1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2005-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/types.h> 8 #include <linux/slab.h> 9 #include <linux/export.h> 10 #include <linux/etherdevice.h> 11 #include <linux/pci.h> 12 #include <linux/firmware.h> 13 14 #include "iwl-drv.h" 15 #include "iwl-modparams.h" 16 #include "iwl-nvm-parse.h" 17 #include "iwl-prph.h" 18 #include "iwl-io.h" 19 #include "iwl-csr.h" 20 #include "fw/acpi.h" 21 #include "fw/api/nvm-reg.h" 22 #include "fw/api/commands.h" 23 #include "fw/api/cmdhdr.h" 24 #include "fw/img.h" 25 #include "mei/iwl-mei.h" 26 27 /* NVM offsets (in words) definitions */ 28 enum nvm_offsets { 29 /* NVM HW-Section offset (in words) definitions */ 30 SUBSYSTEM_ID = 0x0A, 31 HW_ADDR = 0x15, 32 33 /* NVM SW-Section offset (in words) definitions */ 34 NVM_SW_SECTION = 0x1C0, 35 NVM_VERSION = 0, 36 RADIO_CFG = 1, 37 SKU = 2, 38 N_HW_ADDRS = 3, 39 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, 40 41 /* NVM calibration section offset (in words) definitions */ 42 NVM_CALIB_SECTION = 0x2B8, 43 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION, 44 45 /* NVM REGULATORY -Section offset (in words) definitions */ 46 NVM_CHANNELS_SDP = 0, 47 }; 48 49 enum ext_nvm_offsets { 50 /* NVM HW-Section offset (in words) definitions */ 51 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1, 52 53 /* NVM SW-Section offset (in words) definitions */ 54 NVM_VERSION_EXT_NVM = 0, 55 N_HW_ADDRS_FAMILY_8000 = 3, 56 57 /* NVM PHY_SKU-Section offset (in words) definitions */ 58 RADIO_CFG_FAMILY_EXT_NVM = 0, 59 SKU_FAMILY_8000 = 2, 60 61 /* NVM REGULATORY -Section offset (in words) definitions */ 62 NVM_CHANNELS_EXTENDED = 0, 63 NVM_LAR_OFFSET_OLD = 0x4C7, 64 NVM_LAR_OFFSET = 0x507, 65 NVM_LAR_ENABLED = 0x7, 66 }; 67 68 /* SKU Capabilities (actual values from NVM definition) */ 69 enum nvm_sku_bits { 70 NVM_SKU_CAP_BAND_24GHZ = BIT(0), 71 NVM_SKU_CAP_BAND_52GHZ = BIT(1), 72 NVM_SKU_CAP_11N_ENABLE = BIT(2), 73 NVM_SKU_CAP_11AC_ENABLE = BIT(3), 74 NVM_SKU_CAP_MIMO_DISABLE = BIT(5), 75 }; 76 77 /* 78 * These are the channel numbers in the order that they are stored in the NVM 79 */ 80 static const u16 iwl_nvm_channels[] = { 81 /* 2.4 GHz */ 82 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 83 /* 5 GHz */ 84 36, 40, 44, 48, 52, 56, 60, 64, 85 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 86 149, 153, 157, 161, 165 87 }; 88 89 static const u16 iwl_ext_nvm_channels[] = { 90 /* 2.4 GHz */ 91 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 92 /* 5 GHz */ 93 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 94 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 95 149, 153, 157, 161, 165, 169, 173, 177, 181 96 }; 97 98 static const u16 iwl_uhb_nvm_channels[] = { 99 /* 2.4 GHz */ 100 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 101 /* 5 GHz */ 102 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 103 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 104 149, 153, 157, 161, 165, 169, 173, 177, 181, 105 /* 6-7 GHz */ 106 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 107 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 108 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 109 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233 110 }; 111 112 #define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) 113 #define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels) 114 #define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels) 115 #define NUM_2GHZ_CHANNELS 14 116 #define NUM_5GHZ_CHANNELS 37 117 #define FIRST_2GHZ_HT_MINUS 5 118 #define LAST_2GHZ_HT_PLUS 9 119 #define N_HW_ADDR_MASK 0xF 120 121 /* rate data (static) */ 122 static struct ieee80211_rate iwl_cfg80211_rates[] = { 123 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, 124 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, 125 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 126 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, 127 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 128 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, 129 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 130 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, 131 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, 132 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, 133 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, 134 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, 135 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, 136 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, 137 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, 138 }; 139 #define RATES_24_OFFS 0 140 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) 141 #define RATES_52_OFFS 4 142 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) 143 144 /** 145 * enum iwl_nvm_channel_flags - channel flags in NVM 146 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo 147 * @NVM_CHANNEL_IBSS: usable as an IBSS channel 148 * @NVM_CHANNEL_ACTIVE: active scanning allowed 149 * @NVM_CHANNEL_RADAR: radar detection required 150 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed 151 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS 152 * on same channel on 2.4 or same UNII band on 5.2 153 * @NVM_CHANNEL_UNIFORM: uniform spreading required 154 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay 155 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay 156 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay 157 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay 158 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?) 159 */ 160 enum iwl_nvm_channel_flags { 161 NVM_CHANNEL_VALID = BIT(0), 162 NVM_CHANNEL_IBSS = BIT(1), 163 NVM_CHANNEL_ACTIVE = BIT(3), 164 NVM_CHANNEL_RADAR = BIT(4), 165 NVM_CHANNEL_INDOOR_ONLY = BIT(5), 166 NVM_CHANNEL_GO_CONCURRENT = BIT(6), 167 NVM_CHANNEL_UNIFORM = BIT(7), 168 NVM_CHANNEL_20MHZ = BIT(8), 169 NVM_CHANNEL_40MHZ = BIT(9), 170 NVM_CHANNEL_80MHZ = BIT(10), 171 NVM_CHANNEL_160MHZ = BIT(11), 172 NVM_CHANNEL_DC_HIGH = BIT(12), 173 }; 174 175 /** 176 * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory 177 * domain. 178 * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the 179 * 2.4Ghz band is allowed. 180 * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the 181 * 5Ghz band is allowed. 182 * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed 183 * for this regulatory domain (valid only in 5Ghz). 184 * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed 185 * for this regulatory domain (valid only in 5Ghz). 186 * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. 187 * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. 188 * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden 189 * for this regulatory domain (valid only in 5Ghz). 190 * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed. 191 * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain. 192 */ 193 enum iwl_reg_capa_flags_v1 { 194 REG_CAPA_V1_BF_CCD_LOW_BAND = BIT(0), 195 REG_CAPA_V1_BF_CCD_HIGH_BAND = BIT(1), 196 REG_CAPA_V1_160MHZ_ALLOWED = BIT(2), 197 REG_CAPA_V1_80MHZ_ALLOWED = BIT(3), 198 REG_CAPA_V1_MCS_8_ALLOWED = BIT(4), 199 REG_CAPA_V1_MCS_9_ALLOWED = BIT(5), 200 REG_CAPA_V1_40MHZ_FORBIDDEN = BIT(7), 201 REG_CAPA_V1_DC_HIGH_ENABLED = BIT(9), 202 REG_CAPA_V1_11AX_DISABLED = BIT(10), 203 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */ 204 205 /** 206 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory 207 * domain (version 2). 208 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are 209 * disabled. 210 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the 211 * 2.4Ghz band is allowed. 212 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the 213 * 5Ghz band is allowed. 214 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed 215 * for this regulatory domain (valid only in 5Ghz). 216 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed 217 * for this regulatory domain (valid only in 5Ghz). 218 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. 219 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. 220 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118, 221 * 126, 122) are disabled. 222 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed 223 * for this regulatory domain (uvalid only in 5Ghz). 224 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain. 225 */ 226 enum iwl_reg_capa_flags_v2 { 227 REG_CAPA_V2_STRADDLE_DISABLED = BIT(0), 228 REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1), 229 REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2), 230 REG_CAPA_V2_160MHZ_ALLOWED = BIT(3), 231 REG_CAPA_V2_80MHZ_ALLOWED = BIT(4), 232 REG_CAPA_V2_MCS_8_ALLOWED = BIT(5), 233 REG_CAPA_V2_MCS_9_ALLOWED = BIT(6), 234 REG_CAPA_V2_WEATHER_DISABLED = BIT(7), 235 REG_CAPA_V2_40MHZ_ALLOWED = BIT(8), 236 REG_CAPA_V2_11AX_DISABLED = BIT(10), 237 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */ 238 239 /** 240 * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory 241 * domain. 