1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *****************************************************************************/
63 #include <linux/types.h>
64 #include <linux/slab.h>
65 #include <linux/export.h>
66 #include <linux/etherdevice.h>
67 #include <linux/pci.h>
68 #include <linux/firmware.h>
69 
70 #include "iwl-drv.h"
71 #include "iwl-modparams.h"
72 #include "iwl-nvm-parse.h"
73 #include "iwl-prph.h"
74 #include "iwl-io.h"
75 #include "iwl-csr.h"
76 #include "fw/acpi.h"
77 #include "fw/api/nvm-reg.h"
78 #include "fw/api/commands.h"
79 #include "fw/api/cmdhdr.h"
80 #include "fw/img.h"
81 
82 /* NVM offsets (in words) definitions */
83 enum nvm_offsets {
84 	/* NVM HW-Section offset (in words) definitions */
85 	SUBSYSTEM_ID = 0x0A,
86 	HW_ADDR = 0x15,
87 
88 	/* NVM SW-Section offset (in words) definitions */
89 	NVM_SW_SECTION = 0x1C0,
90 	NVM_VERSION = 0,
91 	RADIO_CFG = 1,
92 	SKU = 2,
93 	N_HW_ADDRS = 3,
94 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
95 
96 	/* NVM calibration section offset (in words) definitions */
97 	NVM_CALIB_SECTION = 0x2B8,
98 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
99 
100 	/* NVM REGULATORY -Section offset (in words) definitions */
101 	NVM_CHANNELS_SDP = 0,
102 };
103 
104 enum ext_nvm_offsets {
105 	/* NVM HW-Section offset (in words) definitions */
106 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107 
108 	/* NVM SW-Section offset (in words) definitions */
109 	NVM_VERSION_EXT_NVM = 0,
110 	RADIO_CFG_FAMILY_EXT_NVM = 0,
111 	SKU_FAMILY_8000 = 2,
112 	N_HW_ADDRS_FAMILY_8000 = 3,
113 
114 	/* NVM REGULATORY -Section offset (in words) definitions */
115 	NVM_CHANNELS_EXTENDED = 0,
116 	NVM_LAR_OFFSET_OLD = 0x4C7,
117 	NVM_LAR_OFFSET = 0x507,
118 	NVM_LAR_ENABLED = 0x7,
119 };
120 
121 /* SKU Capabilities (actual values from NVM definition) */
122 enum nvm_sku_bits {
123 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
124 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
125 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
126 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
127 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 };
129 
130 /*
131  * These are the channel numbers in the order that they are stored in the NVM
132  */
133 static const u16 iwl_nvm_channels[] = {
134 	/* 2.4 GHz */
135 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
136 	/* 5 GHz */
137 	36, 40, 44 , 48, 52, 56, 60, 64,
138 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
139 	149, 153, 157, 161, 165
140 };
141 
142 static const u16 iwl_ext_nvm_channels[] = {
143 	/* 2.4 GHz */
144 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 	/* 5 GHz */
146 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
147 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
148 	149, 153, 157, 161, 165, 169, 173, 177, 181
149 };
150 
151 static const u16 iwl_uhb_nvm_channels[] = {
152 	/* 2.4 GHz */
153 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
154 	/* 5 GHz */
155 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
156 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
157 	149, 153, 157, 161, 165, 169, 173, 177, 181,
158 	/* 6-7 GHz */
159 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233, 237, 241,
160 	245, 249, 253, 257, 261, 265, 269, 273, 277, 281, 285, 289, 293, 297,
161 	301, 305, 309, 313, 317, 321, 325, 329, 333, 337, 341, 345, 349, 353,
162 	357, 361, 365, 369, 373, 377, 381, 385, 389, 393, 397, 401, 405, 409,
163 	413, 417, 421
164 };
165 
166 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
167 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
168 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
169 #define NUM_2GHZ_CHANNELS		14
170 #define FIRST_2GHZ_HT_MINUS		5
171 #define LAST_2GHZ_HT_PLUS		9
172 #define N_HW_ADDR_MASK			0xF
173 
174 /* rate data (static) */
175 static struct ieee80211_rate iwl_cfg80211_rates[] = {
176 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
177 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
178 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
179 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
180 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
181 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
182 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
183 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
184 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
185 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
186 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
187 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
188 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
189 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
190 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
191 };
192 #define RATES_24_OFFS	0
193 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
194 #define RATES_52_OFFS	4
195 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
196 
197 /**
198  * enum iwl_nvm_channel_flags - channel flags in NVM
199  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
200  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
201  * @NVM_CHANNEL_ACTIVE: active scanning allowed
202  * @NVM_CHANNEL_RADAR: radar detection required
203  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
204  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
205  *	on same channel on 2.4 or same UNII band on 5.2
206  * @NVM_CHANNEL_UNIFORM: uniform spreading required
