1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 
26 /* NVM offsets (in words) definitions */
27 enum nvm_offsets {
28 	/* NVM HW-Section offset (in words) definitions */
29 	SUBSYSTEM_ID = 0x0A,
30 	HW_ADDR = 0x15,
31 
32 	/* NVM SW-Section offset (in words) definitions */
33 	NVM_SW_SECTION = 0x1C0,
34 	NVM_VERSION = 0,
35 	RADIO_CFG = 1,
36 	SKU = 2,
37 	N_HW_ADDRS = 3,
38 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
39 
40 	/* NVM calibration section offset (in words) definitions */
41 	NVM_CALIB_SECTION = 0x2B8,
42 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
43 
44 	/* NVM REGULATORY -Section offset (in words) definitions */
45 	NVM_CHANNELS_SDP = 0,
46 };
47 
48 enum ext_nvm_offsets {
49 	/* NVM HW-Section offset (in words) definitions */
50 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
51 
52 	/* NVM SW-Section offset (in words) definitions */
53 	NVM_VERSION_EXT_NVM = 0,
54 	N_HW_ADDRS_FAMILY_8000 = 3,
55 
56 	/* NVM PHY_SKU-Section offset (in words) definitions */
57 	RADIO_CFG_FAMILY_EXT_NVM = 0,
58 	SKU_FAMILY_8000 = 2,
59 
60 	/* NVM REGULATORY -Section offset (in words) definitions */
61 	NVM_CHANNELS_EXTENDED = 0,
62 	NVM_LAR_OFFSET_OLD = 0x4C7,
63 	NVM_LAR_OFFSET = 0x507,
64 	NVM_LAR_ENABLED = 0x7,
65 };
66 
67 /* SKU Capabilities (actual values from NVM definition) */
68 enum nvm_sku_bits {
69 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
70 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
71 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
72 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
73 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
74 };
75 
76 /*
77  * These are the channel numbers in the order that they are stored in the NVM
78  */
79 static const u16 iwl_nvm_channels[] = {
80 	/* 2.4 GHz */
81 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
82 	/* 5 GHz */
83 	36, 40, 44 , 48, 52, 56, 60, 64,
84 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
85 	149, 153, 157, 161, 165
86 };
87 
88 static const u16 iwl_ext_nvm_channels[] = {
89 	/* 2.4 GHz */
90 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
91 	/* 5 GHz */
92 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
93 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
94 	149, 153, 157, 161, 165, 169, 173, 177, 181
95 };
96 
97 static const u16 iwl_uhb_nvm_channels[] = {
98 	/* 2.4 GHz */
99 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
100 	/* 5 GHz */
101 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
102 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
103 	149, 153, 157, 161, 165, 169, 173, 177, 181,
104 	/* 6-7 GHz */
105 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
106 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
107 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
108 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
109 };
110 
111 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
112 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
114 #define NUM_2GHZ_CHANNELS		14
115 #define NUM_5GHZ_CHANNELS		37
116 #define FIRST_2GHZ_HT_MINUS		5
117 #define LAST_2GHZ_HT_PLUS		9
118 #define N_HW_ADDR_MASK			0xF
119 
120 /* rate data (static) */
121 static struct ieee80211_rate iwl_cfg80211_rates[] = {
122 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
123 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
124 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
125 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
126 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
127 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
128 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
129 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
130 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
131 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
132 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
133 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
134 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
135 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
136 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
137 };
138 #define RATES_24_OFFS	0
139 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
140 #define RATES_52_OFFS	4
141 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
142 
143 /**
144  * enum iwl_nvm_channel_flags - channel flags in NVM
145  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
146  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
147  * @NVM_CHANNEL_ACTIVE: active scanning allowed
148  * @NVM_CHANNEL_RADAR: radar detection required
149  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
150  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
151  *	on same channel on 2.4 or same UNII band on 5.2
152  * @NVM_CHANNEL_UNIFORM: uniform spreading required
153  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
154  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
155  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
156  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
157  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
158  */
159 enum iwl_nvm_channel_flags {
160 	NVM_CHANNEL_VALID		= BIT(0),
161 	NVM_CHANNEL_IBSS		= BIT(1),
162 	NVM_CHANNEL_ACTIVE		= BIT(3),
163 	NVM_CHANNEL_RADAR		= BIT(4),
164 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
165 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
166 	NVM_CHANNEL_UNIFORM		= BIT(7),
167 	NVM_CHANNEL_20MHZ		= BIT(8),
168 	NVM_CHANNEL_40MHZ		= BIT(9),
169 	NVM_CHANNEL_80MHZ		= BIT(10),
170 	NVM_CHANNEL_160MHZ		= BIT(11),
171 	NVM_CHANNEL_DC_HIGH		= BIT(12),
172 };
173 
174 /**
175  * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
176  * domain.
177  * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
178  *	2.4Ghz band is allowed.
179  * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
180  *	5Ghz band is allowed.
181  * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
182  *	for this regulatory domain (valid only in 5Ghz).
183  * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
184  *	for this regulatory domain (valid only in 5Ghz).
185  * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
186  * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
187  * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
188  *	for this regulatory domain (valid only in 5Ghz).
189  * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
190  * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
191  */
192 enum iwl_reg_capa_flags {
193 	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
194 	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
195 	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
196 	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
197 	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
198 	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
199 	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
200 	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
201 	REG_CAPA_11AX_DISABLED		= BIT(10),
202 };
203 
204 /**
205  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
206  * domain (version 2).
207  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
208  *	disabled.
209  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
210  *	2.4Ghz band is allowed.
211  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
212  *	5Ghz band is allowed.
213  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
214  *	for this regulatory domain (valid only in 5Ghz).
215  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
216  *	for this regulatory domain (valid only in 5Ghz).
217  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
218  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
219  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
220  *	126, 122) are disabled.
221  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
222  *	for this regulatory domain (uvalid only in 5Ghz).
223  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
224  */
225 enum iwl_reg_capa_flags_v2 {
226 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
227 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
228 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
229 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
230 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
231 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
232 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
233 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
234 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
235 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
236 };
237 
238 /*
239 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
240 * MCC update command response.
