1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018        Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018        Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *****************************************************************************/
63 #include <linux/types.h>
64 #include <linux/slab.h>
65 #include <linux/export.h>
66 #include <linux/etherdevice.h>
67 #include <linux/pci.h>
68 #include <linux/firmware.h>
69 
70 #include "iwl-drv.h"
71 #include "iwl-modparams.h"
72 #include "iwl-nvm-parse.h"
73 #include "iwl-prph.h"
74 #include "iwl-io.h"
75 #include "iwl-csr.h"
76 #include "fw/acpi.h"
77 #include "fw/api/nvm-reg.h"
78 #include "fw/api/commands.h"
79 #include "fw/api/cmdhdr.h"
80 #include "fw/img.h"
81 
82 /* NVM offsets (in words) definitions */
83 enum nvm_offsets {
84 	/* NVM HW-Section offset (in words) definitions */
85 	SUBSYSTEM_ID = 0x0A,
86 	HW_ADDR = 0x15,
87 
88 	/* NVM SW-Section offset (in words) definitions */
89 	NVM_SW_SECTION = 0x1C0,
90 	NVM_VERSION = 0,
91 	RADIO_CFG = 1,
92 	SKU = 2,
93 	N_HW_ADDRS = 3,
94 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
95 
96 	/* NVM calibration section offset (in words) definitions */
97 	NVM_CALIB_SECTION = 0x2B8,
98 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
99 
100 	/* NVM REGULATORY -Section offset (in words) definitions */
101 	NVM_CHANNELS_SDP = 0,
102 };
103 
104 enum ext_nvm_offsets {
105 	/* NVM HW-Section offset (in words) definitions */
106 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107 
108 	/* NVM SW-Section offset (in words) definitions */
109 	NVM_VERSION_EXT_NVM = 0,
110 	RADIO_CFG_FAMILY_EXT_NVM = 0,
111 	SKU_FAMILY_8000 = 2,
112 	N_HW_ADDRS_FAMILY_8000 = 3,
113 
114 	/* NVM REGULATORY -Section offset (in words) definitions */
115 	NVM_CHANNELS_EXTENDED = 0,
116 	NVM_LAR_OFFSET_OLD = 0x4C7,
117 	NVM_LAR_OFFSET = 0x507,
118 	NVM_LAR_ENABLED = 0x7,
119 };
120 
121 /* SKU Capabilities (actual values from NVM definition) */
122 enum nvm_sku_bits {
123 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
124 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
125 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
126 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
127 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 };
129 
130 /*
131  * These are the channel numbers in the order that they are stored in the NVM
132  */
133 static const u8 iwl_nvm_channels[] = {
134 	/* 2.4 GHz */
135 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
136 	/* 5 GHz */
137 	36, 40, 44 , 48, 52, 56, 60, 64,
138 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
139 	149, 153, 157, 161, 165
140 };
141 
142 static const u8 iwl_ext_nvm_channels[] = {
143 	/* 2.4 GHz */
144 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 	/* 5 GHz */
146 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
147 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
148 	149, 153, 157, 161, 165, 169, 173, 177, 181
149 };
150 
151 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
152 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
153 #define NUM_2GHZ_CHANNELS		14
154 #define NUM_2GHZ_CHANNELS_EXT	14
155 #define FIRST_2GHZ_HT_MINUS		5
156 #define LAST_2GHZ_HT_PLUS		9
157 #define LAST_5GHZ_HT			165
158 #define LAST_5GHZ_HT_FAMILY_8000	181
159 #define N_HW_ADDR_MASK			0xF
160 
161 /* rate data (static) */
162 static struct ieee80211_rate iwl_cfg80211_rates[] = {
163 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
164 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
165 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
166 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
167 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
168 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
169 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
170 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
171 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
172 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
173 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
174 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
175 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
176 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
177 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
178 };
179 #define RATES_24_OFFS	0
180 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
181 #define RATES_52_OFFS	4
182 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
183 
184 /**
185  * enum iwl_nvm_channel_flags - channel flags in NVM
186  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
187  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
188  * @NVM_CHANNEL_ACTIVE: active scanning allowed
189  * @NVM_CHANNEL_RADAR: radar detection required
190  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
191  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
192  *	on same channel on 2.4 or same UNII band on 5.2
193  * @NVM_CHANNEL_UNIFORM: uniform spreading required
194  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
195  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
196  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
197  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