207  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
208  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
209  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
210  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
211  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
212  */
213 enum iwl_nvm_channel_flags {
214 	NVM_CHANNEL_VALID		= BIT(0),
215 	NVM_CHANNEL_IBSS		= BIT(1),
216 	NVM_CHANNEL_ACTIVE		= BIT(3),
217 	NVM_CHANNEL_RADAR		= BIT(4),
218 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
219 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
220 	NVM_CHANNEL_UNIFORM		= BIT(7),
221 	NVM_CHANNEL_20MHZ		= BIT(8),
222 	NVM_CHANNEL_40MHZ		= BIT(9),
223 	NVM_CHANNEL_80MHZ		= BIT(10),
224 	NVM_CHANNEL_160MHZ		= BIT(11),
225 	NVM_CHANNEL_DC_HIGH		= BIT(12),
226 };
227 
228 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
229 					       int chan, u32 flags)
230 {
231 #define CHECK_AND_PRINT_I(x)	\
232 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
233 
234 	if (!(flags & NVM_CHANNEL_VALID)) {
235 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
236 			      chan, flags);
237 		return;
238 	}
239 
240 	/* Note: already can print up to 101 characters, 110 is the limit! */
241 	IWL_DEBUG_DEV(dev, level,
242 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
243 		      chan, flags,
244 		      CHECK_AND_PRINT_I(VALID),
245 		      CHECK_AND_PRINT_I(IBSS),
246 		      CHECK_AND_PRINT_I(ACTIVE),
247 		      CHECK_AND_PRINT_I(RADAR),
248 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
249 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
250 		      CHECK_AND_PRINT_I(UNIFORM),
251 		      CHECK_AND_PRINT_I(20MHZ),
252 		      CHECK_AND_PRINT_I(40MHZ),
253 		      CHECK_AND_PRINT_I(80MHZ),
254 		      CHECK_AND_PRINT_I(160MHZ),
255 		      CHECK_AND_PRINT_I(DC_HIGH));
256 #undef CHECK_AND_PRINT_I
257 }
258 
259 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
260 				 u32 nvm_flags, const struct iwl_cfg *cfg)
261 {
262 	u32 flags = IEEE80211_CHAN_NO_HT40;
263 
264 	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
265 		if (ch_num <= LAST_2GHZ_HT_PLUS)
266 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
267 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
268 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
269 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
270 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
271 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
272 		else
273 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
274 	}
275 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
276 		flags |= IEEE80211_CHAN_NO_80MHZ;
277 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
278 		flags |= IEEE80211_CHAN_NO_160MHZ;
279 
280 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
281 		flags |= IEEE80211_CHAN_NO_IR;
282 
283 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
284 		flags |= IEEE80211_CHAN_NO_IR;
285 
286 	if (nvm_flags & NVM_CHANNEL_RADAR)
287 		flags |= IEEE80211_CHAN_RADAR;
288 
289 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
290 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
291 
292 	/* Set the GO concurrent flag only in case that NO_IR is set.
293 	 * Otherwise it is meaningless
294 	 */
295 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
296 	    (flags & IEEE80211_CHAN_NO_IR))
297 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
298 
299 	return flags;
300 }
301 
302 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
303 				struct iwl_nvm_data *data,
304 				const void * const nvm_ch_flags,
305 				u32 sbands_flags, bool v4)
306 {
307 	int ch_idx;
308 	int n_channels = 0;
309 	struct ieee80211_channel *channel;
310 	u32 ch_flags;
311 	int num_of_ch, num_2ghz_channels = NUM_2GHZ_CHANNELS;
312 	const u16 *nvm_chan;
313 
314 	if (cfg->uhb_supported) {
315 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
316 		nvm_chan = iwl_uhb_nvm_channels;
317 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
318 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
319 		nvm_chan = iwl_ext_nvm_channels;
320 	} else {
321 		num_of_ch = IWL_NVM_NUM_CHANNELS;
322 		nvm_chan = iwl_nvm_channels;
323 	}
324 
325 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
326 		bool is_5ghz = (ch_idx >= num_2ghz_channels);
327 
328 		if (v4)
329 			ch_flags =
330 				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
331 		else
332 			ch_flags =
333 				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
334 
335 		if (is_5ghz && !data->sku_cap_band_52ghz_enable)
336 			continue;
337 
338 		/* workaround to disable wide channels in 5GHz */
339 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
340 		    is_5ghz) {
341 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
342 				     NVM_CHANNEL_80MHZ |
343 				     NVM_CHANNEL_160MHZ);
344 		}
345 
346 		if (ch_flags & NVM_CHANNEL_160MHZ)
347 			data->vht160_supported = true;
348 
349 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
350 		    !(ch_flags & NVM_CHANNEL_VALID)) {
351 			/*
352 			 * Channels might become valid later if lar is
353 			 * supported, hence we still want to add them to
354 			 * the list of supported channels to cfg80211.
355 			 */
356 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
357 						    nvm_chan[ch_idx], ch_flags);
358 			continue;
359 		}
360 
361 		channel = &data->channels[n_channels];
362 		n_channels++;
363 
364 		channel->hw_value = nvm_chan[ch_idx];
365 		channel->band = is_5ghz ?