241 */
242 #define REG_CAPA_V2_RESP_VER	6
243 
244 /**
245  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
246  * handling the different APIs of reg_capa_flags.
247  *
248  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
249  *	for this regulatory domain (valid only in 5Ghz).
250  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
251  *	for this regulatory domain (valid only in 5Ghz).
252  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
253  *	for this regulatory domain (valid only in 5Ghz).
254  * @disable_11ax: 11ax is forbidden for this regulatory domain.
255  */
256 struct iwl_reg_capa {
257 	u16 allow_40mhz;
258 	u16 allow_80mhz;
259 	u16 allow_160mhz;
260 	u16 disable_11ax;
261 };
262 
263 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
264 					       int chan, u32 flags)
265 {
266 #define CHECK_AND_PRINT_I(x)	\
267 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
268 
269 	if (!(flags & NVM_CHANNEL_VALID)) {
270 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
271 			      chan, flags);
272 		return;
273 	}
274 
275 	/* Note: already can print up to 101 characters, 110 is the limit! */
276 	IWL_DEBUG_DEV(dev, level,
277 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
278 		      chan, flags,
279 		      CHECK_AND_PRINT_I(VALID),
280 		      CHECK_AND_PRINT_I(IBSS),
281 		      CHECK_AND_PRINT_I(ACTIVE),
282 		      CHECK_AND_PRINT_I(RADAR),
283 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
284 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
285 		      CHECK_AND_PRINT_I(UNIFORM),
286 		      CHECK_AND_PRINT_I(20MHZ),
287 		      CHECK_AND_PRINT_I(40MHZ),
288 		      CHECK_AND_PRINT_I(80MHZ),
289 		      CHECK_AND_PRINT_I(160MHZ),
290 		      CHECK_AND_PRINT_I(DC_HIGH));
291 #undef CHECK_AND_PRINT_I
292 }
293 
294 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
295 				 u32 nvm_flags, const struct iwl_cfg *cfg)
296 {
297 	u32 flags = IEEE80211_CHAN_NO_HT40;
298 
299 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
300 		if (ch_num <= LAST_2GHZ_HT_PLUS)
301 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
302 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
303 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
304 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
305 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
306 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
307 		else
308 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
309 	}
310 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
311 		flags |= IEEE80211_CHAN_NO_80MHZ;
312 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
313 		flags |= IEEE80211_CHAN_NO_160MHZ;
314 
315 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
316 		flags |= IEEE80211_CHAN_NO_IR;
317 
318 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
319 		flags |= IEEE80211_CHAN_NO_IR;
320 
321 	if (nvm_flags & NVM_CHANNEL_RADAR)
322 		flags |= IEEE80211_CHAN_RADAR;
323 
324 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
325 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
326 
327 	/* Set the GO concurrent flag only in case that NO_IR is set.
328 	 * Otherwise it is meaningless
329 	 */
330 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
331 	    (flags & IEEE80211_CHAN_NO_IR))
332 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
333 
334 	return flags;
335 }
336 
337 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
338 {
339 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
340 		return NL80211_BAND_6GHZ;
341 	}
342 
343 	if (ch_idx >= NUM_2GHZ_CHANNELS)
344 		return NL80211_BAND_5GHZ;
345 	return NL80211_BAND_2GHZ;
346 }
347 
348 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
349 				struct iwl_nvm_data *data,
350 				const void * const nvm_ch_flags,
351 				u32 sbands_flags, bool v4)
352 {
353 	int ch_idx;
354 	int n_channels = 0;
355 	struct ieee80211_channel *channel;
356 	u32 ch_flags;
357 	int num_of_ch;
358 	const u16 *nvm_chan;
359 
360 	if (cfg->uhb_supported) {
361 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
362 		nvm_chan = iwl_uhb_nvm_channels;
363 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
364 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
365 		nvm_chan = iwl_ext_nvm_channels;
366 	} else {
367 		num_of_ch = IWL_NVM_NUM_CHANNELS;
368 		nvm_chan = iwl_nvm_channels;
369 	}
370 
371 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
372 		enum nl80211_band band =
373 			iwl_nl80211_band_from_channel_idx(ch_idx);
374 
375 		if (v4)
376 			ch_flags =
377 				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
378 		else
379 			ch_flags =
380 				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
381 
382 		if (band == NL80211_BAND_5GHZ &&
383 		    !data->sku_cap_band_52ghz_enable)
384 			continue;
385 
386 		/* workaround to disable wide channels in 5GHz */
387 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
388 		    band == NL80211_BAND_5GHZ) {
389 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
390 				     NVM_CHANNEL_80MHZ |
391 				     NVM_CHANNEL_160MHZ);
392 		}
393 
394 		if (ch_flags & NVM_CHANNEL_160MHZ)
395 			data->vht160_supported = true;
396 
397 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
398 		    !(ch_flags & NVM_CHANNEL_VALID)) {
399 			/*
400 			 * Channels might become valid later if lar is
401 			 * supported, hence we still want to add them to
402 			 * the list of supported channels to cfg80211.
