1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * The full GNU General Public License is included in this distribution 22 * in the file called COPYING. 23 * 24 * Contact Information: 25 * Intel Linux Wireless <linuxwifi@intel.com> 26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 27 * 28 * BSD LICENSE 29 * 30 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 31 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 32 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 39 * * Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * * Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in 43 * the documentation and/or other materials provided with the 44 * distribution. 45 * * Neither the name Intel Corporation nor the names of its 46 * contributors may be used to endorse or promote products derived 47 * from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 50 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 51 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 52 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 53 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 54 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 55 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 56 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 57 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 58 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 59 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 60 * 61 *****************************************************************************/ 62 #ifndef __iwl_trans_h__ 63 #define __iwl_trans_h__ 64 65 #include <linux/ieee80211.h> 66 #include <linux/mm.h> /* for page_address */ 67 #include <linux/lockdep.h> 68 #include <linux/kernel.h> 69 70 #include "iwl-debug.h" 71 #include "iwl-config.h" 72 #include "fw/img.h" 73 #include "iwl-op-mode.h" 74 #include "fw/api/cmdhdr.h" 75 #include "fw/api/txq.h" 76 77 /** 78 * DOC: Transport layer - what is it ? 79 * 80 * The transport layer is the layer that deals with the HW directly. It provides 81 * an abstraction of the underlying HW to the upper layer. The transport layer 82 * doesn't provide any policy, algorithm or anything of this kind, but only 83 * mechanisms to make the HW do something. It is not completely stateless but 84 * close to it. 85 * We will have an implementation for each different supported bus. 86 */ 87 88 /** 89 * DOC: Life cycle of the transport layer 90 * 91 * The transport layer has a very precise life cycle. 92 * 93 * 1) A helper function is called during the module initialization and 94 * registers the bus driver's ops with the transport's alloc function. 95 * 2) Bus's probe calls to the transport layer's allocation functions. 96 * Of course this function is bus specific. 97 * 3) This allocation functions will spawn the upper layer which will 98 * register mac80211. 99 * 100 * 4) At some point (i.e. mac80211's start call), the op_mode will call 101 * the following sequence: 102 * start_hw 103 * start_fw 104 * 105 * 5) Then when finished (or reset): 106 * stop_device 107 * 108 * 6) Eventually, the free function will be called. 109 */ 110 111 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ 112 #define FH_RSCSR_FRAME_INVALID 0x55550000 113 #define FH_RSCSR_FRAME_ALIGN 0x40 114 #define FH_RSCSR_RPA_EN BIT(25) 115 #define FH_RSCSR_RADA_EN BIT(26) 116 #define FH_RSCSR_RXQ_POS 16 117 #define FH_RSCSR_RXQ_MASK 0x3F0000 118 119 struct iwl_rx_packet { 120 /* 121 * The first 4 bytes of the RX frame header contain both the RX frame 122 * size and some flags. 123 * Bit fields: 124 * 31: flag flush RB request 125 * 30: flag ignore TC (terminal counter) request 126 * 29: flag fast IRQ request 127 * 28-27: Reserved 128 * 26: RADA enabled 129 * 25: Offload enabled 130 * 24: RPF enabled 131 * 23: RSS enabled 132 * 22: Checksum enabled 133 * 21-16: RX queue 134 * 15-14: Reserved 135 * 13-00: RX frame size 136 */ 137 __le32 len_n_flags; 138 struct iwl_cmd_header hdr; 139 u8 data[]; 140 } __packed; 141 142 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) 143 { 144 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; 145 } 146 147 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) 148 { 149 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); 150 } 151 152 /** 153 * enum CMD_MODE - how to send the host commands ? 154 * 155 * @CMD_ASYNC: Return right away and don't wait for the response 156 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of 157 * the response. The caller needs to call iwl_free_resp when done. 158 * @CMD_HIGH_PRIO: The command is high priority - it goes to the front of the 159 * command queue, but after other high priority commands. Valid only 160 * with CMD_ASYNC. 161 * @CMD_SEND_IN_IDLE: The command should be sent even when the trans is idle. 162 * @CMD_MAKE_TRANS_IDLE: The command response should mark the trans as idle. 163 * @CMD_WAKE_UP_TRANS: The command response should wake up the trans 164 * (i.e. mark it as non-idle). 