1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 11 * Copyright(c) 2018 - 2019 Intel Corporation 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of version 2 of the GNU General Public License as 15 * published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * General Public License for more details. 21 * 22 * The full GNU General Public License is included in this distribution 23 * in the file called COPYING. 24 * 25 * Contact Information: 26 * Intel Linux Wireless <linuxwifi@intel.com> 27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 28 * 29 * BSD LICENSE 30 * 31 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 34 * Copyright(c) 2018 - 2019 Intel Corporation 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name Intel Corporation nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 *****************************************************************************/ 63 #include <linux/types.h> 64 #include <linux/slab.h> 65 #include <linux/export.h> 66 #include <linux/etherdevice.h> 67 #include <linux/pci.h> 68 #include <linux/firmware.h> 69 70 #include "iwl-drv.h" 71 #include "iwl-modparams.h" 72 #include "iwl-nvm-parse.h" 73 #include "iwl-prph.h" 74 #include "iwl-io.h" 75 #include "iwl-csr.h" 76 #include "fw/acpi.h" 77 #include "fw/api/nvm-reg.h" 78 #include "fw/api/commands.h" 79 #include "fw/api/cmdhdr.h" 80 #include "fw/img.h" 81 82 /* NVM offsets (in words) definitions */ 83 enum nvm_offsets { 84 /* NVM HW-Section offset (in words) definitions */ 85 SUBSYSTEM_ID = 0x0A, 86 HW_ADDR = 0x15, 87 88 /* NVM SW-Section offset (in words) definitions */ 89 NVM_SW_SECTION = 0x1C0, 90 NVM_VERSION = 0, 91 RADIO_CFG = 1, 92 SKU = 2, 93 N_HW_ADDRS = 3, 94 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, 95 96 /* NVM calibration section offset (in words) definitions */ 97 NVM_CALIB_SECTION = 0x2B8, 98 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION, 99 100 /* NVM REGULATORY -Section offset (in words) definitions */ 101 NVM_CHANNELS_SDP = 0, 102 }; 103 104 enum ext_nvm_offsets { 105 /* NVM HW-Section offset (in words) definitions */ 106 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1, 107 108 /* NVM SW-Section offset (in words) definitions */ 109 NVM_VERSION_EXT_NVM = 0, 110 RADIO_CFG_FAMILY_EXT_NVM = 0, 111 SKU_FAMILY_8000 = 2, 112 N_HW_ADDRS_FAMILY_8000 = 3, 113 114 /* NVM REGULATORY -Section offset (in words) definitions */ 115 NVM_CHANNELS_EXTENDED = 0, 116 NVM_LAR_OFFSET_OLD = 0x4C7, 117 NVM_LAR_OFFSET = 0x507, 118 NVM_LAR_ENABLED = 0x7, 119 }; 120 121 /* SKU Capabilities (actual values from NVM definition) */ 122 enum nvm_sku_bits { 123 NVM_SKU_CAP_BAND_24GHZ = BIT(0), 124 NVM_SKU_CAP_BAND_52GHZ = BIT(1), 125 NVM_SKU_CAP_11N_ENABLE = BIT(2), 126 NVM_SKU_CAP_11AC_ENABLE = BIT(3), 127 NVM_SKU_CAP_MIMO_DISABLE = BIT(5), 128 }; 129 130 /* 131 * These are the channel numbers in the order that they are stored in the NVM 132 */ 133 static const u16 iwl_nvm_channels[] = { 134 /* 2.4 GHz */ 135 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 136 /* 5 GHz */ 137 36, 40, 44 , 48, 52, 56, 60, 64, 138 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 139 149, 153, 157, 161, 165 140 }; 141 142 static const u16 iwl_ext_nvm_channels[] = { 143 /* 2.4 GHz */ 144 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 145 /* 5 GHz */ 146 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 147 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148 149, 153, 157, 161, 165, 169, 173, 177, 181 149 }; 150 151 static const u16 iwl_uhb_nvm_channels[] = { 152 /* 2.4 GHz */ 153 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 154 /* 5 GHz */ 155 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 156 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 157 149, 153, 157, 161, 165, 169, 173, 177, 181, 158 /* 6-7 GHz */ 159 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 160 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 161 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 162 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233 163 }; 164 165 #define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) 166 #define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels) 167 #define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels) 168 #define NUM_2GHZ_CHANNELS 14 169 #define FIRST_2GHZ_HT_MINUS 5 170 #define LAST_2GHZ_HT_PLUS 9 171 #define N_HW_ADDR_MASK 0xF 172 173 /* rate data (static) */ 174 static struct ieee80211_rate iwl_cfg80211_rates[] = { 175 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, 176 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, 177 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 178 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, 179 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 180 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, 181 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 182 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, 183 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, 184 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, 185 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, 186 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, 187 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, 188 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, 189 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, 190 }; 191 #define RATES_24_OFFS 0 192 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) 193 #define RATES_52_OFFS 4 194 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) 195 196 /** 197 * enum iwl_nvm_channel_flags - channel flags in NVM 198 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo 199 * @NVM_CHANNEL_IBSS: usable as an IBSS channel 200 * @NVM_CHANNEL_ACTIVE: active scanning allowed 201 * @NVM_CHANNEL_RADAR: radar detection required 202 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed 203 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS 204 * on same channel on 2.4 or same UNII band on 5.2 205 * @NVM_CHANNEL_UNIFORM: uniform spreading required 206 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay 207 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay 208 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay 209 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay 210 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?) 