198  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
199  */
200 enum iwl_nvm_channel_flags {
201 	NVM_CHANNEL_VALID		= BIT(0),
202 	NVM_CHANNEL_IBSS		= BIT(1),
203 	NVM_CHANNEL_ACTIVE		= BIT(3),
204 	NVM_CHANNEL_RADAR		= BIT(4),
205 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
206 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
207 	NVM_CHANNEL_UNIFORM		= BIT(7),
208 	NVM_CHANNEL_20MHZ		= BIT(8),
209 	NVM_CHANNEL_40MHZ		= BIT(9),
210 	NVM_CHANNEL_80MHZ		= BIT(10),
211 	NVM_CHANNEL_160MHZ		= BIT(11),
212 	NVM_CHANNEL_DC_HIGH		= BIT(12),
213 };
214 
215 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
216 					       int chan, u16 flags)
217 {
218 #define CHECK_AND_PRINT_I(x)	\
219 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
220 
221 	if (!(flags & NVM_CHANNEL_VALID)) {
222 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
223 			      chan, flags);
224 		return;
225 	}
226 
227 	/* Note: already can print up to 101 characters, 110 is the limit! */
228 	IWL_DEBUG_DEV(dev, level,
229 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
230 		      chan, flags,
231 		      CHECK_AND_PRINT_I(VALID),
232 		      CHECK_AND_PRINT_I(IBSS),
233 		      CHECK_AND_PRINT_I(ACTIVE),
234 		      CHECK_AND_PRINT_I(RADAR),
235 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
236 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
237 		      CHECK_AND_PRINT_I(UNIFORM),
238 		      CHECK_AND_PRINT_I(20MHZ),
239 		      CHECK_AND_PRINT_I(40MHZ),
240 		      CHECK_AND_PRINT_I(80MHZ),
241 		      CHECK_AND_PRINT_I(160MHZ),
242 		      CHECK_AND_PRINT_I(DC_HIGH));
243 #undef CHECK_AND_PRINT_I
244 }
245 
246 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
247 				 u16 nvm_flags, const struct iwl_cfg *cfg)
248 {
249 	u32 flags = IEEE80211_CHAN_NO_HT40;
250 	u32 last_5ghz_ht = LAST_5GHZ_HT;
251 
252 	if (cfg->nvm_type == IWL_NVM_EXT)
253 		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
254 
255 	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
256 		if (ch_num <= LAST_2GHZ_HT_PLUS)
257 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
258 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
259 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
260 	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
261 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
262 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
263 		else
264 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
265 	}
266 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
267 		flags |= IEEE80211_CHAN_NO_80MHZ;
268 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
269 		flags |= IEEE80211_CHAN_NO_160MHZ;
270 
271 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
272 		flags |= IEEE80211_CHAN_NO_IR;
273 
274 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
275 		flags |= IEEE80211_CHAN_NO_IR;
276 
277 	if (nvm_flags & NVM_CHANNEL_RADAR)
278 		flags |= IEEE80211_CHAN_RADAR;
279 
280 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
281 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
282 
283 	/* Set the GO concurrent flag only in case that NO_IR is set.
284 	 * Otherwise it is meaningless
285 	 */
286 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
287 	    (flags & IEEE80211_CHAN_NO_IR))
288 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
289 
290 	return flags;
291 }
292 
293 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
294 				struct iwl_nvm_data *data,
295 				const __le16 * const nvm_ch_flags,
296 				u32 sbands_flags)
297 {
298 	int ch_idx;
299 	int n_channels = 0;
300 	struct ieee80211_channel *channel;
301 	u16 ch_flags;
302 	int num_of_ch, num_2ghz_channels;
303 	const u8 *nvm_chan;
304 
305 	if (cfg->nvm_type != IWL_NVM_EXT) {
306 		num_of_ch = IWL_NVM_NUM_CHANNELS;
307 		nvm_chan = &iwl_nvm_channels[0];
308 		num_2ghz_channels = NUM_2GHZ_CHANNELS;
309 	} else {
310 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
311 		nvm_chan = &iwl_ext_nvm_channels[0];
312 		num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
313 	}
314 
315 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
316 		bool is_5ghz = (ch_idx >= num_2ghz_channels);
317 
318 		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
319 
320 		if (is_5ghz && !data->sku_cap_band_52ghz_enable)
321 			continue;
322 
323 		/* workaround to disable wide channels in 5GHz */
324 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
325 		    is_5ghz) {
326 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
327 				     NVM_CHANNEL_80MHZ |
328 				     NVM_CHANNEL_160MHZ);
329 		}
330 
331 		if (ch_flags & NVM_CHANNEL_160MHZ)
332 			data->vht160_supported = true;
333 
334 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
335 		    !(ch_flags & NVM_CHANNEL_VALID)) {
336 			/*
337 			 * Channels might become valid later if lar is
338 			 * supported, hence we still want to add them to
339 			 * the list of supported channels to cfg80211.
340 			 */
341 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
342 						    nvm_chan[ch_idx], ch_flags);
343 			continue;
344 		}
345 
346 		channel = &data->channels[n_channels];
347 		n_channels++;
348 
349 		channel->hw_value = nvm_chan[ch_idx];
350 		channel->band = is_5ghz ?