403 			 */
404 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
405 						    nvm_chan[ch_idx], ch_flags);
406 			continue;
407 		}
408 
409 		channel = &data->channels[n_channels];
410 		n_channels++;
411 
412 		channel->hw_value = nvm_chan[ch_idx];
413 		channel->band = band;
414 		channel->center_freq =
415 			ieee80211_channel_to_frequency(
416 				channel->hw_value, channel->band);
417 
418 		/* Initialize regulatory-based run-time data */
419 
420 		/*
421 		 * Default value - highest tx power value.  max_power
422 		 * is not used in mvm, and is used for backwards compatibility
423 		 */
424 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
425 
426 		/* don't put limitations in case we're using LAR */
427 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
428 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
429 							       ch_idx, band,
430 							       ch_flags, cfg);
431 		else
432 			channel->flags = 0;
433 
434 		/* TODO: Don't put limitations on UHB devices as we still don't
435 		 * have NVM for them
436 		 */
437 		if (cfg->uhb_supported)
438 			channel->flags = 0;
439 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 					    channel->hw_value, ch_flags);
441 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
442 				 channel->hw_value, channel->max_power);
443 	}
444 
445 	return n_channels;
446 }
447 
448 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
449 				  struct iwl_nvm_data *data,
450 				  struct ieee80211_sta_vht_cap *vht_cap,
451 				  u8 tx_chains, u8 rx_chains)
452 {
453 	const struct iwl_cfg *cfg = trans->cfg;
454 	int num_rx_ants = num_of_ant(rx_chains);
455 	int num_tx_ants = num_of_ant(tx_chains);
456 
457 	vht_cap->vht_supported = true;
458 
459 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
460 		       IEEE80211_VHT_CAP_RXSTBC_1 |
461 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
462 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
463 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
464 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
465 
466 	if (data->vht160_supported)
467 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
468 				IEEE80211_VHT_CAP_SHORT_GI_160;
469 
470 	if (cfg->vht_mu_mimo_supported)
471 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
472 
473 	if (cfg->ht_params->ldpc)
474 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
475 
476 	if (data->sku_cap_mimo_disabled) {
477 		num_rx_ants = 1;
478 		num_tx_ants = 1;
479 	}
480 
481 	if (num_tx_ants > 1)
482 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
483 	else
484 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
485 
486 	switch (iwlwifi_mod_params.amsdu_size) {
487 	case IWL_AMSDU_DEF:
488 		if (trans->trans_cfg->mq_rx_supported)
489 			vht_cap->cap |=
490 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
491 		else
492 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
493 		break;
494 	case IWL_AMSDU_2K:
495 		if (trans->trans_cfg->mq_rx_supported)
496 			vht_cap->cap |=
497 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
498 		else
499 			WARN(1, "RB size of 2K is not supported by this device\n");
500 		break;
501 	case IWL_AMSDU_4K:
502 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
503 		break;
504 	case IWL_AMSDU_8K:
505 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
506 		break;
507 	case IWL_AMSDU_12K:
508 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
509 		break;
510 	default:
511 		break;
512 	}
513 
514 	vht_cap->vht_mcs.rx_mcs_map =
515 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
516 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
517 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
518 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
519 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
520 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
521 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
522 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
523 
524 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
525 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
526 		/* this works because NOT_SUPPORTED == 3 */
527 		vht_cap->vht_mcs.rx_mcs_map |=
528 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
529 	}
530 
531 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
532 
533 	vht_cap->vht_mcs.tx_highest |=
534 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
535 }
536 
537 static const struct ieee80211_sband_iftype_data iwl_he_capa[] = {
538 	{
539 		.types_mask = BIT(NL80211_IFTYPE_STATION),
540 		.he_cap = {
541 			.has_he = true,
542 			.he_cap_elem = {
543 				.mac_cap_info[0] =
544 					IEEE80211_HE_MAC_CAP0_HTC_HE |
545 					IEEE80211_HE_MAC_CAP0_TWT_REQ,
546 				.mac_cap_info[1] =
547 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
548 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
549 				.mac_cap_info[2] =
550 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
551 				.mac_cap_info[3] =
552 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
553 				.mac_cap_info[4] =
554 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
555 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
556 				.mac_cap_info[5] =
557 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
558 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
559 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
560 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
561 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
562 				.phy_cap_info[0] =
563 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
564 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
565 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
566 				.phy_cap_info[1] =
567 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
568 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
569 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
570 				.phy_cap_info[2] =
571 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
572 				.phy_cap_info[3] =
573 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
574 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
575 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
576 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
577 				.phy_cap_info[4] =
578 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
579 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
580 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
581 				.phy_cap_info[6] =
582 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
583 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
584 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
585 				.phy_cap_info[7] =
586 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
587 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
588 				.phy_cap_info[8] =
589 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
590 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
591 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
592 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
593 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
594 				.phy_cap_info[9] =
595 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
596 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
597 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
598 			},
599 			/*
600 			 * Set default Tx/Rx HE MCS NSS Support field.
601 			 * Indicate support for up to 2 spatial streams and all
602 			 * MCS, without any special cases
603 			 */
604 			.he_mcs_nss_supp = {
605 				.rx_mcs_80 = cpu_to_le16(0xfffa),
606 				.tx_mcs_80 = cpu_to_le16(0xfffa),
607 				.rx_mcs_160 = cpu_to_le16(0xfffa),
608 				.tx_mcs_160 = cpu_to_le16(0xfffa),
609 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
610 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
611 			},
612 			/*
613 			 * Set default PPE thresholds, with PPET16 set to 0,
614 			 * PPET8 set to 7
615 			 */
616 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
617 		},
618 	},
619 	{
620 		.types_mask = BIT(NL80211_IFTYPE_AP),
621 		.he_cap = {
622 			.has_he = true,
623 			.he_cap_elem = {
624 				.mac_cap_info[0] =
625 					IEEE80211_HE_MAC_CAP0_HTC_HE,
626 				.mac_cap_info[1] =
627 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
628 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
629 				.mac_cap_info[3] =
630 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
631 				.phy_cap_info[0] =
632 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
633 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G,
634 				.phy_cap_info[1] =
635 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
636 				.phy_cap_info[2] =
637 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
638 				.phy_cap_info[3] =
639 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
640 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
641 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
642 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
643 				.phy_cap_info[6] =
644 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
645 				.phy_cap_info[7] =
646 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
647 				.phy_cap_info[8] =
648 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
649 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
650 				.phy_cap_info[9] =
651 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
652 			},
653 			/*
654 			 * Set default Tx/Rx HE MCS NSS Support field.