211 */ 212 enum iwl_nvm_channel_flags { 213 NVM_CHANNEL_VALID = BIT(0), 214 NVM_CHANNEL_IBSS = BIT(1), 215 NVM_CHANNEL_ACTIVE = BIT(3), 216 NVM_CHANNEL_RADAR = BIT(4), 217 NVM_CHANNEL_INDOOR_ONLY = BIT(5), 218 NVM_CHANNEL_GO_CONCURRENT = BIT(6), 219 NVM_CHANNEL_UNIFORM = BIT(7), 220 NVM_CHANNEL_20MHZ = BIT(8), 221 NVM_CHANNEL_40MHZ = BIT(9), 222 NVM_CHANNEL_80MHZ = BIT(10), 223 NVM_CHANNEL_160MHZ = BIT(11), 224 NVM_CHANNEL_DC_HIGH = BIT(12), 225 }; 226 227 /** 228 * enum iwl_reg_capa_flags - global flags applied for the whole regulatory 229 * domain. 230 * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the 231 * 2.4Ghz band is allowed. 232 * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the 233 * 5Ghz band is allowed. 234 * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed 235 * for this regulatory domain (valid only in 5Ghz). 236 * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed 237 * for this regulatory domain (valid only in 5Ghz). 238 * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. 239 * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. 240 * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden 241 * for this regulatory domain (valid only in 5Ghz). 242 * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed. 243 */ 244 enum iwl_reg_capa_flags { 245 REG_CAPA_BF_CCD_LOW_BAND = BIT(0), 246 REG_CAPA_BF_CCD_HIGH_BAND = BIT(1), 247 REG_CAPA_160MHZ_ALLOWED = BIT(2), 248 REG_CAPA_80MHZ_ALLOWED = BIT(3), 249 REG_CAPA_MCS_8_ALLOWED = BIT(4), 250 REG_CAPA_MCS_9_ALLOWED = BIT(5), 251 REG_CAPA_40MHZ_FORBIDDEN = BIT(7), 252 REG_CAPA_DC_HIGH_ENABLED = BIT(9), 253 }; 254 255 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level, 256 int chan, u32 flags) 257 { 258 #define CHECK_AND_PRINT_I(x) \ 259 ((flags & NVM_CHANNEL_##x) ? " " #x : "") 260 261 if (!(flags & NVM_CHANNEL_VALID)) { 262 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n", 263 chan, flags); 264 return; 265 } 266 267 /* Note: already can print up to 101 characters, 110 is the limit! */ 268 IWL_DEBUG_DEV(dev, level, 269 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n", 270 chan, flags, 271 CHECK_AND_PRINT_I(VALID), 272 CHECK_AND_PRINT_I(IBSS), 273 CHECK_AND_PRINT_I(ACTIVE), 274 CHECK_AND_PRINT_I(RADAR), 275 CHECK_AND_PRINT_I(INDOOR_ONLY), 276 CHECK_AND_PRINT_I(GO_CONCURRENT), 277 CHECK_AND_PRINT_I(UNIFORM), 278 CHECK_AND_PRINT_I(20MHZ), 279 CHECK_AND_PRINT_I(40MHZ), 280 CHECK_AND_PRINT_I(80MHZ), 281 CHECK_AND_PRINT_I(160MHZ), 282 CHECK_AND_PRINT_I(DC_HIGH)); 283 #undef CHECK_AND_PRINT_I 284 } 285 286 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band, 287 u32 nvm_flags, const struct iwl_cfg *cfg) 288 { 289 u32 flags = IEEE80211_CHAN_NO_HT40; 290 291 if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) { 292 if (ch_num <= LAST_2GHZ_HT_PLUS) 293 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 294 if (ch_num >= FIRST_2GHZ_HT_MINUS) 295 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 296 } else if (nvm_flags & NVM_CHANNEL_40MHZ) { 297 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 298 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 299 else 300 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 301 } 302 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 303 flags |= IEEE80211_CHAN_NO_80MHZ; 304 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 305 flags |= IEEE80211_CHAN_NO_160MHZ; 306 307 if (!(nvm_flags & NVM_CHANNEL_IBSS)) 308 flags |= IEEE80211_CHAN_NO_IR; 309 310 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 311 flags |= IEEE80211_CHAN_NO_IR; 312 313 if (nvm_flags & NVM_CHANNEL_RADAR) 314 flags |= IEEE80211_CHAN_RADAR; 315 316 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 317 flags |= IEEE80211_CHAN_INDOOR_ONLY; 318 319 /* Set the GO concurrent flag only in case that NO_IR is set. 320 * Otherwise it is meaningless 321 */ 322 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 323 (flags & IEEE80211_CHAN_NO_IR)) 324 flags |= IEEE80211_CHAN_IR_CONCURRENT; 325 326 return flags; 327 } 328 329 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx) 330 { 331 if (ch_idx >= NUM_2GHZ_CHANNELS) 332 return NL80211_BAND_5GHZ; 333 return NL80211_BAND_2GHZ; 334 } 335 336 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, 337 struct iwl_nvm_data *data, 338 const void * const nvm_ch_flags, 339 u32 sbands_flags, bool v4) 340 { 341 int ch_idx; 342 int n_channels = 0; 343 struct ieee80211_channel *channel; 344 u32 ch_flags; 345 int num_of_ch; 346 const u16 *nvm_chan; 347 348 if (cfg->uhb_supported) { 349 num_of_ch = IWL_NVM_NUM_CHANNELS_UHB; 350 nvm_chan = iwl_uhb_nvm_channels; 351 } else if (cfg->nvm_type == IWL_NVM_EXT) { 352 num_of_ch = IWL_NVM_NUM_CHANNELS_EXT; 353 nvm_chan = iwl_ext_nvm_channels; 354 } else { 355 num_of_ch = IWL_NVM_NUM_CHANNELS; 356 nvm_chan = iwl_nvm_channels; 357 } 358 359 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 360 enum nl80211_band band = 361 iwl_nl80211_band_from_channel_idx(ch_idx); 362 363 if (v4) 364 ch_flags = 365 __le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx); 366 else 367 ch_flags = 368 __le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx); 369 370 if (band == NL80211_BAND_5GHZ && 371 !data->sku_cap_band_52ghz_enable) 372 continue; 373 374 /* workaround to disable wide channels in 5GHz */ 375 if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) && 376 band == NL80211_BAND_5GHZ) { 377 ch_flags &= ~(NVM_CHANNEL_40MHZ | 378 NVM_CHANNEL_80MHZ | 379 NVM_CHANNEL_160MHZ); 380 } 381 382 if (ch_flags & NVM_CHANNEL_160MHZ) 383 data->vht160_supported = true; 384 385 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) && 386 !(ch_flags & NVM_CHANNEL_VALID)) { 387 /* 388 * Channels might become valid later if lar is 389 * supported, hence we still want to add them to 390 * the list of supported channels to cfg80211. 