1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 
26 /* NVM offsets (in words) definitions */
27 enum nvm_offsets {
28 	/* NVM HW-Section offset (in words) definitions */
29 	SUBSYSTEM_ID = 0x0A,
30 	HW_ADDR = 0x15,
31 
32 	/* NVM SW-Section offset (in words) definitions */
33 	NVM_SW_SECTION = 0x1C0,
34 	NVM_VERSION = 0,
35 	RADIO_CFG = 1,
36 	SKU = 2,
37 	N_HW_ADDRS = 3,
38 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
39 
40 	/* NVM calibration section offset (in words) definitions */
41 	NVM_CALIB_SECTION = 0x2B8,
42 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
43 
44 	/* NVM REGULATORY -Section offset (in words) definitions */
45 	NVM_CHANNELS_SDP = 0,
46 };
47 
48 enum ext_nvm_offsets {
49 	/* NVM HW-Section offset (in words) definitions */
50 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
51 
52 	/* NVM SW-Section offset (in words) definitions */
53 	NVM_VERSION_EXT_NVM = 0,
54 	N_HW_ADDRS_FAMILY_8000 = 3,
55 
56 	/* NVM PHY_SKU-Section offset (in words) definitions */
57 	RADIO_CFG_FAMILY_EXT_NVM = 0,
58 	SKU_FAMILY_8000 = 2,
59 
60 	/* NVM REGULATORY -Section offset (in words) definitions */
61 	NVM_CHANNELS_EXTENDED = 0,
62 	NVM_LAR_OFFSET_OLD = 0x4C7,
63 	NVM_LAR_OFFSET = 0x507,
64 	NVM_LAR_ENABLED = 0x7,
65 };
66 
67 /* SKU Capabilities (actual values from NVM definition) */
68 enum nvm_sku_bits {
69 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
70 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
71 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
72 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
73 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
74 };
75 
76 /*
77  * These are the channel numbers in the order that they are stored in the NVM
78  */
79 static const u16 iwl_nvm_channels[] = {
80 	/* 2.4 GHz */
81 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
82 	/* 5 GHz */
83 	36, 40, 44 , 48, 52, 56, 60, 64,
84 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
85 	149, 153, 157, 161, 165
86 };
87 
88 static const u16 iwl_ext_nvm_channels[] = {
89 	/* 2.4 GHz */
90 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
91 	/* 5 GHz */
92 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
93 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
94 	149, 153, 157, 161, 165, 169, 173, 177, 181
95 };
96 
97 static const u16 iwl_uhb_nvm_channels[] = {
98 	/* 2.4 GHz */
99 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
100 	/* 5 GHz */
101 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
102 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
103 	149, 153, 157, 161, 165, 169, 173, 177, 181,
104 	/* 6-7 GHz */
105 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
106 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
107 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
108 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
109 };
110 
111 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
112 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
114 #define NUM_2GHZ_CHANNELS		14
115 #define NUM_5GHZ_CHANNELS		37
116 #define FIRST_2GHZ_HT_MINUS		5
117 #define LAST_2GHZ_HT_PLUS		9
118 #define N_HW_ADDR_MASK			0xF
119 
120 /* rate data (static) */
121 static struct ieee80211_rate iwl_cfg80211_rates[] = {
122 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
123 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
124 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
125 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
126 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
127 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
128 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
129 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
130 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
131 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
132 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
133 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
134 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
135 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
136 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
137 };
138 #define RATES_24_OFFS	0
139 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
140 #define RATES_52_OFFS	4
141 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
142 
143 /**
144  * enum iwl_nvm_channel_flags - channel flags in NVM
145  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
146  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
147  * @NVM_CHANNEL_ACTIVE: active scanning allowed
148  * @NVM_CHANNEL_RADAR: radar detection required
149  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
150  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
151  *	on same channel on 2.4 or same UNII band on 5.2
152  * @NVM_CHANNEL_UNIFORM: uniform spreading required
153  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
154  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
155  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
156  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
157  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
158  */
159 enum iwl_nvm_channel_flags {
160 	NVM_CHANNEL_VALID		= BIT(0),
161 	NVM_CHANNEL_IBSS		= BIT(1),
162 	NVM_CHANNEL_ACTIVE		= BIT(3),
163 	NVM_CHANNEL_RADAR		= BIT(4),
164 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
165 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
166 	NVM_CHANNEL_UNIFORM		= BIT(7),
167 	NVM_CHANNEL_20MHZ		= BIT(8),
168 	NVM_CHANNEL_40MHZ		= BIT(9),
169 	NVM_CHANNEL_80MHZ		= BIT(10),
170 	NVM_CHANNEL_160MHZ		= BIT(11),
171 	NVM_CHANNEL_DC_HIGH		= BIT(12),
172 };
173 
174 /**
175  * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
176  * domain.