366 				NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
367 		channel->center_freq =
368 			ieee80211_channel_to_frequency(
369 				channel->hw_value, channel->band);
370 
371 		/* Initialize regulatory-based run-time data */
372 
373 		/*
374 		 * Default value - highest tx power value.  max_power
375 		 * is not used in mvm, and is used for backwards compatibility
376 		 */
377 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
378 
379 		/* don't put limitations in case we're using LAR */
380 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
381 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
382 							       ch_idx, is_5ghz,
383 							       ch_flags, cfg);
384 		else
385 			channel->flags = 0;
386 
387 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
388 					    channel->hw_value, ch_flags);
389 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
390 				 channel->hw_value, channel->max_power);
391 	}
392 
393 	return n_channels;
394 }
395 
396 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
397 				  struct iwl_nvm_data *data,
398 				  struct ieee80211_sta_vht_cap *vht_cap,
399 				  u8 tx_chains, u8 rx_chains)
400 {
401 	const struct iwl_cfg *cfg = trans->cfg;
402 	int num_rx_ants = num_of_ant(rx_chains);
403 	int num_tx_ants = num_of_ant(tx_chains);
404 	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
405 					   IEEE80211_VHT_MAX_AMPDU_1024K);
406 
407 	vht_cap->vht_supported = true;
408 
409 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
410 		       IEEE80211_VHT_CAP_RXSTBC_1 |
411 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
412 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
413 		       max_ampdu_exponent <<
414 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
415 
416 	if (data->vht160_supported)
417 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
418 				IEEE80211_VHT_CAP_SHORT_GI_160;
419 
420 	if (cfg->vht_mu_mimo_supported)
421 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
422 
423 	if (cfg->ht_params->ldpc)
424 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
425 
426 	if (data->sku_cap_mimo_disabled) {
427 		num_rx_ants = 1;
428 		num_tx_ants = 1;
429 	}
430 
431 	if (num_tx_ants > 1)
432 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
433 	else
434 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
435 
436 	switch (iwlwifi_mod_params.amsdu_size) {
437 	case IWL_AMSDU_DEF:
438 		if (trans->trans_cfg->mq_rx_supported)
439 			vht_cap->cap |=
440 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
441 		else
442 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
443 		break;
444 	case IWL_AMSDU_2K:
445 		if (trans->trans_cfg->mq_rx_supported)
446 			vht_cap->cap |=
447 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
448 		else
449 			WARN(1, "RB size of 2K is not supported by this device\n");
450 		break;
451 	case IWL_AMSDU_4K:
452 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
453 		break;
454 	case IWL_AMSDU_8K:
455 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
456 		break;
457 	case IWL_AMSDU_12K:
458 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
459 		break;
460 	default:
461 		break;
462 	}
463 
464 	vht_cap->vht_mcs.rx_mcs_map =
465 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
466 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
467 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
468 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
469 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
470 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
471 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
472 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
473 
474 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
475 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
476 		/* this works because NOT_SUPPORTED == 3 */
477 		vht_cap->vht_mcs.rx_mcs_map |=
478 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
479 	}
480 
481 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
482 
483 	vht_cap->vht_mcs.tx_highest |=
484 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
485 }
486 
487 static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
488 	{
489 		.types_mask = BIT(NL80211_IFTYPE_STATION),
490 		.he_cap = {
491 			.has_he = true,
492 			.he_cap_elem = {
493 				.mac_cap_info[0] =
494 					IEEE80211_HE_MAC_CAP0_HTC_HE |
495 					IEEE80211_HE_MAC_CAP0_TWT_REQ,
496 				.mac_cap_info[1] =
497 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
498 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
499 				.mac_cap_info[2] =
500 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
501 					IEEE80211_HE_MAC_CAP2_ACK_EN,
502 				.mac_cap_info[3] =
503 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
504 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
505 				.mac_cap_info[4] =
506 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
507 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
508 				.mac_cap_info[5] =
509 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
510 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
511 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
512 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
513 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
514 				.phy_cap_info[0] =
515 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
516 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
517 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
518 				.phy_cap_info[1] =
519 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
520 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
521 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
522 				.phy_cap_info[2] =
523 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
524 				.phy_cap_info[3] =
525 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
526 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
527 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
528 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
529 				.phy_cap_info[4] =
530 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
531 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
532 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
533 				.phy_cap_info[5] =
534 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
535 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
536 				.phy_cap_info[6] =
537 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
538 				.phy_cap_info[7] =
539 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
540 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
541 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
542 				.phy_cap_info[8] =
543 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
544 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
545 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
546 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
547 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
548 				.phy_cap_info[9] =
549 					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
550 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
551 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
552 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
553 			},
554 			/*
555 			 * Set default Tx/Rx HE MCS NSS Support field.
556 			 * Indicate support for up to 2 spatial streams and all
557 			 * MCS, without any special cases
558 			 */
559 			.he_mcs_nss_supp = {
560 				.rx_mcs_80 = cpu_to_le16(0xfffa),
561 				.tx_mcs_80 = cpu_to_le16(0xfffa),
562 				.rx_mcs_160 = cpu_to_le16(0xfffa),
563 				.tx_mcs_160 = cpu_to_le16(0xfffa),
564 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
565 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
566 			},
567 			/*
568 			 * Set default PPE thresholds, with PPET16 set to 0,
569 			 * PPET8 set to 7
570 			 */
571 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
572 		},
573 	},
574 	{
575 		.types_mask = BIT(NL80211_IFTYPE_AP),
576 		.he_cap = {
577 			.has_he = true,
578 			.he_cap_elem = {
579 				.mac_cap_info[0] =
580 					IEEE80211_HE_MAC_CAP0_HTC_HE,
581 				.mac_cap_info[1] =
582 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
583 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
584 				.mac_cap_info[2] =
585 					IEEE80211_HE_MAC_CAP2_BSR |
586 					IEEE80211_HE_MAC_CAP2_ACK_EN,
587 				.mac_cap_info[3] =
588 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
589 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
590 				.mac_cap_info[4] =
591 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
592 				.mac_cap_info[5] =
593 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
594 				.phy_cap_info[0] =
595 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
596 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
597 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
598 				.phy_cap_info[1] =
599 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
600 				.phy_cap_info[2] =
601 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
602 				.phy_cap_info[3] =
603 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
604 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
605 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
606 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
607 				.phy_cap_info[4] =
608 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
609 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
610 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
611 				.phy_cap_info[5] =
612 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
613 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
614 				.phy_cap_info[6] =
615 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
616 				.phy_cap_info[7] =
617 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
618 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
619 				.phy_cap_info[8] =
620 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
621 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
622 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
623 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
624 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
625 				.phy_cap_info[9] =
626 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
627 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
628 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
629 			},
630 			/*
631 			 * Set default Tx/Rx HE MCS NSS Support field.