391 */ 392 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 393 nvm_chan[ch_idx], ch_flags); 394 continue; 395 } 396 397 channel = &data->channels[n_channels]; 398 n_channels++; 399 400 channel->hw_value = nvm_chan[ch_idx]; 401 channel->band = band; 402 channel->center_freq = 403 ieee80211_channel_to_frequency( 404 channel->hw_value, channel->band); 405 406 /* Initialize regulatory-based run-time data */ 407 408 /* 409 * Default value - highest tx power value. max_power 410 * is not used in mvm, and is used for backwards compatibility 411 */ 412 channel->max_power = IWL_DEFAULT_MAX_TX_POWER; 413 414 /* don't put limitations in case we're using LAR */ 415 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR)) 416 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], 417 ch_idx, band, 418 ch_flags, cfg); 419 else 420 channel->flags = 0; 421 422 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 423 channel->hw_value, ch_flags); 424 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n", 425 channel->hw_value, channel->max_power); 426 } 427 428 return n_channels; 429 } 430 431 static void iwl_init_vht_hw_capab(struct iwl_trans *trans, 432 struct iwl_nvm_data *data, 433 struct ieee80211_sta_vht_cap *vht_cap, 434 u8 tx_chains, u8 rx_chains) 435 { 436 const struct iwl_cfg *cfg = trans->cfg; 437 int num_rx_ants = num_of_ant(rx_chains); 438 int num_tx_ants = num_of_ant(tx_chains); 439 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?: 440 IEEE80211_VHT_MAX_AMPDU_1024K); 441 442 vht_cap->vht_supported = true; 443 444 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | 445 IEEE80211_VHT_CAP_RXSTBC_1 | 446 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 447 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 448 max_ampdu_exponent << 449 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 450 451 if (data->vht160_supported) 452 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | 453 IEEE80211_VHT_CAP_SHORT_GI_160; 454 455 if (cfg->vht_mu_mimo_supported) 456 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 457 458 if (cfg->ht_params->ldpc) 459 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 460 461 if (data->sku_cap_mimo_disabled) { 462 num_rx_ants = 1; 463 num_tx_ants = 1; 464 } 465 466 if (num_tx_ants > 1) 467 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 468 else 469 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; 470 471 switch (iwlwifi_mod_params.amsdu_size) { 472 case IWL_AMSDU_DEF: 473 if (trans->trans_cfg->mq_rx_supported) 474 vht_cap->cap |= 475 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 476 else 477 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 478 break; 479 case IWL_AMSDU_2K: 480 if (trans->trans_cfg->mq_rx_supported) 481 vht_cap->cap |= 482 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 483 else 484 WARN(1, "RB size of 2K is not supported by this device\n"); 485 break; 486 case IWL_AMSDU_4K: 487 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 488 break; 489 case IWL_AMSDU_8K: 490 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; 491 break; 492 case IWL_AMSDU_12K: 493 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 494 break; 495 default: 496 break; 497 } 498 499 vht_cap->vht_mcs.rx_mcs_map = 500 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 501 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | 502 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 503 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 504 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 505 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 506 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 507 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); 508 509 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { 510 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; 511 /* this works because NOT_SUPPORTED == 3 */ 512 vht_cap->vht_mcs.rx_mcs_map |= 513 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); 514 } 515 516 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; 517 518 vht_cap->vht_mcs.tx_highest |= 519 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); 520 } 521 522 static struct ieee80211_sband_iftype_data iwl_he_capa[] = { 523 { 524 .types_mask = BIT(NL80211_IFTYPE_STATION), 525 .he_cap = { 526 .has_he = true, 527 .he_cap_elem = { 528 .mac_cap_info[0] = 529 IEEE80211_HE_MAC_CAP0_HTC_HE | 530 IEEE80211_HE_MAC_CAP0_TWT_REQ, 531 .mac_cap_info[1] = 532 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | 533 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, 534 .mac_cap_info[2] = 535 IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP | 536 IEEE80211_HE_MAC_CAP2_ACK_EN, 537 .mac_cap_info[3] = 538 IEEE80211_HE_MAC_CAP3_OMI_CONTROL | 539 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2, 540 .mac_cap_info[4] = 541 IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU | 542 IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39, 543 .mac_cap_info[5] = 544 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 | 545 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 | 546 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU | 547 IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS | 548 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX, 549 .phy_cap_info[0] = 550 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | 551 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 552 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G, 553 .phy_cap_info[1] = 554 IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | 555 IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | 556 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, 557 .phy_cap_info[2] = 558 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US, 559 .phy_cap_info[3] = 560 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM | 561 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | 562 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM | 563 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, 564 .phy_cap_info[4] = 565 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | 566 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 | 567 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8, 568 .phy_cap_info[5] = 569 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 | 570 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2, 571 .phy_cap_info[6] = 572 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, 573 .phy_cap_info[7] = 574 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR | 575 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI | 576 IEEE80211_HE_PHY_CAP7_MAX_NC_1, 577 .phy_cap_info[8] = 578 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 579 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | 580 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | 581 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU | 582 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996, 583 .phy_cap_info[9] = 584 IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK | 585 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | 586 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB | 587 IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED, 588 }, 589 /* 590 * Set default Tx/Rx HE MCS NSS Support field. 