165 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be 166 * called after this command completes. Valid only with CMD_ASYNC. 167 */ 168 enum CMD_MODE { 169 CMD_ASYNC = BIT(0), 170 CMD_WANT_SKB = BIT(1), 171 CMD_SEND_IN_RFKILL = BIT(2), 172 CMD_HIGH_PRIO = BIT(3), 173 CMD_SEND_IN_IDLE = BIT(4), 174 CMD_MAKE_TRANS_IDLE = BIT(5), 175 CMD_WAKE_UP_TRANS = BIT(6), 176 CMD_WANT_ASYNC_CALLBACK = BIT(7), 177 }; 178 179 #define DEF_CMD_PAYLOAD_SIZE 320 180 181 /** 182 * struct iwl_device_cmd 183 * 184 * For allocation of the command and tx queues, this establishes the overall 185 * size of the largest command we send to uCode, except for commands that 186 * aren't fully copied and use other TFD space. 187 */ 188 struct iwl_device_cmd { 189 union { 190 struct { 191 struct iwl_cmd_header hdr; /* uCode API */ 192 u8 payload[DEF_CMD_PAYLOAD_SIZE]; 193 }; 194 struct { 195 struct iwl_cmd_header_wide hdr_wide; 196 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE - 197 sizeof(struct iwl_cmd_header_wide) + 198 sizeof(struct iwl_cmd_header)]; 199 }; 200 }; 201 } __packed; 202 203 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) 204 205 /* 206 * number of transfer buffers (fragments) per transmit frame descriptor; 207 * this is just the driver's idea, the hardware supports 20 208 */ 209 #define IWL_MAX_CMD_TBS_PER_TFD 2 210 211 /** 212 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command 213 * 214 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's 215 * ring. The transport layer doesn't map the command's buffer to DMA, but 216 * rather copies it to a previously allocated DMA buffer. This flag tells 217 * the transport layer not to copy the command, but to map the existing 218 * buffer (that is passed in) instead. This saves the memcpy and allows 219 * commands that are bigger than the fixed buffer to be submitted. 220 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. 221 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this 222 * chunk internally and free it again after the command completes. This 223 * can (currently) be used only once per command. 224 * Note that a TFD entry after a DUP one cannot be a normal copied one. 225 */ 226 enum iwl_hcmd_dataflag { 227 IWL_HCMD_DFL_NOCOPY = BIT(0), 228 IWL_HCMD_DFL_DUP = BIT(1), 229 }; 230 231 /** 232 * struct iwl_host_cmd - Host command to the uCode 233 * 234 * @data: array of chunks that composes the data of the host command 235 * @resp_pkt: response packet, if %CMD_WANT_SKB was set 236 * @_rx_page_order: (internally used to free response packet) 237 * @_rx_page_addr: (internally used to free response packet) 238 * @flags: can be CMD_* 239 * @len: array of the lengths of the chunks in data 240 * @dataflags: IWL_HCMD_DFL_* 241 * @id: command id of the host command, for wide commands encoding the 242 * version and group as well 243 */ 244 struct iwl_host_cmd { 245 const void *data[IWL_MAX_CMD_TBS_PER_TFD]; 246 struct iwl_rx_packet *resp_pkt; 247 unsigned long _rx_page_addr; 248 u32 _rx_page_order; 249 250 u32 flags; 251 u32 id; 252 u16 len[IWL_MAX_CMD_TBS_PER_TFD]; 253 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; 254 }; 255 256 static inline void iwl_free_resp(struct iwl_host_cmd *cmd) 257 { 258 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); 259 } 260 261 struct iwl_rx_cmd_buffer { 262 struct page *_page; 263 int _offset; 264 bool _page_stolen; 265 u32 _rx_page_order; 266 unsigned int truesize; 267 u8 status; 268 }; 269 270 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) 271 { 272 return (void *)((unsigned long)page_address(r->_page) + r->_offset); 273 } 274 275 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) 276 { 277 return r->_offset; 278 } 279 280 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) 281 { 282 r->_page_stolen = true; 283 get_page(r->_page); 284 return r->_page; 285 } 286 287 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) 288 { 289 __free_pages(r->_page, r->_rx_page_order); 290 } 291 292 #define MAX_NO_RECLAIM_CMDS 6 293 294 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) 295 296 /* 297 * Maximum number of HW queues the transport layer 298 * currently supports 299 */ 300 #define IWL_MAX_HW_QUEUES 32 301 #define IWL_MAX_TVQM_QUEUES 512 302 303 #define IWL_MAX_TID_COUNT 8 304 #define IWL_MGMT_TID 15 305 #define IWL_FRAME_LIMIT 64 306 #define IWL_MAX_RX_HW_QUEUES 16 307 308 /** 309 * enum iwl_wowlan_status - WoWLAN image/device status 310 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume 311 * @IWL_D3_STATUS_RESET: device was reset while suspended 312 */ 313 enum iwl_d3_status { 314 IWL_D3_STATUS_ALIVE, 315 IWL_D3_STATUS_RESET, 316 }; 317 318 /** 319 * enum iwl_trans_status: transport status flags 320 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed 321 * @STATUS_DEVICE_ENABLED: APM is enabled 322 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) 323 * @STATUS_INT_ENABLED: interrupts are enabled 324 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch 325 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode 326 * @STATUS_FW_ERROR: the fw is in error state 327 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands 328 * are sent 329 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent 330 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation 331 */ 332 enum iwl_trans_status { 333 STATUS_SYNC_HCMD_ACTIVE, 334 STATUS_DEVICE_ENABLED, 335 STATUS_TPOWER_PMI, 336 STATUS_INT_ENABLED, 337 STATUS_RFKILL_HW, 338 STATUS_RFKILL_OPMODE, 339 STATUS_FW_ERROR, 340 STATUS_TRANS_GOING_IDLE, 341 STATUS_TRANS_IDLE, 342 STATUS_TRANS_DEAD, 343 }; 344 345 static inline int 346 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size) 347 { 348 switch (rb_size) { 349 case IWL_AMSDU_2K: 350 return get_order(2 * 1024); 351 case IWL_AMSDU_4K: 352 return get_order(4 * 1024); 353 case IWL_AMSDU_8K: 354 return get_order(8 * 1024); 355 case IWL_AMSDU_12K: 356 return get_order(12 * 1024); 357 default: 358 WARN_ON(1); 359 return -1; 360 } 361 } 362 363 struct iwl_hcmd_names { 364 u8 cmd_id; 365 const char *const cmd_name; 366 }; 367 368 #define HCMD_NAME(x) \ 369 { .cmd_id = x, .cmd_name = #x } 370 371 struct iwl_hcmd_arr { 372 const struct iwl_hcmd_names *arr; 373 int size; 374 }; 375 376 #define HCMD_ARR(x) \ 377 { .arr = x, .size = ARRAY_SIZE(x) } 378 379 /** 380 * struct iwl_trans_config - transport configuration 381 * 382 * @op_mode: pointer to the upper layer. 383 * @cmd_queue: the index of the command queue. 384 * Must be set before start_fw. 385 * @cmd_fifo: the fifo for host commands 386 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue. 387 * @no_reclaim_cmds: Some devices erroneously don't set the 388 * SEQ_RX_FRAME bit on some notifications, this is the 389 * list of such notifications to filter. Max length is 390 * %MAX_NO_RECLAIM_CMDS. 391 * @n_no_reclaim_cmds: # of commands in list 392 * @rx_buf_size: RX buffer size needed for A-MSDUs 393 * if unset 4k will be the RX buffer size 394 * @bc_table_dword: set to true if the BC table expects the byte count to be 395 * in DWORD (as opposed to bytes) 396 * @scd_set_active: should the transport configure the SCD for HCMD queue 397 * @sw_csum_tx: transport should compute the TCP checksum 398 * @command_groups: array of command groups, each member is an array of the 399 * commands in the group; for debugging only 400 * @command_groups_size: number of command groups, to avoid illegal access 401 * @cb_data_offs: offset inside skb->cb to store transport data at, must have 402 * space for at least two pointers 403 */ 404 struct iwl_trans_config { 405 struct iwl_op_mode *op_mode; 406 407 u8 cmd_queue; 408 u8 cmd_fifo; 409 unsigned int cmd_q_wdg_timeout; 410 const u8 *no_reclaim_cmds; 411 unsigned int n_no_reclaim_cmds; 412 413 enum iwl_amsdu_size rx_buf_size; 414 bool bc_table_dword; 415 bool scd_set_active; 416 bool sw_csum_tx; 417 const struct iwl_hcmd_arr *command_groups; 418 int command_groups_size; 419 420 u8 cb_data_offs; 421 }; 422 423 struct iwl_trans_dump_data { 424 u32 len; 425 u8 data[]; 426 }; 427 428 struct iwl_trans; 429 430 struct iwl_trans_txq_scd_cfg { 431 u8 fifo; 432 u8 sta_id; 433 u8 tid; 434 bool aggregate; 435 int frame_limit; 436 }; 437 438 /** 439 * struct iwl_trans_rxq_dma_data - RX queue DMA data 440 * @fr_bd_cb: DMA address of free BD cyclic buffer 441 * @fr_bd_wid: Initial write index of the free BD cyclic buffer 442 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr 443 * @ur_bd_cb: DMA address of used BD cyclic buffer 444 */ 445 struct iwl_trans_rxq_dma_data { 446 u64 fr_bd_cb; 447 u32 fr_bd_wid; 448 u64 urbd_stts_wrptr; 449 u64 ur_bd_cb; 450 }; 451 452 /** 453 * struct iwl_trans_ops - transport specific operations 454 * 455 * All the handlers MUST be implemented 456 * 457 * @start_hw: starts the HW. If low_power is true, the NIC needs to be taken 458 * out of a low power state. From that point on, the HW can send 459 * interrupts. May sleep. 460 * @op_mode_leave: Turn off the HW RF kill indication if on 461 * May sleep 462 * @start_fw: allocates and inits all the resources for the transport 463 * layer. Also kick a fw image. 464 * May sleep 465 * @fw_alive: called when the fw sends alive notification. If the fw provides 466 * the SCD base address in SRAM, then provide it here, or 0 otherwise. 467 * May sleep 468 * @stop_device: stops the whole device (embedded CPU put to reset) and stops 469 * the HW. If low_power is true, the NIC will be put in low power state. 470 * From that point on, the HW will be stopped but will still issue an 471 * interrupt if the HW RF kill switch is triggered. 472 * This callback must do the right thing and not crash even if %start_hw() 473 * was called but not &start_fw(). May sleep. 474 * @d3_suspend: put the device into the correct mode for WoWLAN during 475 * suspend. This is optional, if not implemented WoWLAN will not be 476 * supported. This callback may sleep. 