655 			 * Indicate support for up to 2 spatial streams and all
656 			 * MCS, without any special cases
657 			 */
658 			.he_mcs_nss_supp = {
659 				.rx_mcs_80 = cpu_to_le16(0xfffa),
660 				.tx_mcs_80 = cpu_to_le16(0xfffa),
661 				.rx_mcs_160 = cpu_to_le16(0xfffa),
662 				.tx_mcs_160 = cpu_to_le16(0xfffa),
663 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
664 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
665 			},
666 			/*
667 			 * Set default PPE thresholds, with PPET16 set to 0,
668 			 * PPET8 set to 7
669 			 */
670 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
671 		},
672 	},
673 };
674 
675 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
676 				  struct iwl_nvm_data *data,
677 				  struct ieee80211_supported_band *sband,
678 				  u8 tx_chains, u8 rx_chains)
679 {
680 	struct ieee80211_sta_ht_cap ht_cap;
681 	struct ieee80211_sta_vht_cap vht_cap = {};
682 	struct ieee80211_sband_iftype_data *iftype_data;
683 	u16 he_6ghz_capa = 0;
684 	u32 exp;
685 	int i;
686 
687 	if (sband->band != NL80211_BAND_6GHZ)
688 		return;
689 
690 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
691 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
692 			     tx_chains, rx_chains);
693 	WARN_ON(!ht_cap.ht_supported);
694 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
695 	WARN_ON(!vht_cap.vht_supported);
696 
697 	he_6ghz_capa |=
698 		u16_encode_bits(ht_cap.ampdu_density,
699 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
700 	exp = u32_get_bits(vht_cap.cap,
701 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
702 	he_6ghz_capa |=
703 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
704 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
705 	he_6ghz_capa |=
706 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
707 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
708 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
709 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
710 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
711 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
712 
713 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
714 
715 	/* we know it's writable - we set it before ourselves */
716 	iftype_data = (void *)sband->iftype_data;
717 	for (i = 0; i < sband->n_iftype_data; i++)
718 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
719 }
720 
721 static void
722 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
723 			 struct ieee80211_supported_band *sband,
724 			 struct ieee80211_sband_iftype_data *iftype_data,
725 			 u8 tx_chains, u8 rx_chains,
726 			 const struct iwl_fw *fw)
727 {
728 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
729 
730 	/* Advertise an A-MPDU exponent extension based on
731 	 * operating band
732 	 */
733 	if (sband->band != NL80211_BAND_2GHZ)
734 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
735 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
736 	else
737 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
738 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
739 
740 	if (is_ap && iwlwifi_mod_params.nvm_file)
741 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
742 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
743 
744 	if ((tx_chains & rx_chains) == ANT_AB) {
745 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
746 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
747 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
748 		if (!is_ap)
749 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
750 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
751 	} else if (!is_ap) {
752 		/* If not 2x2, we need to indicate 1x1 in the
753 		 * Midamble RX Max NSTS - but not for AP mode
754 		 */
755 		iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
756 			~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
757 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
758 			~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
759 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
760 			IEEE80211_HE_PHY_CAP7_MAX_NC_1;
761 	}
762 
763 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
764 	case IWL_CFG_RF_TYPE_GF:
765 	case IWL_CFG_RF_TYPE_MR:
766 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
767 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
768 		if (!is_ap)
769 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
770 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
771 		break;
772 	}
773 
774 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
775 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
776 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
777 }
778 
779 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
780 				 struct iwl_nvm_data *data,
781 				 struct ieee80211_supported_band *sband,
782 				 u8 tx_chains, u8 rx_chains,
783 				 const struct iwl_fw *fw)
784 {
785 	struct ieee80211_sband_iftype_data *iftype_data;
786 	int i;
787 
788 	/* should only initialize once */
789 	if (WARN_ON(sband->iftype_data))
790 		return;
791 
792 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa));
793 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa));
794 
795 	switch (sband->band) {
796 	case NL80211_BAND_2GHZ:
797 		iftype_data = data->iftd.low;
798 		break;
799 	case NL80211_BAND_5GHZ:
800 	case NL80211_BAND_6GHZ:
801 		iftype_data = data->iftd.high;
802 		break;
803 	default:
804 		WARN_ON(1);
805 		return;
806 	}
807 
808 	memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa));
809 
810 	sband->iftype_data = iftype_data;
811 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
812 
813 	for (i = 0; i < sband->n_iftype_data; i++)
814 		iwl_nvm_fixup_sband_iftd(trans, sband, &iftype_data[i],
815 					 tx_chains, rx_chains, fw);
816 
817 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
818 }
819 
820 static void iwl_init_sbands(struct iwl_trans *trans,
821 			    struct iwl_nvm_data *data,
822 			    const void *nvm_ch_flags, u8 tx_chains,
823 			    u8 rx_chains, u32 sbands_flags, bool v4,
824 			    const struct iwl_fw *fw)
825 {
826 	struct device *dev = trans->dev;
827 	const struct iwl_cfg *cfg = trans->cfg;
828 	int n_channels;
829 	int n_used = 0;
830 	struct ieee80211_supported_band *sband;
831 
832 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
833 					  sbands_flags, v4);
834 	sband = &data->bands[NL80211_BAND_2GHZ];
835 	sband->band = NL80211_BAND_2GHZ;
836 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
837 	sband->n_bitrates = N_RATES_24;
838 	n_used += iwl_init_sband_channels(data, sband, n_channels,
839 					  NL80211_BAND_2GHZ);
840 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
841 			     tx_chains, rx_chains);
842 
843 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
844 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
845 				     fw);
846 
847 	sband = &data->bands[NL80211_BAND_5GHZ];
848 	sband->band = NL80211_BAND_5GHZ;
849 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
850 	sband->n_bitrates = N_RATES_52;
851 	n_used += iwl_init_sband_channels(data, sband, n_channels,
852 					  NL80211_BAND_5GHZ);