177  * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
178  *	2.4Ghz band is allowed.
179  * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
180  *	5Ghz band is allowed.
181  * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
182  *	for this regulatory domain (valid only in 5Ghz).
183  * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
184  *	for this regulatory domain (valid only in 5Ghz).
185  * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
186  * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
187  * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
188  *	for this regulatory domain (valid only in 5Ghz).
189  * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
190  * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
191  */
192 enum iwl_reg_capa_flags {
193 	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
194 	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
195 	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
196 	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
197 	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
198 	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
199 	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
200 	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
201 	REG_CAPA_11AX_DISABLED		= BIT(10),
202 };
203 
204 /**
205  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
206  * domain (version 2).
207  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
208  *	disabled.
209  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
210  *	2.4Ghz band is allowed.
211  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
212  *	5Ghz band is allowed.
213  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
214  *	for this regulatory domain (valid only in 5Ghz).
215  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
216  *	for this regulatory domain (valid only in 5Ghz).
217  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
218  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
219  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
220  *	126, 122) are disabled.
221  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
222  *	for this regulatory domain (uvalid only in 5Ghz).
223  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
224  */
225 enum iwl_reg_capa_flags_v2 {
226 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
227 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
228 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
229 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
230 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
231 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
232 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
233 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
234 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
235 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
236 };
237 
238 /*
239 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
240 * MCC update command response.
241 */
242 #define REG_CAPA_V2_RESP_VER	6
243 
244 /**
245  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
246  * handling the different APIs of reg_capa_flags.
247  *
248  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
249  *	for this regulatory domain (valid only in 5Ghz).
250  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
251  *	for this regulatory domain (valid only in 5Ghz).
252  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
253  *	for this regulatory domain (valid only in 5Ghz).
254  * @disable_11ax: 11ax is forbidden for this regulatory domain.
255  */
256 struct iwl_reg_capa {
257 	u16 allow_40mhz;
258 	u16 allow_80mhz;
259 	u16 allow_160mhz;
260 	u16 disable_11ax;
261 };
262 
263 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
264 					       int chan, u32 flags)
265 {
266 #define CHECK_AND_PRINT_I(x)	\
267 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
268 
269 	if (!(flags & NVM_CHANNEL_VALID)) {
270 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
271 			      chan, flags);
272 		return;
273 	}
274 
275 	/* Note: already can print up to 101 characters, 110 is the limit! */
276 	IWL_DEBUG_DEV(dev, level,
277 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
278 		      chan, flags,
279 		      CHECK_AND_PRINT_I(VALID),
280 		      CHECK_AND_PRINT_I(IBSS),
281 		      CHECK_AND_PRINT_I(ACTIVE),
282 		      CHECK_AND_PRINT_I(RADAR),
283 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
284 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
285 		      CHECK_AND_PRINT_I(UNIFORM),
286 		      CHECK_AND_PRINT_I(20MHZ),
287 		      CHECK_AND_PRINT_I(40MHZ),
288 		      CHECK_AND_PRINT_I(80MHZ),
289 		      CHECK_AND_PRINT_I(160MHZ),
290 		      CHECK_AND_PRINT_I(DC_HIGH));
291 #undef CHECK_AND_PRINT_I
292 }
293 
294 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
295 				 u32 nvm_flags, const struct iwl_cfg *cfg)
296 {
297 	u32 flags = IEEE80211_CHAN_NO_HT40;
298 
299 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
300 		if (ch_num <= LAST_2GHZ_HT_PLUS)
301 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
302 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
303 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
304 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
305 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
306 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
307 		else
308 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
309 	}
310 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
311 		flags |= IEEE80211_CHAN_NO_80MHZ;
312 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
313 		flags |= IEEE80211_CHAN_NO_160MHZ;
314 
315 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
316 		flags |= IEEE80211_CHAN_NO_IR;
317 
318 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
319 		flags |= IEEE80211_CHAN_NO_IR;
320 
321 	if (nvm_flags & NVM_CHANNEL_RADAR)
322 		flags |= IEEE80211_CHAN_RADAR;
323 
324 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
325 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
326 
327 	/* Set the GO concurrent flag only in case that NO_IR is set.