242 * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed 243 * for this regulatory domain (valid only in 5Ghz). 244 * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed 245 * for this regulatory domain (valid only in 5Ghz). 246 * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed. 247 * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed. 248 * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain. 249 * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain. 250 * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed 251 * for this regulatory domain (valid only in 5GHz). 252 */ 253 enum iwl_reg_capa_flags_v4 { 254 REG_CAPA_V4_160MHZ_ALLOWED = BIT(3), 255 REG_CAPA_V4_80MHZ_ALLOWED = BIT(4), 256 REG_CAPA_V4_MCS_12_ALLOWED = BIT(5), 257 REG_CAPA_V4_MCS_13_ALLOWED = BIT(6), 258 REG_CAPA_V4_11BE_DISABLED = BIT(8), 259 REG_CAPA_V4_11AX_DISABLED = BIT(13), 260 REG_CAPA_V4_320MHZ_ALLOWED = BIT(16), 261 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */ 262 263 /* 264 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the 265 * MCC update command response. 266 */ 267 #define REG_CAPA_V2_RESP_VER 6 268 269 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the 270 * MCC update command response. 271 */ 272 #define REG_CAPA_V4_RESP_VER 8 273 274 /** 275 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for 276 * handling the different APIs of reg_capa_flags. 277 * 278 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed 279 * for this regulatory domain. 280 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed 281 * for this regulatory domain (valid only in 5 and 6 Ghz). 282 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed 283 * for this regulatory domain (valid only in 5 and 6 Ghz). 284 * @allow_320mhz: 11be channel with a width of 320Mhz is allowed 285 * for this regulatory domain (valid only in 6 Ghz). 286 * @disable_11ax: 11ax is forbidden for this regulatory domain. 287 * @disable_11be: 11be is forbidden for this regulatory domain. 288 */ 289 struct iwl_reg_capa { 290 bool allow_40mhz; 291 bool allow_80mhz; 292 bool allow_160mhz; 293 bool allow_320mhz; 294 bool disable_11ax; 295 bool disable_11be; 296 }; 297 298 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level, 299 int chan, u32 flags) 300 { 301 #define CHECK_AND_PRINT_I(x) \ 302 ((flags & NVM_CHANNEL_##x) ? " " #x : "") 303 304 if (!(flags & NVM_CHANNEL_VALID)) { 305 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n", 306 chan, flags); 307 return; 308 } 309 310 /* Note: already can print up to 101 characters, 110 is the limit! */ 311 IWL_DEBUG_DEV(dev, level, 312 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n", 313 chan, flags, 314 CHECK_AND_PRINT_I(VALID), 315 CHECK_AND_PRINT_I(IBSS), 316 CHECK_AND_PRINT_I(ACTIVE), 317 CHECK_AND_PRINT_I(RADAR), 318 CHECK_AND_PRINT_I(INDOOR_ONLY), 319 CHECK_AND_PRINT_I(GO_CONCURRENT), 320 CHECK_AND_PRINT_I(UNIFORM), 321 CHECK_AND_PRINT_I(20MHZ), 322 CHECK_AND_PRINT_I(40MHZ), 323 CHECK_AND_PRINT_I(80MHZ), 324 CHECK_AND_PRINT_I(160MHZ), 325 CHECK_AND_PRINT_I(DC_HIGH)); 326 #undef CHECK_AND_PRINT_I 327 } 328 329 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band, 330 u32 nvm_flags, const struct iwl_cfg *cfg) 331 { 332 u32 flags = IEEE80211_CHAN_NO_HT40; 333 334 if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) { 335 if (ch_num <= LAST_2GHZ_HT_PLUS) 336 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 337 if (ch_num >= FIRST_2GHZ_HT_MINUS) 338 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 339 } else if (nvm_flags & NVM_CHANNEL_40MHZ) { 340 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 341 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 342 else 343 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 344 } 345 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 346 flags |= IEEE80211_CHAN_NO_80MHZ; 347 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 348 flags |= IEEE80211_CHAN_NO_160MHZ; 349 350 if (!(nvm_flags & NVM_CHANNEL_IBSS)) 351 flags |= IEEE80211_CHAN_NO_IR; 352 353 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 354 flags |= IEEE80211_CHAN_NO_IR; 355 356 if (nvm_flags & NVM_CHANNEL_RADAR) 357 flags |= IEEE80211_CHAN_RADAR; 358 359 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 360 flags |= IEEE80211_CHAN_INDOOR_ONLY; 361 362 /* Set the GO concurrent flag only in case that NO_IR is set. 363 * Otherwise it is meaningless 364 */ 365 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 366 (flags & IEEE80211_CHAN_NO_IR)) 367 flags |= IEEE80211_CHAN_IR_CONCURRENT; 368 369 return flags; 370 } 371 372 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx) 373 { 374 if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) { 375 return NL80211_BAND_6GHZ; 376 } 377 378 if (ch_idx >= NUM_2GHZ_CHANNELS) 379 return NL80211_BAND_5GHZ; 380 return NL80211_BAND_2GHZ; 381 } 382 383 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, 384 struct iwl_nvm_data *data, 385 const void * const nvm_ch_flags, 386 u32 sbands_flags, bool v4) 387 { 388 int ch_idx; 389 int n_channels = 0; 390 struct ieee80211_channel *channel; 391 u32 ch_flags; 392 int num_of_ch; 393 const u16 *nvm_chan; 394 395 if (cfg->uhb_supported) { 396 num_of_ch = IWL_NVM_NUM_CHANNELS_UHB; 397 nvm_chan = iwl_uhb_nvm_channels; 398 } else if (cfg->nvm_type == IWL_NVM_EXT) { 399 num_of_ch = IWL_NVM_NUM_CHANNELS_EXT; 400 nvm_chan = iwl_ext_nvm_channels; 401 } else { 402 num_of_ch = IWL_NVM_NUM_CHANNELS; 403 nvm_chan = iwl_nvm_channels; 404 } 405 406 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 407 enum nl80211_band band = 408 iwl_nl80211_band_from_channel_idx(ch_idx); 409 410 if (v4) 411 ch_flags = 412 __le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx); 413 else 414 ch_flags = 415 __le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx); 416 417 if (band == NL80211_BAND_5GHZ && 418 !data->sku_cap_band_52ghz_enable) 419 continue; 420 421 /* workaround to disable wide channels in 5GHz */ 422 if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) && 423 band == NL80211_BAND_5GHZ) { 424 ch_flags &= ~(NVM_CHANNEL_40MHZ | 425 NVM_CHANNEL_80MHZ | 426 NVM_CHANNEL_160MHZ); 427 } 428 429 if (ch_flags & NVM_CHANNEL_160MHZ) 430 data->vht160_supported = true; 431 432 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) && 433 !(ch_flags & NVM_CHANNEL_VALID)) { 434 /* 435 * Channels might become valid later if lar is 436 * supported, hence we still want to add them to 437 * the list of supported channels to cfg80211. 438 */ 439 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 440 nvm_chan[ch_idx], ch_flags); 441 continue; 442 } 443 444 channel = &data->channels[n_channels]; 445 n_channels++; 446 447 channel->hw_value = nvm_chan[ch_idx]; 448 channel->band = band; 449 channel->center_freq = 450 ieee80211_channel_to_frequency( 451 channel->hw_value, channel->band); 452 453 /* Initialize regulatory-based run-time data */ 454 455 /* 456 * Default value - highest tx power value. max_power 457 * is not used in mvm, and is used for backwards compatibility 458 */ 459 channel->max_power = IWL_DEFAULT_MAX_TX_POWER; 460 461 /* don't put limitations in case we're using LAR */ 462 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR)) 463 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], 464 ch_idx, band, 465 ch_flags, cfg); 466 else 467 channel->flags = 0; 468 469 /* TODO: Don't put limitations on UHB devices as we still don't 470 * have NVM for them 471 */ 472 if (cfg->uhb_supported) 473 channel->flags = 0; 474 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 475 channel->hw_value, ch_flags); 476 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n", 477 channel->hw_value, channel->max_power); 478 } 479 480 return n_channels; 481 } 482 483 static void iwl_init_vht_hw_capab(struct iwl_trans *trans, 484 struct iwl_nvm_data *data, 485 struct ieee80211_sta_vht_cap *vht_cap, 486 u8 tx_chains, u8 rx_chains) 487 { 488 const struct iwl_cfg *cfg = trans->cfg; 489 int num_rx_ants = num_of_ant(rx_chains); 490 int num_tx_ants = num_of_ant(tx_chains); 491 492 vht_cap->vht_supported = true; 493 494 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | 495 IEEE80211_VHT_CAP_RXSTBC_1 | 496 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 497 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 498 IEEE80211_VHT_MAX_AMPDU_1024K << 499 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 500 501 if (!trans->cfg->ht_params->stbc) 502 vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK; 503 504 if (data->vht160_supported) 505 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | 506 IEEE80211_VHT_CAP_SHORT_GI_160; 507 508 if (cfg->vht_mu_mimo_supported) 