351 				NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
352 		channel->center_freq =
353 			ieee80211_channel_to_frequency(
354 				channel->hw_value, channel->band);
355 
356 		/* Initialize regulatory-based run-time data */
357 
358 		/*
359 		 * Default value - highest tx power value.  max_power
360 		 * is not used in mvm, and is used for backwards compatibility
361 		 */
362 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
363 
364 		/* don't put limitations in case we're using LAR */
365 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
366 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
367 							       ch_idx, is_5ghz,
368 							       ch_flags, cfg);
369 		else
370 			channel->flags = 0;
371 
372 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
373 					    channel->hw_value, ch_flags);
374 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
375 				 channel->hw_value, channel->max_power);
376 	}
377 
378 	return n_channels;
379 }
380 
381 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
382 				  struct iwl_nvm_data *data,
383 				  struct ieee80211_sta_vht_cap *vht_cap,
384 				  u8 tx_chains, u8 rx_chains)
385 {
386 	int num_rx_ants = num_of_ant(rx_chains);
387 	int num_tx_ants = num_of_ant(tx_chains);
388 	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
389 					   IEEE80211_VHT_MAX_AMPDU_1024K);
390 
391 	vht_cap->vht_supported = true;
392 
393 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
394 		       IEEE80211_VHT_CAP_RXSTBC_1 |
395 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
396 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
397 		       max_ampdu_exponent <<
398 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
399 
400 	if (data->vht160_supported)
401 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
402 				IEEE80211_VHT_CAP_SHORT_GI_160;
403 
404 	if (cfg->vht_mu_mimo_supported)
405 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
406 
407 	if (cfg->ht_params->ldpc)
408 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
409 
410 	if (data->sku_cap_mimo_disabled) {
411 		num_rx_ants = 1;
412 		num_tx_ants = 1;
413 	}
414 
415 	if (num_tx_ants > 1)
416 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
417 	else
418 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
419 
420 	switch (iwlwifi_mod_params.amsdu_size) {
421 	case IWL_AMSDU_DEF:
422 		if (cfg->mq_rx_supported)
423 			vht_cap->cap |=
424 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
425 		else
426 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
427 		break;
428 	case IWL_AMSDU_2K:
429 		if (cfg->mq_rx_supported)
430 			vht_cap->cap |=
431 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
432 		else
433 			WARN(1, "RB size of 2K is not supported by this device\n");
434 		break;
435 	case IWL_AMSDU_4K:
436 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
437 		break;
438 	case IWL_AMSDU_8K:
439 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
440 		break;
441 	case IWL_AMSDU_12K:
442 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
443 		break;
444 	default:
445 		break;
446 	}
447 
448 	vht_cap->vht_mcs.rx_mcs_map =
449 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
450 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
451 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
452 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
453 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
454 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
455 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
456 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
457 
458 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
459 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
460 		/* this works because NOT_SUPPORTED == 3 */
461 		vht_cap->vht_mcs.rx_mcs_map |=
462 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
463 	}
464 
465 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
466 }
467 
468 static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
469 	{
470 		.types_mask = BIT(NL80211_IFTYPE_STATION),
471 		.he_cap = {
472 			.has_he = true,
473 			.he_cap_elem = {
474 				.mac_cap_info[0] =
475 					IEEE80211_HE_MAC_CAP0_HTC_HE |
476 					IEEE80211_HE_MAC_CAP0_TWT_REQ,
477 				.mac_cap_info[1] =
478 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
479 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
480 				.mac_cap_info[2] =
481 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
482 					IEEE80211_HE_MAC_CAP2_MU_CASCADING |
483 					IEEE80211_HE_MAC_CAP2_ACK_EN,
484 				.mac_cap_info[3] =
485 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
486 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
487 				.mac_cap_info[4] =
488 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
489 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
490 				.mac_cap_info[5] =
491 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
492 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
493 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
494 				.phy_cap_info[0] =
495 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
496 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
497 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
498 				.phy_cap_info[1] =
499 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
500 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
501 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
502 					IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
503 				.phy_cap_info[2] =
504 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
505 					IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
506 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
507 					IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
508 					IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
509 				.phy_cap_info[3] =
510 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
511 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
512 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
513 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
514 				.phy_cap_info[4] =
515 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
516 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
517 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
518 				.phy_cap_info[5] =
519 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
520 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 |
521 					IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK |
522 					IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK,
523 				.phy_cap_info[6] =
524 					IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
525 					IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU |
526 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMER_FB |
527 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMER_FB |
528 					IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB |
529 					IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO |
530 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
531 				.phy_cap_info[7] =
532 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
533 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
534 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
535 				.phy_cap_info[8] =
536 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
537 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
538 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
539 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
540 					IEEE80211_HE_PHY_CAP8_DCM_MAX_BW_160_OR_80P80_MHZ,
541 				.phy_cap_info[9] =
542 					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
543 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
544 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB,
545 			},
546 			/*
547 			 * Set default Tx/Rx HE MCS NSS Support field.
548 			 * Indicate support for up to 2 spatial streams and all
549 			 * MCS, without any special cases
550 			 */
551 			.he_mcs_nss_supp = {
552 				.rx_mcs_80 = cpu_to_le16(0xfffa),
553 				.tx_mcs_80 = cpu_to_le16(0xfffa),
554 				.rx_mcs_160 = cpu_to_le16(0xfffa),
555 				.tx_mcs_160 = cpu_to_le16(0xfffa),
556 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
557 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
558 			},
559 			/*
560 			 * Set default PPE thresholds, with PPET16 set to 0,
561 			 * PPET8 set to 7
562 			 */
563 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
564 		},
565 	},
566 	{
567 		.types_mask = BIT(NL80211_IFTYPE_AP),
568 		.he_cap = {
569 			.has_he = true,
570 			.he_cap_elem = {
571 				.mac_cap_info[0] =
572 					IEEE80211_HE_MAC_CAP0_HTC_HE |
573 					IEEE80211_HE_MAC_CAP0_TWT_RES,
574 				.mac_cap_info[1] =
575 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
576 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
577 				.mac_cap_info[2] =
578 					IEEE80211_HE_MAC_CAP2_BSR |
579 					IEEE80211_HE_MAC_CAP2_MU_CASCADING |
580 					IEEE80211_HE_MAC_CAP2_ACK_EN,
581 				.mac_cap_info[3] =
582 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
583 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
584 				.mac_cap_info[4] =
585 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
586 				.phy_cap_info[0] =
587 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
588 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
589 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
590 				.phy_cap_info[1] =
591 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
592 					IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
593 				.phy_cap_info[2] =
594 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
595 					IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
596 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
597 				.phy_cap_info[3] =
598 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
599 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
600 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
601 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
602 				.phy_cap_info[4] =
603 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
604 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
605 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
606 				.phy_cap_info[5] =
607 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
608 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 |
609 					IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK |
610 					IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK,
611 				.phy_cap_info[6] =
612 					IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
613 					IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU |
614 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
615 				.phy_cap_info[7] =
616 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
617 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
618 				.phy_cap_info[8] =
619 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
620 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
621 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
622 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
623 					IEEE80211_HE_PHY_CAP8_DCM_MAX_BW_160_OR_80P80_MHZ,
624 				.phy_cap_info[9] =
625 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
626 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB,
627 			},
628 			/*
629 			 * Set default Tx/Rx HE MCS NSS Support field.