632 			 * Indicate support for up to 2 spatial streams and all
633 			 * MCS, without any special cases
634 			 */
635 			.he_mcs_nss_supp = {
636 				.rx_mcs_80 = cpu_to_le16(0xfffa),
637 				.tx_mcs_80 = cpu_to_le16(0xfffa),
638 				.rx_mcs_160 = cpu_to_le16(0xfffa),
639 				.tx_mcs_160 = cpu_to_le16(0xfffa),
640 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
641 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
642 			},
643 			/*
644 			 * Set default PPE thresholds, with PPET16 set to 0,
645 			 * PPET8 set to 7
646 			 */
647 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
648 		},
649 	},
650 };
651 
652 static void iwl_init_he_hw_capab(struct ieee80211_supported_band *sband,
653 				 u8 tx_chains, u8 rx_chains)
654 {
655 	sband->iftype_data = iwl_he_capa;
656 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
657 
658 	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
659 	if ((tx_chains & rx_chains) != ANT_AB) {
660 		int i;
661 
662 		for (i = 0; i < sband->n_iftype_data; i++) {
663 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
664 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
665 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
666 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
667 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
668 				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
669 		}
670 	}
671 }
672 
673 static void iwl_init_sbands(struct iwl_trans *trans,
674 			    struct iwl_nvm_data *data,
675 			    const void *nvm_ch_flags, u8 tx_chains,
676 			    u8 rx_chains, u32 sbands_flags, bool v4)
677 {
678 	struct device *dev = trans->dev;
679 	const struct iwl_cfg *cfg = trans->cfg;
680 	int n_channels;
681 	int n_used = 0;
682 	struct ieee80211_supported_band *sband;
683 
684 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
685 					  sbands_flags, v4);
686 	sband = &data->bands[NL80211_BAND_2GHZ];
687 	sband->band = NL80211_BAND_2GHZ;
688 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
689 	sband->n_bitrates = N_RATES_24;
690 	n_used += iwl_init_sband_channels(data, sband, n_channels,
691 					  NL80211_BAND_2GHZ);
692 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
693 			     tx_chains, rx_chains);
694 
695 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
696 		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
697 
698 	sband = &data->bands[NL80211_BAND_5GHZ];
699 	sband->band = NL80211_BAND_5GHZ;
700 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
701 	sband->n_bitrates = N_RATES_52;
702 	n_used += iwl_init_sband_channels(data, sband, n_channels,
703 					  NL80211_BAND_5GHZ);
704 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
705 			     tx_chains, rx_chains);
706 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
707 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
708 				      tx_chains, rx_chains);
709 
710 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
711 		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
712 
713 	if (n_channels != n_used)
714 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
715 			    n_used, n_channels);
716 }
717 
718 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
719 		       const __le16 *phy_sku)
720 {
721 	if (cfg->nvm_type != IWL_NVM_EXT)
722 		return le16_to_cpup(nvm_sw + SKU);
723 
724 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
725 }
726 
727 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
728 {
729 	if (cfg->nvm_type != IWL_NVM_EXT)
730 		return le16_to_cpup(nvm_sw + NVM_VERSION);
731 	else
732 		return le32_to_cpup((__le32 *)(nvm_sw +
733 					       NVM_VERSION_EXT_NVM));
734 }
735 
736 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
737 			     const __le16 *phy_sku)
738 {
739 	if (cfg->nvm_type != IWL_NVM_EXT)
740 		return le16_to_cpup(nvm_sw + RADIO_CFG);
741 
742 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
743 
744 }
745 
746 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
747 {
748 	int n_hw_addr;
749 
750 	if (cfg->nvm_type != IWL_NVM_EXT)
751 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
752 
753 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
754 
755 	return n_hw_addr & N_HW_ADDR_MASK;
756 }
757 
758 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
759 			      struct iwl_nvm_data *data,
760 			      u32 radio_cfg)
761 {
762 	if (cfg->nvm_type != IWL_NVM_EXT) {
763 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
764 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
765 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
766 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
767 		return;
768 	}
769 
770 	/* set the radio configuration for family 8000 */
771 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
772 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
773 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
774 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
775 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
776 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
777 }
778 
779 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
780 {
781 	const u8 *hw_addr;
782 
783 	hw_addr = (const u8 *)&mac_addr0;
784 	dest[0] = hw_addr[3];
785 	dest[1] = hw_addr[2];
786 	dest[2] = hw_addr[1];
787 	dest[3] = hw_addr[0];
788 
789 	hw_addr = (const u8 *)&mac_addr1;
790 	dest[4] = hw_addr[1];
791 	dest[5] = hw_addr[0];
792 }
793 
794 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
795 					struct iwl_nvm_data *data)
796 {
797 	__le32 mac_addr0 =
798 		cpu_to_le32(iwl_read32(trans,
799 				       trans->trans_cfg->csr->mac_addr0_strap));
800 	__le32 mac_addr1 =
801 		cpu_to_le32(iwl_read32(trans,
802 				       trans->trans_cfg->csr->mac_addr1_strap));
803 
804 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
805 	/*
806 	 * If the OEM fused a valid address, use it instead of the one in the
807 	 * OTP
808 	 */
809 	if (is_valid_ether_addr(data->hw_addr))
810 		return;
811 
812 	mac_addr0 = cpu_to_le32(iwl_read32(trans,
813 					trans->trans_cfg->csr->mac_addr0_otp));
814 	mac_addr1 = cpu_to_le32(iwl_read32(trans,
815 					trans->trans_cfg->csr->mac_addr1_otp));
816 
817 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
818 }
819 
820 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
821 					   const struct iwl_cfg *cfg,
822 					   struct iwl_nvm_data *data,
823 					   const __le16 *mac_override,
824 					   const __be16 *nvm_hw)
825 {
826 	const u8 *hw_addr;
827 
828 	if (mac_override) {
829 		static const u8 reserved_mac[] = {
830 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
831 		};
832 
833 		hw_addr = (const u8 *)(mac_override +
834 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
835 
836 		/*
837 		 * Store the MAC address from MAO section.