509 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 510 511 if (cfg->ht_params->ldpc) 512 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 513 514 if (data->sku_cap_mimo_disabled) { 515 num_rx_ants = 1; 516 num_tx_ants = 1; 517 } 518 519 if (trans->cfg->ht_params->stbc && num_tx_ants > 1) 520 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 521 else 522 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; 523 524 switch (iwlwifi_mod_params.amsdu_size) { 525 case IWL_AMSDU_DEF: 526 if (trans->trans_cfg->mq_rx_supported) 527 vht_cap->cap |= 528 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 529 else 530 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 531 break; 532 case IWL_AMSDU_2K: 533 if (trans->trans_cfg->mq_rx_supported) 534 vht_cap->cap |= 535 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 536 else 537 WARN(1, "RB size of 2K is not supported by this device\n"); 538 break; 539 case IWL_AMSDU_4K: 540 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 541 break; 542 case IWL_AMSDU_8K: 543 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; 544 break; 545 case IWL_AMSDU_12K: 546 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 547 break; 548 default: 549 break; 550 } 551 552 vht_cap->vht_mcs.rx_mcs_map = 553 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 554 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | 555 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 556 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 557 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 558 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 559 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 560 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); 561 562 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { 563 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; 564 /* this works because NOT_SUPPORTED == 3 */ 565 vht_cap->vht_mcs.rx_mcs_map |= 566 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); 567 } 568 569 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; 570 571 vht_cap->vht_mcs.tx_highest |= 572 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); 573 } 574 575 static const u8 iwl_vendor_caps[] = { 576 0xdd, /* vendor element */ 577 0x06, /* length */ 578 0x00, 0x17, 0x35, /* Intel OUI */ 579 0x08, /* type (Intel Capabilities) */ 580 /* followed by 16 bits of capabilities */ 581 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE BIT(0) 582 IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE, 583 0x00 584 }; 585 586 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = { 587 { 588 .types_mask = BIT(NL80211_IFTYPE_STATION), 589 .he_cap = { 590 .has_he = true, 591 .he_cap_elem = { 592 .mac_cap_info[0] = 593 IEEE80211_HE_MAC_CAP0_HTC_HE, 594 .mac_cap_info[1] = 595 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | 596 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, 597 .mac_cap_info[2] = 598 IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP, 599 .mac_cap_info[3] = 600 IEEE80211_HE_MAC_CAP3_OMI_CONTROL | 601 IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS, 602 .mac_cap_info[4] = 603 IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU | 604 IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39, 605 .mac_cap_info[5] = 606 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 | 607 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 | 608 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU | 609 IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS | 610 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX, 611 .phy_cap_info[1] = 612 IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | 613 IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | 614 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, 615 .phy_cap_info[2] = 616 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US | 617 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ, 618 .phy_cap_info[3] = 619 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK | 620 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | 621 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK | 622 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, 623 .phy_cap_info[4] = 624 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | 625 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 | 626 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8, 627 .phy_cap_info[6] = 628 IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB | 629 IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB | 630 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, 631 .phy_cap_info[7] = 632 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP | 633 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, 634 .phy_cap_info[8] = 635 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 636 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | 637 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | 638 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU | 639 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242, 640 .phy_cap_info[9] = 641 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | 642 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB | 643 (IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED << 644 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS), 645 .phy_cap_info[10] = 646 IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF, 647 }, 648 /* 649 * Set default Tx/Rx HE MCS NSS Support field. 650 * Indicate support for up to 2 spatial streams and all 651 * MCS, without any special cases 652 */ 653 .he_mcs_nss_supp = { 654 .rx_mcs_80 = cpu_to_le16(0xfffa), 655 .tx_mcs_80 = cpu_to_le16(0xfffa), 656 .rx_mcs_160 = cpu_to_le16(0xfffa), 657 .tx_mcs_160 = cpu_to_le16(0xfffa), 658 .rx_mcs_80p80 = cpu_to_le16(0xffff), 659 .tx_mcs_80p80 = cpu_to_le16(0xffff), 660 }, 661 /* 662 * Set default PPE thresholds, with PPET16 set to 0, 663 * PPET8 set to 7 664 */ 665 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, 666 }, 667 .eht_cap = { 668 .has_eht = true, 669 .eht_cap_elem = { 670 .mac_cap_info[0] = 671 IEEE80211_EHT_MAC_CAP0_OM_CONTROL | 672 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 | 673 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2, 674 .phy_cap_info[0] = 675 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ | 676 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI | 677 IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO | 678 IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE | 679 IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK, 680 .phy_cap_info[1] = 681 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK | 682 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK, 683 .phy_cap_info[3] = 684 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK | 685 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK | 686 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK | 687 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK | 688 IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK | 689 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK | 690 IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK, 691 692 .phy_cap_info[4] = 693 IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO | 694 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP | 695 IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI, 696 .phy_cap_info[5] = 697 IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK | 698 IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP | 699 IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP | 700 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT, 701 .phy_cap_info[6] = 702 IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK | 703 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP, 704 .phy_cap_info[8] = 705 IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA | 706 IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA, 707 }, 708 709 /* For all MCS and bandwidth, set 2 NSS for both Tx and 710 * Rx - note we don't set the only_20mhz, but due to this 711 * being a union, it gets set correctly anyway. 