328 	 * Otherwise it is meaningless
329 	 */
330 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
331 	    (flags & IEEE80211_CHAN_NO_IR))
332 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
333 
334 	return flags;
335 }
336 
337 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
338 {
339 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
340 		return NL80211_BAND_6GHZ;
341 	}
342 
343 	if (ch_idx >= NUM_2GHZ_CHANNELS)
344 		return NL80211_BAND_5GHZ;
345 	return NL80211_BAND_2GHZ;
346 }
347 
348 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
349 				struct iwl_nvm_data *data,
350 				const void * const nvm_ch_flags,
351 				u32 sbands_flags, bool v4)
352 {
353 	int ch_idx;
354 	int n_channels = 0;
355 	struct ieee80211_channel *channel;
356 	u32 ch_flags;
357 	int num_of_ch;
358 	const u16 *nvm_chan;
359 
360 	if (cfg->uhb_supported) {
361 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
362 		nvm_chan = iwl_uhb_nvm_channels;
363 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
364 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
365 		nvm_chan = iwl_ext_nvm_channels;
366 	} else {
367 		num_of_ch = IWL_NVM_NUM_CHANNELS;
368 		nvm_chan = iwl_nvm_channels;
369 	}
370 
371 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
372 		enum nl80211_band band =
373 			iwl_nl80211_band_from_channel_idx(ch_idx);
374 
375 		if (v4)
376 			ch_flags =
377 				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
378 		else
379 			ch_flags =
380 				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
381 
382 		if (band == NL80211_BAND_5GHZ &&
383 		    !data->sku_cap_band_52ghz_enable)
384 			continue;
385 
386 		/* workaround to disable wide channels in 5GHz */
387 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
388 		    band == NL80211_BAND_5GHZ) {
389 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
390 				     NVM_CHANNEL_80MHZ |
391 				     NVM_CHANNEL_160MHZ);
392 		}
393 
394 		if (ch_flags & NVM_CHANNEL_160MHZ)
395 			data->vht160_supported = true;
396 
397 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
398 		    !(ch_flags & NVM_CHANNEL_VALID)) {
399 			/*
400 			 * Channels might become valid later if lar is
401 			 * supported, hence we still want to add them to
402 			 * the list of supported channels to cfg80211.
403 			 */
404 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
405 						    nvm_chan[ch_idx], ch_flags);
406 			continue;
407 		}
408 
409 		channel = &data->channels[n_channels];
410 		n_channels++;
411 
412 		channel->hw_value = nvm_chan[ch_idx];
413 		channel->band = band;
414 		channel->center_freq =
415 			ieee80211_channel_to_frequency(
416 				channel->hw_value, channel->band);
417 
418 		/* Initialize regulatory-based run-time data */
419 
420 		/*
421 		 * Default value - highest tx power value.  max_power
422 		 * is not used in mvm, and is used for backwards compatibility
423 		 */
424 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
425 
426 		/* don't put limitations in case we're using LAR */
427 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
428 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
429 							       ch_idx, band,
430 							       ch_flags, cfg);
431 		else
432 			channel->flags = 0;
433 
434 		/* TODO: Don't put limitations on UHB devices as we still don't
435 		 * have NVM for them
436 		 */
437 		if (cfg->uhb_supported)
438 			channel->flags = 0;
439 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 					    channel->hw_value, ch_flags);
441 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
442 				 channel->hw_value, channel->max_power);
443 	}
444 
445 	return n_channels;
446 }
447 
448 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
449 				  struct iwl_nvm_data *data,
450 				  struct ieee80211_sta_vht_cap *vht_cap,
451 				  u8 tx_chains, u8 rx_chains)
452 {
453 	const struct iwl_cfg *cfg = trans->cfg;
454 	int num_rx_ants = num_of_ant(rx_chains);
455 	int num_tx_ants = num_of_ant(tx_chains);
456 
457 	vht_cap->vht_supported = true;
458 
459 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
460 		       IEEE80211_VHT_CAP_RXSTBC_1 |
461 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
462 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
463 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
464 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
465 
466 	if (data->vht160_supported)
467 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
468 				IEEE80211_VHT_CAP_SHORT_GI_160;
469 
470 	if (cfg->vht_mu_mimo_supported)
471 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
472 
473 	if (cfg->ht_params->ldpc)
474 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
475 
476 	if (data->sku_cap_mimo_disabled) {
477 		num_rx_ants = 1;
478 		num_tx_ants = 1;
479 	}
480 
481 	if (num_tx_ants > 1)
482 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
483 	else
484 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
485 
486 	switch (iwlwifi_mod_params.amsdu_size) {
487 	case IWL_AMSDU_DEF:
488 		if (trans->trans_cfg->mq_rx_supported)
489 			vht_cap->cap |=
490 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