477 * @d3_resume: resume the device after WoWLAN, enabling the opmode to 478 * talk to the WoWLAN image to get its status. This is optional, if not 479 * implemented WoWLAN will not be supported. This callback may sleep. 480 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. 481 * If RFkill is asserted in the middle of a SYNC host command, it must 482 * return -ERFKILL straight away. 483 * May sleep only if CMD_ASYNC is not set 484 * @tx: send an skb. The transport relies on the op_mode to zero the 485 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all 486 * the CSUM will be taken care of (TCP CSUM and IP header in case of 487 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP 488 * header if it is IPv4. 489 * Must be atomic 490 * @reclaim: free packet until ssn. Returns a list of freed packets. 491 * Must be atomic 492 * @txq_enable: setup a queue. To setup an AC queue, use the 493 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before 494 * this one. The op_mode must not configure the HCMD queue. The scheduler 495 * configuration may be %NULL, in which case the hardware will not be 496 * configured. If true is returned, the operation mode needs to increment 497 * the sequence number of the packets routed to this queue because of a 498 * hardware scheduler bug. May sleep. 499 * @txq_disable: de-configure a Tx queue to send AMPDUs 500 * Must be atomic 501 * @txq_set_shared_mode: change Tx queue shared/unshared marking 502 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep. 503 * @wait_txq_empty: wait until specific tx queue is empty. May sleep. 504 * @freeze_txq_timer: prevents the timer of the queue from firing until the 505 * queue is set to awake. Must be atomic. 506 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note 507 * that the transport needs to refcount the calls since this function 508 * will be called several times with block = true, and then the queues 509 * need to be unblocked only after the same number of calls with 510 * block = false. 511 * @write8: write a u8 to a register at offset ofs from the BAR 512 * @write32: write a u32 to a register at offset ofs from the BAR 513 * @read32: read a u32 register at offset ofs from the BAR 514 * @read_prph: read a DWORD from a periphery register 515 * @write_prph: write a DWORD to a periphery register 516 * @read_mem: read device's SRAM in DWORD 517 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory 518 * will be zeroed. 519 * @configure: configure parameters required by the transport layer from 520 * the op_mode. May be called several times before start_fw, can't be 521 * called after that. 522 * @set_pmi: set the power pmi state 523 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. 524 * Sleeping is not allowed between grab_nic_access and 525 * release_nic_access. 526 * @release_nic_access: let the NIC go to sleep. The "flags" parameter 527 * must be the same one that was sent before to the grab_nic_access. 528 * @set_bits_mask - set SRAM register according to value and mask. 529 * @ref: grab a reference to the transport/FW layers, disallowing 530 * certain low power states 531 * @unref: release a reference previously taken with @ref. Note that 532 * initially the reference count is 1, making an initial @unref 533 * necessary to allow low power states. 534 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last 535 * TX'ed commands and similar. The buffer will be vfree'd by the caller. 536 * Note that the transport must fill in the proper file headers. 537 */ 538 struct iwl_trans_ops { 539 540 int (*start_hw)(struct iwl_trans *iwl_trans, bool low_power); 541 void (*op_mode_leave)(struct iwl_trans *iwl_trans); 542 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, 543 bool run_in_rfkill); 544 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); 545 void (*stop_device)(struct iwl_trans *trans, bool low_power); 546 547 void (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset); 548 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, 549 bool test, bool reset); 550 551 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 552 553 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, 554 struct iwl_device_cmd *dev_cmd, int queue); 555 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, 556 struct sk_buff_head *skbs); 557 558 bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn, 559 const struct iwl_trans_txq_scd_cfg *cfg, 560 unsigned int queue_wdg_timeout); 561 void (*txq_disable)(struct iwl_trans *trans, int queue, 562 bool configure_scd); 563 /* 22000 functions */ 564 int (*txq_alloc)(struct iwl_trans *trans, 565 __le16 flags, u8 sta_id, u8 tid, 566 int cmd_id, int size, 567 unsigned int queue_wdg_timeout); 568 void (*txq_free)(struct iwl_trans *trans, int queue); 569 int (*rxq_dma_data)(struct iwl_trans *trans, int queue, 570 struct iwl_trans_rxq_dma_data *data); 571 572 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id, 573 bool shared); 574 575 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm); 576 int (*wait_txq_empty)(struct iwl_trans *trans, int queue); 577 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs, 578 bool freeze); 579 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block); 580 581 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); 582 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); 583 u32 (*read32)(struct iwl_trans *trans, u32 ofs); 584 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); 585 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); 586 int (*read_mem)(struct iwl_trans *trans, u32 addr, 587 void *buf, int dwords); 588 int (*write_mem)(struct iwl_trans *trans, u32 addr, 589 const void *buf, int dwords); 590 void (*configure)(struct iwl_trans *trans, 591 const struct iwl_trans_config *trans_cfg); 592 void (*set_pmi)(struct iwl_trans *trans, bool state); 593 void (*sw_reset)(struct iwl_trans *trans); 594 bool (*grab_nic_access)(struct iwl_trans *trans, unsigned long *flags); 595 void (*release_nic_access)(struct iwl_trans *trans, 596 unsigned long *flags); 597 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, 598 u32 value); 599 void (*ref)(struct iwl_trans *trans); 600 void (*unref)(struct iwl_trans *trans); 601 int (*suspend)(struct iwl_trans *trans); 602 void (*resume)(struct iwl_trans *trans); 603 604 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans, 605 const struct iwl_fw_dbg_trigger_tlv 606 *trigger); 607 }; 608 609 /** 610 * enum iwl_trans_state - state of the transport layer 611 * 612 * @IWL_TRANS_NO_FW: no fw has sent an alive response 613 * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response 614 */ 615 enum iwl_trans_state { 616 IWL_TRANS_NO_FW = 0, 617 IWL_TRANS_FW_ALIVE = 1, 618 }; 619 620 /** 621 * DOC: Platform power management 622 * 623 * There are two types of platform power management: system-wide 624 * (WoWLAN) and runtime. 625 * 626 * In system-wide power management the entire platform goes into a low 627 * power state (e.g. idle or suspend to RAM) at the same time and the 628 * device is configured as a wakeup source for the entire platform. 629 * This is usually triggered by userspace activity (e.g. the user 630 * presses the suspend button or a power management daemon decides to 631 * put the platform in low power mode). The device's behavior in this 632 * mode is dictated by the wake-on-WLAN configuration. 633 * 634 * In runtime power management, only the devices which are themselves 635 * idle enter a low power state. This is done at runtime, which means 636 * that the entire system is still running normally. This mode is 637 * usually triggered automatically by the device driver and requires 638 * the ability to enter and exit the low power modes in a very short 639 * time, so there is not much impact in usability. 640 * 641 * The terms used for the device's behavior are as follows: 642 * 643 * - D0: the device is fully powered and the host is awake; 644 * - D3: the device is in low power mode and only reacts to 645 * specific events (e.g. magic-packet received or scan 646 * results found); 647 * - D0I3: the device is in low power mode and reacts to any 648 * activity (e.g. RX); 649 * 650 * These terms reflect the power modes in the firmware and are not to 651 * be confused with the physical device power state. The NIC can be 652 * in D0I3 mode even if, for instance, the PCI device is in D3 state. 653 */ 654 655 /** 656 * enum iwl_plat_pm_mode - platform power management mode 657 * 658 * This enumeration describes the device's platform power management 659 * behavior when in idle mode (i.e. runtime power management) or when 660 * in system-wide suspend (i.e WoWLAN). 661 * 662 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this 663 * device. At runtime, this means that nothing happens and the 664 * device always remains in active. In system-wide suspend mode, 665 * it means that the all connections will be closed automatically 666 * by mac80211 before the platform is suspended. 667 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN). 668 * For runtime power management, this mode is not officially 669 * supported. 670 * @IWL_PLAT_PM_MODE_D0I3: the device goes into D0I3 mode. 671 */ 672 enum iwl_plat_pm_mode { 673 IWL_PLAT_PM_MODE_DISABLED, 674 IWL_PLAT_PM_MODE_D3, 675 IWL_PLAT_PM_MODE_D0I3, 676 }; 677 678 /* Max time to wait for trans to become idle/non-idle on d0i3 679 * enter/exit (in msecs). 680 */ 681 #define IWL_TRANS_IDLE_TIMEOUT 2000 682 #define IWL_MAX_DEBUG_ALLOCATIONS 1 683 684 /** 685 * struct iwl_dram_data 686 * @physical: page phy pointer 687 * @block: pointer to the allocated block/page 688 * @size: size of the block/page 689 */ 690 struct iwl_dram_data { 691 dma_addr_t physical; 692 void *block; 693 int size; 694 }; 695 696 /** 697 * struct iwl_trans - transport common data 698 * 699 * @ops - pointer to iwl_trans_ops 700 * @op_mode - pointer to the op_mode 701 * @cfg - pointer to the configuration 702 * @drv - pointer to iwl_drv 703 * @status: a bit-mask of transport status flags 704 * @dev - pointer to struct device * that represents the device 705 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted. 706 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported. 