 with the ID of the device / sub-device.
982  *	Set during transport allocation.
983  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
984  * @hw_rev_step: The mac step of the HW
985  * @pm_support: set to true in start_hw if link pm is supported
986  * @ltr_enabled: set to true if the LTR is enabled
987  * @wide_cmd_header: true when ucode supports wide command header format
988  * @wait_command_queue: wait queue for sync commands
989  * @num_rx_queues: number of RX queues allocated by the transport;
990  *	the transport must set this before calling iwl_drv_start()
991  * @iml_len: the length of the image loader
992  * @iml: a pointer to the image loader itself
993  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
994  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
995  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
996  *	starting the firmware, used for tracing
997  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
998  *	start of the 802.11 header in the @rx_mpdu_cmd
999  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
1000  * @system_pm_mode: the system-wide power management mode in use.
1001  *	This mode is set dynamically, depending on the WoWLAN values
1002  *	configured from the userspace at runtime.
1003  * @iwl_trans_txqs: transport tx queues data.
1004  * @mbx_addr_0_step: step address data 0
1005  * @mbx_addr_1_step: step address data 1
1006  */
1007 struct iwl_trans {
1008 	bool csme_own;
1009 	const struct iwl_trans_ops *ops;
1010 	struct iwl_op_mode *op_mode;
1011 	const struct iwl_cfg_trans_params *trans_cfg;
1012 	const struct iwl_cfg *cfg;
1013 	struct iwl_drv *drv;
1014 	enum iwl_trans_state state;
1015 	unsigned long status;
1016 
1017 	struct device *dev;
1018 	u32 max_skb_frags;
1019 	u32 hw_rev;
1020 	u32 hw_rev_step;
1021 	u32 hw_rf_id;
1022 	u32 hw_crf_id;
1023 	u32 hw_cdb_id;
1024 	u32 hw_id;
1025 	char hw_id_str[52];
1026 	u32 sku_id[3];
1027 
1028 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
1029 
1030 	bool pm_support;
1031 	bool ltr_enabled;
1032 	u8 pnvm_loaded:1;
1033 	u8 reduce_power_loaded:1;
1034 
1035 	const struct iwl_hcmd_arr *command_groups;
1036 	int command_groups_size;
1037 	bool wide_cmd_header;
1038 
1039 	wait_queue_head_t wait_command_queue;
1040 	u8 num_rx_queues;
1041 
1042 	size_t iml_len;
1043 	u8 *iml;
1044 
1045 	/* The following fields are internal only */
1046 	struct kmem_cache *dev_cmd_pool;
1047 	char dev_cmd_pool_name[50];
1048 
1049 	struct dentry *dbgfs_dir;
1050 
1051 #ifdef CONFIG_LOCKDEP
1052 	struct lockdep_map sync_cmd_lockdep_map;
1053 #endif
1054 
1055 	struct iwl_trans_debug dbg;
1056 	struct iwl_self_init_dram init_dram;
1057 
1058 	enum iwl_plat_pm_mode system_pm_mode;
1059 
1060 	const char *name;
1061 	struct iwl_trans_txqs txqs;
1062 	u32 mbx_addr_0_step;
1063 	u32 mbx_addr_1_step;
1064 
1065 	/* pointer to trans specific struct */
1066 	/*Ensure that this pointer will always be aligned to sizeof pointer */
1067 	char trans_specific[] __aligned(sizeof(void *));
1068 };
1069 
1070 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1071 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1072 
1073 static inline void iwl_trans_configure(struct iwl_trans *trans,
1074 				       const struct iwl_trans_config *trans_cfg)
1075 {
1076 	trans->op_mode = trans_cfg->op_mode;
1077 
1078 	trans->ops->configure(trans, trans_cfg);
1079 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1080 }
1081 
1082 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1083 {
1084 	might_sleep();
1085 
1086 	return trans->ops->start_hw(trans);
1087 }
1088 
1089 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1090 {
1091 	might_sleep();
1092 
1093 	if (trans->ops->op_mode_leave)
1094 		trans->ops->op_mode_leave(trans);
1095 
1096 	trans->op_mode = NULL;
1097 
1098 	trans->state = IWL_TRANS_NO_FW;
1099 }
1100 
1101 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1102 {
1103 	might_sleep();
1104 
1105 	trans->state = IWL_TRANS_FW_ALIVE;
1106 
1107 	trans->ops->fw_alive(trans, scd_addr);
1108 }
1109 
1110 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1111 				     const struct fw_img *fw,
1112 				     bool run_in_rfkill)
