1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 24 * USA 25 * 26 * The full GNU General Public License is included in this distribution 27 * in the file called COPYING. 28 * 29 * Contact Information: 30 * Intel Linux Wireless <linuxwifi@intel.com> 31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 32 * 33 * BSD LICENSE 34 * 35 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 37 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 38 * All rights reserved. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 44 * * Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * * Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in 48 * the documentation and/or other materials provided with the 49 * distribution. 50 * * Neither the name Intel Corporation nor the names of its 51 * contributors may be used to endorse or promote products derived 52 * from this software without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 55 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 56 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 57 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 58 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 61 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 62 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 63 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 64 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 65 *****************************************************************************/ 66 #include <linux/types.h> 67 #include <linux/slab.h> 68 #include <linux/export.h> 69 #include <linux/etherdevice.h> 70 #include <linux/pci.h> 71 72 #include "iwl-drv.h" 73 #include "iwl-modparams.h" 74 #include "iwl-nvm-parse.h" 75 #include "iwl-prph.h" 76 #include "iwl-io.h" 77 #include "iwl-csr.h" 78 #include "fw/acpi.h" 79 80 /* NVM offsets (in words) definitions */ 81 enum nvm_offsets { 82 /* NVM HW-Section offset (in words) definitions */ 83 SUBSYSTEM_ID = 0x0A, 84 HW_ADDR = 0x15, 85 86 /* NVM SW-Section offset (in words) definitions */ 87 NVM_SW_SECTION = 0x1C0, 88 NVM_VERSION = 0, 89 RADIO_CFG = 1, 90 SKU = 2, 91 N_HW_ADDRS = 3, 92 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, 93 94 /* NVM calibration section offset (in words) definitions */ 95 NVM_CALIB_SECTION = 0x2B8, 96 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION, 97 98 /* NVM REGULATORY -Section offset (in words) definitions */ 99 NVM_CHANNELS_SDP = 0, 100 }; 101 102 enum ext_nvm_offsets { 103 /* NVM HW-Section offset (in words) definitions */ 104 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1, 105 106 /* NVM SW-Section offset (in words) definitions */ 107 NVM_VERSION_EXT_NVM = 0, 108 RADIO_CFG_FAMILY_EXT_NVM = 0, 109 SKU_FAMILY_8000 = 2, 110 N_HW_ADDRS_FAMILY_8000 = 3, 111 112 /* NVM REGULATORY -Section offset (in words) definitions */ 113 NVM_CHANNELS_EXTENDED = 0, 114 NVM_LAR_OFFSET_OLD = 0x4C7, 115 NVM_LAR_OFFSET = 0x507, 116 NVM_LAR_ENABLED = 0x7, 117 }; 118 119 /* SKU Capabilities (actual values from NVM definition) */ 120 enum nvm_sku_bits { 121 NVM_SKU_CAP_BAND_24GHZ = BIT(0), 122 NVM_SKU_CAP_BAND_52GHZ = BIT(1), 123 NVM_SKU_CAP_11N_ENABLE = BIT(2), 124 NVM_SKU_CAP_11AC_ENABLE = BIT(3), 125 NVM_SKU_CAP_MIMO_DISABLE = BIT(5), 126 }; 127 128 /* 129 * These are the channel numbers in the order that they are stored in the NVM 130 */ 131 static const u8 iwl_nvm_channels[] = { 132 /* 2.4 GHz */ 133 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 134 /* 5 GHz */ 135 36, 40, 44 , 48, 52, 56, 60, 64, 136 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 137 149, 153, 157, 161, 165 138 }; 139 140 static const u8 iwl_ext_nvm_channels[] = { 141 /* 2.4 GHz */ 142 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 143 /* 5 GHz */ 144 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 145 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 146 149, 153, 157, 161, 165, 169, 173, 177, 181 147 }; 148 149 #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) 150 #define IWL_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels) 151 #define NUM_2GHZ_CHANNELS 14 152 #define NUM_2GHZ_CHANNELS_EXT 14 153 #define FIRST_2GHZ_HT_MINUS 5 154 #define LAST_2GHZ_HT_PLUS 9 155 #define