707 * @hw_rf_id a u32 with the device RF ID 708 * @hw_id: a u32 with the ID of the device / sub-device. 709 * Set during transport allocation. 710 * @hw_id_str: a string with info about HW ID. Set during transport allocation. 711 * @pm_support: set to true in start_hw if link pm is supported 712 * @ltr_enabled: set to true if the LTR is enabled 713 * @wide_cmd_header: true when ucode supports wide command header format 714 * @num_rx_queues: number of RX queues allocated by the transport; 715 * the transport must set this before calling iwl_drv_start() 716 * @iml_len: the length of the image loader 717 * @iml: a pointer to the image loader itself 718 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. 719 * The user should use iwl_trans_{alloc,free}_tx_cmd. 720 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before 721 * starting the firmware, used for tracing 722 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the 723 * start of the 802.11 header in the @rx_mpdu_cmd 724 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI) 725 * @dbg_dest_tlv: points to the destination TLV for debug 726 * @dbg_conf_tlv: array of pointers to configuration TLVs for debug 727 * @dbg_trigger_tlv: array of pointers to triggers TLVs for debug 728 * @dbg_n_dest_reg: num of reg_ops in %dbg_dest_tlv 729 * @num_blocks: number of blocks in fw_mon 730 * @fw_mon: address of the buffers for firmware monitor 731 * @system_pm_mode: the system-wide power management mode in use. 732 * This mode is set dynamically, depending on the WoWLAN values 733 * configured from the userspace at runtime. 734 * @runtime_pm_mode: the runtime power management mode in use. This 735 * mode is set during the initialization phase and is not 736 * supposed to change during runtime. 737 */ 738 struct iwl_trans { 739 const struct iwl_trans_ops *ops; 740 struct iwl_op_mode *op_mode; 741 const struct iwl_cfg *cfg; 742 struct iwl_drv *drv; 743 enum iwl_trans_state state; 744 unsigned long status; 745 746 struct device *dev; 747 u32 max_skb_frags; 748 u32 hw_rev; 749 u32 hw_rf_id; 750 u32 hw_id; 751 char hw_id_str[52]; 752 753 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; 754 755 bool pm_support; 756 bool ltr_enabled; 757 758 const struct iwl_hcmd_arr *command_groups; 759 int command_groups_size; 760 bool wide_cmd_header; 761 762 u8 num_rx_queues; 763 764 size_t iml_len; 765 u8 *iml; 766 767 /* The following fields are internal only */ 768 struct kmem_cache *dev_cmd_pool; 769 char dev_cmd_pool_name[50]; 770 771 struct dentry *dbgfs_dir; 772 773 #ifdef CONFIG_LOCKDEP 774 struct lockdep_map sync_cmd_lockdep_map; 775 #endif 776 777 const struct iwl_fw_dbg_dest_tlv_v1 *dbg_dest_tlv; 778 const struct iwl_fw_dbg_conf_tlv *dbg_conf_tlv[FW_DBG_CONF_MAX]; 779 struct iwl_fw_dbg_trigger_tlv * const *dbg_trigger_tlv; 780 u32 dbg_dump_mask; 781 u8 dbg_n_dest_reg; 782 int num_blocks; 783 struct iwl_dram_data fw_mon[IWL_MAX_DEBUG_ALLOCATIONS]; 784 785 enum iwl_plat_pm_mode system_pm_mode; 786 enum iwl_plat_pm_mode runtime_pm_mode; 787 bool suspending; 788 789 /* pointer to trans specific struct */ 790 /*Ensure that this pointer will always be aligned to sizeof pointer */ 791 char trans_specific[0] __aligned(sizeof(void *)); 792 }; 793 794 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id); 795 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans); 796 797 static inline void iwl_trans_configure(struct iwl_trans *trans, 798 const struct iwl_trans_config *trans_cfg) 799 { 800 trans->op_mode = trans_cfg->op_mode; 801 802 trans->ops->configure(trans, trans_cfg); 803 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg)); 804 } 805 806 static inline int _iwl_trans_start_hw(struct iwl_trans *trans, bool low_power) 807 { 808 might_sleep(); 809 810 return trans->ops->start_hw(trans, low_power); 811 } 812 813 static inline int iwl_trans_start_hw(struct iwl_trans *trans) 814 { 815 return trans->ops->start_hw(trans, true); 816 } 817 818 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) 819 { 820 might_sleep(); 821 822 if (trans->ops->op_mode_leave) 823 trans->ops->op_mode_leave(trans); 824 825 trans->op_mode = NULL; 826 827 trans->state = IWL_TRANS_NO_FW; 828 } 829 830 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) 831 { 832 might_sleep(); 833 834 trans->state = IWL_TRANS_FW_ALIVE; 835 836 trans->ops->fw_alive(trans, scd_addr); 837 } 838 839 static inline int iwl_trans_start_fw(struct iwl_trans *trans, 840 const struct fw_img *fw, 841 bool run_in_rfkill) 842 { 843 might_sleep(); 844 845 WARN_ON_ONCE(!trans->rx_mpdu_cmd); 846 847 clear_bit(STATUS_FW_ERROR, &trans->status); 848 return trans->ops->start_fw(trans, fw, run_in_rfkill); 849 } 850 851 static inline void _iwl_trans_stop_device(struct iwl_trans *trans, 852 bool