853 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
854 			     tx_chains, rx_chains);
855 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
856 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
857 				      tx_chains, rx_chains);
858 
859 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
860 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
861 				     fw);
862 
863 	/* 6GHz band. */
864 	sband = &data->bands[NL80211_BAND_6GHZ];
865 	sband->band = NL80211_BAND_6GHZ;
866 	/* use the same rates as 5GHz band */
867 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
868 	sband->n_bitrates = N_RATES_52;
869 	n_used += iwl_init_sband_channels(data, sband, n_channels,
870 					  NL80211_BAND_6GHZ);
871 
872 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
873 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
874 				     fw);
875 	else
876 		sband->n_channels = 0;
877 	if (n_channels != n_used)
878 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
879 			    n_used, n_channels);
880 }
881 
882 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
883 		       const __le16 *phy_sku)
884 {
885 	if (cfg->nvm_type != IWL_NVM_EXT)
886 		return le16_to_cpup(nvm_sw + SKU);
887 
888 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
889 }
890 
891 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
892 {
893 	if (cfg->nvm_type != IWL_NVM_EXT)
894 		return le16_to_cpup(nvm_sw + NVM_VERSION);
895 	else
896 		return le32_to_cpup((__le32 *)(nvm_sw +
897 					       NVM_VERSION_EXT_NVM));
898 }
899 
900 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
901 			     const __le16 *phy_sku)
902 {
903 	if (cfg->nvm_type != IWL_NVM_EXT)
904 		return le16_to_cpup(nvm_sw + RADIO_CFG);
905 
906 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
907 
908 }
909 
910 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
911 {
912 	int n_hw_addr;
913 
914 	if (cfg->nvm_type != IWL_NVM_EXT)
915 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
916 
917 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
918 
919 	return n_hw_addr & N_HW_ADDR_MASK;
920 }
921 
922 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
923 			      struct iwl_nvm_data *data,
924 			      u32 radio_cfg)
925 {
926 	if (cfg->nvm_type != IWL_NVM_EXT) {
927 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
928 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
929 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
930 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
931 		return;
932 	}
933 
934 	/* set the radio configuration for family 8000 */
935 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
936 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
937 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
938 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
939 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
940 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
941 }
942 
943 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
944 {
945 	const u8 *hw_addr;
946 
947 	hw_addr = (const u8 *)&mac_addr0;
948 	dest[0] = hw_addr[3];
949 	dest[1] = hw_addr[2];
950 	dest[2] = hw_addr[1];
951 	dest[3] = hw_addr[0];
952 
953 	hw_addr = (const u8 *)&mac_addr1;
954 	dest[4] = hw_addr[1];
955 	dest[5] = hw_addr[0];
956 }
957 
958 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
959 					struct iwl_nvm_data *data)
960 {
961 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
962 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
963 
964 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
965 	/*
966 	 * If the OEM fused a valid address, use it instead of the one in the
967 	 * OTP
968 	 */
969 	if (is_valid_ether_addr(data->hw_addr))
970 		return;
971 
972 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
973 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
974 
975 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
976 }
977 
978 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
979 					   const struct iwl_cfg *cfg,
980 					   struct iwl_nvm_data *data,
981 					   const __le16 *mac_override,
982 					   const __be16 *nvm_hw)
983 {
984 	const u8 *hw_addr;
985 
986 	if (mac_override) {
987 		static const u8 reserved_mac[] = {
988 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
989 		};
990 
991 		hw_addr = (const u8 *)(mac_override +
992 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
993 
994 		/*
995 		 * Store the MAC address from MAO section.
996 		 * No byte swapping is required in MAO section
997 		 */
998 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
999 
1000 		/*
1001 		 * Force the use of the OTP MAC address in case of reserved MAC
1002 		 * address in the NVM, or if address is given but invalid.
1003 		 */
1004 		if (is_valid_ether_addr(data->hw_addr) &&
1005 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1006 			return;
1007 
1008 		IWL_ERR(trans,
1009 			"mac address from nvm override section is not valid\n");
1010 	}
1011 
1012 	if (nvm_hw) {
1013 		/* read the mac address from WFMP registers */
1014 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1015 						WFMP_MAC_ADDR_0));
1016 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1017 						WFMP_MAC_ADDR_1));
1018 
1019 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1020 
1021 		return;
1022 	}
1023 
1024 	IWL_ERR(trans, "mac address is not found\n");
1025 }
1026 
1027 static int iwl_set_hw_address(struct iwl_trans *trans,
1028 			      const struct iwl_cfg *cfg,
1029 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1030 			      const __le16 *mac_override)
1031 {
1032 	if (cfg->mac_addr_from_csr) {
1033 		iwl_set_hw_address_from_csr(trans, data);
1034 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1035 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1036 
1037 		/* The byte order is little endian 16 bit, meaning 214365 */
1038 		data->hw_addr[0] = hw_addr[1];
1039 		data->hw_addr[1] = hw_addr[0];
1040 		data->hw_addr[2] = hw_addr[3];
1041 		data->hw_addr[3] = hw_addr[2];
1042 		data->hw_addr[4] = hw_addr[5];
1043 		data->hw_addr[5] = hw_addr[4];
1044 	} else {
1045 		iwl_set_hw_address_family_8000(trans, cfg, data,
1046 					       mac_override, nvm_hw);
1047 	}
1048 
1049 	if (!is_valid_ether_addr(data->hw_addr)) {
1050 		IWL_ERR(trans, "no valid mac address was found\n");
1051 		return -EINVAL;
1052 	}
1053 
1054 	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
1055 
1056 	return 0;
1057 }
1058 
1059 static bool
1060 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1061 			const __be16 *nvm_hw)
1062 {
1063 	/*
1064 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1065 	 * some 7000-family OTPs erroneously allow wide channels in
1066 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1067 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1068 	 * 9.  In those cases, we need to force-disable wide channels
1069 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1070 	 * to use them.
1071 	 */
1072 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1073 		/*
1074 		 * Unlike the other sections in the NVM, the hw
1075 		 * section uses big-endian.