LAST_5GHZ_HT 165 156 #define LAST_5GHZ_HT_FAMILY_8000 181 157 #define N_HW_ADDR_MASK 0xF 158 159 /* rate data (static) */ 160 static struct ieee80211_rate iwl_cfg80211_rates[] = { 161 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, 162 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, 163 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 164 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, 165 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 166 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, 167 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 168 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, 169 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, 170 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, 171 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, 172 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, 173 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, 174 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, 175 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, 176 }; 177 #define RATES_24_OFFS 0 178 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) 179 #define RATES_52_OFFS 4 180 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) 181 182 /** 183 * enum iwl_nvm_channel_flags - channel flags in NVM 184 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo 185 * @NVM_CHANNEL_IBSS: usable as an IBSS channel 186 * @NVM_CHANNEL_ACTIVE: active scanning allowed 187 * @NVM_CHANNEL_RADAR: radar detection required 188 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed 189 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS 190 * on same channel on 2.4 or same UNII band on 5.2 191 * @NVM_CHANNEL_UNIFORM: uniform spreading required 192 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay 193 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay 194 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay 195 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay 196 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?) 197 */ 198 enum iwl_nvm_channel_flags { 199 NVM_CHANNEL_VALID = BIT(0), 200 NVM_CHANNEL_IBSS = BIT(1), 201 NVM_CHANNEL_ACTIVE = BIT(3), 202 NVM_CHANNEL_RADAR = BIT(4), 203 NVM_CHANNEL_INDOOR_ONLY = BIT(5), 204 NVM_CHANNEL_GO_CONCURRENT = BIT(6), 205 NVM_CHANNEL_UNIFORM = BIT(7), 206 NVM_CHANNEL_20MHZ = BIT(8), 207 NVM_CHANNEL_40MHZ = BIT(9), 208 NVM_CHANNEL_80MHZ = BIT(10), 209 NVM_CHANNEL_160MHZ = BIT(11), 210 NVM_CHANNEL_DC_HIGH = BIT(12), 211 }; 212 213 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level, 214 int chan, u16 flags) 215 { 216 #define CHECK_AND_PRINT_I(x) \ 217 ((flags & NVM_CHANNEL_##x) ? " " #x : "") 218 219 if (!(flags & NVM_CHANNEL_VALID)) { 220 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n", 221 chan, flags); 222 return; 223 } 224 225 /* Note: already can print up to 101 characters, 110 is the limit! */ 226 IWL_DEBUG_DEV(dev, level, 227 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n", 228 chan, flags, 229 CHECK_AND_PRINT_I(VALID), 230 CHECK_AND_PRINT_I(IBSS), 231 CHECK_AND_PRINT_I(ACTIVE), 232 CHECK_AND_PRINT_I(RADAR), 233 CHECK_AND_PRINT_I(INDOOR_ONLY), 234 CHECK_AND_PRINT_I(GO_CONCURRENT), 235 CHECK_AND_PRINT_I(UNIFORM), 236 CHECK_AND_PRINT_I(20MHZ), 237 CHECK_AND_PRINT_I(40MHZ), 238 CHECK_AND_PRINT_I(80MHZ), 239 CHECK_AND_PRINT_I(160MHZ), 240 CHECK_AND_PRINT_I(DC_HIGH)); 241 #undef CHECK_AND_PRINT_I 242 } 243 244 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz, 245 u16 nvm_flags, const struct iwl_cfg *cfg) 246 { 247 u32 flags = IEEE80211_CHAN_NO_HT40; 248 u32 last_5ghz_ht = LAST_5GHZ_HT; 249 250 if (cfg->nvm_type == IWL_NVM_EXT) 251 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 252 253 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) { 254 if (ch_num <= LAST_2GHZ_HT_PLUS) 255 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 256 if (ch_num >= FIRST_2GHZ_HT_MINUS) 257 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 258 } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) { 259 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 260 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 261 else 262 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 263 } 264 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 265 flags |= IEEE80211_CHAN_NO_80MHZ; 266 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 267 flags |= IEEE80211_CHAN_NO_160MHZ; 268 269 if (!