low_power) 853 { 854 might_sleep(); 855 856 trans->ops->stop_device(trans, low_power); 857 858 trans->state = IWL_TRANS_NO_FW; 859 } 860 861 static inline void iwl_trans_stop_device(struct iwl_trans *trans) 862 { 863 _iwl_trans_stop_device(trans, true); 864 } 865 866 static inline void iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, 867 bool reset) 868 { 869 might_sleep(); 870 if (trans->ops->d3_suspend) 871 trans->ops->d3_suspend(trans, test, reset); 872 } 873 874 static inline int iwl_trans_d3_resume(struct iwl_trans *trans, 875 enum iwl_d3_status *status, 876 bool test, bool reset) 877 { 878 might_sleep(); 879 if (!trans->ops->d3_resume) 880 return 0; 881 882 return trans->ops->d3_resume(trans, status, test, reset); 883 } 884 885 static inline int iwl_trans_suspend(struct iwl_trans *trans) 886 { 887 if (!trans->ops->suspend) 888 return 0; 889 890 return trans->ops->suspend(trans); 891 } 892 893 static inline void iwl_trans_resume(struct iwl_trans *trans) 894 { 895 if (trans->ops->resume) 896 trans->ops->resume(trans); 897 } 898 899 static inline struct iwl_trans_dump_data * 900 iwl_trans_dump_data(struct iwl_trans *trans, 901 const struct iwl_fw_dbg_trigger_tlv *trigger) 902 { 903 if (!trans->ops->dump_data) 904 return NULL; 905 return trans->ops->dump_data(trans, trigger); 906 } 907 908 static inline struct iwl_device_cmd * 909 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) 910 { 911 return kmem_cache_alloc(trans->dev_cmd_pool, GFP_ATOMIC); 912 } 913 914 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 915 916 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, 917 struct iwl_device_cmd *dev_cmd) 918 { 919 kmem_cache_free(trans->dev_cmd_pool, dev_cmd); 920 } 921 922 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, 923 struct iwl_device_cmd *dev_cmd, int queue) 924 { 925 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) 926 return -EIO; 927 928 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 929 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 930 return -EIO; 931 } 932 933 return trans->ops->tx(trans, skb, dev_cmd, queue); 934 } 935 936 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, 937 int ssn, struct sk_buff_head *skbs) 938 { 939 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 940 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 941 return; 942 } 943 944 trans->ops->reclaim(trans, queue, ssn, skbs); 945 } 946 947 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue, 948 bool configure_scd) 949 { 950 trans->ops->txq_disable(trans, queue, configure_scd); 951 } 952 953 static inline bool 954 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn, 955 const struct iwl_trans_txq_scd_cfg *cfg, 956 unsigned int queue_wdg_timeout) 957 { 958 might_sleep(); 959 960 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 961 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 962 return false; 963 } 964 965 return trans->ops->txq_enable(trans, queue, ssn, 966 cfg, queue_wdg_timeout); 967 } 968 969 static inline int 970 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue, 971 struct iwl_trans_rxq_dma_data *data) 972 { 973 if (WARN_ON_ONCE(!trans->ops->rxq_dma_data)) 974 return -ENOTSUPP; 975 976 return trans->ops->rxq_dma_data(trans, queue, data); 977 } 978 979 static inline void 980 iwl_trans_txq_free(struct iwl_trans *trans, int queue) 981 { 982 if (WARN_ON_ONCE(!trans->ops->txq_free)) 983 return; 984 985 trans->ops->txq_free(trans, queue); 986 } 987 988 static inline int 989 iwl_trans_txq_alloc(struct iwl_trans *trans, 990 __le16 flags, u8 sta_id, u8 tid, 991 int cmd_id, int size, 992 unsigned int wdg_timeout) 993 { 994 might_sleep(); 995 996 if (WARN_ON_ONCE(!trans->ops->txq_alloc)) 997 return -ENOTSUPP; 998 999 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1000 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1001 return -EIO; 1002 } 1003 1004 return trans->ops->txq_alloc(trans, flags, sta_id, tid, 1005 cmd_id, size, wdg_timeout); 1006 } 1007 1008 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans, 1009 int queue, bool shared_mode) 1010 { 1011 if (trans->ops->txq_set_shared_mode) 1012 trans->ops->txq_set_shared_mode(trans, queue, shared_mode); 1013 } 1014 1015 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, 1016 int fifo, int sta_id, int tid, 1017 int frame_limit, u16 ssn, 1018 unsigned int queue_wdg_timeout) 1019 { 1020 struct iwl_trans_txq_scd_cfg cfg = { 1021 .fifo = fifo, 1022 .sta_id = sta_id, 1023 .tid = tid, 1024 .frame_limit = frame_limit, 1025 .aggregate = sta_id >= 0, 1026 }; 1027 1028 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout); 1029 } 1030 1031 static inline 1032 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo, 1033 unsigned int queue_wdg_timeout) 1034 { 1035 struct iwl_trans_txq_scd_cfg cfg = { 1036 .fifo = fifo, 1037 .sta_id = -1, 1038 .tid = IWL_MAX_TID_COUNT, 1039 .frame_limit = IWL_FRAME_LIMIT, 1040 .aggregate = false, 1041 }; 1042 1043 