712 */ 713 .eht_mcs_nss_supp = { 714 .bw._80 = { 715 .rx_tx_mcs9_max_nss = 0x22, 716 .rx_tx_mcs11_max_nss = 0x22, 717 .rx_tx_mcs13_max_nss = 0x22, 718 }, 719 .bw._160 = { 720 .rx_tx_mcs9_max_nss = 0x22, 721 .rx_tx_mcs11_max_nss = 0x22, 722 .rx_tx_mcs13_max_nss = 0x22, 723 }, 724 .bw._320 = { 725 .rx_tx_mcs9_max_nss = 0x22, 726 .rx_tx_mcs11_max_nss = 0x22, 727 .rx_tx_mcs13_max_nss = 0x22, 728 }, 729 }, 730 731 /* 732 * PPE thresholds for NSS = 2, and RU index bitmap set 733 * to 0xc. 734 */ 735 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 } 736 }, 737 }, 738 { 739 .types_mask = BIT(NL80211_IFTYPE_AP), 740 .he_cap = { 741 .has_he = true, 742 .he_cap_elem = { 743 .mac_cap_info[0] = 744 IEEE80211_HE_MAC_CAP0_HTC_HE, 745 .mac_cap_info[1] = 746 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | 747 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, 748 .mac_cap_info[3] = 749 IEEE80211_HE_MAC_CAP3_OMI_CONTROL, 750 .phy_cap_info[1] = 751 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, 752 .phy_cap_info[2] = 753 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ | 754 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US, 755 .phy_cap_info[3] = 756 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK | 757 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | 758 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK | 759 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, 760 .phy_cap_info[6] = 761 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, 762 .phy_cap_info[7] = 763 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, 764 .phy_cap_info[8] = 765 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 766 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242, 767 .phy_cap_info[9] = 768 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 769 << IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS, 770 }, 771 /* 772 * Set default Tx/Rx HE MCS NSS Support field. 773 * Indicate support for up to 2 spatial streams and all 774 * MCS, without any special cases 775 */ 776 .he_mcs_nss_supp = { 777 .rx_mcs_80 = cpu_to_le16(0xfffa), 778 .tx_mcs_80 = cpu_to_le16(0xfffa), 779 .rx_mcs_160 = cpu_to_le16(0xfffa), 780 .tx_mcs_160 = cpu_to_le16(0xfffa), 781 .rx_mcs_80p80 = cpu_to_le16(0xffff), 782 .tx_mcs_80p80 = cpu_to_le16(0xffff), 783 }, 784 /* 785 * Set default PPE thresholds, with PPET16 set to 0, 786 * PPET8 set to 7 787 */ 788 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, 789 }, 790 .eht_cap = { 791 .has_eht = true, 792 .eht_cap_elem = { 793 .mac_cap_info[0] = 794 IEEE80211_EHT_MAC_CAP0_OM_CONTROL | 795 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 | 796 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2, 797 .phy_cap_info[0] = 798 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ | 799 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI, 800 .phy_cap_info[5] = 801 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT, 802 }, 803 804 /* For all MCS and bandwidth, set 2 NSS for both Tx and 805 * Rx - note we don't set the only_20mhz, but due to this 806 * being a union, it gets set correctly anyway. 807 */ 808 .eht_mcs_nss_supp = { 809 .bw._80 = { 810 .rx_tx_mcs9_max_nss = 0x22, 811 .rx_tx_mcs11_max_nss = 0x22, 812 .rx_tx_mcs13_max_nss = 0x22, 813 }, 814 .bw._160 = { 815 .rx_tx_mcs9_max_nss = 0x22, 816 .rx_tx_mcs11_max_nss = 0x22, 817 .rx_tx_mcs13_max_nss = 0x22, 818 }, 819 .bw._320 = { 820 .rx_tx_mcs9_max_nss = 0x22, 821 .rx_tx_mcs11_max_nss = 0x22, 822 .rx_tx_mcs13_max_nss = 0x22, 823 }, 824 }, 825 826 /* 827 * PPE thresholds for NSS = 2, and RU index bitmap set 828 * to 0xc. 829 */ 830 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 } 831 }, 832 }, 833 }; 834 835 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans, 836 struct iwl_nvm_data *data, 837 struct ieee80211_supported_band *sband, 838 u8 tx_chains, u8 rx_chains) 839 { 840 struct ieee80211_sta_ht_cap ht_cap; 841 struct ieee80211_sta_vht_cap vht_cap = {}; 842 struct ieee80211_sband_iftype_data *iftype_data; 843 u16 he_6ghz_capa = 0; 844 u32 exp; 845 int i; 846 847 if (sband->band != NL80211_BAND_6GHZ) 848 return; 849 850 /* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */ 851 iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ, 852 tx_chains, rx_chains); 853 WARN_ON(!ht_cap.ht_supported); 854 iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains); 855 WARN_ON(!vht_cap.vht_supported); 856 857 he_6ghz_capa |= 858 u16_encode_bits(ht_cap.ampdu_density, 859 IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START); 860 exp = u32_get_bits(vht_cap.cap, 861 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); 862 he_6ghz_capa |= 863 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); 864 exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK); 865 he_6ghz_capa |= 866 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN); 867 /* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */ 868 if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN) 869 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS; 870 if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN) 871 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; 872 873 IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa); 874 875 /* we know it's writable - we set it before ourselves */ 876 iftype_data = (void *)(uintptr_t)sband->iftype_data; 877 for (i = 0; i < sband->n_iftype_data; i++) 878 iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa); 879 } 880 881 static void 882 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans, 883 struct iwl_nvm_data *data, 884 struct ieee80211_supported_band *sband, 885 struct ieee80211_sband_iftype_data *iftype_data, 886 u8 tx_chains, u8 rx_chains, 887 const struct iwl_fw *fw) 888 { 889 bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP); 890 bool no_320; 891 892 no_320 = !trans->trans_cfg->integrated && 893 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB; 894 895 if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be) 896 iftype_data->eht_cap.has_eht = false; 897 898 /* Advertise an A-MPDU exponent extension based on 899 * operating band 900 */ 901 if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht) 902 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= 903 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2; 904 else if (sband->band != NL80211_BAND_2GHZ) 905 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= 906 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1; 907 else 908 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= 909 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3; 910 911 switch (sband->band) { 912 case NL80211_BAND_2GHZ: 913 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |= 914 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G; 915 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |= 916 u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454, 917 IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK); 918 break; 919 case NL80211_BAND_6GHZ: 920 if (!no_320) { 921 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |= 922 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 923 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |= 924 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; 925 } 926 fallthrough; 927 case NL80211_BAND_5GHZ: 928 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |= 929 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 930 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 931 break; 932 default: 933 WARN_ON(1); 934 break; 935 } 936 937 if ((tx_chains & rx_chains) == ANT_AB) { 938 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |= 939 IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ; 940 iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |= 941 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 | 942 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2; 943 if (!is_ap) { 944 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |= 945 IEEE80211_HE_PHY_CAP7_MAX_NC_2; 946 947 if (iftype_data->eht_cap.has_eht) { 948 /* 949 * Set the number of sounding dimensions for each 950 * bandwidth to 1 to indicate the maximal supported 951 * value of TXVECTOR parameter NUM_STS of 2 952 */ 953 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49; 954 955 /* 956 * Set the MAX NC to 1 to indicate sounding feedback of 957 * 2 supported by the beamfomee. 