491 		else
492 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
493 		break;
494 	case IWL_AMSDU_2K:
495 		if (trans->trans_cfg->mq_rx_supported)
496 			vht_cap->cap |=
497 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
498 		else
499 			WARN(1, "RB size of 2K is not supported by this device\n");
500 		break;
501 	case IWL_AMSDU_4K:
502 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
503 		break;
504 	case IWL_AMSDU_8K:
505 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
506 		break;
507 	case IWL_AMSDU_12K:
508 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
509 		break;
510 	default:
511 		break;
512 	}
513 
514 	vht_cap->vht_mcs.rx_mcs_map =
515 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
516 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
517 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
518 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
519 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
520 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
521 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
522 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
523 
524 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
525 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
526 		/* this works because NOT_SUPPORTED == 3 */
527 		vht_cap->vht_mcs.rx_mcs_map |=
528 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
529 	}
530 
531 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
532 
533 	vht_cap->vht_mcs.tx_highest |=
534 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
535 }
536 
537 static const u8 iwl_vendor_caps[] = {
538 	0xdd,			/* vendor element */
539 	0x06,			/* length */
540 	0x00, 0x17, 0x35,	/* Intel OUI */
541 	0x08,			/* type (Intel Capabilities) */
542 	/* followed by 16 bits of capabilities */
543 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
544 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
545 	0x00
546 };
547 
548 static const struct ieee80211_sband_iftype_data iwl_he_capa[] = {
549 	{
550 		.types_mask = BIT(NL80211_IFTYPE_STATION),
551 		.he_cap = {
552 			.has_he = true,
553 			.he_cap_elem = {
554 				.mac_cap_info[0] =
555 					IEEE80211_HE_MAC_CAP0_HTC_HE |
556 					IEEE80211_HE_MAC_CAP0_TWT_REQ,
557 				.mac_cap_info[1] =
558 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
559 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
560 				.mac_cap_info[2] =
561 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
562 				.mac_cap_info[3] =
563 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
564 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
565 				.mac_cap_info[4] =
566 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
567 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
568 				.mac_cap_info[5] =
569 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
570 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
571 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
572 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
573 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
574 				.phy_cap_info[0] =
575 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
576 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
577 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
578 				.phy_cap_info[1] =
579 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
580 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
581 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
582 				.phy_cap_info[2] =
583 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
584 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
585 				.phy_cap_info[3] =
586 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
587 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
588 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
589 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
590 				.phy_cap_info[4] =
591 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
592 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
593 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
594 				.phy_cap_info[6] =
595 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
596 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
597 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
598 				.phy_cap_info[7] =
599 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
600 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
601 				.phy_cap_info[8] =
602 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
603 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
604 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
605 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
606 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
607 				.phy_cap_info[9] =
608 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
609 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
610 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
611 				.phy_cap_info[10] =
612 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
613 			},
614 			/*
615 			 * Set default Tx/Rx HE MCS NSS Support field.