630 			 * Indicate support for up to 2 spatial streams and all
631 			 * MCS, without any special cases
632 			 */
633 			.he_mcs_nss_supp = {
634 				.rx_mcs_80 = cpu_to_le16(0xfffa),
635 				.tx_mcs_80 = cpu_to_le16(0xfffa),
636 				.rx_mcs_160 = cpu_to_le16(0xfffa),
637 				.tx_mcs_160 = cpu_to_le16(0xfffa),
638 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
639 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
640 			},
641 			/*
642 			 * Set default PPE thresholds, with PPET16 set to 0,
643 			 * PPET8 set to 7
644 			 */
645 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
646 		},
647 	},
648 };
649 
650 static void iwl_init_he_hw_capab(struct ieee80211_supported_band *sband,
651 				 u8 tx_chains, u8 rx_chains)
652 {
653 	if (sband->band == NL80211_BAND_2GHZ ||
654 	    sband->band == NL80211_BAND_5GHZ)
655 		sband->iftype_data = iwl_he_capa;
656 	else
657 		return;
658 
659 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
660 
661 	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
662 	if ((tx_chains & rx_chains) != ANT_AB) {
663 		int i;
664 
665 		for (i = 0; i < sband->n_iftype_data; i++) {
666 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
667 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
668 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
669 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
670 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
671 				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
672 		}
673 	}
674 }
675 
676 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
677 			    struct iwl_nvm_data *data,
678 			    const __le16 *nvm_ch_flags, u8 tx_chains,
679 			    u8 rx_chains, u32 sbands_flags)
680 {
681 	int n_channels;
682 	int n_used = 0;
683 	struct ieee80211_supported_band *sband;
684 
685 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
686 					  sbands_flags);
687 	sband = &data->bands[NL80211_BAND_2GHZ];
688 	sband->band = NL80211_BAND_2GHZ;
689 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
690 	sband->n_bitrates = N_RATES_24;
691 	n_used += iwl_init_sband_channels(data, sband, n_channels,
692 					  NL80211_BAND_2GHZ);
693 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
694 			     tx_chains, rx_chains);
695 
696 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
697 		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
698 
699 	sband = &data->bands[NL80211_BAND_5GHZ];
700 	sband->band = NL80211_BAND_5GHZ;
701 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
702 	sband->n_bitrates = N_RATES_52;
703 	n_used += iwl_init_sband_channels(data, sband, n_channels,
704 					  NL80211_BAND_5GHZ);
705 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
706 			     tx_chains, rx_chains);
707 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
708 		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
709 				      tx_chains, rx_chains);
710 
711 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
712 		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
713 
714 	if (n_channels != n_used)
715 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
716 			    n_used, n_channels);
717 }
718 
719 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
720 		       const __le16 *phy_sku)
721 {
722 	if (cfg->nvm_type != IWL_NVM_EXT)
723 		return le16_to_cpup(nvm_sw + SKU);
724 
725 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
726 }
727 
728 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
729 {
730 	if (cfg->nvm_type != IWL_NVM_EXT)
731 		return le16_to_cpup(nvm_sw + NVM_VERSION);
732 	else
733 		return le32_to_cpup((__le32 *)(nvm_sw +
734 					       NVM_VERSION_EXT_NVM));
735 }
736 
737 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
738 			     const __le16 *phy_sku)
739 {
740 	if (cfg->nvm_type != IWL_NVM_EXT)
741 		return le16_to_cpup(nvm_sw + RADIO_CFG);
742 
743 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
744 
745 }
746 
747 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
748 {
749 	int n_hw_addr;
750 
751 	if (cfg->nvm_type != IWL_NVM_EXT)
752 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
753 
754 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
755 
756 	return n_hw_addr & N_HW_ADDR_MASK;
757 }
758 
759 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
760 			      struct iwl_nvm_data *data,
761 			      u32 radio_cfg)
762 {
763 	if (cfg->nvm_type != IWL_NVM_EXT) {
764 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
765 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
766 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
767 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
768 		return;
769 	}
770 
771 	/* set the radio configuration for family 8000 */
772 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
773 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
774 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
775 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
776 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
777 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
778 }
779 
780 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
781 {
782 	const u8 *hw_addr;
783 
784 	hw_addr = (const u8 *)&mac_addr0;
785 	dest[0] = hw_addr[3];
786 	dest[1] = hw_addr[2];
787 	dest[2] = hw_addr[1];
788 	dest[3] = hw_addr[0];
789 
790 	hw_addr = (const u8 *)&mac_addr1;
791 	dest[4] = hw_addr[1];
792 	dest[5] = hw_addr[0];
793 }
794 
795 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
796 					struct iwl_nvm_data *data)
797 {
798 	__le32 mac_addr0 =
799 		cpu_to_le32(iwl_read32(trans,
800 				       trans->cfg->csr->mac_addr0_strap));
801 	__le32 mac_addr1 =
802 		cpu_to_le32(iwl_read32(trans,
803 				       trans->cfg->csr->mac_addr1_strap));
804 
805 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
806 	/*
807 	 * If the OEM fused a valid address, use it instead of the one in the
808 	 * OTP
809 	 */
810 	if (is_valid_ether_addr(data->hw_addr))
811 		return;
812 
813 	mac_addr0 = cpu_to_le32(iwl_read32(trans,
814 					   trans->cfg->csr->mac_addr0_otp));
815 	mac_addr1 = cpu_to_le32(iwl_read32(trans,
816 					   trans->cfg->csr->mac_addr1_otp));
817 
818 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
819 }
820 
821 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
822 					   const struct iwl_cfg *cfg,
823 					   struct iwl_nvm_data *data,
824 					   const __le16 *mac_override,
825 					   const __be16 *nvm_hw)
826 {
827 	const u8 *hw_addr;
828 
829 	if (mac_override) {
830 		static const u8 reserved_mac[] = {
831 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
832 		};
833 
834 		hw_addr = (const u8 *)(mac_override +
835 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
836 
837 		/*
838 		 * Store the MAC address from MAO section.