(nvm_flags & NVM_CHANNEL_IBSS)) 270 flags |= IEEE80211_CHAN_NO_IR; 271 272 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 273 flags |= IEEE80211_CHAN_NO_IR; 274 275 if (nvm_flags & NVM_CHANNEL_RADAR) 276 flags |= IEEE80211_CHAN_RADAR; 277 278 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 279 flags |= IEEE80211_CHAN_INDOOR_ONLY; 280 281 /* Set the GO concurrent flag only in case that NO_IR is set. 282 * Otherwise it is meaningless 283 */ 284 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 285 (flags & IEEE80211_CHAN_NO_IR)) 286 flags |= IEEE80211_CHAN_IR_CONCURRENT; 287 288 return flags; 289 } 290 291 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, 292 struct iwl_nvm_data *data, 293 const __le16 * const nvm_ch_flags, 294 bool lar_supported, bool no_wide_in_5ghz) 295 { 296 int ch_idx; 297 int n_channels = 0; 298 struct ieee80211_channel *channel; 299 u16 ch_flags; 300 int num_of_ch, num_2ghz_channels; 301 const u8 *nvm_chan; 302 303 if (cfg->nvm_type != IWL_NVM_EXT) { 304 num_of_ch = IWL_NUM_CHANNELS; 305 nvm_chan = &iwl_nvm_channels[0]; 306 num_2ghz_channels = NUM_2GHZ_CHANNELS; 307 } else { 308 num_of_ch = IWL_NUM_CHANNELS_EXT; 309 nvm_chan = &iwl_ext_nvm_channels[0]; 310 num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT; 311 } 312 313 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 314 bool is_5ghz = (ch_idx >= num_2ghz_channels); 315 316 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx); 317 318 if (is_5ghz && !data->sku_cap_band_52GHz_enable) 319 continue; 320 321 /* workaround to disable wide channels in 5GHz */ 322 if (no_wide_in_5ghz && is_5ghz) { 323 ch_flags &= ~(NVM_CHANNEL_40MHZ | 324 NVM_CHANNEL_80MHZ | 325 NVM_CHANNEL_160MHZ); 326 } 327 328 if (ch_flags & NVM_CHANNEL_160MHZ) 329 data->vht160_supported = true; 330 331 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) { 332 /* 333 * Channels might become valid later if lar is 334 * supported, hence we still want to add them to 335 * the list of supported channels to cfg80211. 336 */ 337 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 338 nvm_chan[ch_idx], ch_flags); 339 continue; 340 } 341 342 channel = &data->channels[n_channels]; 343 n_channels++; 344 345 channel->hw_value = nvm_chan[ch_idx]; 346 channel->band = is_5ghz ? 347 NL80211_BAND_5GHZ : NL80211_BAND_2GHZ; 348 channel->center_freq = 349 ieee80211_channel_to_frequency( 350 channel->hw_value, channel->band); 351 352 /* Initialize regulatory-based run-time data */ 353 354 /* 355 * Default value - highest tx power value. max_power 356 * is not used in mvm, and is used for backwards compatibility 357 */ 358 channel->max_power = IWL_DEFAULT_MAX_TX_POWER; 359 360 /* don't put limitations in case we're using LAR */ 361 if (!lar_supported) 362 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], 363 ch_idx, is_5ghz, 364 ch_flags, cfg); 365 else 366 channel->flags = 0; 367 368 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 369 channel->hw_value, ch_flags); 370 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n", 371 channel->hw_value, channel->max_power); 372 } 373 374 return n_channels; 375 } 376 377 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg, 378 struct iwl_nvm_data *data, 379 struct ieee80211_sta_vht_cap *vht_cap, 380 u8 tx_chains, u8 rx_chains) 381 { 382 int num_rx_ants = num_of_ant(rx_chains); 383 int num_tx_ants = num_of_ant(tx_chains); 384 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?: 385 IEEE80211_VHT_MAX_AMPDU_1024K); 386 387 vht_cap->vht_supported = true; 388 389 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | 390 IEEE80211_VHT_CAP_RXSTBC_1 | 391 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 392 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 393 max_ampdu_exponent << 394 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 395 396 if (data->vht160_supported) 397 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | 398 IEEE80211_VHT_CAP_SHORT_GI_160; 399 400 if (cfg->vht_mu_mimo_supported) 