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout); 1044 } 1045 1046 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans, 1047 unsigned long txqs, 1048 bool freeze) 1049 { 1050 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1051 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1052 return; 1053 } 1054 1055 if (trans->ops->freeze_txq_timer) 1056 trans->ops->freeze_txq_timer(trans, txqs, freeze); 1057 } 1058 1059 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans, 1060 bool block) 1061 { 1062 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1063 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1064 return; 1065 } 1066 1067 if (trans->ops->block_txq_ptrs) 1068 trans->ops->block_txq_ptrs(trans, block); 1069 } 1070 1071 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, 1072 u32 txqs) 1073 { 1074 if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty)) 1075 return -ENOTSUPP; 1076 1077 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1078 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1079 return -EIO; 1080 } 1081 1082 return trans->ops->wait_tx_queues_empty(trans, txqs); 1083 } 1084 1085 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue) 1086 { 1087 if (WARN_ON_ONCE(!trans->ops->wait_txq_empty)) 1088 return -ENOTSUPP; 1089 1090 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1091 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1092 return -EIO; 1093 } 1094 1095 return trans->ops->wait_txq_empty(trans, queue); 1096 } 1097 1098 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) 1099 { 1100 trans->ops->write8(trans, ofs, val); 1101 } 1102 1103 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) 1104 { 1105 trans->ops->write32(trans, ofs, val); 1106 } 1107 1108 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) 1109 { 1110 return trans->ops->read32(trans, ofs); 1111 } 1112 1113 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) 1114 { 1115 return trans->ops->read_prph(trans, ofs); 1116 } 1117 1118 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, 1119 u32 val) 1120 { 1121 return trans->ops->write_prph(trans, ofs, val); 1122 } 1123 1124 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, 1125 void *buf, int dwords) 1126 { 1127 return trans->ops->read_mem(trans, addr, buf, dwords); 1128 } 1129 1130 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ 1131 do { \ 1132 if (__builtin_constant_p(bufsize)) \ 1133 BUILD_BUG_ON((bufsize) % sizeof(u32)); \ 1134 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ 1135 } while (0) 1136 1137 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) 1138 { 1139 u32 value; 1140 1141 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) 1142 return 0xa5a5a5a5; 1143 1144 return value; 1145 } 1146 1147 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, 1148 const void *buf, int dwords) 1149 { 1150 return trans->ops->write_mem(trans, addr, buf, dwords); 1151 } 1152 1153 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, 1154 u32 val) 1155 { 1156 return iwl_trans_write_mem(trans, addr, &val, 1); 1157 } 1158 1159 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) 1160 { 1161 if (trans->ops->set_pmi) 1162 trans->ops->set_pmi(trans, state); 1163 } 1164 1165 static inline void iwl_trans_sw_reset(struct iwl_trans *trans) 1166 { 1167 if (trans->ops->sw_reset) 1168 trans->ops->sw_reset(trans); 1169 } 1170 1171 static inline void 1172 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) 1173 { 1174 trans->ops->set_bits_mask(trans, reg, mask, value); 1175 } 1176 1177 #define iwl_trans_grab_nic_access(trans, flags) \ 1178 __cond_lock(nic_access, \ 1179 likely((trans)->ops->grab_nic_access(trans, flags))) 1180 1181 static inline void __releases(nic_access) 1182 iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags) 1183 { 1184 trans->ops->release_nic_access(trans, flags); 1185 __release(nic_access); 1186 } 1187 1188 static inline void iwl_trans_fw_error(struct iwl_trans *trans) 1189 { 1190 if (WARN_ON_ONCE(!trans->op_mode)) 1191 return; 1192 1193 /* prevent double restarts due to the same erroneous FW */ 1194 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) 1195 iwl_op_mode_nic_error(trans->op_mode); 1196 } 1197 1198 /***************************************************** 1199 * transport helper functions 1200 *****************************************************/ 1201 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, 1202 struct device *dev, 1203 const struct iwl_cfg *cfg, 1204 const struct iwl_trans_ops *ops); 1205 void iwl_trans_free(struct iwl_trans *trans); 1206 void iwl_trans_ref(struct iwl_trans *trans); 1207 void iwl_trans_unref(struct iwl_trans *trans); 1208 1209 /***************************************************** 1210 * driver (transport) register/unregister functions 1211 ******************************************************/ 1212 int __must_check iwl_pci_register_driver(void); 1213 void iwl_pci_unregister_driver(void); 1214 1215 #endif /* __iwl_trans_h__ */ 1216