616 			 * Indicate support for up to 2 spatial streams and all
617 			 * MCS, without any special cases
618 			 */
619 			.he_mcs_nss_supp = {
620 				.rx_mcs_80 = cpu_to_le16(0xfffa),
621 				.tx_mcs_80 = cpu_to_le16(0xfffa),
622 				.rx_mcs_160 = cpu_to_le16(0xfffa),
623 				.tx_mcs_160 = cpu_to_le16(0xfffa),
624 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
625 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
626 			},
627 			/*
628 			 * Set default PPE thresholds, with PPET16 set to 0,
629 			 * PPET8 set to 7
630 			 */
631 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
632 		},
633 	},
634 	{
635 		.types_mask = BIT(NL80211_IFTYPE_AP),
636 		.he_cap = {
637 			.has_he = true,
638 			.he_cap_elem = {
639 				.mac_cap_info[0] =
640 					IEEE80211_HE_MAC_CAP0_HTC_HE,
641 				.mac_cap_info[1] =
642 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
643 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
644 				.mac_cap_info[3] =
645 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
646 				.phy_cap_info[0] =
647 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
648 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G,
649 				.phy_cap_info[1] =
650 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
651 				.phy_cap_info[2] =
652 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
653 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
654 				.phy_cap_info[3] =
655 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
656 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
657 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
658 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
659 				.phy_cap_info[6] =
660 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
661 				.phy_cap_info[7] =
662 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
663 				.phy_cap_info[8] =
664 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
665 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
666 				.phy_cap_info[9] =
667 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
668 			},
669 			/*
670 			 * Set default Tx/Rx HE MCS NSS Support field.
671 			 * Indicate support for up to 2 spatial streams and all
672 			 * MCS, without any special cases
673 			 */
674 			.he_mcs_nss_supp = {
675 				.rx_mcs_80 = cpu_to_le16(0xfffa),
676 				.tx_mcs_80 = cpu_to_le16(0xfffa),
677 				.rx_mcs_160 = cpu_to_le16(0xfffa),
678 				.tx_mcs_160 = cpu_to_le16(0xfffa),
679 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
680 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
681 			},
682 			/*
683 			 * Set default PPE thresholds, with PPET16 set to 0,
684 			 * PPET8 set to 7
685 			 */
686 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
687 		},
688 	},
689 };
690 
691 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
692 				  struct iwl_nvm_data *data,
693 				  struct ieee80211_supported_band *sband,
694 				  u8 tx_chains, u8 rx_chains)
695 {
696 	struct ieee80211_sta_ht_cap ht_cap;
697 	struct ieee80211_sta_vht_cap vht_cap = {};
698 	struct ieee80211_sband_iftype_data *iftype_data;
699 	u16 he_6ghz_capa = 0;
700 	u32 exp;
701 	int i;
702 
703 	if (sband->band != NL80211_BAND_6GHZ)
704 		return;
705 
706 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
707 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
708 			     tx_chains, rx_chains);
709 	WARN_ON(!ht_cap.ht_supported);
710 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
711 	WARN_ON(!vht_cap.vht_supported);
712 
713 	he_6ghz_capa |=
714 		u16_encode_bits(ht_cap.ampdu_density,
715 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
716 	exp = u32_get_bits(vht_cap.cap,
717 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
718 	he_6ghz_capa |=
719 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
720 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
721 	he_6ghz_capa |=
722 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
723 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
724 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
725 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
726 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
727 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
728 
729 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
730 
731 	/* we know it's writable - we set it before ourselves */
732 	iftype_data = (void *)sband->iftype_data;
733 	for (i = 0; i < sband->n_iftype_data; i++)
734 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
735 }
736 
737 static void
738 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
739 			 struct ieee80211_supported_band *sband,
740 			 struct ieee80211_sband_iftype_data *iftype_data,
741 			 u8 tx_chains, u8 rx_chains,
742 			 const struct iwl_fw *fw)
743 {
744 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