838 		 * No byte swapping is required in MAO section
839 		 */
840 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
841 
842 		/*
843 		 * Force the use of the OTP MAC address in case of reserved MAC
844 		 * address in the NVM, or if address is given but invalid.
845 		 */
846 		if (is_valid_ether_addr(data->hw_addr) &&
847 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
848 			return;
849 
850 		IWL_ERR(trans,
851 			"mac address from nvm override section is not valid\n");
852 	}
853 
854 	if (nvm_hw) {
855 		/* read the mac address from WFMP registers */
856 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
857 						WFMP_MAC_ADDR_0));
858 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
859 						WFMP_MAC_ADDR_1));
860 
861 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
862 
863 		return;
864 	}
865 
866 	IWL_ERR(trans, "mac address is not found\n");
867 }
868 
869 static int iwl_set_hw_address(struct iwl_trans *trans,
870 			      const struct iwl_cfg *cfg,
871 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
872 			      const __le16 *mac_override)
873 {
874 	if (cfg->mac_addr_from_csr) {
875 		iwl_set_hw_address_from_csr(trans, data);
876 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
877 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
878 
879 		/* The byte order is little endian 16 bit, meaning 214365 */
880 		data->hw_addr[0] = hw_addr[1];
881 		data->hw_addr[1] = hw_addr[0];
882 		data->hw_addr[2] = hw_addr[3];
883 		data->hw_addr[3] = hw_addr[2];
884 		data->hw_addr[4] = hw_addr[5];
885 		data->hw_addr[5] = hw_addr[4];
886 	} else {
887 		iwl_set_hw_address_family_8000(trans, cfg, data,
888 					       mac_override, nvm_hw);
889 	}
890 
891 	if (!is_valid_ether_addr(data->hw_addr)) {
892 		IWL_ERR(trans, "no valid mac address was found\n");
893 		return -EINVAL;
894 	}
895 
896 	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
897 
898 	return 0;
899 }
900 
901 static bool
902 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
903 			const __be16 *nvm_hw)
904 {
905 	/*
906 	 * Workaround a bug in Indonesia SKUs where the regulatory in
907 	 * some 7000-family OTPs erroneously allow wide channels in
908 	 * 5GHz.  To check for Indonesia, we take the SKU value from
909 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
910 	 * 9.  In those cases, we need to force-disable wide channels
911 	 * in 5GHz otherwise the FW will throw a sysassert when we try
912 	 * to use them.
913 	 */
914 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
915 		/*
916 		 * Unlike the other sections in the NVM, the hw
917 		 * section uses big-endian.