591 * Indicate support for up to 2 spatial streams and all 592 * MCS, without any special cases 593 */ 594 .he_mcs_nss_supp = { 595 .rx_mcs_80 = cpu_to_le16(0xfffa), 596 .tx_mcs_80 = cpu_to_le16(0xfffa), 597 .rx_mcs_160 = cpu_to_le16(0xfffa), 598 .tx_mcs_160 = cpu_to_le16(0xfffa), 599 .rx_mcs_80p80 = cpu_to_le16(0xffff), 600 .tx_mcs_80p80 = cpu_to_le16(0xffff), 601 }, 602 /* 603 * Set default PPE thresholds, with PPET16 set to 0, 604 * PPET8 set to 7 605 */ 606 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, 607 }, 608 }, 609 { 610 .types_mask = BIT(NL80211_IFTYPE_AP), 611 .he_cap = { 612 .has_he = true, 613 .he_cap_elem = { 614 .mac_cap_info[0] = 615 IEEE80211_HE_MAC_CAP0_HTC_HE, 616 .mac_cap_info[1] = 617 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | 618 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, 619 .mac_cap_info[2] = 620 IEEE80211_HE_MAC_CAP2_BSR | 621 IEEE80211_HE_MAC_CAP2_ACK_EN, 622 .mac_cap_info[3] = 623 IEEE80211_HE_MAC_CAP3_OMI_CONTROL | 624 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2, 625 .mac_cap_info[4] = 626 IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU, 627 .mac_cap_info[5] = 628 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU, 629 .phy_cap_info[0] = 630 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | 631 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 632 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G, 633 .phy_cap_info[1] = 634 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, 635 .phy_cap_info[2] = 636 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US, 637 .phy_cap_info[3] = 638 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM | 639 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | 640 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM | 641 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, 642 .phy_cap_info[4] = 643 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | 644 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 | 645 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8, 646 .phy_cap_info[5] = 647 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 | 648 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2, 649 .phy_cap_info[6] = 650 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, 651 .phy_cap_info[7] = 652 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI | 653 IEEE80211_HE_PHY_CAP7_MAX_NC_1, 654 .phy_cap_info[8] = 655 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 656 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | 657 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | 658 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU | 659 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996, 660 .phy_cap_info[9] = 661 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | 662 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB | 663 IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED, 664 }, 665 /* 666 * Set default Tx/Rx HE MCS NSS Support field. 667 * Indicate support for up to 2 spatial streams and all 668 * MCS, without any special cases 669 */ 670 .he_mcs_nss_supp = { 671 .rx_mcs_80 = cpu_to_le16(0xfffa), 672 .tx_mcs_80 = cpu_to_le16(0xfffa), 673 .rx_mcs_160 = cpu_to_le16(0xfffa), 674 .tx_mcs_160 = cpu_to_le16(0xfffa), 675 .rx_mcs_80p80 = cpu_to_le16(0xffff), 676 .tx_mcs_80p80 = cpu_to_le16(0xffff), 677 }, 678 /* 679 * Set default PPE thresholds, with PPET16 set to 0, 680 * PPET8 set to 7 681 */ 682 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, 683 }, 684 }, 685 }; 686 687 static void iwl_init_he_hw_capab(struct ieee80211_supported_band *sband, 688 u8 tx_chains, u8 rx_chains) 689 { 690 sband->iftype_data = iwl_he_capa; 691 sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa); 692 693 /* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */ 694 if ((tx_chains & rx_chains) != ANT_AB) { 695 int i; 696 697 for (i = 0; i < sband->n_iftype_data; i++) { 698 iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &= 699 ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS; 700 iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &= 701 ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS; 702 iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &= 703 ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK; 704 } 705 } 706 } 707 708 static void iwl_init_sbands(struct iwl_trans *trans, 709 struct iwl_nvm_data *data, 710 const void *nvm_ch_flags, u8 tx_chains, 711 u8 rx_chains, u32 sbands_flags, bool v4) 712 { 713 struct device *dev = trans->dev; 714 const struct iwl_cfg *cfg = trans->cfg; 715 int n_channels; 716 int n_used = 0; 717 struct ieee80211_supported_band *sband; 718 719 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags, 720 sbands_flags, v4); 721 sband = &data->bands[NL80211_BAND_2GHZ]; 722 sband->band = NL80211_BAND_2GHZ; 723 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; 724 sband->n_bitrates = N_RATES_24; 725 n_used += iwl_init_sband_channels(data, sband, n_channels, 726 NL80211_BAND_2GHZ); 727 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ, 728 tx_chains, rx_chains); 729 730 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 731 iwl_init_he_hw_capab(sband, tx_chains, rx_chains); 732 733 sband = &data->bands[NL80211_BAND_5GHZ]; 734 sband->band = NL80211_BAND_5GHZ; 735 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 736 sband->n_bitrates = N_RATES_52; 737 n_used += iwl_init_sband_channels(data, sband, n_channels, 738 NL80211_BAND_5GHZ); 739 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ, 