839 		 * No byte swapping is required in MAO section
840 		 */
841 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
842 
843 		/*
844 		 * Force the use of the OTP MAC address in case of reserved MAC
845 		 * address in the NVM, or if address is given but invalid.
846 		 */
847 		if (is_valid_ether_addr(data->hw_addr) &&
848 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
849 			return;
850 
851 		IWL_ERR(trans,
852 			"mac address from nvm override section is not valid\n");
853 	}
854 
855 	if (nvm_hw) {
856 		/* read the mac address from WFMP registers */
857 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
858 						WFMP_MAC_ADDR_0));
859 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
860 						WFMP_MAC_ADDR_1));
861 
862 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
863 
864 		return;
865 	}
866 
867 	IWL_ERR(trans, "mac address is not found\n");
868 }
869 
870 static int iwl_set_hw_address(struct iwl_trans *trans,
871 			      const struct iwl_cfg *cfg,
872 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
873 			      const __le16 *mac_override)
874 {
875 	if (cfg->mac_addr_from_csr) {
876 		iwl_set_hw_address_from_csr(trans, data);
877 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
878 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
879 
880 		/* The byte order is little endian 16 bit, meaning 214365 */
881 		data->hw_addr[0] = hw_addr[1];
882 		data->hw_addr[1] = hw_addr[0];
883 		data->hw_addr[2] = hw_addr[3];
884 		data->hw_addr[3] = hw_addr[2];
885 		data->hw_addr[4] = hw_addr[5];
886 		data->hw_addr[5] = hw_addr[4];
887 	} else {
888 		iwl_set_hw_address_family_8000(trans, cfg, data,
889 					       mac_override, nvm_hw);
890 	}
891 
892 	if (!is_valid_ether_addr(data->hw_addr)) {
893 		IWL_ERR(trans, "no valid mac address was found\n");
894 		return -EINVAL;
895 	}
896 
897 	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
898 
899 	return 0;
900 }
901 
902 static bool
903 iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg,
904 			const __be16 *nvm_hw)
905 {
906 	/*
907 	 * Workaround a bug in Indonesia SKUs where the regulatory in
908 	 * some 7000-family OTPs erroneously allow wide channels in
909 	 * 5GHz.  To check for Indonesia, we take the SKU value from
910 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
911 	 * 9.  In those cases, we need to force-disable wide channels
912 	 * in 5GHz otherwise the FW will throw a sysassert when we try
913 	 * to use them.
914 	 */
915 	if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
916 		/*
917 		 * Unlike the other sections in the NVM, the hw
918 		 * section uses big-endian.
919 		 */
920 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
921 		u8 sku = (subsystem_id & 0x1e) >> 1;
922 
923 		if (sku == 5 || sku == 9) {
924 			IWL_DEBUG_EEPROM(dev,
925 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
926 					 subsystem_id, sku);
927 			return true;
928 		}
929 	}
930 
931 	return false;
932 }
933 
934 struct iwl_nvm_data *
935 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
936 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
937 		   const __le16 *nvm_calib, const __le16 *regulatory,
938 		   const __le16 *mac_override, const __le16 *phy_sku,
939 		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
940 {
941 	struct device *dev = trans->dev;
942 	struct iwl_nvm_data *data;
943 	bool lar_enabled;
944 	u32 sku, radio_cfg;
945 	u32 sbands_flags = 0;
946 	u16 lar_config;
947 	const __le16 *ch_section;
948 
949 	if (cfg->nvm_type != IWL_NVM_EXT)
950 		data = kzalloc(sizeof(*data) +
951 			       sizeof(struct ieee80211_channel) *
952 			       IWL_NVM_NUM_CHANNELS,
953 			       GFP_KERNEL);
954 	else
955 		data = kzalloc(sizeof(*data) +
956 			       sizeof(struct ieee80211_channel) *
957 			       IWL_NVM_NUM_CHANNELS_EXT,
958 			       GFP_KERNEL);
959 	if (!data)
960 		return NULL;
961 
962 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
963 
964 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
965 	iwl_set_radio_cfg(cfg, data, radio_cfg);
966 	if (data->valid_tx_ant)
967 		tx_chains &= data->valid_tx_ant;
968 	if (data->valid_rx_ant)
969 		rx_chains &= data->valid_rx_ant;
970 
971 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
972 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
973 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
974 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
975 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
976 		data->sku_cap_11n_enable = false;
977 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
978 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
979 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
980 
981 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
982 
983 	if (cfg->nvm_type != IWL_NVM_EXT) {
984 		/* Checking for required sections */
985 		if (!nvm_calib) {
986 			IWL_ERR(trans,
987 				"Can't parse empty Calib NVM sections\n");
988 			kfree(data);
989 			return NULL;
990 		}
991 
992 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
993 			     &regulatory[NVM_CHANNELS_SDP] :
994 			     &nvm_sw[NVM_CHANNELS];
995 
996 		/* in family 8000 Xtal calibration values moved to OTP */
997 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
998 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
999 		lar_enabled = true;
1000 	} else {
1001 		u16 lar_offset = data->nvm_version < 0xE39 ?