401 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 402 403 if (cfg->ht_params->ldpc) 404 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 405 406 if (data->sku_cap_mimo_disabled) { 407 num_rx_ants = 1; 408 num_tx_ants = 1; 409 } 410 411 if (num_tx_ants > 1) 412 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 413 else 414 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; 415 416 switch (iwlwifi_mod_params.amsdu_size) { 417 case IWL_AMSDU_DEF: 418 if (cfg->mq_rx_supported) 419 vht_cap->cap |= 420 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 421 else 422 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 423 break; 424 case IWL_AMSDU_4K: 425 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 426 break; 427 case IWL_AMSDU_8K: 428 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; 429 break; 430 case IWL_AMSDU_12K: 431 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 432 break; 433 default: 434 break; 435 } 436 437 vht_cap->vht_mcs.rx_mcs_map = 438 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 439 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | 440 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 441 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 442 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 443 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 444 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 445 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); 446 447 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { 448 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; 449 /* this works because NOT_SUPPORTED == 3 */ 450 vht_cap->vht_mcs.rx_mcs_map |= 451 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); 452 } 453 454 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; 455 } 456 457 void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg, 458 struct iwl_nvm_data *data, const __le16 *nvm_ch_flags, 459 u8 tx_chains, u8 rx_chains, bool lar_supported, 460 bool no_wide_in_5ghz) 461 { 462 int n_channels; 463 int n_used = 0; 464 struct ieee80211_supported_band *sband; 465 466 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags, 467 lar_supported, no_wide_in_5ghz); 468 sband = &data->bands[NL80211_BAND_2GHZ]; 469 sband->band = NL80211_BAND_2GHZ; 470 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; 471 sband->n_bitrates = N_RATES_24; 472 n_used += iwl_init_sband_channels(data, sband, n_channels, 473 NL80211_BAND_2GHZ); 474 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ, 475 tx_chains, rx_chains); 476 477 sband = &data->bands[NL80211_BAND_5GHZ]; 478 sband->band = NL80211_BAND_5GHZ; 479 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 480 sband->n_bitrates = N_RATES_52; 481 n_used += iwl_init_sband_channels(data, sband, n_channels, 482 NL80211_BAND_5GHZ); 483 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ, 484 tx_chains, rx_chains); 485 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) 486 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap, 487 tx_chains, rx_chains); 488 489 if (n_channels != n_used) 490 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", 491 n_used, n_channels); 492 } 493 IWL_EXPORT_SYMBOL(iwl_init_sbands); 494 495 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 496 const __le16 *phy_sku) 497 { 498 if (cfg->nvm_type != IWL_NVM_EXT) 499 return le16_to_cpup(nvm_sw + SKU); 500 501 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); 502 } 503 504 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 505 { 506 if (cfg->nvm_type != IWL_NVM_EXT) 507 return le16_to_cpup(nvm_sw + NVM_VERSION); 508 else 509 return le32_to_cpup((__le32 *)(nvm_sw + 510 NVM_VERSION_EXT_NVM)); 511 } 512 513 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 514 const __le16 *phy_sku) 515 { 516 if (cfg->nvm_type != IWL_NVM_EXT) 517 return le16_to_cpup(nvm_sw + RADIO_CFG); 518 519 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM)); 520 521 } 522 523 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 524 { 525 int n_hw_addr; 526 527 if (cfg->nvm_type != IWL_NVM_EXT) 528 return le16_to_cpup(nvm_sw + N_HW_ADDRS); 529 530 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); 531 532 return n_hw_addr & N_HW_ADDR_MASK; 533 } 534 535 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, 536 struct iwl_nvm_data *data, 537 u32 radio_cfg) 538 { 539 if (cfg->nvm_type != IWL_NVM_EXT) { 540 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); 541 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); 542 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); 543 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); 544 return; 545 } 546 547 /* set the radio configuration for family 8000 */ 548 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg); 549 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg); 550 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg); 551 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg); 552 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); 553 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); 554 } 555 556 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) 557 { 558 const u8 *hw_addr; 559 560 hw_addr = (const u8 *)&mac_addr0; 561 dest[0] = hw_addr[3]; 562 dest[1] = hw_addr[2]; 563 dest[2] = hw_addr[1]; 564 dest[3] = hw_addr[0]; 565 566 hw_addr = (const u8 *)&mac_addr1; 567 dest[4] = hw_addr[1]; 568 dest[5] = hw_addr[0]; 569 } 570 571 void iwl_set_hw_address_from_csr(struct iwl_trans *trans, 572 struct iwl_nvm_data *data) 573 { 574 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP)); 575 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP)); 576 577 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 578 /* 579 * If the OEM fused a valid address, use it instead of the one in the 580 * OTP 581 */ 582 if (is_valid_ether_addr(data->hw_addr)) 583 return; 584 585 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP)); 586 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP)); 587 588 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 589 } 590 IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr); 591 592 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, 593 const struct iwl_cfg *cfg, 594 struct iwl_nvm_data *data, 595 const __le16 *mac_override, 596 const __be16 *nvm_hw) 597 { 598 const u8 *hw_addr; 599 600 if (mac_override) { 601 static const u8 reserved_mac[] = { 602 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 603 }; 604 605 hw_addr = (const u8 *)(mac_override + 606 MAC_ADDRESS_OVERRIDE_EXT_NVM); 607 608 /* 609 * Store the MAC address from MAO section. 610 * No byte swapping is required in MAO section 611 */ 612 memcpy(data->hw_addr, hw_addr, ETH_ALEN); 613 614 /* 615 * Force the use of the OTP MAC address in case of reserved MAC 616 * address in the NVM, or if address is given but invalid. 617 */ 618 if (is_valid_ether_addr(data->hw_addr) && 619 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) 620 return; 621 622 IWL_ERR(trans, 623 "mac address from nvm override section is not valid\n"); 624 } 625 626 if (nvm_hw) { 627 /* read the mac address from WFMP registers */ 628 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, 629 WFMP_MAC_ADDR_0)); 630 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, 631 WFMP_MAC_ADDR_1)); 632 633 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 634 635 return; 636 } 637 638 IWL_ERR(trans, "mac address is not found\n"); 639 } 640 641 static int iwl_set_hw_address(struct iwl_trans *trans, 642 const struct iwl_cfg *cfg, 643 struct iwl_nvm_data *data, const __be16 *nvm_hw, 644 const __le16 *mac_override) 645 { 646 if (cfg->mac_addr_from_csr) { 647 iwl_set_hw_address_from_csr(trans, data); 648 } else if (cfg->nvm_type != IWL_NVM_EXT) { 649 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); 650 651 /* The byte order is little endian 16 bit, meaning 214365 */ 652 data->hw_addr[0] = hw_addr[1]; 653 data->hw_addr[1] = hw_addr[0]; 654 data->hw_addr[2] = hw_addr[3]; 655 data->hw_addr[3] = hw_addr[2]; 656 data->hw_addr[4] = hw_addr[5]; 657 data->hw_addr[5] = hw_addr[4]; 658 } else { 659 iwl_set_hw_address_family_8000(trans, cfg, data, 660 mac_override, nvm_hw); 661 } 662 663 if (!is_valid_ether_addr(data->hw_addr)) { 664 IWL_ERR(trans, "no valid mac address was found\n"); 665 return -EINVAL; 666 } 667 668 IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr); 669 670 return 0; 671 } 672 673 