958 */ 959 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10; 960 } 961 } 962 } else { 963 if (iftype_data->eht_cap.has_eht) { 964 struct ieee80211_eht_mcs_nss_supp *mcs_nss = 965 &iftype_data->eht_cap.eht_mcs_nss_supp; 966 967 memset(mcs_nss, 0x11, sizeof(*mcs_nss)); 968 } 969 970 if (!is_ap) { 971 /* If not 2x2, we need to indicate 1x1 in the 972 * Midamble RX Max NSTS - but not for AP mode 973 */ 974 iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &= 975 ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS; 976 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &= 977 ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS; 978 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |= 979 IEEE80211_HE_PHY_CAP7_MAX_NC_1; 980 } 981 } 982 983 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap) 984 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |= 985 IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO; 986 987 switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) { 988 case IWL_CFG_RF_TYPE_GF: 989 case IWL_CFG_RF_TYPE_MR: 990 case IWL_CFG_RF_TYPE_MS: 991 case IWL_CFG_RF_TYPE_FM: 992 case IWL_CFG_RF_TYPE_WH: 993 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |= 994 IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU; 995 if (!is_ap) 996 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |= 997 IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; 998 break; 999 } 1000 1001 if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL && 1002 iftype_data->eht_cap.has_eht) { 1003 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &= 1004 ~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 | 1005 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2); 1006 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &= 1007 ~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO | 1008 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK | 1009 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK | 1010 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK | 1011 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK | 1012 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK | 1013 IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK); 1014 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &= 1015 ~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO | 1016 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP); 1017 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &= 1018 ~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK; 1019 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &= 1020 ~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK | 1021 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP); 1022 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |= 1023 IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF; 1024 } 1025 1026 if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT)) 1027 iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |= 1028 IEEE80211_HE_MAC_CAP2_BCAST_TWT; 1029 1030 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 && 1031 !is_ap) { 1032 iftype_data->vendor_elems.data = iwl_vendor_caps; 1033 iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps); 1034 } 1035 1036 if (!trans->cfg->ht_params->stbc) { 1037 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &= 1038 ~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ; 1039 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &= 1040 ~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ; 1041 } 1042 } 1043 1044 static void iwl_init_he_hw_capab(struct iwl_trans *trans, 1045 struct iwl_nvm_data *data, 1046 struct ieee80211_supported_band *sband, 1047 u8 tx_chains, u8 rx_chains, 1048 const struct iwl_fw *fw) 1049 { 1050 struct ieee80211_sband_iftype_data *iftype_data; 1051 int i; 1052 1053 /* should only initialize once */ 1054 if (WARN_ON(sband->iftype_data)) 1055 return; 1056 1057 BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa)); 1058 BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa)); 1059 BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa)); 1060 1061 switch (sband->band) { 1062 case NL80211_BAND_2GHZ: 1063 iftype_data = data->iftd.low; 1064 break; 1065 case NL80211_BAND_5GHZ: 1066 iftype_data = data->iftd.high; 1067 break; 1068 case NL80211_BAND_6GHZ: 1069 iftype_data = data->iftd.uhb; 1070 break; 1071 default: 1072 WARN_ON(1); 1073 return; 1074 } 1075 1076 memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa)); 1077 1078 sband->iftype_data = iftype_data; 1079 sband->n_iftype_data = ARRAY_SIZE(iwl_he_eht_capa); 1080 1081 for (i = 0; i < sband->n_iftype_data; i++) 1082 iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i], 1083 tx_chains, rx_chains, fw); 1084 1085 iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains); 1086 } 1087 1088 static void iwl_init_sbands(struct iwl_trans *trans, 1089 struct iwl_nvm_data *data, 1090 const void *nvm_ch_flags, u8 tx_chains, 1091 u8 rx_chains, u32 sbands_flags, bool v4, 1092 const struct iwl_fw *fw) 1093 { 1094 struct device *dev = trans->dev; 1095 const struct iwl_cfg *cfg = trans->cfg; 1096 int n_channels; 1097 int n_used = 0; 1098 struct ieee80211_supported_band *sband; 1099 1100 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags, 1101 sbands_flags, v4); 1102 sband = &data->bands[NL80211_BAND_2GHZ]; 1103 sband->band = NL80211_BAND_2GHZ; 1104 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; 1105 sband->n_bitrates = N_RATES_24; 1106 n_used += iwl_init_sband_channels(data, sband, n_channels, 1107 NL80211_BAND_2GHZ); 1108 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ, 1109 tx_chains, rx_chains); 1110 1111 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 1112 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 1113 fw); 1114 1115 sband = &data->bands[NL80211_BAND_5GHZ]; 1116 sband->band = NL80211_BAND_5GHZ; 1117 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 1118 sband->n_bitrates = N_RATES_52; 1119 n_used += iwl_init_sband_channels(data, sband, n_channels, 1120 NL80211_BAND_5GHZ); 1121 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ, 1122 tx_chains, rx_chains); 1123 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) 1124 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap, 1125 tx_chains, rx_chains); 1126 1127 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 1128 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 1129 fw); 1130 1131 /* 6GHz band. */ 1132 sband = &data->bands[NL80211_BAND_6GHZ]; 1133 sband->band = NL80211_BAND_6GHZ; 1134 /* use the same rates as 5GHz band */ 1135 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 1136 sband->n_bitrates = N_RATES_52; 1137 n_used += iwl_init_sband_channels(data, sband, n_channels, 1138 NL80211_BAND_6GHZ); 1139 1140 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 1141 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 1142 fw); 1143 else 1144 sband->n_channels = 0; 1145 if (n_channels != n_used) 1146 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", 1147 n_used, n_channels); 1148 } 1149 1150 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 1151 const __le16 *phy_sku) 1152 { 1153 if (cfg->nvm_type != IWL_NVM_EXT) 1154 return le16_to_cpup(nvm_sw + SKU); 1155 1156 return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000)); 1157 } 1158 1159 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 1160 { 1161 if (cfg->nvm_type != IWL_NVM_EXT) 1162 return le16_to_cpup(nvm_sw + NVM_VERSION); 1163 else 1164 return le32_to_cpup((const __le32 *)(nvm_sw + 1165 NVM_VERSION_EXT_NVM)); 1166 } 1167 1168 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 1169 const __le16 *phy_sku) 1170 { 1171 if (cfg->nvm_type != IWL_NVM_EXT) 1172 return le16_to_cpup(nvm_sw + RADIO_CFG); 1173 1174 return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM)); 1175 1176 } 1177 1178 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 1179 { 1180 int n_hw_addr; 1181 1182 if (cfg->nvm_type != IWL_NVM_EXT) 1183 return le16_to_cpup(nvm_sw + N_HW_ADDRS); 1184 1185 n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); 1186 1187 return n_hw_addr & N_HW_ADDR_MASK; 1188 } 1189 1190 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, 1191 struct iwl_nvm_data *data, 1192 u32 radio_cfg) 1193 { 1194 if (cfg->nvm_type != IWL_NVM_EXT) { 1195 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); 1196 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); 1197 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); 1198 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); 1199 return; 1200 } 1201 1202 /* set the radio configuration for family 8000 */ 1203 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg); 1204 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg); 1205 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg); 1206 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg); 1207 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); 1208 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); 1209 } 1210 1211 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) 1212 { 1213 const u8 *hw_addr; 1214 1215 hw_addr = (const u8 *)&mac_addr0; 1216 dest[0] = hw_addr[3]; 1217 dest[1] = hw_addr[2]; 1218 dest[2] = hw_addr[1]; 1219 dest[3] = hw_addr[0]; 1220 1221 hw_addr = (const u8 *)&mac_addr1; 1222 dest[4] = hw_addr[1]; 1223 dest[5] = hw_addr[0]; 1224 } 1225 1226 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans, 1227 struct iwl_nvm_data *data) 1228 { 1229 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, 1230 CSR_MAC_ADDR0_STRAP(trans))); 1231 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, 1232 CSR_MAC_ADDR1_STRAP(trans))); 1233 1234 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 1235 /* 1236 * If the OEM fused a valid address, use it instead of the one in the 1237 * OTP 1238 */ 1239 if (is_valid_ether_addr(data->hw_addr)) 1240 return; 1241 1242 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans))); 1243 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans))); 1244 1245 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 1246 } 1247 1248 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, 1249 const struct iwl_cfg *cfg, 1250 struct iwl_nvm_data *data, 1251 const __le16 *mac_override, 1252 const __be16 *nvm_hw) 1253 { 1254 const u8 *hw_addr; 1255 1256 if (mac_override) { 1257 static const u8 reserved_mac[] = { 1258 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 1259 }; 1260 1261 hw_addr = (const u8 *)(mac_override + 1262 MAC_ADDRESS_OVERRIDE_EXT_NVM); 1263 1264 /* 1265 * Store the MAC address from MAO section. 