918 		 */
919 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
920 		u8 sku = (subsystem_id & 0x1e) >> 1;
921 
922 		if (sku == 5 || sku == 9) {
923 			IWL_DEBUG_EEPROM(trans->dev,
924 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
925 					 subsystem_id, sku);
926 			return true;
927 		}
928 	}
929 
930 	return false;
931 }
932 
933 struct iwl_nvm_data *
934 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
935 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
936 		   const __le16 *nvm_calib, const __le16 *regulatory,
937 		   const __le16 *mac_override, const __le16 *phy_sku,
938 		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
939 {
940 	struct iwl_nvm_data *data;
941 	bool lar_enabled;
942 	u32 sku, radio_cfg;
943 	u32 sbands_flags = 0;
944 	u16 lar_config;
945 	const __le16 *ch_section;
946 
947 	if (cfg->uhb_supported)
948 		data = kzalloc(struct_size(data, channels,
949 					   IWL_NVM_NUM_CHANNELS_UHB),
950 					   GFP_KERNEL);
951 	else if (cfg->nvm_type != IWL_NVM_EXT)
952 		data = kzalloc(struct_size(data, channels,
953 					   IWL_NVM_NUM_CHANNELS),
954 					   GFP_KERNEL);
955 	else
956 		data = kzalloc(struct_size(data, channels,
957 					   IWL_NVM_NUM_CHANNELS_EXT),
958 					   GFP_KERNEL);
959 	if (!data)
960 		return NULL;
961 
962 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
963 
964 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
965 	iwl_set_radio_cfg(cfg, data, radio_cfg);
966 	if (data->valid_tx_ant)
967 		tx_chains &= data->valid_tx_ant;
968 	if (data->valid_rx_ant)
969 		rx_chains &= data->valid_rx_ant;
970 
971 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
972 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
973 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
974 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
975 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
976 		data->sku_cap_11n_enable = false;
977 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
978 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
979 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
980 
981 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
982 
983 	if (cfg->nvm_type != IWL_NVM_EXT) {
984 		/* Checking for required sections */
985 		if (!nvm_calib) {
986 			IWL_ERR(trans,
987 				"Can't parse empty Calib NVM sections\n");
988 			kfree(data);
989 			return NULL;
990 		}
991 
992 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
993 			     &regulatory[NVM_CHANNELS_SDP] :
994 			     &nvm_sw[NVM_CHANNELS];
995 
996 		/* in family 8000 Xtal calibration values moved to OTP */
997 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
998 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
999 		lar_enabled = true;
1000 	} else {
1001 		u16 lar_offset = data->nvm_version < 0xE39 ?
1002 				 NVM_LAR_OFFSET_OLD :
1003 				 NVM_LAR_OFFSET;
1004 
1005 		lar_config = le16_to_cpup(regulatory + lar_offset);
1006 		data->lar_enabled = !!(lar_config &
1007 				       NVM_LAR_ENABLED);
1008 		lar_enabled = data->lar_enabled;
1009 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1010 	}
1011 
1012 	/* If no valid mac address was found - bail out */
1013 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1014 		kfree(data);
1015 		return NULL;
1016 	}
1017 
1018 	if (lar_fw_supported && lar_enabled)
1019 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1020 
1021 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1022 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1023 
1024 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1025 			sbands_flags, false);
1026 	data->calib_version = 255;
1027 
1028 	return data;
1029 }
1030 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1031 
1032 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1033 				       int ch_idx, u16 nvm_flags,
1034 				       const struct iwl_cfg *cfg)
1035 {
1036 	u32 flags = NL80211_RRF_NO_HT40;
1037 
1038 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1039 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1040 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1041 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1042 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1043 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1044 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1045 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1046 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1047 		else
1048 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1049 	}
1050 
1051 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1052 		flags |= NL80211_RRF_NO_80MHZ;
1053 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1054 		flags |= NL80211_RRF_NO_160MHZ;
1055 
1056 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1057 		flags |= NL80211_RRF_NO_IR;
1058 
1059 	if (nvm_flags & NVM_CHANNEL_RADAR)
1060 		flags |= NL80211_RRF_DFS;
1061 
1062 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1063 		flags |= NL80211_RRF_NO_OUTDOOR;
1064 
1065 	/* Set the GO concurrent flag only in case that NO_IR is set.
1066 	 * Otherwise it is meaningless
1067 	 */
1068 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1069 	    (flags & NL80211_RRF_NO_IR))
1070 		flags |= NL80211_RRF_GO_CONCURRENT;
1071 
1072 	return flags;
1073 }
1074 
1075 struct ieee80211_regdomain *
1076 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1077 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1078 		       u16 geo_info)
1079 {
1080 	int ch_idx;
1081 	u16 ch_flags;
1082 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1083 	const u16 *nvm_chan;
1084 	struct ieee80211_regdomain *regd, *copy_rd;
1085 	struct ieee80211_reg_rule *rule;
1086 	enum nl80211_band band;
1087 	int center_freq, prev_center_freq = 0;
1088 	int valid_rules = 0;
1089 	bool new_rule;
1090 	int max_num_ch;
1091 
1092 	if (cfg->uhb_supported) {
1093 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1094 		nvm_chan = iwl_uhb_nvm_channels;
1095 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1096 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1097 		nvm_chan = iwl_ext_nvm_channels;
1098 	} else {
1099 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1100 		nvm_chan = iwl_nvm_channels;
1101 	}
1102 
1103 	if (WARN_ON(num_of_ch > max_num_ch))
1104 		num_of_ch = max_num_ch;
1105 
1106 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1107 		return ERR_PTR(-EINVAL);
1108 
1109 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1110 		      num_of_ch);
1111 
1112 	/* build a regdomain rule for every valid channel */
1113 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1114 	if (!regd)
1115 		return ERR_PTR(-ENOMEM);
1116 
1117 	/* set alpha2 from FW. */
1118 	regd->alpha2[0] = fw_mcc >> 8;
1119 	regd->alpha2[1] = fw_mcc & 0xff;
1120 
1121 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1122 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1123 		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
1124 		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1125 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1126 							     band);
1127 		new_rule = false;
1128 
1129 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1130 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1131 						    nvm_chan[ch_idx], ch_flags);
1132 			continue;
1133 		}
1134 
1135 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1136 							     ch_flags, cfg);
1137 
1138 		/* we can't continue the same rule */
1139 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1140 		    center_freq - prev_center_freq > 20) {
1141 			valid_rules++;
1142 			new_rule = true;
1143 		}
1144 
1145 		rule = &regd->reg_rules[valid_rules - 1];
1146 
1147 		if (new_rule)
1148 			rule->freq_range.start_freq_khz =
1149 						MHZ_TO_KHZ(center_freq - 10);
1150 
1151 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1152 
1153 		/* this doesn't matter - not used by FW */
1154 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1155 		rule->power_rule.max_eirp =
1156 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1157 
1158 		rule->flags = reg_rule_flags;
1159 
1160 		/* rely on auto-calculation to merge BW of contiguous chans */
1161 		rule->flags |= NL80211_RRF_AUTO_BW;
1162 		rule->freq_range.max_bandwidth_khz = 0;
1163 
1164 		prev_center_freq = center_freq;
1165 		prev_reg_rule_flags = reg_rule_flags;
1166 
1167 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1168 					    nvm_chan[ch_idx], ch_flags);
1169 
1170 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1171 		    band == NL80211_BAND_2GHZ)
1172 			continue;
1173 
1174 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1175 	}
1176 
1177 	regd->n_reg_rules = valid_rules;
1178 
1179 	/*
1180 	 * Narrow down regdom for unused regulatory rules to prevent hole
1181 	 * between reg rules to wmm rules.