740 tx_chains, rx_chains); 741 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) 742 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap, 743 tx_chains, rx_chains); 744 745 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 746 iwl_init_he_hw_capab(sband, tx_chains, rx_chains); 747 748 if (n_channels != n_used) 749 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", 750 n_used, n_channels); 751 } 752 753 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 754 const __le16 *phy_sku) 755 { 756 if (cfg->nvm_type != IWL_NVM_EXT) 757 return le16_to_cpup(nvm_sw + SKU); 758 759 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); 760 } 761 762 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 763 { 764 if (cfg->nvm_type != IWL_NVM_EXT) 765 return le16_to_cpup(nvm_sw + NVM_VERSION); 766 else 767 return le32_to_cpup((__le32 *)(nvm_sw + 768 NVM_VERSION_EXT_NVM)); 769 } 770 771 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 772 const __le16 *phy_sku) 773 { 774 if (cfg->nvm_type != IWL_NVM_EXT) 775 return le16_to_cpup(nvm_sw + RADIO_CFG); 776 777 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM)); 778 779 } 780 781 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 782 { 783 int n_hw_addr; 784 785 if (cfg->nvm_type != IWL_NVM_EXT) 786 return le16_to_cpup(nvm_sw + N_HW_ADDRS); 787 788 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); 789 790 return n_hw_addr & N_HW_ADDR_MASK; 791 } 792 793 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, 794 struct iwl_nvm_data *data, 795 u32 radio_cfg) 796 { 797 if (cfg->nvm_type != IWL_NVM_EXT) { 798 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); 799 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); 800 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); 801 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); 802 return; 803 } 804 805 /* set the radio configuration for family 8000 */ 806 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg); 807 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg); 808 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg); 809 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg); 810 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); 811 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); 812 } 813 814 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) 815 { 816 const u8 *hw_addr; 817 818 hw_addr = (const u8 *)&mac_addr0; 819 dest[0] = hw_addr[3]; 820 dest[1] = hw_addr[2]; 821 dest[2] = hw_addr[1]; 822 dest[3] = hw_addr[0]; 823 824 hw_addr = (const u8 *)&mac_addr1; 825 dest[4] = hw_addr[1]; 826 dest[5] = hw_addr[0]; 827 } 828 829 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans, 830 struct iwl_nvm_data *data) 831 { 832 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP)); 833 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP)); 834 835 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 836 /* 837 * If the OEM fused a valid address, use it instead of the one in the 838 * OTP 839 */ 840 if (is_valid_ether_addr(data->hw_addr)) 841 return; 842 843 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP)); 844 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP)); 845 846 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 847 } 848 849 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, 850 const struct iwl_cfg *cfg, 851 struct iwl_nvm_data *data, 852 const __le16 *mac_override, 853 const __be16 *nvm_hw) 854 { 855 const u8 *hw_addr; 856 857 if (mac_override) { 858 static const u8 reserved_mac[] = { 859 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 860 }; 861 862 hw_addr = (const u8 *)(mac_override + 863 MAC_ADDRESS_OVERRIDE_EXT_NVM); 864 865 /* 866 * Store the MAC address from MAO section. 867 * No byte swapping is required in MAO section 868 */ 869 memcpy(data->hw_addr, hw_addr, ETH_ALEN); 870 871 /* 872 * Force the use of the OTP MAC address in case of reserved MAC 873 * address in the NVM, or if address is given but invalid. 874 */ 875 if (is_valid_ether_addr(data->hw_addr) && 876 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) 877 return; 878 879 IWL_ERR(trans, 880 "mac address from nvm override section is not valid\n"); 881 } 882 883 if (nvm_hw) { 884 /* read the mac address from WFMP registers */ 885 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, 886 WFMP_MAC_ADDR_0)); 887 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, 888 WFMP_MAC_ADDR_1)); 889 890 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 891 892 return; 893 } 894 895 IWL_ERR(trans, "mac address is not found\n"); 896 } 897 898 static int iwl_set_hw_address(struct iwl_trans *trans, 899 const struct iwl_cfg *cfg, 900 struct iwl_nvm_data *data, const __be16 *nvm_hw, 901 const __le16 *mac_override) 902 { 903 if (cfg->mac_addr_from_csr) { 904 iwl_set_hw_address_from_csr(trans, data); 905 } else if (cfg->nvm_type != IWL_NVM_EXT) { 906 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); 907 908 /* The byte order is little endian 16 bit, meaning 214365 */ 909 data->hw_addr[0] = hw_addr[1]; 910 data->hw_addr[1] = hw_addr[0]; 911 data->hw_addr[2] = hw_addr[3]; 912 data->hw_addr[3] = hw_addr[2]; 913 data->hw_addr[4] = hw_addr[5]; 914 data->hw_addr[5] = hw_addr[4]; 915 } else { 916 iwl_set_hw_address_family_8000(trans, cfg, data, 917 mac_override, nvm_hw); 918 } 919 920 if (!is_valid_ether_addr(data->hw_addr)) { 921 IWL_ERR(trans, "no valid mac address was found\n"); 922 return -EINVAL; 923 } 924 925 IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr); 926 927 return 0; 928 } 929 930 static bool 931 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg, 932 const __be16 *nvm_hw) 933 { 934 /* 935 * Workaround a bug in Indonesia SKUs where the regulatory in 936 * some 7000-family OTPs erroneously allow wide channels in 937 * 5GHz. To check for Indonesia, we take the SKU value from 938 * bits 1-4 in the subsystem ID and check if it is either 5 or 939 * 9. In those cases, we need to force-disable wide channels 940 * in 5GHz otherwise the FW will throw a sysassert when we try 941 * to use them. 942 */ 943 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) { 944 /* 945 * Unlike the other sections in the NVM, the hw 946 * section uses big-endian. 