1266 * No byte swapping is required in MAO section 1267 */ 1268 memcpy(data->hw_addr, hw_addr, ETH_ALEN); 1269 1270 /* 1271 * Force the use of the OTP MAC address in case of reserved MAC 1272 * address in the NVM, or if address is given but invalid. 1273 */ 1274 if (is_valid_ether_addr(data->hw_addr) && 1275 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) 1276 return; 1277 1278 IWL_ERR(trans, 1279 "mac address from nvm override section is not valid\n"); 1280 } 1281 1282 if (nvm_hw) { 1283 /* read the mac address from WFMP registers */ 1284 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, 1285 WFMP_MAC_ADDR_0)); 1286 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, 1287 WFMP_MAC_ADDR_1)); 1288 1289 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 1290 1291 return; 1292 } 1293 1294 IWL_ERR(trans, "mac address is not found\n"); 1295 } 1296 1297 static int iwl_set_hw_address(struct iwl_trans *trans, 1298 const struct iwl_cfg *cfg, 1299 struct iwl_nvm_data *data, const __be16 *nvm_hw, 1300 const __le16 *mac_override) 1301 { 1302 if (cfg->mac_addr_from_csr) { 1303 iwl_set_hw_address_from_csr(trans, data); 1304 } else if (cfg->nvm_type != IWL_NVM_EXT) { 1305 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); 1306 1307 /* The byte order is little endian 16 bit, meaning 214365 */ 1308 data->hw_addr[0] = hw_addr[1]; 1309 data->hw_addr[1] = hw_addr[0]; 1310 data->hw_addr[2] = hw_addr[3]; 1311 data->hw_addr[3] = hw_addr[2]; 1312 data->hw_addr[4] = hw_addr[5]; 1313 data->hw_addr[5] = hw_addr[4]; 1314 } else { 1315 iwl_set_hw_address_family_8000(trans, cfg, data, 1316 mac_override, nvm_hw); 1317 } 1318 1319 if (!is_valid_ether_addr(data->hw_addr)) { 1320 IWL_ERR(trans, "no valid mac address was found\n"); 1321 return -EINVAL; 1322 } 1323 1324 if (!trans->csme_own) 1325 IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n", 1326 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR)); 1327 1328 return 0; 1329 } 1330 1331 static bool 1332 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg, 1333 const __be16 *nvm_hw) 1334 { 1335 /* 1336 * Workaround a bug in Indonesia SKUs where the regulatory in 1337 * some 7000-family OTPs erroneously allow wide channels in 1338 * 5GHz. To check for Indonesia, we take the SKU value from 1339 * bits 1-4 in the subsystem ID and check if it is either 5 or 1340 * 9. In those cases, we need to force-disable wide channels 1341 * in 5GHz otherwise the FW will throw a sysassert when we try 1342 * to use them. 1343 */ 1344 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) { 1345 /* 1346 * Unlike the other sections in the NVM, the hw 1347 * section uses big-endian. 1348 */ 1349 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID); 1350 u8 sku = (subsystem_id & 0x1e) >> 1; 1351 1352 if (sku == 5 || sku == 9) { 1353 IWL_DEBUG_EEPROM(trans->dev, 1354 "disabling wide channels in 5GHz (0x%0x %d)\n", 1355 subsystem_id, sku); 1356 return true; 1357 } 1358 } 1359 1360 return false; 1361 } 1362 1363 struct iwl_nvm_data * 1364 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 1365 const struct iwl_mei_nvm *mei_nvm, 1366 const struct iwl_fw *fw) 1367 { 1368 struct iwl_nvm_data *data; 1369 u32 sbands_flags = 0; 1370 u8 rx_chains = fw->valid_rx_ant; 1371 u8 tx_chains = fw->valid_rx_ant; 1372 1373 if (cfg->uhb_supported) 1374 data = kzalloc(struct_size(data, channels, 1375 IWL_NVM_NUM_CHANNELS_UHB), 1376 GFP_KERNEL); 1377 else 1378 data = kzalloc(struct_size(data, channels, 1379 IWL_NVM_NUM_CHANNELS_EXT), 1380 GFP_KERNEL); 1381 if (!data) 1382 return NULL; 1383 1384 BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) != 1385 IWL_NVM_NUM_CHANNELS_UHB); 1386 data->nvm_version = mei_nvm->nvm_version; 1387 1388 iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg); 1389 if (data->valid_tx_ant) 1390 tx_chains &= data->valid_tx_ant; 1391 if (data->valid_rx_ant) 1392 rx_chains &= data->valid_rx_ant; 1393 1394 data->sku_cap_mimo_disabled = false; 1395 data->sku_cap_band_24ghz_enable = true; 1396 data->sku_cap_band_52ghz_enable = true; 1397 data->sku_cap_11n_enable = 1398 !(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL); 1399 data->sku_cap_11ac_enable = true; 1400 data->sku_cap_11ax_enable = 1401 mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT; 1402 1403 data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT; 1404 1405 data->n_hw_addrs = mei_nvm->n_hw_addrs; 1406 /* If no valid mac address was found - bail out */ 1407 if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) { 1408 kfree(data); 1409 return NULL; 1410 } 1411 1412 if (data->lar_enabled && 1413 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) 1414 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 1415 1416 iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains, 1417 sbands_flags, true, fw); 1418 1419 return data; 1420 } 1421 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data); 1422 1423 struct iwl_nvm_data * 1424 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 1425 const struct iwl_fw *fw, 1426 const __be16 *nvm_hw, const __le16 *nvm_sw, 1427 const __le16 *nvm_calib, const __le16 *regulatory, 1428 const __le16 *mac_override, const __le16 *phy_sku, 1429 u8 tx_chains, u8 rx_chains) 1430 { 1431 struct iwl_nvm_data *data; 1432 bool lar_enabled; 1433 u32 sku, radio_cfg; 1434 u32 sbands_flags = 0; 1435 u16 lar_config; 1436 const __le16 *ch_section; 1437 1438 if (cfg->uhb_supported) 1439 data = kzalloc(struct_size(data, channels, 1440 IWL_NVM_NUM_CHANNELS_UHB), 1441 GFP_KERNEL); 1442 else if (cfg->nvm_type != IWL_NVM_EXT) 1443 data = kzalloc(struct_size(data, channels, 1444 IWL_NVM_NUM_CHANNELS), 1445 GFP_KERNEL); 1446 else 1447 data = kzalloc(struct_size(data, channels, 1448 IWL_NVM_NUM_CHANNELS_EXT), 1449 GFP_KERNEL); 1450 if (!data) 1451 return NULL; 1452 1453 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); 1454 1455 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); 1456 iwl_set_radio_cfg(cfg, data, radio_cfg); 1457 if (data->valid_tx_ant) 1458 tx_chains &= data->valid_tx_ant; 1459 if (data->valid_rx_ant) 1460 rx_chains &= data->valid_rx_ant; 1461 1462 sku = iwl_get_sku(cfg, nvm_sw, phy_sku); 1463 data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; 1464 data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; 1465 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; 1466 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) 1467 data->sku_cap_11n_enable = false; 1468 data->sku_cap_11ac_enable = data->sku_cap_11n_enable && 1469 (sku & NVM_SKU_CAP_11AC_ENABLE); 1470 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; 1471 1472 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); 1473 1474 if (cfg->nvm_type != IWL_NVM_EXT) { 1475 /* Checking for required sections */ 1476 if (!nvm_calib) { 1477 IWL_ERR(trans, 1478 "Can't parse empty Calib NVM sections\n"); 1479 kfree(data); 1480 return NULL; 1481 } 1482 1483 ch_section = cfg->nvm_type == IWL_NVM_SDP ? 1484 ®ulatory[NVM_CHANNELS_SDP] : 1485 &nvm_sw[NVM_CHANNELS]; 1486 1487 /* in family 8000 Xtal calibration values moved to OTP */ 1488 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); 1489 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); 1490 lar_enabled = true; 1491 } else { 1492 u16 lar_offset = data->nvm_version < 0xE39 ? 1493 NVM_LAR_OFFSET_OLD : 1494 NVM_LAR_OFFSET; 1495 1496 lar_config = le16_to_cpup(regulatory + lar_offset); 1497 data->lar_enabled = !!