static bool 674 iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg, 675 const __be16 *nvm_hw) 676 { 677 /* 678 * Workaround a bug in Indonesia SKUs where the regulatory in 679 * some 7000-family OTPs erroneously allow wide channels in 680 * 5GHz. To check for Indonesia, we take the SKU value from 681 * bits 1-4 in the subsystem ID and check if it is either 5 or 682 * 9. In those cases, we need to force-disable wide channels 683 * in 5GHz otherwise the FW will throw a sysassert when we try 684 * to use them. 685 */ 686 if (cfg->device_family == IWL_DEVICE_FAMILY_7000) { 687 /* 688 * Unlike the other sections in the NVM, the hw 689 * section uses big-endian. 690 */ 691 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID); 692 u8 sku = (subsystem_id & 0x1e) >> 1; 693 694 if (sku == 5 || sku == 9) { 695 IWL_DEBUG_EEPROM(dev, 696 "disabling wide channels in 5GHz (0x%0x %d)\n", 697 subsystem_id, sku); 698 return true; 699 } 700 } 701 702 return false; 703 } 704 705 struct iwl_nvm_data * 706 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 707 const __be16 *nvm_hw, const __le16 *nvm_sw, 708 const __le16 *nvm_calib, const __le16 *regulatory, 709 const __le16 *mac_override, const __le16 *phy_sku, 710 u8 tx_chains, u8 rx_chains, bool lar_fw_supported) 711 { 712 struct device *dev = trans->dev; 713 struct iwl_nvm_data *data; 714 bool lar_enabled; 715 bool no_wide_in_5ghz = iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw); 716 u32 sku, radio_cfg; 717 u16 lar_config; 718 const __le16 *ch_section; 719 720 if (cfg->nvm_type != IWL_NVM_EXT) 721 data = kzalloc(sizeof(*data) + 722 sizeof(struct ieee80211_channel) * 723 IWL_NUM_CHANNELS, 724 GFP_KERNEL); 725 else 726 data = kzalloc(sizeof(*data) + 727 sizeof(struct ieee80211_channel) * 728 IWL_NUM_CHANNELS_EXT, 729 GFP_KERNEL); 730 if (!data) 731 return NULL; 732 733 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); 734 735 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); 736 iwl_set_radio_cfg(cfg, data, radio_cfg); 737 if (data->valid_tx_ant) 738 tx_chains &= data->valid_tx_ant; 739 if (data->valid_rx_ant) 740 rx_chains &= data->valid_rx_ant; 741 742 sku = iwl_get_sku(cfg, nvm_sw, phy_sku); 743 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; 744 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; 745 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; 746 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) 747 data->sku_cap_11n_enable = false; 748 data->sku_cap_11ac_enable = data->sku_cap_11n_enable && 749 (sku & NVM_SKU_CAP_11AC_ENABLE); 750 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; 751 752 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); 753 754 if (cfg->nvm_type != IWL_NVM_EXT) { 755 /* Checking for required sections */ 756 if (!nvm_calib) { 757 IWL_ERR(trans, 758 "Can't parse empty Calib NVM sections\n"); 759 kfree(data); 760 return NULL; 761 } 762 763 ch_section = cfg->nvm_type == IWL_NVM_SDP ? 764 ®ulatory[NVM_CHANNELS_SDP] : 765 &nvm_sw[NVM_CHANNELS]; 766 767 /* in family 8000 Xtal calibration values moved to OTP */ 768 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); 769 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); 770 lar_enabled = true; 771 } else { 772 u16 lar_offset = data->nvm_version < 0xE39 ? 773 NVM_LAR_OFFSET_OLD : 774 NVM_LAR_OFFSET; 775 776 lar_config = le16_to_cpup(regulatory + lar_offset); 777 data->lar_enabled = !!(lar_config & 778 NVM_LAR_ENABLED); 779 lar_enabled = data->lar_enabled; 780 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED]; 781 } 782 783 /* If no valid mac address was found - bail out */ 784 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { 785 kfree(data); 786 return NULL; 787 } 788 789 iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains, 790 lar_fw_supported && lar_enabled, no_wide_in_5ghz); 791 data->calib_version = 255; 792 793 return data; 794 } 795 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); 796 797 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan, 798 int ch_idx, u16 nvm_flags, 799 const struct iwl_cfg *cfg) 800 { 801 u32 flags = NL80211_RRF_NO_HT40; 802 u32 last_5ghz_ht = LAST_5GHZ_HT; 803 804 if (cfg->nvm_type == IWL_NVM_EXT) 805 