1182 	 */
1183 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1184 			  GFP_KERNEL);
1185 	if (!copy_rd)
1186 		copy_rd = ERR_PTR(-ENOMEM);
1187 
1188 	kfree(regd);
1189 	return copy_rd;
1190 }
1191 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1192 
1193 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1194 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1195 #define MAX_NVM_FILE_LEN	16384
1196 
1197 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1198 		    unsigned int len)
1199 {
1200 #define IWL_4165_DEVICE_ID	0x5501
1201 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1202 
1203 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1204 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1205 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1206 		/* OTP 0x52 bug work around: it's a 1x1 device */
1207 		data[3] = ANT_B | (ANT_B << 4);
1208 }
1209 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1210 
1211 /*
1212  * Reads external NVM from a file into mvm->nvm_sections
1213  *
1214  * HOW TO CREATE THE NVM FILE FORMAT:
1215  * ------------------------------
1216  * 1. create hex file, format:
1217  *      3800 -> header
1218  *      0000 -> header
1219  *      5a40 -> data
1220  *
1221  *   rev - 6 bit (word1)
1222  *   len - 10 bit (word1)
1223  *   id - 4 bit (word2)
1224  *   rsv - 12 bit (word2)
1225  *
1226  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1227  *
1228  * 3. create binary file from the hex file
1229  *
1230  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1231  */
1232 int iwl_read_external_nvm(struct iwl_trans *trans,
1233 			  const char *nvm_file_name,
1234 			  struct iwl_nvm_section *nvm_sections)
1235 {
1236 	int ret, section_size;
1237 	u16 section_id;
1238 	const struct firmware *fw_entry;
1239 	const struct {
1240 		__le16 word1;
1241 		__le16 word2;
1242 		u8 data[];
1243 	} *file_sec;
1244 	const u8 *eof;
1245 	u8 *temp;
1246 	int max_section_size;
1247 	const __le32 *dword_buff;
1248 
1249 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1250 #define NVM_WORD2_ID(x) (x >> 12)
1251 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1252 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1253 #define NVM_HEADER_0	(0x2A504C54)
1254 #define NVM_HEADER_1	(0x4E564D2A)
1255 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1256 
1257 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1258 
1259 	/* Maximal size depends on NVM version */
1260 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1261 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1262 	else
1263 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1264 
1265 	/*
1266 	 * Obtain NVM image via request_firmware. Since we already used
1267 	 * request_firmware_nowait() for the firmware binary load and only
1268 	 * get here after that we assume the NVM request can be satisfied
1269 	 * synchronously.
1270 	 */
1271 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1272 	if (ret) {
1273 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1274 			nvm_file_name, ret);
1275 		return ret;
1276 	}
1277 
1278 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1279 		 nvm_file_name, fw_entry->size);
1280 
1281 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1282 		IWL_ERR(trans, "NVM file too large\n");
1283 		ret = -EINVAL;
1284 		goto out;
1285 	}
1286 
1287 	eof = fw_entry->data + fw_entry->size;
1288 	dword_buff = (__le32 *)fw_entry->data;
1289 
1290 	/* some NVM file will contain a header.
1291 	 * The header is identified by 2 dwords header as follow:
1292 	 * dword[0] = 0x2A504C54
1293 	 * dword[1] = 0x4E564D2A
1294 	 *
1295 	 * This header must be skipped when providing the NVM data to the FW.