(lar_config & 1498 NVM_LAR_ENABLED); 1499 lar_enabled = data->lar_enabled; 1500 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED]; 1501 } 1502 1503 /* If no valid mac address was found - bail out */ 1504 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { 1505 kfree(data); 1506 return NULL; 1507 } 1508 1509 if (lar_enabled && 1510 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) 1511 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 1512 1513 if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw)) 1514 sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ; 1515 1516 iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains, 1517 sbands_flags, false, fw); 1518 data->calib_version = 255; 1519 1520 return data; 1521 } 1522 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); 1523 1524 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan, 1525 int ch_idx, u16 nvm_flags, 1526 struct iwl_reg_capa reg_capa, 1527 const struct iwl_cfg *cfg) 1528 { 1529 u32 flags = NL80211_RRF_NO_HT40; 1530 1531 if (ch_idx < NUM_2GHZ_CHANNELS && 1532 (nvm_flags & NVM_CHANNEL_40MHZ)) { 1533 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) 1534 flags &= ~NL80211_RRF_NO_HT40PLUS; 1535 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) 1536 flags &= ~NL80211_RRF_NO_HT40MINUS; 1537 } else if (nvm_flags & NVM_CHANNEL_40MHZ) { 1538 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 1539 flags &= ~NL80211_RRF_NO_HT40PLUS; 1540 else 1541 flags &= ~NL80211_RRF_NO_HT40MINUS; 1542 } 1543 1544 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 1545 flags |= NL80211_RRF_NO_80MHZ; 1546 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 1547 flags |= NL80211_RRF_NO_160MHZ; 1548 1549 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 1550 flags |= NL80211_RRF_NO_IR; 1551 1552 if (nvm_flags & NVM_CHANNEL_RADAR) 1553 flags |= NL80211_RRF_DFS; 1554 1555 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 1556 flags |= NL80211_RRF_NO_OUTDOOR; 1557 1558 /* Set the GO concurrent flag only in case that NO_IR is set. 1559 * Otherwise it is meaningless 1560 */ 1561 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 1562 (flags & NL80211_RRF_NO_IR)) 1563 flags |= NL80211_RRF_GO_CONCURRENT; 1564 1565 /* 1566 * reg_capa is per regulatory domain so apply it for every channel 1567 */ 1568 if (ch_idx >= NUM_2GHZ_CHANNELS) { 1569 if (!reg_capa.allow_40mhz) 1570 flags |= NL80211_RRF_NO_HT40; 1571 1572 if (!reg_capa.allow_80mhz) 1573 flags |= NL80211_RRF_NO_80MHZ; 1574 1575 if (!reg_capa.allow_160mhz) 1576 flags |= NL80211_RRF_NO_160MHZ; 1577 1578 if (!reg_capa.allow_320mhz) 1579 flags |= NL80211_RRF_NO_320MHZ; 1580 } 1581 1582 if (reg_capa.disable_11ax) 1583 flags |= NL80211_RRF_NO_HE; 1584 1585 if (reg_capa.disable_11be) 1586 flags |= NL80211_RRF_NO_EHT; 1587 1588 return flags; 1589 } 1590 1591 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver) 1592 { 1593 struct iwl_reg_capa reg_capa = {}; 1594 1595 if (resp_ver >= REG_CAPA_V4_RESP_VER) { 1596 reg_capa.allow_40mhz = true; 1597 reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED; 1598 reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED; 1599 reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED; 1600 reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED; 1601 reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED; 1602 } else if (resp_ver >= REG_CAPA_V2_RESP_VER) { 1603 reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED; 1604 reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED; 1605 reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED; 1606 reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED; 1607 } else { 1608 reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN); 1609 reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED; 1610 reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED; 1611 reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED; 1612 } 1613 return reg_capa; 1614 } 1615 1616 struct ieee80211_regdomain * 1617 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, 1618 int num_of_ch, __le32 *channels, u16 fw_mcc, 1619 u16 geo_info, u32 cap, u8 resp_ver) 1620 { 1621 int ch_idx; 1622 u16 ch_flags; 1623 u32 reg_rule_flags, prev_reg_rule_flags = 0; 1624 const u16 *nvm_chan; 1625 struct ieee80211_regdomain *regd, *copy_rd; 1626 struct ieee80211_reg_rule *rule; 1627 enum nl80211_band band; 1628 int center_freq, prev_center_freq = 0; 1629 int valid_rules = 0; 1630 bool new_rule; 1631 int max_num_ch; 1632 struct iwl_reg_capa reg_capa; 1633 1634 if (cfg->uhb_supported) { 1635 max_num_ch = IWL_NVM_NUM_CHANNELS_UHB; 1636 nvm_chan = iwl_uhb_nvm_channels; 1637 } else if (cfg->nvm_type == IWL_NVM_EXT) { 1638 max_num_ch = IWL_NVM_NUM_CHANNELS_EXT; 1639 nvm_chan = iwl_ext_nvm_channels; 1640 } else { 1641 max_num_ch = IWL_NVM_NUM_CHANNELS; 1642 nvm_chan = iwl_nvm_channels; 1643 } 1644 1645 if (num_of_ch > max_num_ch) { 1646 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 1647 "Num of channels (%d) is greater than expected. Truncating to %d\n", 1648 num_of_ch, max_num_ch); 1649 num_of_ch = max_num_ch; 1650 } 1651 1652 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) 1653 return ERR_PTR(-EINVAL); 1654 1655 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", 1656 num_of_ch); 1657 1658 /* build a regdomain rule for every valid channel */ 1659 regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL); 1660 if (!regd) 1661 return ERR_PTR(-ENOMEM); 1662 1663 /* set alpha2 from FW. */ 1664 regd->alpha2[0] = fw_mcc >> 8; 1665 regd->alpha2[1] = fw_mcc & 0xff; 1666 1667 /* parse regulatory capability flags */ 1668 reg_capa = iwl_get_reg_capa(cap, resp_ver); 1669 1670 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 1671 ch_flags = (u16)__le32_to_cpup(channels + ch_idx); 1672 band = iwl_nl80211_band_from_channel_idx(ch_idx); 1673 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], 1674 band); 1675 new_rule = false; 1676 1677 if (!(ch_flags & NVM_CHANNEL_VALID)) { 1678 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 1679 nvm_chan[ch_idx], ch_flags); 1680 continue; 1681 } 1682 1683 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, 1684 ch_flags, reg_capa, 1685 cfg); 1686 1687 /* we can't continue the same rule */ 1688 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags || 1689 center_freq - prev_center_freq > 20) { 1690 valid_rules++; 1691 new_rule = true; 1692 } 1693 1694 rule = ®d->reg_rules[valid_rules - 1]; 1695 1696 if (new_rule) 1697 rule->freq_range.start_freq_khz = 1698 MHZ_TO_KHZ(center_freq - 10); 1699 1700 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); 1701 1702 /* this doesn't matter - not used by FW */ 1703 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 1704 rule->power_rule.max_eirp = 1705 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 1706 1707 rule->flags = reg_rule_flags; 1708 1709 /* rely on auto-calculation to merge BW of contiguous chans */ 1710 rule->flags |= NL80211_RRF_AUTO_BW; 1711 rule->freq_range.max_bandwidth_khz = 0; 1712 1713 prev_center_freq = center_freq; 1714 prev_reg_rule_flags = reg_rule_flags; 1715 1716 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 1717 nvm_chan[ch_idx], ch_flags); 1718 1719 if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) || 1720 band == NL80211_BAND_2GHZ) 1721 continue; 1722 1723 reg_query_regdb_wmm(regd->alpha2, center_freq, rule); 1724 } 1725 1726 /* 1727 * Certain firmware versions might report no valid channels 1728 * if booted in RF-kill, i.e. not all calibrations etc. are 1729 * running. We'll get out of this situation later when the 1730 * rfkill is removed and we update the regdomain again, but 1731 * since cfg80211 doesn't accept an empty regdomain, add a 1732 * dummy (unusable) rule here in this case so we can init. 1733 */ 1734 if (!valid_rules) { 1735 valid_rules = 1; 1736 rule = ®d->reg_rules[valid_rules - 1]; 1737 rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412); 1738 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413); 1739 rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1); 1740 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 1741 rule->power_rule.max_eirp = 1742 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 1743 } 1744 1745 regd->n_reg_rules = valid_rules; 1746 1747 /* 1748 * Narrow down regdom for unused regulatory rules to prevent hole 1749 * between reg rules to wmm rules. 