947 */ 948 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID); 949 u8 sku = (subsystem_id & 0x1e) >> 1; 950 951 if (sku == 5 || sku == 9) { 952 IWL_DEBUG_EEPROM(trans->dev, 953 "disabling wide channels in 5GHz (0x%0x %d)\n", 954 subsystem_id, sku); 955 return true; 956 } 957 } 958 959 return false; 960 } 961 962 struct iwl_nvm_data * 963 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 964 const struct iwl_fw *fw, 965 const __be16 *nvm_hw, const __le16 *nvm_sw, 966 const __le16 *nvm_calib, const __le16 *regulatory, 967 const __le16 *mac_override, const __le16 *phy_sku, 968 u8 tx_chains, u8 rx_chains) 969 { 970 struct iwl_nvm_data *data; 971 bool lar_enabled; 972 u32 sku, radio_cfg; 973 u32 sbands_flags = 0; 974 u16 lar_config; 975 const __le16 *ch_section; 976 977 if (cfg->uhb_supported) 978 data = kzalloc(struct_size(data, channels, 979 IWL_NVM_NUM_CHANNELS_UHB), 980 GFP_KERNEL); 981 else if (cfg->nvm_type != IWL_NVM_EXT) 982 data = kzalloc(struct_size(data, channels, 983 IWL_NVM_NUM_CHANNELS), 984 GFP_KERNEL); 985 else 986 data = kzalloc(struct_size(data, channels, 987 IWL_NVM_NUM_CHANNELS_EXT), 988 GFP_KERNEL); 989 if (!data) 990 return NULL; 991 992 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); 993 994 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); 995 iwl_set_radio_cfg(cfg, data, radio_cfg); 996 if (data->valid_tx_ant) 997 tx_chains &= data->valid_tx_ant; 998 if (data->valid_rx_ant) 999 rx_chains &= data->valid_rx_ant; 1000 1001 sku = iwl_get_sku(cfg, nvm_sw, phy_sku); 1002 data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; 1003 data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; 1004 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; 1005 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) 1006 data->sku_cap_11n_enable = false; 1007 data->sku_cap_11ac_enable = data->sku_cap_11n_enable && 1008 (sku & NVM_SKU_CAP_11AC_ENABLE); 1009 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; 1010 1011 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); 1012 1013 if (cfg->nvm_type != IWL_NVM_EXT) { 1014 /* Checking for required sections */ 1015 if (!nvm_calib) { 1016 IWL_ERR(trans, 1017 "Can't parse empty Calib NVM sections\n"); 1018 kfree(data); 1019 return NULL; 1020 } 1021 1022 ch_section = cfg->nvm_type == IWL_NVM_SDP ? 1023 ®ulatory[NVM_CHANNELS_SDP] : 1024 &nvm_sw[NVM_CHANNELS]; 1025 1026 /* in family 8000 Xtal calibration values moved to OTP */ 1027 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); 1028 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); 1029 lar_enabled = true; 1030 } else { 1031 u16 lar_offset = data->nvm_version < 0xE39 ? 1032 NVM_LAR_OFFSET_OLD : 1033 NVM_LAR_OFFSET; 1034 1035 lar_config = le16_to_cpup(regulatory + lar_offset); 1036 data->lar_enabled = !!(lar_config & 1037 NVM_LAR_ENABLED); 1038 lar_enabled = data->lar_enabled; 1039 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED]; 1040 } 1041 1042 /* If no valid mac address was found - bail out */ 1043 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { 1044 kfree(data); 1045 return NULL; 1046 } 1047 1048 if (lar_enabled && 1049 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) 1050 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 1051 1052 if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw)) 1053 sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ; 1054 1055 iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains, 1056 sbands_flags, false); 1057 data->calib_version = 255; 1058 1059 return data; 1060 } 1061 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); 1062 1063 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan, 1064 int ch_idx, u16 nvm_flags, 1065 u16 cap_flags, 1066 const struct iwl_cfg *cfg) 1067 { 1068 u32 flags = NL80211_RRF_NO_HT40; 1069 1070 if (ch_idx < NUM_2GHZ_CHANNELS && 1071 (nvm_flags & NVM_CHANNEL_40MHZ)) { 1072 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) 1073 flags &= ~NL80211_RRF_NO_HT40PLUS; 1074 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) 1075 flags &= ~NL80211_RRF_NO_HT40MINUS; 1076 } else if (nvm_flags & NVM_CHANNEL_40MHZ) { 1077 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 1078 flags &= ~NL80211_RRF_NO_HT40PLUS; 1079 else 1080 flags &= ~NL80211_RRF_NO_HT40MINUS; 1081 } 1082 1083 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 1084 flags |= NL80211_RRF_NO_80MHZ; 1085 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 1086 flags |= NL80211_RRF_NO_160MHZ; 1087 1088 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 1089 flags |= NL80211_RRF_NO_IR; 1090 1091 if (nvm_flags & NVM_CHANNEL_RADAR) 1092 flags |= NL80211_RRF_DFS; 1093 1094 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 1095 flags |= NL80211_RRF_NO_OUTDOOR; 1096 1097 /* Set the GO concurrent flag only in case that NO_IR is set. 1098 * Otherwise it is meaningless 1099 */ 1100 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 1101 (flags & NL80211_RRF_NO_IR)) 1102 flags |= NL80211_RRF_GO_CONCURRENT; 1103 1104 /* 1105 * cap_flags is per regulatory domain so apply it for every channel 1106 */ 1107 if (ch_idx >= NUM_2GHZ_CHANNELS) { 1108 if (cap_flags & REG_CAPA_40MHZ_FORBIDDEN) 1109 flags |= NL80211_RRF_NO_HT40; 1110 1111 if (!(cap_flags & REG_CAPA_80MHZ_ALLOWED)) 1112 flags |= NL80211_RRF_NO_80MHZ; 1113 1114 if (!(cap_flags & REG_CAPA_160MHZ_ALLOWED)) 1115 flags |= NL80211_RRF_NO_160MHZ; 1116 } 1117 1118 return flags; 1119 } 1120 1121 struct ieee80211_regdomain * 1122 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, 1123 int num_of_ch, __le32 *channels, u16 fw_mcc, 1124 u16 geo_info, u16 cap) 1125 { 1126 int ch_idx; 1127 u16 ch_flags; 1128 u32 reg_rule_flags, prev_reg_rule_flags = 0; 1129 const u16 *nvm_chan; 1130 struct ieee80211_regdomain *regd, *copy_rd; 1131 struct ieee80211_reg_rule *rule; 1132 enum nl80211_band band; 1133 int center_freq, prev_center_freq = 0; 1134 int valid_rules = 0; 1135 bool new_rule; 1136 int max_num_ch; 1137 1138 if (cfg->uhb_supported) { 1139 max_num_ch = IWL_NVM_NUM_CHANNELS_UHB; 1140 nvm_chan = iwl_uhb_nvm_channels; 1141 } else if (cfg->nvm_type == IWL_NVM_EXT) { 1142 max_num_ch = IWL_NVM_NUM_CHANNELS_EXT; 1143 nvm_chan = iwl_ext_nvm_channels; 1144 } else { 1145 max_num_ch = IWL_NVM_NUM_CHANNELS; 1146 nvm_chan = iwl_nvm_channels; 1147 } 1148 1149 if (WARN_ON(num_of_ch > max_num_ch)) 1150 num_of_ch = max_num_ch; 1151 1152 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) 1153 return ERR_PTR(-EINVAL); 1154 1155 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", 1156 num_of_ch); 1157 1158 /* build a regdomain rule for every valid channel */ 1159 regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL); 1160 if (!regd) 1161 return ERR_PTR(-ENOMEM); 1162 1163 /* set alpha2 from FW. */ 1164 regd->alpha2[0] = fw_mcc >> 8; 1165 regd->alpha2[1] = fw_mcc & 0xff; 1166 1167 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 1168 ch_flags = (u16)__le32_to_cpup(channels + ch_idx); 1169 band = (ch_idx < NUM_2GHZ_CHANNELS) ? 