1296 	 */
1297 	if (fw_entry->size > NVM_HEADER_SIZE &&
1298 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1299 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1300 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1301 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1302 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1303 			 le32_to_cpu(dword_buff[3]));
1304 
1305 		/* nvm file validation, dword_buff[2] holds the file version */
1306 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1307 		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1308 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1309 			ret = -EFAULT;
1310 			goto out;
1311 		}
1312 	} else {
1313 		file_sec = (void *)fw_entry->data;
1314 	}
1315 
1316 	while (true) {
1317 		if (file_sec->data > eof) {
1318 			IWL_ERR(trans,
1319 				"ERROR - NVM file too short for section header\n");
1320 			ret = -EINVAL;
1321 			break;
1322 		}
1323 
1324 		/* check for EOF marker */
1325 		if (!file_sec->word1 && !file_sec->word2) {
1326 			ret = 0;
1327 			break;
1328 		}
1329 
1330 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1331 			section_size =
1332 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1333 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1334 		} else {
1335 			section_size = 2 * EXT_NVM_WORD2_LEN(
1336 						le16_to_cpu(file_sec->word2));
1337 			section_id = EXT_NVM_WORD1_ID(
1338 						le16_to_cpu(file_sec->word1));
1339 		}
1340 
1341 		if (section_size > max_section_size) {
1342 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1343 				section_size);
1344 			ret = -EINVAL;
1345 			break;
1346 		}
1347 
1348 		if (!section_size) {
1349 			IWL_ERR(trans, "ERROR - section empty\n");
1350 			ret = -EINVAL;
1351 			break;
1352 		}
1353 
1354 		if (file_sec->data + section_size > eof) {
1355 			IWL_ERR(trans,
1356 				"ERROR - NVM file too short for section (%d bytes)\n",
1357 				section_size);
1358 			ret = -EINVAL;
1359 			break;
1360 		}
1361 
1362 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1363 			 "Invalid NVM section ID %d\n", section_id)) {
1364 			ret = -EINVAL;
1365 			break;
1366 		}
1367 
1368 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1369 		if (!temp) {
1370 			ret = -ENOMEM;
1371 			break;
1372 		}
1373 
1374 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1375 
1376 		kfree(nvm_sections[section_id].data);
1377 		nvm_sections[section_id].data = temp;
1378 		nvm_sections[section_id].length = section_size;
1379 
1380 		/* advance to the next section */
1381 		file_sec = (void *)(file_sec->data + section_size);
1382 	}
1383 out:
1384 	release_firmware(fw_entry);
1385 	return ret;
1386 }
1387 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1388 
1389 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1390 				 const struct iwl_fw *fw)
1391 {
1392 	struct iwl_nvm_get_info cmd = {};
1393 	struct iwl_nvm_data *nvm;
1394 	struct iwl_host_cmd hcmd = {
1395 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1396 		.data = { &cmd, },
1397 		.len = { sizeof(cmd) },
1398 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1399 	};
1400 	int  ret;
1401 	bool lar_fw_supported = !iwlwifi_mod_params.lar_disable &&
1402 				fw_has_capa(&fw->ucode_capa,
1403 					    IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
1404 	bool empty_otp;
1405 	u32 mac_flags;
1406 	u32 sbands_flags = 0;
1407 	/*
1408 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1409 	 * in v3, except for the channel profile part of the
1410 	 * regulatory.  So we can just access the new struct, with the
1411 	 * exception of the latter.
1412 	 */
1413 	struct iwl_nvm_get_info_rsp *rsp;
1414 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1415 	bool v4 = fw_has_api(&fw->ucode_capa,
1416 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1417 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1418 	void *channel_profile;
1419 
1420 	ret = iwl_trans_send_cmd(trans, &hcmd);
1421 	if (ret)
1422 		return ERR_PTR(ret);
1423 
1424 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1425 		 "Invalid payload len in NVM response from FW %d",
1426 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1427 		ret = -EINVAL;
1428 		goto out;
1429 	}
1430 
1431 	rsp = (void *)hcmd.resp_pkt->data;
1432 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1433 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1434 	if (empty_otp)
1435 		IWL_INFO(trans, "OTP is empty\n");
1436 
1437 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1438 	if (!nvm) {
1439 		ret = -ENOMEM;
1440 		goto out;
1441 	}
1442 
1443 	iwl_set_hw_address_from_csr(trans, nvm);
1444 	/* TODO: if platform NVM has MAC address - override it here */
1445 
1446 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1447 		IWL_ERR(trans, "no valid mac address was found\n");
1448 		ret = -EINVAL;
1449 		goto err_free;
1450 	}
1451 
1452 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1453 
1454 	/* Initialize general data */
1455 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1456 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1457 	if (nvm->n_hw_addrs == 0)
1458 		IWL_WARN(trans,
1459 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1460 			 empty_otp);
1461 
1462 	/* Initialize MAC sku data */
1463 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1464 	nvm->sku_cap_11ac_enable =
1465 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1466 	nvm->sku_cap_11n_enable =
1467 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1468 	nvm->sku_cap_11ax_enable =
1469 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1470 	nvm->sku_cap_band_24ghz_enable =
1471 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1472 	nvm->sku_cap_band_52ghz_enable =
1473 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1474 	nvm->sku_cap_mimo_disabled =
1475 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1476 
1477 	/* Initialize PHY sku data */
1478 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1479 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1480 
1481 	if (le32_to_cpu(rsp->regulatory.lar_enabled) && lar_fw_supported) {
1482 		nvm->lar_enabled = true;
1483 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1484 	}
1485 
1486 	rsp_v3 = (void *)rsp;
1487 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1488 			  (void *)rsp_v3->regulatory.channel_profile;
1489 
1490 	iwl_init_sbands(trans, nvm,
1491 			channel_profile,
1492 			nvm->valid_tx_ant & fw->valid_tx_ant,
1493 			nvm->valid_rx_ant & fw->valid_rx_ant,
1494 			sbands_flags, v4);
1495 
1496 	iwl_free_resp(&hcmd);
1497 	return nvm;
1498 
1499 err_free:
1500 	kfree(nvm);
1501 out:
1502 	iwl_free_resp(&hcmd);
1503 	return ERR_PTR(ret);
1504 }
1505 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1506