1750 */ 1751 copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules), 1752 GFP_KERNEL); 1753 if (!copy_rd) 1754 copy_rd = ERR_PTR(-ENOMEM); 1755 1756 kfree(regd); 1757 return copy_rd; 1758 } 1759 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); 1760 1761 #define IWL_MAX_NVM_SECTION_SIZE 0x1b58 1762 #define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc 1763 #define MAX_NVM_FILE_LEN 16384 1764 1765 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data, 1766 unsigned int len) 1767 { 1768 #define IWL_4165_DEVICE_ID 0x5501 1769 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5) 1770 1771 if (section == NVM_SECTION_TYPE_PHY_SKU && 1772 hw_id == IWL_4165_DEVICE_ID && data && len >= 5 && 1773 (data[4] & NVM_SKU_CAP_MIMO_DISABLE)) 1774 /* OTP 0x52 bug work around: it's a 1x1 device */ 1775 data[3] = ANT_B | (ANT_B << 4); 1776 } 1777 IWL_EXPORT_SYMBOL(iwl_nvm_fixups); 1778 1779 /* 1780 * Reads external NVM from a file into mvm->nvm_sections 1781 * 1782 * HOW TO CREATE THE NVM FILE FORMAT: 1783 * ------------------------------ 1784 * 1. create hex file, format: 1785 * 3800 -> header 1786 * 0000 -> header 1787 * 5a40 -> data 1788 * 1789 * rev - 6 bit (word1) 1790 * len - 10 bit (word1) 1791 * id - 4 bit (word2) 1792 * rsv - 12 bit (word2) 1793 * 1794 * 2. flip 8bits with 8 bits per line to get the right NVM file format 1795 * 1796 * 3. create binary file from the hex file 1797 * 1798 * 4. save as "iNVM_xxx.bin" under /lib/firmware 1799 */ 1800 int iwl_read_external_nvm(struct iwl_trans *trans, 1801 const char *nvm_file_name, 1802 struct iwl_nvm_section *nvm_sections) 1803 { 1804 int ret, section_size; 1805 u16 section_id; 1806 const struct firmware *fw_entry; 1807 const struct { 1808 __le16 word1; 1809 __le16 word2; 1810 u8 data[]; 1811 } *file_sec; 1812 const u8 *eof; 1813 u8 *temp; 1814 int max_section_size; 1815 const __le32 *dword_buff; 1816 1817 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF)) 1818 #define NVM_WORD2_ID(x) (x >> 12) 1819 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8)) 1820 #define EXT_NVM_WORD1_ID(x) ((x) >> 4) 1821 #define NVM_HEADER_0 (0x2A504C54) 1822 #define NVM_HEADER_1 (0x4E564D2A) 1823 #define NVM_HEADER_SIZE (4 * sizeof(u32)) 1824 1825 IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n"); 1826 1827 /* Maximal size depends on NVM version */ 1828 if (trans->cfg->nvm_type != IWL_NVM_EXT) 1829 max_section_size = IWL_MAX_NVM_SECTION_SIZE; 1830 else 1831 max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE; 1832 1833 /* 1834 * Obtain NVM image via request_firmware. Since we already used 1835 * request_firmware_nowait() for the firmware binary load and only 1836 * get here after that we assume the NVM request can be satisfied 1837 * synchronously. 1838 */ 1839 ret = request_firmware(&fw_entry, nvm_file_name, trans->dev); 1840 if (ret) { 1841 IWL_ERR(trans, "ERROR: %s isn't available %d\n", 1842 nvm_file_name, ret); 1843 return ret; 1844 } 1845 1846 IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n", 1847 nvm_file_name, fw_entry->size); 1848 1849 if (fw_entry->size > MAX_NVM_FILE_LEN) { 1850 IWL_ERR(trans, "NVM file too large\n"); 1851 ret = -EINVAL; 1852 goto out; 1853 } 1854 1855 eof = fw_entry->data + fw_entry->size; 1856 dword_buff = (const __le32 *)fw_entry->data; 1857 1858 /* some NVM file will contain a header. 1859 * The header is identified by 2 dwords header as follow: 1860 * dword[0] = 0x2A504C54 1861 * dword[1] = 0x4E564D2A 1862 * 1863 * This header must be skipped when providing the NVM data to the FW. 1864 */ 1865 if (fw_entry->size > NVM_HEADER_SIZE && 1866 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) && 1867 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) { 1868 file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE); 1869 IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2])); 1870 IWL_INFO(trans, "NVM Manufacturing date %08X\n", 1871 le32_to_cpu(dword_buff[3])); 1872 1873 /* nvm file validation, dword_buff[2] holds the file version */ 1874 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 && 1875 trans->hw_rev_step == SILICON_C_STEP && 1876 le32_to_cpu(dword_buff[2]) < 0xE4A) { 1877 ret = -EFAULT; 1878 goto out; 1879 } 1880 } else { 1881 file_sec = (const void *)fw_entry->data; 1882 } 1883 1884 while (true) { 1885 if (file_sec->data > eof) { 1886 IWL_ERR(trans, 1887 "ERROR - NVM file too short for section header\n"); 1888 ret = -EINVAL; 1889 break; 1890 } 1891 1892 /* check for EOF marker */ 1893 if (!file_sec->word1 && !file_sec->word2) { 1894 ret = 0; 1895 break; 1896 } 1897 1898 if (trans->cfg->nvm_type != IWL_NVM_EXT) { 1899 section_size = 1900 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1)); 1901 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2)); 1902 } else { 1903 section_size = 2 * EXT_NVM_WORD2_LEN( 1904 le16_to_cpu(file_sec->word2)); 1905 section_id = EXT_NVM_WORD1_ID( 1906 le16_to_cpu(file_sec->word1)); 1907 } 1908 1909 if (section_size > max_section_size) { 1910 IWL_ERR(trans, "ERROR - section too large (%d)\n", 1911 section_size); 1912 ret = -EINVAL; 1913 break; 1914 } 1915 1916 if (!section_size) { 1917 IWL_ERR(trans, "ERROR - section empty\n"); 1918 ret = -EINVAL; 1919 break; 1920 } 1921 1922 if (file_sec->data + section_size > eof) { 1923 IWL_ERR(trans, 1924 "ERROR - NVM file too short for section (%d bytes)\n", 1925 section_size); 1926 ret = -EINVAL; 1927 break; 1928 } 1929 1930 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS, 1931 "Invalid NVM section ID %d\n", section_id)) { 1932 ret = -EINVAL; 1933 break; 1934 } 1935 1936 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL); 1937 if (!temp) { 1938 ret = -ENOMEM; 1939 break; 1940 } 1941 1942 iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size); 1943 1944 kfree(nvm_sections[section_id].data); 1945 nvm_sections[section_id].data = temp; 1946 nvm_sections[section_id].length = section_size; 1947 1948 /* advance to the next section */ 1949 file_sec = (const void *)(file_sec->data + section_size); 1950 } 1951 out: 1952 release_firmware(fw_entry); 1953 return ret; 1954 } 1955 IWL_EXPORT_SYMBOL(iwl_read_external_nvm); 1956 1957 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans, 1958 const struct iwl_fw *fw) 1959 { 1960 struct iwl_nvm_get_info cmd = {}; 1961 struct iwl_nvm_data *nvm; 1962 struct iwl_host_cmd hcmd = { 1963 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, 1964 .data = { &cmd, }, 1965 .len = { sizeof(cmd) }, 1966 .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO) 1967 }; 1968 int ret; 1969 bool empty_otp; 1970 u32 mac_flags; 1971 u32 sbands_flags = 0; 1972 /* 1973 * All the values in iwl_nvm_get_info_rsp v4 are the same as 1974 * in v3, except for the channel profile part of the 1975 * regulatory. So we can just access the new struct, with the 1976 * exception of the latter. 1977 */ 1978 struct iwl_nvm_get_info_rsp *rsp; 1979 struct iwl_nvm_get_info_rsp_v3 *rsp_v3; 1980 bool v4 = fw_has_api(&fw->ucode_capa, 1981 IWL_UCODE_TLV_API_REGULATORY_NVM_INFO); 1982 size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3); 1983 void *channel_profile; 1984 1985 ret = iwl_trans_send_cmd(trans, &hcmd); 1986 if (ret) 1987 return ERR_PTR(ret); 1988 1989 if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size, 1990 "Invalid payload len in NVM response from FW %d", 1991 iwl_rx_packet_payload_len(hcmd.resp_pkt))) { 1992 ret = -EINVAL; 1993 goto out; 1994 } 1995 1996 rsp = (void *)hcmd.resp_pkt->data; 1997 empty_otp = !!(le32_to_cpu(rsp->general.flags) & 1998 NVM_GENERAL_FLAGS_EMPTY_OTP); 1999 if (empty_otp) 2000 IWL_INFO(trans, "OTP is empty\n"); 2001 2002 nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL); 2003 if (!nvm) { 2004 ret = -ENOMEM; 2005 goto out; 2006 } 2007 2008 iwl_set_hw_address_from_csr(trans, nvm); 2009 /* TODO: if platform NVM has MAC address - override it here */ 2010 2011 if (!is_valid_ether_addr(nvm->hw_addr)) { 2012 IWL_ERR(trans, "no valid mac address was found\n"); 2013 ret = -EINVAL; 2014 goto err_free; 2015 } 2016 2017 IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr); 2018 2019 /* Initialize general data */ 2020 nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version); 2021 nvm->n_hw_addrs = rsp->general.n_hw_addrs; 2022 if (nvm->n_hw_addrs == 0) 2023 IWL_WARN(trans, 2024 "Firmware declares no reserved mac addresses. OTP is empty: %d\n", 2025 empty_otp); 2026 2027 /* Initialize MAC sku data */ 2028 mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags); 2029 nvm->sku_cap_11ac_enable = 2030 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED); 2031 nvm->sku_cap_11n_enable = 2032 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED); 2033 nvm->sku_cap_11ax_enable = 2034 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED); 2035 nvm->sku_cap_band_24ghz_enable = 2036 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED); 2037 nvm->sku_cap_band_52ghz_enable = 2038 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED); 2039 nvm->sku_cap_mimo_disabled = 2040 !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED); 2041 if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM) 2042 nvm->sku_cap_11be_enable = true; 2043 2044 /* Initialize PHY sku data */ 2045 nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains); 2046 nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains); 2047 2048 if (le32_to_cpu(rsp->regulatory.lar_enabled) && 2049 fw_has_capa(&fw->ucode_capa, 2050 IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) { 2051 nvm->lar_enabled = true; 2052 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 2053 } 2054 2055 rsp_v3 = (void *)rsp; 2056 channel_profile = v4 ? (void *)rsp->regulatory.channel_profile : 2057 (void *)rsp_v3->regulatory.channel_profile; 2058 2059 iwl_init_sbands(trans, nvm, 2060 channel_profile, 2061 nvm->valid_tx_ant & fw->valid_tx_ant, 2062 nvm->valid_rx_ant & fw->valid_rx_ant, 2063 sbands_flags, v4, fw); 2064 2065 iwl_free_resp(&hcmd); 2066 return nvm; 2067 2068 err_free: 2069 kfree(nvm); 2070 out: 2071 iwl_free_resp(&hcmd); 2072 return ERR_PTR(ret); 2073 } 2074 IWL_EXPORT_SYMBOL(iwl_get_nvm); 2075