1076 		 */
1077 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1078 		u8 sku = (subsystem_id & 0x1e) >> 1;
1079 
1080 		if (sku == 5 || sku == 9) {
1081 			IWL_DEBUG_EEPROM(trans->dev,
1082 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1083 					 subsystem_id, sku);
1084 			return true;
1085 		}
1086 	}
1087 
1088 	return false;
1089 }
1090 
1091 struct iwl_nvm_data *
1092 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1093 		   const struct iwl_fw *fw,
1094 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1095 		   const __le16 *nvm_calib, const __le16 *regulatory,
1096 		   const __le16 *mac_override, const __le16 *phy_sku,
1097 		   u8 tx_chains, u8 rx_chains)
1098 {
1099 	struct iwl_nvm_data *data;
1100 	bool lar_enabled;
1101 	u32 sku, radio_cfg;
1102 	u32 sbands_flags = 0;
1103 	u16 lar_config;
1104 	const __le16 *ch_section;
1105 
1106 	if (cfg->uhb_supported)
1107 		data = kzalloc(struct_size(data, channels,
1108 					   IWL_NVM_NUM_CHANNELS_UHB),
1109 					   GFP_KERNEL);
1110 	else if (cfg->nvm_type != IWL_NVM_EXT)
1111 		data = kzalloc(struct_size(data, channels,
1112 					   IWL_NVM_NUM_CHANNELS),
1113 					   GFP_KERNEL);
1114 	else
1115 		data = kzalloc(struct_size(data, channels,
1116 					   IWL_NVM_NUM_CHANNELS_EXT),
1117 					   GFP_KERNEL);
1118 	if (!data)
1119 		return NULL;
1120 
1121 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1122 
1123 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1124 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1125 	if (data->valid_tx_ant)
1126 		tx_chains &= data->valid_tx_ant;
1127 	if (data->valid_rx_ant)
1128 		rx_chains &= data->valid_rx_ant;
1129 
1130 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1131 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1132 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1133 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1134 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1135 		data->sku_cap_11n_enable = false;
1136 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1137 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1138 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1139 
1140 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1141 
1142 	if (cfg->nvm_type != IWL_NVM_EXT) {
1143 		/* Checking for required sections */
1144 		if (!nvm_calib) {
1145 			IWL_ERR(trans,
1146 				"Can't parse empty Calib NVM sections\n");
1147 			kfree(data);
1148 			return NULL;
1149 		}
1150 
1151 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1152 			     &regulatory[NVM_CHANNELS_SDP] :
1153 			     &nvm_sw[NVM_CHANNELS];
1154 
1155 		/* in family 8000 Xtal calibration values moved to OTP */
1156 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1157 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1158 		lar_enabled = true;
1159 	} else {
1160 		u16 lar_offset = data->nvm_version < 0xE39 ?
1161 				 NVM_LAR_OFFSET_OLD :
1162 				 NVM_LAR_OFFSET;
1163 
1164 		lar_config = le16_to_cpup(regulatory + lar_offset);
1165 		data->lar_enabled = !!(lar_config &
1166 				       NVM_LAR_ENABLED);
1167 		lar_enabled = data->lar_enabled;
1168 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1169 	}
1170 
1171 	/* If no valid mac address was found - bail out */
1172 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1173 		kfree(data);
1174 		return NULL;
1175 	}
1176 
1177 	if (lar_enabled &&
1178 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1179 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1180 
1181 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1182 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1183 
1184 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1185 			sbands_flags, false, fw);
1186 	data->calib_version = 255;
1187 
1188 	return data;
1189 }
1190 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1191 
1192 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1193 				       int ch_idx, u16 nvm_flags,
1194 				       struct iwl_reg_capa reg_capa,
1195 				       const struct iwl_cfg *cfg)
1196 {
1197 	u32 flags = NL80211_RRF_NO_HT40;
1198 
1199 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1200 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1201 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1202 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1203 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1204 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1205 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1206 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1207 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1208 		else
1209 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1210 	}
1211 
1212 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1213 		flags |= NL80211_RRF_NO_80MHZ;
1214 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1215 		flags |= NL80211_RRF_NO_160MHZ;
1216 
1217 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1218 		flags |= NL80211_RRF_NO_IR;
1219 
1220 	if (nvm_flags & NVM_CHANNEL_RADAR)
1221 		flags |= NL80211_RRF_DFS;
1222 
1223 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1224 		flags |= NL80211_RRF_NO_OUTDOOR;
1225 
1226 	/* Set the GO concurrent flag only in case that NO_IR is set.
1227 	 * Otherwise it is meaningless
1228 	 */
1229 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1230 	    (flags & NL80211_RRF_NO_IR))
1231 		flags |= NL80211_RRF_GO_CONCURRENT;
1232 
1233 	/*
1234 	 * reg_capa is per regulatory domain so apply it for every channel
1235 	 */
1236 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1237 		if (!reg_capa.allow_40mhz)
1238 			flags |= NL80211_RRF_NO_HT40;
1239 
1240 		if (!reg_capa.allow_80mhz)
1241 			flags |= NL80211_RRF_NO_80MHZ;
1242 
1243 		if (!reg_capa.allow_160mhz)
1244 			flags |= NL80211_RRF_NO_160MHZ;
1245 	}
1246 	if (reg_capa.disable_11ax)
1247 		flags |= NL80211_RRF_NO_HE;
1248 
1249 	return flags;
1250 }
1251 
1252 static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1253 {
1254 	struct iwl_reg_capa reg_capa;
1255 
1256 	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1257 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1258 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1259 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1260 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1261 	} else {
1262 		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1263 		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1264 		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1265 		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1266 	}
1267 	return reg_capa;
1268 }
1269 
1270 struct ieee80211_regdomain *
1271 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1272 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1273 		       u16 geo_info, u16 cap, u8 resp_ver)
1274 {
1275 	int ch_idx;
1276 	u16 ch_flags;
1277 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1278 	const u16 *nvm_chan;
1279 	struct ieee80211_regdomain *regd, *copy_rd;