1170 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 1171 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], 1172 band); 1173 new_rule = false; 1174 1175 if (!(ch_flags & NVM_CHANNEL_VALID)) { 1176 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 1177 nvm_chan[ch_idx], ch_flags); 1178 continue; 1179 } 1180 1181 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, 1182 ch_flags, cap, 1183 cfg); 1184 1185 /* we can't continue the same rule */ 1186 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags || 1187 center_freq - prev_center_freq > 20) { 1188 valid_rules++; 1189 new_rule = true; 1190 } 1191 1192 rule = ®d->reg_rules[valid_rules - 1]; 1193 1194 if (new_rule) 1195 rule->freq_range.start_freq_khz = 1196 MHZ_TO_KHZ(center_freq - 10); 1197 1198 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); 1199 1200 /* this doesn't matter - not used by FW */ 1201 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 1202 rule->power_rule.max_eirp = 1203 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 1204 1205 rule->flags = reg_rule_flags; 1206 1207 /* rely on auto-calculation to merge BW of contiguous chans */ 1208 rule->flags |= NL80211_RRF_AUTO_BW; 1209 rule->freq_range.max_bandwidth_khz = 0; 1210 1211 prev_center_freq = center_freq; 1212 prev_reg_rule_flags = reg_rule_flags; 1213 1214 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 1215 nvm_chan[ch_idx], ch_flags); 1216 1217 if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) || 1218 band == NL80211_BAND_2GHZ) 1219 continue; 1220 1221 reg_query_regdb_wmm(regd->alpha2, center_freq, rule); 1222 } 1223 1224 regd->n_reg_rules = valid_rules; 1225 1226 /* 1227 * Narrow down regdom for unused regulatory rules to prevent hole 1228 * between reg rules to wmm rules. 1229 */ 1230 copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules), 1231 GFP_KERNEL); 1232 if (!copy_rd) 1233 copy_rd = ERR_PTR(-ENOMEM); 1234 1235 kfree(regd); 1236 return copy_rd; 1237 } 1238 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); 1239 1240 #define IWL_MAX_NVM_SECTION_SIZE 0x1b58 1241 #define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc 1242 #define MAX_NVM_FILE_LEN 16384 1243 1244 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data, 1245 unsigned int len) 1246 { 1247 #define IWL_4165_DEVICE_ID 0x5501 1248 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5) 1249 1250 if (section == NVM_SECTION_TYPE_PHY_SKU && 1251 hw_id == IWL_4165_DEVICE_ID && data && len >= 5 && 1252 (data[4] & NVM_SKU_CAP_MIMO_DISABLE)) 1253 /* OTP 0x52 bug work around: it's a 1x1 device */ 1254 data[3] = ANT_B | (ANT_B << 4); 1255 } 1256 IWL_EXPORT_SYMBOL(iwl_nvm_fixups); 1257 1258 /* 1259 * Reads external NVM from a file into mvm->nvm_sections 1260 * 1261 * HOW TO CREATE THE NVM FILE FORMAT: 1262 * ------------------------------ 1263 * 1. create hex file, format: 1264 * 3800 -> header 1265 * 0000 -> header 1266 * 5a40 -> data 1267 * 1268 * rev - 6 bit (word1) 1269 * len - 10 bit (word1) 1270 * id - 4 bit (word2) 1271 * rsv - 12 bit (word2) 1272 * 1273 * 2. flip 8bits with 8 bits per line to get the right NVM file format 1274 * 1275 * 3. create binary file from the hex file 1276 * 1277 * 4. save as "iNVM_xxx.bin" under /lib/firmware 1278 */ 1279 int iwl_read_external_nvm(struct iwl_trans *trans, 1280 const char *nvm_file_name, 1281 struct iwl_nvm_section *nvm_sections) 1282 { 1283 int ret, section_size; 1284 u16 section_id; 1285 const struct firmware *fw_entry; 1286 const struct { 1287 __le16 word1; 1288 __le16 word2; 1289 u8 data[]; 1290 } *file_sec; 1291 const u8 *eof; 1292 u8 *temp; 1293 int max_section_size; 1294 const __le32 *dword_buff; 1295 1296 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF)) 1297 #define NVM_WORD2_ID(x) (x >> 12) 1298 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8)) 1299 #define EXT_NVM_WORD1_ID(x) ((x) >> 4) 1300 #define NVM_HEADER_0 (0x2A504C54) 1301 #define NVM_HEADER_1 (0x4E564D2A) 1302 #define NVM_HEADER_SIZE (4 * sizeof(u32)) 1303 1304 IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n"); 1305 1306 /* Maximal size depends on NVM version */ 1307 if (trans->cfg->nvm_type != IWL_NVM_EXT) 1308 max_section_size = IWL_MAX_NVM_SECTION_SIZE; 1309 else 1310 max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE; 1311 1312 /* 1313 * Obtain NVM image via request_firmware. Since we already used 1314 * request_firmware_nowait() for the firmware binary load and only 1315 * get here after that we assume the NVM request can be satisfied 1316 * synchronously. 1317 */ 1318 ret = request_firmware(&fw_entry, nvm_file_name, trans->dev); 1319 if (ret) { 1320 IWL_ERR(trans, "ERROR: %s isn't available %d\n", 1321 nvm_file_name, ret); 1322 return ret; 1323 } 1324 1325 IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n", 1326 nvm_file_name, fw_entry->size); 1327 1328 if (fw_entry->size > MAX_NVM_FILE_LEN) { 1329 IWL_ERR(trans, "NVM file too large\n"); 1330 ret = -EINVAL; 1331 goto out; 1332 } 1333 1334 eof = fw_entry->data + fw_entry->size; 1335 dword_buff = (__le32 *)fw_entry->data; 1336 1337 /* some NVM file will contain a header. 