1002 				 NVM_LAR_OFFSET_OLD :
1003 				 NVM_LAR_OFFSET;
1004 
1005 		lar_config = le16_to_cpup(regulatory + lar_offset);
1006 		data->lar_enabled = !!(lar_config &
1007 				       NVM_LAR_ENABLED);
1008 		lar_enabled = data->lar_enabled;
1009 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1010 	}
1011 
1012 	/* If no valid mac address was found - bail out */
1013 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1014 		kfree(data);
1015 		return NULL;
1016 	}
1017 
1018 	if (lar_fw_supported && lar_enabled)
1019 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1020 
1021 	if (iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw))
1022 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1023 
1024 	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
1025 			sbands_flags);
1026 	data->calib_version = 255;
1027 
1028 	return data;
1029 }
1030 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1031 
1032 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
1033 				       int ch_idx, u16 nvm_flags,
1034 				       const struct iwl_cfg *cfg)
1035 {
1036 	u32 flags = NL80211_RRF_NO_HT40;
1037 	u32 last_5ghz_ht = LAST_5GHZ_HT;
1038 
1039 	if (cfg->nvm_type == IWL_NVM_EXT)
1040 		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
1041 
1042 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1043 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1044 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1045 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1046 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1047 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1048 	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
1049 		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
1050 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1051 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1052 		else
1053 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1054 	}
1055 
1056 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1057 		flags |= NL80211_RRF_NO_80MHZ;
1058 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1059 		flags |= NL80211_RRF_NO_160MHZ;
1060 
1061 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1062 		flags |= NL80211_RRF_NO_IR;
1063 
1064 	if (nvm_flags & NVM_CHANNEL_RADAR)
1065 		flags |= NL80211_RRF_DFS;
1066 
1067 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1068 		flags |= NL80211_RRF_NO_OUTDOOR;
1069 
1070 	/* Set the GO concurrent flag only in case that NO_IR is set.
1071 	 * Otherwise it is meaningless
1072 	 */
1073 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1074 	    (flags & NL80211_RRF_NO_IR))
1075 		flags |= NL80211_RRF_GO_CONCURRENT;
1076 
1077 	return flags;
1078 }
1079 
1080 struct regdb_ptrs {
1081 	struct ieee80211_wmm_rule *rule;
1082 	u32 token;
1083 };
1084 
1085 struct ieee80211_regdomain *
1086 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1087 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1088 		       u16 geo_info)
1089 {
1090 	int ch_idx;
1091 	u16 ch_flags;
1092 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1093 	const u8 *nvm_chan = cfg->nvm_type == IWL_NVM_EXT ?
1094 			     iwl_ext_nvm_channels : iwl_nvm_channels;
1095 	struct ieee80211_regdomain *regd, *copy_rd;
1096 	int size_of_regd, regd_to_copy;
1097 	struct ieee80211_reg_rule *rule;
1098 	struct regdb_ptrs *regdb_ptrs;
1099 	enum nl80211_band band;
1100 	int center_freq, prev_center_freq = 0;
1101 	int valid_rules = 0;
1102 	bool new_rule;
1103 	int max_num_ch = cfg->nvm_type == IWL_NVM_EXT ?
1104 			 IWL_NVM_NUM_CHANNELS_EXT : IWL_NVM_NUM_CHANNELS;
1105 
1106 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1107 		return ERR_PTR(-EINVAL);
1108 
1109 	if (WARN_ON(num_of_ch > max_num_ch))
1110 		num_of_ch = max_num_ch;
1111 
1112 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1113 		      num_of_ch);
1114 
1115 	/* build a regdomain rule for every valid channel */
1116 	size_of_regd =
1117 		sizeof(struct ieee80211_regdomain) +
1118 		num_of_ch * sizeof(struct ieee80211_reg_rule);
1119 
1120 	regd = kzalloc(size_of_regd, GFP_KERNEL);
1121 	if (!regd)
1122 		return ERR_PTR(-ENOMEM);
1123 
1124 	regdb_ptrs = kcalloc(num_of_ch, sizeof(*regdb_ptrs), GFP_KERNEL);
1125 	if (!regdb_ptrs) {
1126 		copy_rd = ERR_PTR(-ENOMEM);
1127 		goto out;
1128 	}
1129 
1130 	/* set alpha2 from FW. */
1131 	regd->alpha2[0] = fw_mcc >> 8;
1132 	regd->alpha2[1] = fw_mcc & 0xff;
1133 
1134 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1135 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1136 		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
1137 		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1138 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1139 							     band);
1140 		new_rule = false;
1141 
1142 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1143 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1144 						    nvm_chan[ch_idx], ch_flags);
1145 			continue;
1146 		}
1147 
1148 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1149 							     ch_flags, cfg);
1150 
1151 		/* we can't continue the same rule */
1152 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1153 		    center_freq - prev_center_freq > 20) {
1154 			valid_rules++;
1155 			new_rule = true;
1156 		}
1157 
1158 		rule = &regd->reg_rules[valid_rules - 1];
1159 
1160 		if (new_rule)
1161 			rule->freq_range.start_freq_khz =
1162 						MHZ_TO_KHZ(center_freq - 10);
1163 
1164 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1165 
1166 		/* this doesn't matter - not used by FW */
1167 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1168 		rule->power_rule.max_eirp =
1169 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1170 
1171 		rule->flags = reg_rule_flags;
1172 
1173 		/* rely on auto-calculation to merge BW of contiguous chans */
1174 		rule->flags |= NL80211_RRF_AUTO_BW;
1175 		rule->freq_range.max_bandwidth_khz = 0;
1176 
1177 		prev_center_freq = center_freq;
1178 		prev_reg_rule_flags = reg_rule_flags;
1179 
1180 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1181 					    nvm_chan[ch_idx], ch_flags);
1182 
1183 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1184 		    band == NL80211_BAND_2GHZ)
1185 			continue;
1186 
1187 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1188 	}
1189 
1190 	regd->n_reg_rules = valid_rules;
1191 
1192 	/*
1193 	 * Narrow down regdom for unused regulatory rules to prevent hole
1194 	 * between reg rules to wmm rules.