745 
746 	/* Advertise an A-MPDU exponent extension based on
747 	 * operating band
748 	 */
749 	if (sband->band != NL80211_BAND_2GHZ)
750 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
751 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
752 	else
753 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
754 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
755 
756 	if (is_ap && iwlwifi_mod_params.nvm_file)
757 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
758 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
759 
760 	if ((tx_chains & rx_chains) == ANT_AB) {
761 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
762 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
763 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
764 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
765 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
766 		if (!is_ap)
767 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
768 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
769 	} else if (!is_ap) {
770 		/* If not 2x2, we need to indicate 1x1 in the
771 		 * Midamble RX Max NSTS - but not for AP mode
772 		 */
773 		iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
774 			~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
775 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
776 			~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
777 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
778 			IEEE80211_HE_PHY_CAP7_MAX_NC_1;
779 	}
780 
781 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
782 	case IWL_CFG_RF_TYPE_GF:
783 	case IWL_CFG_RF_TYPE_MR:
784 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
785 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
786 		if (!is_ap)
787 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
788 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
789 		break;
790 	}
791 
792 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
793 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
794 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
795 
796 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
797 	    !is_ap) {
798 		iftype_data->vendor_elems.data = iwl_vendor_caps;
799 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
800 	}
801 }
802 
803 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
804 				 struct iwl_nvm_data *data,
805 				 struct ieee80211_supported_band *sband,
806 				 u8 tx_chains, u8 rx_chains,
807 				 const struct iwl_fw *fw)
808 {
809 	struct ieee80211_sband_iftype_data *iftype_data;
810 	int i;
811 
812 	/* should only initialize once */
813 	if (WARN_ON(sband->iftype_data))
814 		return;
815 
816 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa));
817 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa));
818 
819 	switch (sband->band) {
820 	case NL80211_BAND_2GHZ:
821 		iftype_data = data->iftd.low;
822 		break;
823 	case NL80211_BAND_5GHZ:
824 	case NL80211_BAND_6GHZ:
825 		iftype_data = data->iftd.high;
826 		break;
827 	default:
828 		WARN_ON(1);
829 		return;
830 	}
831 
832 	memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa));
833 
834 	sband->iftype_data = iftype_data;
835 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
836 
837 	for (i = 0; i < sband->n_iftype_data; i++)
838 		iwl_nvm_fixup_sband_iftd(trans, sband, &iftype_data[i],
839 					 tx_chains, rx_chains, fw);
840 
841 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
842 }
843 
844 static void iwl_init_sbands(struct iwl_trans *trans,
845 			    struct iwl_nvm_data *data,
846 			    const void *nvm_ch_flags, u8 tx_chains,
847 			    u8 rx_chains, u32 sbands_flags, bool v4,
848 			    const struct iwl_fw *fw)
849 {
850 	struct device *dev = trans->dev;
851 	const struct iwl_cfg *cfg = trans->cfg;
852 	int n_channels;
853 	int n_used = 0;
854 	struct ieee80211_supported_band *sband;
855 
856 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
857 					  sbands_flags, v4);
858 	sband = &data->bands[NL80211_BAND_2GHZ];
859 	sband->band = NL80211_BAND_2GHZ;
860 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
861 	sband->n_bitrates = N_RATES_24;
862 	n_used += iwl_init_sband_channels(data, sband, n_channels,
863 					  NL80211_BAND_2GHZ);
864 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
865 			     tx_chains, rx_chains);
866 
867 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
868 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
869 				     fw);
870 
871 	sband = &data->bands[NL80211_BAND_5GHZ];
872 	sband->band = NL80211_BAND_5GHZ;
873 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
874 	sband->n_bitrates = N_RATES_52;
875 	n_used += iwl_init_sband_channels(data, sband, n_channels,
876 					  NL80211_BAND_5GHZ);
877 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