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 806 807 if (ch_idx < NUM_2GHZ_CHANNELS && 808 (nvm_flags & NVM_CHANNEL_40MHZ)) { 809 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) 810 flags &= ~NL80211_RRF_NO_HT40PLUS; 811 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) 812 flags &= ~NL80211_RRF_NO_HT40MINUS; 813 } else if (nvm_chan[ch_idx] <= last_5ghz_ht && 814 (nvm_flags & NVM_CHANNEL_40MHZ)) { 815 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 816 flags &= ~NL80211_RRF_NO_HT40PLUS; 817 else 818 flags &= ~NL80211_RRF_NO_HT40MINUS; 819 } 820 821 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 822 flags |= NL80211_RRF_NO_80MHZ; 823 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 824 flags |= NL80211_RRF_NO_160MHZ; 825 826 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 827 flags |= NL80211_RRF_NO_IR; 828 829 if (nvm_flags & NVM_CHANNEL_RADAR) 830 flags |= NL80211_RRF_DFS; 831 832 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 833 flags |= NL80211_RRF_NO_OUTDOOR; 834 835 /* Set the GO concurrent flag only in case that NO_IR is set. 836 * Otherwise it is meaningless 837 */ 838 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 839 (flags & NL80211_RRF_NO_IR)) 840 flags |= NL80211_RRF_GO_CONCURRENT; 841 842 return flags; 843 } 844 845 struct ieee80211_regdomain * 846 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, 847 int num_of_ch, __le32 *channels, u16 fw_mcc) 848 { 849 int ch_idx; 850 u16 ch_flags; 851 u32 reg_rule_flags, prev_reg_rule_flags = 0; 852 const u8 *nvm_chan = cfg->nvm_type == IWL_NVM_EXT ? 853 iwl_ext_nvm_channels : iwl_nvm_channels; 854 struct ieee80211_regdomain *regd; 855 int size_of_regd; 856 struct ieee80211_reg_rule *rule; 857 enum nl80211_band band; 858 int center_freq, prev_center_freq = 0; 859 int valid_rules = 0; 860 bool new_rule; 861 int max_num_ch = cfg->nvm_type == IWL_NVM_EXT ? 862 IWL_NUM_CHANNELS_EXT : IWL_NUM_CHANNELS; 863 864 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) 865 return ERR_PTR(-EINVAL); 866 867 if (WARN_ON(num_of_ch > max_num_ch)) 868 num_of_ch = max_num_ch; 869 870 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", 871 num_of_ch); 872 873 /* build a regdomain rule for every valid channel */ 874 size_of_regd = 875 sizeof(struct ieee80211_regdomain) + 876 num_of_ch * sizeof(struct ieee80211_reg_rule); 877 878 regd = kzalloc(size_of_regd, GFP_KERNEL); 879 if (!regd) 880 return ERR_PTR(-ENOMEM); 881 882 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 883 ch_flags = (u16)__le32_to_cpup(channels + ch_idx); 884 band = (ch_idx < NUM_2GHZ_CHANNELS) ? 885 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 886 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], 887 band); 888 new_rule = false; 889 890 if (!(ch_flags & NVM_CHANNEL_VALID)) { 891 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 892 nvm_chan[ch_idx], ch_flags); 893 continue; 894 } 895 896 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, 897 ch_flags, cfg); 898 899 /* we can't continue the same rule */ 900 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags || 901 center_freq - prev_center_freq > 20) { 902 valid_rules++; 903 new_rule = true; 904 } 905 906 rule = ®d->reg_rules[valid_rules - 1]; 907 908 if (new_rule) 909 rule->freq_range.start_freq_khz = 910 MHZ_TO_KHZ(center_freq - 10); 911 912 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); 913 914 /* this doesn't matter - not used by FW */ 915 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 916 rule->power_rule.max_eirp = 917 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 918 919 rule->flags = reg_rule_flags; 920 921 /* rely on auto-calculation to merge BW of contiguous chans */ 922 rule->flags |= NL80211_RRF_AUTO_BW; 923 rule->freq_range.max_bandwidth_khz = 0; 924 925 prev_center_freq = center_freq; 926 prev_reg_rule_flags = reg_rule_flags; 927 928 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 929 nvm_chan[ch_idx], ch_flags); 930 } 931 932 regd->n_reg_rules = valid_rules; 933 934 /* set alpha2 from FW. */ 935 regd->alpha2[0] = fw_mcc >> 8; 936 regd->alpha2[1] = fw_mcc & 0xff; 937 938 return regd; 939 } 940 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); 941