1280 	struct ieee80211_reg_rule *rule;
1281 	enum nl80211_band band;
1282 	int center_freq, prev_center_freq = 0;
1283 	int valid_rules = 0;
1284 	bool new_rule;
1285 	int max_num_ch;
1286 	struct iwl_reg_capa reg_capa;
1287 
1288 	if (cfg->uhb_supported) {
1289 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1290 		nvm_chan = iwl_uhb_nvm_channels;
1291 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1292 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1293 		nvm_chan = iwl_ext_nvm_channels;
1294 	} else {
1295 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1296 		nvm_chan = iwl_nvm_channels;
1297 	}
1298 
1299 	if (WARN_ON(num_of_ch > max_num_ch))
1300 		num_of_ch = max_num_ch;
1301 
1302 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1303 		return ERR_PTR(-EINVAL);
1304 
1305 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1306 		      num_of_ch);
1307 
1308 	/* build a regdomain rule for every valid channel */
1309 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1310 	if (!regd)
1311 		return ERR_PTR(-ENOMEM);
1312 
1313 	/* set alpha2 from FW. */
1314 	regd->alpha2[0] = fw_mcc >> 8;
1315 	regd->alpha2[1] = fw_mcc & 0xff;
1316 
1317 	/* parse regulatory capability flags */
1318 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1319 
1320 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1321 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1322 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1323 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1324 							     band);
1325 		new_rule = false;
1326 
1327 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1328 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1329 						    nvm_chan[ch_idx], ch_flags);
1330 			continue;
1331 		}
1332 
1333 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1334 							     ch_flags, reg_capa,
1335 							     cfg);
1336 
1337 		/* we can't continue the same rule */
1338 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1339 		    center_freq - prev_center_freq > 20) {
1340 			valid_rules++;
1341 			new_rule = true;
1342 		}
1343 
1344 		rule = &regd->reg_rules[valid_rules - 1];
1345 
1346 		if (new_rule)
1347 			rule->freq_range.start_freq_khz =
1348 						MHZ_TO_KHZ(center_freq - 10);
1349 
1350 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1351 
1352 		/* this doesn't matter - not used by FW */
1353 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1354 		rule->power_rule.max_eirp =
1355 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1356 
1357 		rule->flags = reg_rule_flags;
1358 
1359 		/* rely on auto-calculation to merge BW of contiguous chans */
1360 		rule->flags |= NL80211_RRF_AUTO_BW;
1361 		rule->freq_range.max_bandwidth_khz = 0;
1362 
1363 		prev_center_freq = center_freq;
1364 		prev_reg_rule_flags = reg_rule_flags;
1365 
1366 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1367 					    nvm_chan[ch_idx], ch_flags);
1368 
1369 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1370 		    band == NL80211_BAND_2GHZ)
1371 			continue;
1372 
1373 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1374 	}
1375 
1376 	regd->n_reg_rules = valid_rules;
1377 
1378 	/*
1379 	 * Narrow down regdom for unused regulatory rules to prevent hole
1380 	 * between reg rules to wmm rules.
1381 	 */
1382 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1383 			  GFP_KERNEL);
1384 	if (!copy_rd)
1385 		copy_rd = ERR_PTR(-ENOMEM);
1386 
1387 	kfree(regd);
1388 	return copy_rd;
1389 }
1390 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1391 
1392 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1393 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1394 #define MAX_NVM_FILE_LEN	16384
1395 
1396 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1397 		    unsigned int len)
1398 {
1399 #define IWL_4165_DEVICE_ID	0x5501
1400 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1401 
1402 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1403 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1404 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1405 		/* OTP 0x52 bug work around: it's a 1x1 device */
1406 		data[3] = ANT_B | (ANT_B << 4);
1407 }
1408 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1409 
1410 /*
1411  * Reads external NVM from a file into mvm->nvm_sections
1412  *
1413  * HOW TO CREATE THE NVM FILE FORMAT:
1414  * ------------------------------
1415  * 1. create hex file, format:
1416  *      3800 -> header
1417  *      0000 -> header
1418  *      5a40 -> data
1419  *
1420  *   rev - 6 bit (word1)
1421  *   len - 10 bit (word1)
1422  *   id - 4 bit (word2)
1423  *   rsv - 12 bit (word2)
1424  *
1425  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1426  *
1427  * 3. create binary file from the hex file
1428  *
1429  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1430  */
1431 int iwl_read_external_nvm(struct iwl_trans *trans,
1432 			  const char *nvm_file_name,
1433 			  struct iwl_nvm_section *nvm_sections)
1434 {
1435 	int ret, section_size;
1436 	u16 section_id;
1437 	const struct firmware *fw_entry;
1438 	const struct {
1439 		__le16 word1;
1440 		__le16 word2;
1441 		u8 data[];
1442 	} *file_sec;
1443 	const u8 *eof;
1444 	u8 *temp;
1445 	int max_section_size;
1446 	const __le32 *dword_buff;
1447 
1448 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1449 #define NVM_WORD2_ID(x) (x >> 12)
1450 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1451 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1452 #define NVM_HEADER_0	(0x2A504C54)
1453 #define NVM_HEADER_1	(0x4E564D2A)
1454 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1455 
1456 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1457 
1458 	/* Maximal size depends on NVM version */
1459 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1460 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1461 	else
1462 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1463 
1464 	/*
1465 	 * Obtain NVM image via request_firmware. Since we already used
1466 	 * request_firmware_nowait() for the firmware binary load and only
1467 	 * get here after that we assume the NVM request can be satisfied
1468 	 * synchronously.
1469 	 */
1470 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1471 	if (ret) {
1472 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1473 			nvm_file_name, ret);
1474 		return ret;
1475 	}
1476 
1477 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1478 		 nvm_file_name, fw_entry->size);
1479 
1480 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1481 		IWL_ERR(trans, "NVM file too large\n");
1482 		ret = -EINVAL;
1483 		goto out;
1484 	}
1485 
1486 	eof = fw_entry->data + fw_entry->size;
1487 	dword_buff = (__le32 *)fw_entry->data;
1488 
1489 	/* some NVM file will contain a header.
1490 	 * The header is identified by 2 dwords header as follow:
1491 	 * dword[0] = 0x2A504C54
1492 	 * dword[1] = 0x4E564D2A
1493 	 *
1494 	 * This header must be skipped when providing the NVM data to the FW.