1113 {
1114 	int ret;
1115 
1116 	might_sleep();
1117 
1118 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1119 
1120 	clear_bit(STATUS_FW_ERROR, &trans->status);
1121 	ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1122 	if (ret == 0)
1123 		trans->state = IWL_TRANS_FW_STARTED;
1124 
1125 	return ret;
1126 }
1127 
1128 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1129 {
1130 	might_sleep();
1131 
1132 	trans->ops->stop_device(trans);
1133 
1134 	trans->state = IWL_TRANS_NO_FW;
1135 }
1136 
1137 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1138 				       bool reset)
1139 {
1140 	might_sleep();
1141 	if (!trans->ops->d3_suspend)
1142 		return 0;
1143 
1144 	return trans->ops->d3_suspend(trans, test, reset);
1145 }
1146 
1147 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1148 				      enum iwl_d3_status *status,
1149 				      bool test, bool reset)
1150 {
1151 	might_sleep();
1152 	if (!trans->ops->d3_resume)
1153 		return 0;
1154 
1155 	return trans->ops->d3_resume(trans, status, test, reset);
1156 }
1157 
1158 static inline struct iwl_trans_dump_data *
1159 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1160 		    const struct iwl_dump_sanitize_ops *sanitize_ops,
1161 		    void *sanitize_ctx)
1162 {
1163 	if (!trans->ops->dump_data)
1164 		return NULL;
1165 	return trans->ops->dump_data(trans, dump_mask,
1166 				     sanitize_ops, sanitize_ctx);
1167 }
1168 
1169 static inline struct iwl_device_tx_cmd *
1170 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1171 {
1172 	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1173 }
1174 
1175 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1176 
1177 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1178 					 struct iwl_device_tx_cmd *dev_cmd)
1179 {
1180 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1181 }
1182 
1183 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1184 			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1185 {
1186 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1187 		return -EIO;
1188 
1189 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1190 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1191 		return -EIO;
1192 	}
1193 
1194 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1195 }
1196 
1197 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1198 				     int ssn, struct sk_buff_head *skbs)
1199 {
1200 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1201 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1202 		return;
1203 	}
1204 
1205 	trans->ops->reclaim(trans, queue, ssn, skbs);
1206 }
1207 
1208 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1209 					int ptr)
1210 {
1211 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1212 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1213 		return;
1214 	}
1215 
1216 	trans->ops->set_q_ptrs(trans, queue, ptr);
1217 }
1218 
1219 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1220 					 bool configure_scd)
1221 {
1222 	trans->ops->txq_disable(trans, queue, configure_scd);
1223 }
1224 
1225 static inline bool
1226 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1227 			 const struct iwl_trans_txq_scd_cfg *cfg,
1228 			 unsigned int queue_wdg_timeout)
1229 {
1230 	might_sleep();
1231 
1232 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1233 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1234 		return false;
1235 	}
1236 
1237 	return trans->ops->txq_enable(trans, queue, ssn,
1238 				      cfg, queue_wdg_timeout);
1239 }
1240 
1241 static inline int
1242 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1243 			   struct iwl_trans_rxq_dma_data *data)
1244 {
1245 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1246 		return -ENOTSUPP;
1247 
1248 	return trans->ops->rxq_dma_data(trans, queue, data);
1249 }
1250 
1251 static inline void
1252 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1253 {
1254 	if (WARN_ON_ONCE(!trans->ops->txq_free))
1255 		return;
1256 
1257 	trans->ops->txq_free(trans, queue);
1258 }
1259 
1260 static inline int
1261 iwl_trans_txq_alloc(struct iwl_trans *trans,
1262 		    u32 flags, u32 sta_mask, u8 tid,
1263 		    int size, unsigned int wdg_timeout)