878 			     tx_chains, rx_chains);
879 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
880 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
881 				      tx_chains, rx_chains);
882 
883 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
884 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
885 				     fw);
886 
887 	/* 6GHz band. */
888 	sband = &data->bands[NL80211_BAND_6GHZ];
889 	sband->band = NL80211_BAND_6GHZ;
890 	/* use the same rates as 5GHz band */
891 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
892 	sband->n_bitrates = N_RATES_52;
893 	n_used += iwl_init_sband_channels(data, sband, n_channels,
894 					  NL80211_BAND_6GHZ);
895 
896 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
897 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
898 				     fw);
899 	else
900 		sband->n_channels = 0;
901 	if (n_channels != n_used)
902 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
903 			    n_used, n_channels);
904 }
905 
906 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
907 		       const __le16 *phy_sku)
908 {
909 	if (cfg->nvm_type != IWL_NVM_EXT)
910 		return le16_to_cpup(nvm_sw + SKU);
911 
912 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
913 }
914 
915 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
916 {
917 	if (cfg->nvm_type != IWL_NVM_EXT)
918 		return le16_to_cpup(nvm_sw + NVM_VERSION);
919 	else
920 		return le32_to_cpup((__le32 *)(nvm_sw +
921 					       NVM_VERSION_EXT_NVM));
922 }
923 
924 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
925 			     const __le16 *phy_sku)
926 {
927 	if (cfg->nvm_type != IWL_NVM_EXT)
928 		return le16_to_cpup(nvm_sw + RADIO_CFG);
929 
930 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
931 
932 }
933 
934 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
935 {
936 	int n_hw_addr;
937 
938 	if (cfg->nvm_type != IWL_NVM_EXT)
939 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
940 
941 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
942 
943 	return n_hw_addr & N_HW_ADDR_MASK;
944 }
945 
946 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
947 			      struct iwl_nvm_data *data,
948 			      u32 radio_cfg)
949 {
950 	if (cfg->nvm_type != IWL_NVM_EXT) {
951 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
952 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
953 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
954 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
955 		return;
956 	}
957 
958 	/* set the radio configuration for family 8000 */
959 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
960 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
961 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
962 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
963 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
964 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
965 }
966 
967 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
968 {
969 	const u8 *hw_addr;
970 
971 	hw_addr = (const u8 *)&mac_addr0;
972 	dest[0] = hw_addr[3];
973 	dest[1] = hw_addr[2];
974 	dest[2] = hw_addr[1];
975 	dest[3] = hw_addr[0];
976 
977 	hw_addr = (const u8 *)&mac_addr1;
978 	dest[4] = hw_addr[1];
979 	dest[5] = hw_addr[0];
980 }
981 
982 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
983 					struct iwl_nvm_data *data)
984 {
985 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
986 						  CSR_MAC_ADDR0_STRAP(trans)));
987 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
988 						  CSR_MAC_ADDR1_STRAP(trans)));
989 
990 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
991 	/*
992 	 * If the OEM fused a valid address, use it instead of the one in the
993 	 * OTP
994 	 */
995 	if (is_valid_ether_addr(data->hw_addr))
996 		return;
997 
998 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
999 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1000 
1001 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1002 }
1003 
1004 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1005 					   const struct iwl_cfg *cfg,
1006 					   struct iwl_nvm_data *data,
1007 					   const __le16 *mac_override,
1008 					   const __be16 *nvm_hw)
1009 {
1010 	const u8 *hw_addr;
1011 
1012 	if (mac_override) {
1013 		static const u8 reserved_mac[] = {
1014 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1015 		};
1016 
1017 		hw_addr = (const u8 *)(mac_override +
1018 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1019 
1020 		/*
1021 		 * Store the MAC address from MAO section.
1022 		 * No byte swapping is required in MAO section
1023 		 */
1024 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1025 
1026 		/*
1027 		 * Force the use of the OTP MAC address in case of reserved MAC
1028 		 * address in the NVM, or if address is given but invalid.