1495 	 */
1496 	if (fw_entry->size > NVM_HEADER_SIZE &&
1497 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1498 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1499 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1500 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1501 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1502 			 le32_to_cpu(dword_buff[3]));
1503 
1504 		/* nvm file validation, dword_buff[2] holds the file version */
1505 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1506 		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1507 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1508 			ret = -EFAULT;
1509 			goto out;
1510 		}
1511 	} else {
1512 		file_sec = (void *)fw_entry->data;
1513 	}
1514 
1515 	while (true) {
1516 		if (file_sec->data > eof) {
1517 			IWL_ERR(trans,
1518 				"ERROR - NVM file too short for section header\n");
1519 			ret = -EINVAL;
1520 			break;
1521 		}
1522 
1523 		/* check for EOF marker */
1524 		if (!file_sec->word1 && !file_sec->word2) {
1525 			ret = 0;
1526 			break;
1527 		}
1528 
1529 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1530 			section_size =
1531 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1532 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1533 		} else {
1534 			section_size = 2 * EXT_NVM_WORD2_LEN(
1535 						le16_to_cpu(file_sec->word2));
1536 			section_id = EXT_NVM_WORD1_ID(
1537 						le16_to_cpu(file_sec->word1));
1538 		}
1539 
1540 		if (section_size > max_section_size) {
1541 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1542 				section_size);
1543 			ret = -EINVAL;
1544 			break;
1545 		}
1546 
1547 		if (!section_size) {
1548 			IWL_ERR(trans, "ERROR - section empty\n");
1549 			ret = -EINVAL;
1550 			break;
1551 		}
1552 
1553 		if (file_sec->data + section_size > eof) {
1554 			IWL_ERR(trans,
1555 				"ERROR - NVM file too short for section (%d bytes)\n",
1556 				section_size);
1557 			ret = -EINVAL;
1558 			break;
1559 		}
1560 
1561 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1562 			 "Invalid NVM section ID %d\n", section_id)) {
1563 			ret = -EINVAL;
1564 			break;
1565 		}
1566 
1567 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1568 		if (!temp) {
1569 			ret = -ENOMEM;
1570 			break;
1571 		}
1572 
1573 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1574 
1575 		kfree(nvm_sections[section_id].data);
1576 		nvm_sections[section_id].data = temp;
1577 		nvm_sections[section_id].length = section_size;
1578 
1579 		/* advance to the next section */
1580 		file_sec = (void *)(file_sec->data + section_size);
1581 	}
1582 out:
1583 	release_firmware(fw_entry);
1584 	return ret;
1585 }
1586 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1587 
1588 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1589 				 const struct iwl_fw *fw)
1590 {
1591 	struct iwl_nvm_get_info cmd = {};
1592 	struct iwl_nvm_data *nvm;
1593 	struct iwl_host_cmd hcmd = {
1594 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1595 		.data = { &cmd, },
1596 		.len = { sizeof(cmd) },
1597 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1598 	};
1599 	int  ret;
1600 	bool empty_otp;
1601 	u32 mac_flags;
1602 	u32 sbands_flags = 0;
1603 	/*
1604 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1605 	 * in v3, except for the channel profile part of the
1606 	 * regulatory.  So we can just access the new struct, with the
1607 	 * exception of the latter.
1608 	 */
1609 	struct iwl_nvm_get_info_rsp *rsp;
1610 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1611 	bool v4 = fw_has_api(&fw->ucode_capa,
1612 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1613 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1614 	void *channel_profile;
1615 
1616 	ret = iwl_trans_send_cmd(trans, &hcmd);
1617 	if (ret)
1618 		return ERR_PTR(ret);
1619 
1620 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1621 		 "Invalid payload len in NVM response from FW %d",
1622 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1623 		ret = -EINVAL;
1624 		goto out;
1625 	}
1626 
1627 	rsp = (void *)hcmd.resp_pkt->data;
1628 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1629 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1630 	if (empty_otp)
1631 		IWL_INFO(trans, "OTP is empty\n");
1632 
1633 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1634 	if (!nvm) {
1635 		ret = -ENOMEM;
1636 		goto out;
1637 	}
1638 
1639 	iwl_set_hw_address_from_csr(trans, nvm);
1640 	/* TODO: if platform NVM has MAC address - override it here */
1641 
1642 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1643 		IWL_ERR(trans, "no valid mac address was found\n");
1644 		ret = -EINVAL;
1645 		goto err_free;
1646 	}
1647 
1648 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1649 
1650 	/* Initialize general data */
1651 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1652 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1653 	if (nvm->n_hw_addrs == 0)
1654 		IWL_WARN(trans,
1655 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1656 			 empty_otp);
1657 
1658 	/* Initialize MAC sku data */
1659 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1660 	nvm->sku_cap_11ac_enable =
1661 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1662 	nvm->sku_cap_11n_enable =
1663 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1664 	nvm->sku_cap_11ax_enable =
1665 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1666 	nvm->sku_cap_band_24ghz_enable =
1667 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1668 	nvm->sku_cap_band_52ghz_enable =
1669 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1670 	nvm->sku_cap_mimo_disabled =
1671 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1672 
1673 	/* Initialize PHY sku data */
1674 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1675 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1676 
1677 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1678 	    fw_has_capa(&fw->ucode_capa,
1679 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1680 		nvm->lar_enabled = true;
1681 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1682 	}
1683 
1684 	rsp_v3 = (void *)rsp;
1685 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1686 			  (void *)rsp_v3->regulatory.channel_profile;
1687 
1688 	iwl_init_sbands(trans, nvm,
1689 			channel_profile,
1690 			nvm->valid_tx_ant & fw->valid_tx_ant,
1691 			nvm->valid_rx_ant & fw->valid_rx_ant,
1692 			sbands_flags, v4, fw);
1693 
1694 	iwl_free_resp(&hcmd);
1695 	return nvm;
1696 
1697 err_free:
1698 	kfree(nvm);
1699 out:
1700 	iwl_free_resp(&hcmd);
1701 	return ERR_PTR(ret);
1702 }
1703 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1704