1264 {
1265 	might_sleep();
1266 
1267 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1268 		return -ENOTSUPP;
1269 
1270 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1271 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1272 		return -EIO;
1273 	}
1274 
1275 	return trans->ops->txq_alloc(trans, flags, sta_mask, tid,
1276 				     size, wdg_timeout);
1277 }
1278 
1279 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1280 						 int queue, bool shared_mode)
1281 {
1282 	if (trans->ops->txq_set_shared_mode)
1283 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1284 }
1285 
1286 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1287 					int fifo, int sta_id, int tid,
1288 					int frame_limit, u16 ssn,
1289 					unsigned int queue_wdg_timeout)
1290 {
1291 	struct iwl_trans_txq_scd_cfg cfg = {
1292 		.fifo = fifo,
1293 		.sta_id = sta_id,
1294 		.tid = tid,
1295 		.frame_limit = frame_limit,
1296 		.aggregate = sta_id >= 0,
1297 	};
1298 
1299 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1300 }
1301 
1302 static inline
1303 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1304 			     unsigned int queue_wdg_timeout)
1305 {
1306 	struct iwl_trans_txq_scd_cfg cfg = {
1307 		.fifo = fifo,
1308 		.sta_id = -1,
1309 		.tid = IWL_MAX_TID_COUNT,
1310 		.frame_limit = IWL_FRAME_LIMIT,
1311 		.aggregate = false,
1312 	};
1313 
1314 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1315 }
1316 
1317 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1318 					      unsigned long txqs,
1319 					      bool freeze)
1320 {
1321 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1322 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1323 		return;
1324 	}
1325 
1326 	if (trans->ops->freeze_txq_timer)
1327 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1328 }
1329 
1330 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1331 					    bool block)
1332 {
1333 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1334 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1335 		return;
1336 	}
1337 
1338 	if (trans->ops->block_txq_ptrs)
1339 		trans->ops->block_txq_ptrs(trans, block);
1340 }
1341 
1342 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1343 						 u32 txqs)
1344 {
1345 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1346 		return -ENOTSUPP;
1347 
1348 	/* No need to wait if the firmware is not alive */
1349 	if (trans->state != IWL_TRANS_FW_ALIVE) {
1350 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1351 		return -EIO;
1352 	}
1353 
1354 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1355 }
1356 
1357 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1358 {
1359 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1360 		return -ENOTSUPP;
1361 
1362 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1363 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1364 		return -EIO;
1365 	}
1366 
1367 	return trans->ops->wait_txq_empty(trans, queue);
1368 }
1369 
1370 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1371 {
1372 	trans->ops->write8(trans, ofs, val);
1373 }
1374 
1375 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1376 {
1377 	trans->ops->write32(trans, ofs, val);
1378 }
1379 
1380 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1381 {
1382 	return trans->ops->read32(trans, ofs);
1383 }
1384 
1385 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1386 {
1387 	return trans->ops->read_prph(trans, ofs);
1388 }
1389 
1390 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1391 					u32 val)
1392 {
1393 	return trans->ops->write_prph(trans, ofs, val);
1394 }
1395 
1396 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1397 				     void *buf, int dwords)
1398 {
1399 	return trans->ops->read_mem(trans, addr, buf, dwords);
1400 }
1401 
1402 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1403 	do {								      \
1404 		if (__builtin_constant_p(bufsize))			      \
1405 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1406 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1407 	} while (0)
1408 
1409 static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans,
1410 					  u32 dst_addr, u64 src_addr,