1338 * The header is identified by 2 dwords header as follow: 1339 * dword[0] = 0x2A504C54 1340 * dword[1] = 0x4E564D2A 1341 * 1342 * This header must be skipped when providing the NVM data to the FW. 1343 */ 1344 if (fw_entry->size > NVM_HEADER_SIZE && 1345 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) && 1346 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) { 1347 file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE); 1348 IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2])); 1349 IWL_INFO(trans, "NVM Manufacturing date %08X\n", 1350 le32_to_cpu(dword_buff[3])); 1351 1352 /* nvm file validation, dword_buff[2] holds the file version */ 1353 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 && 1354 CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP && 1355 le32_to_cpu(dword_buff[2]) < 0xE4A) { 1356 ret = -EFAULT; 1357 goto out; 1358 } 1359 } else { 1360 file_sec = (void *)fw_entry->data; 1361 } 1362 1363 while (true) { 1364 if (file_sec->data > eof) { 1365 IWL_ERR(trans, 1366 "ERROR - NVM file too short for section header\n"); 1367 ret = -EINVAL; 1368 break; 1369 } 1370 1371 /* check for EOF marker */ 1372 if (!file_sec->word1 && !file_sec->word2) { 1373 ret = 0; 1374 break; 1375 } 1376 1377 if (trans->cfg->nvm_type != IWL_NVM_EXT) { 1378 section_size = 1379 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1)); 1380 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2)); 1381 } else { 1382 section_size = 2 * EXT_NVM_WORD2_LEN( 1383 le16_to_cpu(file_sec->word2)); 1384 section_id = EXT_NVM_WORD1_ID( 1385 le16_to_cpu(file_sec->word1)); 1386 } 1387 1388 if (section_size > max_section_size) { 1389 IWL_ERR(trans, "ERROR - section too large (%d)\n", 1390 section_size); 1391 ret = -EINVAL; 1392 break; 1393 } 1394 1395 if (!section_size) { 1396 IWL_ERR(trans, "ERROR - section empty\n"); 1397 ret = -EINVAL; 1398 break; 1399 } 1400 1401 if (file_sec->data + section_size > eof) { 1402 IWL_ERR(trans, 1403 "ERROR - NVM file too short for section (%d bytes)\n", 1404 section_size); 1405 ret = -EINVAL; 1406 break; 1407 } 1408 1409 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS, 1410 "Invalid NVM section ID %d\n", section_id)) { 1411 ret = -EINVAL; 1412 break; 1413 } 1414 1415 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL); 1416 if (!temp) { 1417 ret = -ENOMEM; 1418 break; 1419 } 1420 1421 iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size); 1422 1423 kfree(nvm_sections[section_id].data); 1424 nvm_sections[section_id].data = temp; 1425 nvm_sections[section_id].length = section_size; 1426 1427 /* advance to the next section */ 1428 file_sec = (void *)(file_sec->data + section_size); 1429 } 1430 out: 1431 release_firmware(fw_entry); 1432 return ret; 1433 } 1434 IWL_EXPORT_SYMBOL(iwl_read_external_nvm); 1435 1436 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans, 1437 const struct iwl_fw *fw) 1438 { 1439 struct iwl_nvm_get_info cmd = {}; 1440 struct iwl_nvm_data *nvm; 1441 struct iwl_host_cmd hcmd = { 1442 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, 1443 .data = { &cmd, }, 1444 .len = { sizeof(cmd) }, 1445 .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO) 1446 }; 1447 int ret; 1448 bool empty_otp; 1449 u32 mac_flags; 1450 u32 sbands_flags = 0; 1451 /* 1452 * All the values in iwl_nvm_get_info_rsp v4 are the same as 1453 * in v3, except for the channel profile part of the 1454 * regulatory. So we can just access the new struct, with the 1455 * exception of the latter. 1456 */ 1457 struct iwl_nvm_get_info_rsp *rsp; 1458 struct iwl_nvm_get_info_rsp_v3 *rsp_v3; 1459 bool v4 = fw_has_api(&fw->ucode_capa, 1460 IWL_UCODE_TLV_API_REGULATORY_NVM_INFO); 1461 size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3); 1462 void *channel_profile; 1463 1464 ret = iwl_trans_send_cmd(trans, &hcmd); 1465 if (ret) 1466 return ERR_PTR(ret); 1467 1468 if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size, 1469 "Invalid payload len in NVM response from FW %d", 1470 iwl_rx_packet_payload_len(hcmd.resp_pkt))) { 1471 ret = -EINVAL; 1472 goto out; 1473 } 1474 1475 rsp = (void *)hcmd.resp_pkt->data; 1476 empty_otp = !!(le32_to_cpu(rsp->general.flags) & 1477 NVM_GENERAL_FLAGS_EMPTY_OTP); 1478 if (empty_otp) 1479 IWL_INFO(trans, "OTP is empty\n"); 1480 1481 nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL); 1482 if (!nvm) { 1483 ret = -ENOMEM; 1484 goto out; 1485 } 1486 1487 iwl_set_hw_address_from_csr(trans, nvm); 1488 /* TODO: if platform NVM has MAC address - override it here */ 1489 1490 if (!is_valid_ether_addr(nvm->hw_addr)) { 1491 IWL_ERR(trans, "no valid mac address was found\n"); 1492 ret = -EINVAL; 1493 goto err_free; 1494 } 1495 1496 IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr); 1497 1498 /* Initialize general data */ 1499 nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version); 1500 nvm->n_hw_addrs = rsp->general.n_hw_addrs; 1501 if (nvm->n_hw_addrs == 0) 1502 IWL_WARN(trans, 1503 "Firmware declares no reserved mac addresses. OTP is empty: %d\n", 1504 empty_otp); 1505 1506 /* Initialize MAC sku data */ 1507 mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags); 1508 nvm->sku_cap_11ac_enable = 1509 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED); 1510 nvm->sku_cap_11n_enable = 1511 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED); 1512 nvm->sku_cap_11ax_enable = 1513 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED); 1514 nvm->sku_cap_band_24ghz_enable = 1515 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED); 1516 nvm->sku_cap_band_52ghz_enable = 1517 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED); 1518 nvm->sku_cap_mimo_disabled = 1519 !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED); 1520 1521 /* Initialize PHY sku data */ 1522 nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains); 1523 nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains); 1524 1525 if (le32_to_cpu(rsp->regulatory.lar_enabled) && 1526 fw_has_capa(&fw->ucode_capa, 1527 IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) { 1528 nvm->lar_enabled = true; 1529 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 1530 } 1531 1532 rsp_v3 = (void *)rsp; 1533 channel_profile = v4 ? (void *)rsp->regulatory.channel_profile : 1534 (void *)rsp_v3->regulatory.channel_profile; 1535 1536 iwl_init_sbands(trans, nvm, 1537 channel_profile, 1538 nvm->valid_tx_ant & fw->valid_tx_ant, 1539 nvm->valid_rx_ant & fw->valid_rx_ant, 1540 sbands_flags, v4); 1541 1542 iwl_free_resp(&hcmd); 1543 return nvm; 1544 1545 err_free: 1546 kfree(nvm); 1547 out: 1548 iwl_free_resp(&hcmd); 1549 return ERR_PTR(ret); 1550 } 1551 IWL_EXPORT_SYMBOL(iwl_get_nvm); 1552