1195 	 */
1196 	regd_to_copy = sizeof(struct ieee80211_regdomain) +
1197 		valid_rules * sizeof(struct ieee80211_reg_rule);
1198 
1199 	copy_rd = kzalloc(regd_to_copy, GFP_KERNEL);
1200 	if (!copy_rd) {
1201 		copy_rd = ERR_PTR(-ENOMEM);
1202 		goto out;
1203 	}
1204 
1205 	memcpy(copy_rd, regd, regd_to_copy);
1206 
1207 out:
1208 	kfree(regdb_ptrs);
1209 	kfree(regd);
1210 	return copy_rd;
1211 }
1212 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1213 
1214 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1215 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1216 #define MAX_NVM_FILE_LEN	16384
1217 
1218 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1219 		    unsigned int len)
1220 {
1221 #define IWL_4165_DEVICE_ID	0x5501
1222 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1223 
1224 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1225 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1226 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1227 		/* OTP 0x52 bug work around: it's a 1x1 device */
1228 		data[3] = ANT_B | (ANT_B << 4);
1229 }
1230 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1231 
1232 /*
1233  * Reads external NVM from a file into mvm->nvm_sections
1234  *
1235  * HOW TO CREATE THE NVM FILE FORMAT:
1236  * ------------------------------
1237  * 1. create hex file, format:
1238  *      3800 -> header
1239  *      0000 -> header
1240  *      5a40 -> data
1241  *
1242  *   rev - 6 bit (word1)
1243  *   len - 10 bit (word1)
1244  *   id - 4 bit (word2)
1245  *   rsv - 12 bit (word2)
1246  *
1247  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1248  *
1249  * 3. create binary file from the hex file
1250  *
1251  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1252  */
1253 int iwl_read_external_nvm(struct iwl_trans *trans,
1254 			  const char *nvm_file_name,
1255 			  struct iwl_nvm_section *nvm_sections)
1256 {
1257 	int ret, section_size;
1258 	u16 section_id;
1259 	const struct firmware *fw_entry;
1260 	const struct {
1261 		__le16 word1;
1262 		__le16 word2;
1263 		u8 data[];
1264 	} *file_sec;
1265 	const u8 *eof;
1266 	u8 *temp;
1267 	int max_section_size;
1268 	const __le32 *dword_buff;
1269 
1270 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1271 #define NVM_WORD2_ID(x) (x >> 12)
1272 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1273 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1274 #define NVM_HEADER_0	(0x2A504C54)
1275 #define NVM_HEADER_1	(0x4E564D2A)
1276 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1277 
1278 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1279 
1280 	/* Maximal size depends on NVM version */
1281 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1282 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1283 	else
1284 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1285 
1286 	/*
1287 	 * Obtain NVM image via request_firmware. Since we already used
1288 	 * request_firmware_nowait() for the firmware binary load and only
1289 	 * get here after that we assume the NVM request can be satisfied
1290 	 * synchronously.
1291 	 */
1292 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1293 	if (ret) {
1294 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1295 			nvm_file_name, ret);
1296 		return ret;
1297 	}
1298 
1299 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1300 		 nvm_file_name, fw_entry->size);
1301 
1302 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1303 		IWL_ERR(trans, "NVM file too large\n");
1304 		ret = -EINVAL;
1305 		goto out;
1306 	}
1307 
1308 	eof = fw_entry->data + fw_entry->size;
1309 	dword_buff = (__le32 *)fw_entry->data;
1310 
1311 	/* some NVM file will contain a header.
1312 	 * The header is identified by 2 dwords header as follow:
1313 	 * dword[0] = 0x2A504C54
1314 	 * dword[1] = 0x4E564D2A
1315 	 *
1316 	 * This header must be skipped when providing the NVM data to the FW.