1411 					  u32 byte_cnt)
1412 {
1413 	if (trans->ops->imr_dma_data)
1414 		return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt);
1415 	return 0;
1416 }
1417 
1418 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1419 {
1420 	u32 value;
1421 
1422 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1423 		return 0xa5a5a5a5;
1424 
1425 	return value;
1426 }
1427 
1428 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1429 				      const void *buf, int dwords)
1430 {
1431 	return trans->ops->write_mem(trans, addr, buf, dwords);
1432 }
1433 
1434 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1435 					u32 val)
1436 {
1437 	return iwl_trans_write_mem(trans, addr, &val, 1);
1438 }
1439 
1440 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1441 {
1442 	if (trans->ops->set_pmi)
1443 		trans->ops->set_pmi(trans, state);
1444 }
1445 
1446 static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1447 				     bool retake_ownership)
1448 {
1449 	if (trans->ops->sw_reset)
1450 		return trans->ops->sw_reset(trans, retake_ownership);
1451 	return 0;
1452 }
1453 
1454 static inline void
1455 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1456 {
1457 	trans->ops->set_bits_mask(trans, reg, mask, value);
1458 }
1459 
1460 #define iwl_trans_grab_nic_access(trans)		\
1461 	__cond_lock(nic_access,				\
1462 		    likely((trans)->ops->grab_nic_access(trans)))
1463 
1464 static inline void __releases(nic_access)
1465 iwl_trans_release_nic_access(struct iwl_trans *trans)
1466 {
1467 	trans->ops->release_nic_access(trans);
1468 	__release(nic_access);
1469 }
1470 
1471 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1472 {
1473 	if (WARN_ON_ONCE(!trans->op_mode))
1474 		return;
1475 
1476 	/* prevent double restarts due to the same erroneous FW */
1477 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1478 		iwl_op_mode_nic_error(trans->op_mode, sync);
1479 		trans->state = IWL_TRANS_NO_FW;
1480 	}
1481 }
1482 
1483 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1484 {
1485 	return trans->state == IWL_TRANS_FW_ALIVE;
1486 }
1487 
1488 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1489 {
1490 	if (trans->ops->sync_nmi)
1491 		trans->ops->sync_nmi(trans);
1492 }
1493 
1494 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1495 				  u32 sw_err_bit);
1496 
1497 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1498 				     const void *data, u32 len)
1499 {
1500 	if (trans->ops->set_pnvm) {
1501 		int ret = trans->ops->set_pnvm(trans, data, len);
1502 
1503 		if (ret)
1504 			return ret;
1505 	}
1506 
1507 	trans->pnvm_loaded = true;
1508 
1509 	return 0;
1510 }
1511 
1512 static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans,
1513 					     const void *data, u32 len)
1514 {
1515 	if (trans->ops->set_reduce_power) {
1516 		int ret = trans->ops->set_reduce_power(trans, data, len);
1517 
1518 		if (ret)
1519 			return ret;
1520 	}
1521 
1522 	trans->reduce_power_loaded = true;
1523 	return 0;
1524 }
1525 
1526 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1527 {
1528 	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1529 		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1530 }
1531 
1532 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1533 {
1534 	if (trans->ops->interrupts)
1535 		trans->ops->interrupts(trans, enable);
1536 }
1537 
1538 /*****************************************************
1539  * transport helper functions
1540  *****************************************************/
1541 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1542 			  struct device *dev,
1543 			  const struct iwl_trans_ops *ops,
1544 			  const struct iwl_cfg_trans_params *cfg_trans);
1545 int iwl_trans_init(struct iwl_trans *trans);
1546 void iwl_trans_free(struct iwl_trans *trans);
1547 
1548 /*****************************************************
1549 * driver (transport) register/unregister functions
1550 ******************************************************/
1551 int __must_check iwl_pci_register_driver(void);
1552 void iwl_pci_unregister_driver(void);
1553 void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan);
1554 
1555 #endif /* __iwl_trans_h__ */
1556