1317 	 */
1318 	if (fw_entry->size > NVM_HEADER_SIZE &&
1319 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1320 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1321 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1322 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1323 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1324 			 le32_to_cpu(dword_buff[3]));
1325 
1326 		/* nvm file validation, dword_buff[2] holds the file version */
1327 		if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1328 		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1329 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1330 			ret = -EFAULT;
1331 			goto out;
1332 		}
1333 	} else {
1334 		file_sec = (void *)fw_entry->data;
1335 	}
1336 
1337 	while (true) {
1338 		if (file_sec->data > eof) {
1339 			IWL_ERR(trans,
1340 				"ERROR - NVM file too short for section header\n");
1341 			ret = -EINVAL;
1342 			break;
1343 		}
1344 
1345 		/* check for EOF marker */
1346 		if (!file_sec->word1 && !file_sec->word2) {
1347 			ret = 0;
1348 			break;
1349 		}
1350 
1351 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1352 			section_size =
1353 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1354 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1355 		} else {
1356 			section_size = 2 * EXT_NVM_WORD2_LEN(
1357 						le16_to_cpu(file_sec->word2));
1358 			section_id = EXT_NVM_WORD1_ID(
1359 						le16_to_cpu(file_sec->word1));
1360 		}
1361 
1362 		if (section_size > max_section_size) {
1363 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1364 				section_size);
1365 			ret = -EINVAL;
1366 			break;
1367 		}
1368 
1369 		if (!section_size) {
1370 			IWL_ERR(trans, "ERROR - section empty\n");
1371 			ret = -EINVAL;
1372 			break;
1373 		}
1374 
1375 		if (file_sec->data + section_size > eof) {
1376 			IWL_ERR(trans,
1377 				"ERROR - NVM file too short for section (%d bytes)\n",
1378 				section_size);
1379 			ret = -EINVAL;
1380 			break;
1381 		}
1382 
1383 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1384 			 "Invalid NVM section ID %d\n", section_id)) {
1385 			ret = -EINVAL;
1386 			break;
1387 		}
1388 
1389 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1390 		if (!temp) {
1391 			ret = -ENOMEM;
1392 			break;
1393 		}
1394 
1395 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1396 
1397 		kfree(nvm_sections[section_id].data);
1398 		nvm_sections[section_id].data = temp;
1399 		nvm_sections[section_id].length = section_size;
1400 
1401 		/* advance to the next section */
1402 		file_sec = (void *)(file_sec->data + section_size);
1403 	}
1404 out:
1405 	release_firmware(fw_entry);
1406 	return ret;
1407 }
1408 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1409 
1410 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1411 				 const struct iwl_fw *fw)
1412 {
1413 	struct iwl_nvm_get_info cmd = {};
1414 	struct iwl_nvm_get_info_rsp *rsp;
1415 	struct iwl_nvm_data *nvm;
1416 	struct iwl_host_cmd hcmd = {
1417 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1418 		.data = { &cmd, },
1419 		.len = { sizeof(cmd) },
1420 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1421 	};
1422 	int  ret;
1423 	bool lar_fw_supported = !iwlwifi_mod_params.lar_disable &&
1424 				fw_has_capa(&fw->ucode_capa,
1425 					    IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
1426 	bool empty_otp;
1427 	u32 mac_flags;
1428 	u32 sbands_flags = 0;
1429 
1430 	ret = iwl_trans_send_cmd(trans, &hcmd);
1431 	if (ret)
1432 		return ERR_PTR(ret);
1433 
1434 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != sizeof(*rsp),
1435 		 "Invalid payload len in NVM response from FW %d",
1436 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1437 		ret = -EINVAL;
1438 		goto out;
1439 	}
1440 
1441 	rsp = (void *)hcmd.resp_pkt->data;
1442 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1443 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1444 	if (empty_otp)
1445 		IWL_INFO(trans, "OTP is empty\n");
1446 
1447 	nvm = kzalloc(sizeof(*nvm) +
1448 		      sizeof(struct ieee80211_channel) * IWL_NUM_CHANNELS,
1449 		      GFP_KERNEL);
1450 	if (!nvm) {
1451 		ret = -ENOMEM;
1452 		goto out;
1453 	}
1454 
1455 	iwl_set_hw_address_from_csr(trans, nvm);
1456 	/* TODO: if platform NVM has MAC address - override it here */
1457 
1458 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1459 		IWL_ERR(trans, "no valid mac address was found\n");
1460 		ret = -EINVAL;
1461 		goto err_free;
1462 	}
1463 
1464 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1465 
1466 	/* Initialize general data */
1467 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1468 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1469 	if (nvm->n_hw_addrs == 0)
1470 		IWL_WARN(trans,
1471 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1472 			 empty_otp);
1473 
1474 	/* Initialize MAC sku data */
1475 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1476 	nvm->sku_cap_11ac_enable =
1477 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1478 	nvm->sku_cap_11n_enable =
1479 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1480 	nvm->sku_cap_11ax_enable =
1481 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1482 	nvm->sku_cap_band_24ghz_enable =
1483 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1484 	nvm->sku_cap_band_52ghz_enable =
1485 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1486 	nvm->sku_cap_mimo_disabled =
1487 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1488 
1489 	/* Initialize PHY sku data */
1490 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1491 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1492 
1493 	if (le32_to_cpu(rsp->regulatory.lar_enabled) && lar_fw_supported) {
1494 		nvm->lar_enabled = true;
1495 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1496 	}
1497 
1498 	iwl_init_sbands(trans->dev, trans->cfg, nvm,
1499 			rsp->regulatory.channel_profile,
1500 			nvm->valid_tx_ant & fw->valid_tx_ant,
1501 			nvm->valid_rx_ant & fw->valid_rx_ant,
1502 			sbands_flags);
1503 
1504 	iwl_free_resp(&hcmd);
1505 	return nvm;
1506 
1507 err_free:
1508 	kfree(nvm);
1509 out:
1510 	iwl_free_resp(&hcmd);
1511 	return ERR_PTR(ret);
1512 }
1513 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1514