1029 		 */
1030 		if (is_valid_ether_addr(data->hw_addr) &&
1031 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1032 			return;
1033 
1034 		IWL_ERR(trans,
1035 			"mac address from nvm override section is not valid\n");
1036 	}
1037 
1038 	if (nvm_hw) {
1039 		/* read the mac address from WFMP registers */
1040 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1041 						WFMP_MAC_ADDR_0));
1042 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1043 						WFMP_MAC_ADDR_1));
1044 
1045 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1046 
1047 		return;
1048 	}
1049 
1050 	IWL_ERR(trans, "mac address is not found\n");
1051 }
1052 
1053 static int iwl_set_hw_address(struct iwl_trans *trans,
1054 			      const struct iwl_cfg *cfg,
1055 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1056 			      const __le16 *mac_override)
1057 {
1058 	if (cfg->mac_addr_from_csr) {
1059 		iwl_set_hw_address_from_csr(trans, data);
1060 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1061 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1062 
1063 		/* The byte order is little endian 16 bit, meaning 214365 */
1064 		data->hw_addr[0] = hw_addr[1];
1065 		data->hw_addr[1] = hw_addr[0];
1066 		data->hw_addr[2] = hw_addr[3];
1067 		data->hw_addr[3] = hw_addr[2];
1068 		data->hw_addr[4] = hw_addr[5];
1069 		data->hw_addr[5] = hw_addr[4];
1070 	} else {
1071 		iwl_set_hw_address_family_8000(trans, cfg, data,
1072 					       mac_override, nvm_hw);
1073 	}
1074 
1075 	if (!is_valid_ether_addr(data->hw_addr)) {
1076 		IWL_ERR(trans, "no valid mac address was found\n");
1077 		return -EINVAL;
1078 	}
1079 
1080 	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
1081 
1082 	return 0;
1083 }
1084 
1085 static bool
1086 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1087 			const __be16 *nvm_hw)
1088 {
1089 	/*
1090 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1091 	 * some 7000-family OTPs erroneously allow wide channels in
1092 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1093 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1094 	 * 9.  In those cases, we need to force-disable wide channels
1095 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1096 	 * to use them.
1097 	 */
1098 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1099 		/*
1100 		 * Unlike the other sections in the NVM, the hw
1101 		 * section uses big-endian.
1102 		 */
1103 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1104 		u8 sku = (subsystem_id & 0x1e) >> 1;
1105 
1106 		if (sku == 5 || sku == 9) {
1107 			IWL_DEBUG_EEPROM(trans->dev,
1108 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1109 					 subsystem_id, sku);
1110 			return true;
1111 		}
1112 	}
1113 
1114 	return false;
1115 }
1116 
1117 struct iwl_nvm_data *
1118 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1119 		   const struct iwl_fw *fw,
1120 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1121 		   const __le16 *nvm_calib, const __le16 *regulatory,
1122 		   const __le16 *mac_override, const __le16 *phy_sku,
1123 		   u8 tx_chains, u8 rx_chains)
1124 {
1125 	struct iwl_nvm_data *data;
1126 	bool lar_enabled;
1127 	u32 sku, radio_cfg;
1128 	u32 sbands_flags = 0;
1129 	u16 lar_config;
1130 	const __le16 *ch_section;
1131 
1132 	if (cfg->uhb_supported)
1133 		data = kzalloc(struct_size(data, channels,
1134 					   IWL_NVM_NUM_CHANNELS_UHB),
1135 					   GFP_KERNEL);
1136 	else if (cfg->nvm_type != IWL_NVM_EXT)
1137 		data = kzalloc(struct_size(data, channels,
1138 					   IWL_NVM_NUM_CHANNELS),
1139 					   GFP_KERNEL);
1140 	else
1141 		data = kzalloc(struct_size(data, channels,
1142 					   IWL_NVM_NUM_CHANNELS_EXT),
1143 					   GFP_KERNEL);
1144 	if (!data)
1145 		return NULL;
1146 
1147 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1148 
1149 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1150 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1151 	if (data->valid_tx_ant)
1152 		tx_chains &= data->valid_tx_ant;
1153 	if (data->valid_rx_ant)
1154 		rx_chains &= data->valid_rx_ant;
1155 
1156 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1157 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1158 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1159 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1160 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1161 		data->sku_cap_11n_enable = false;
1162 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1163 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1164 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1165 
1166 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1167 
1168 	if (cfg->nvm_type != IWL_NVM_EXT) {
1169 		/* Checking for required sections */
1170 		if (!nvm_calib) {
1171 			IWL_ERR(trans,
1172 				"Can't parse empty Calib NVM sections\n");
1173 			kfree(data);
1174 			return NULL;
1175 		}
1176 
1177 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1178 			     &regulatory[NVM_CHANNELS_SDP] :
1179 			     &nvm_sw[NVM_CHANNELS];
1180 
1181 		/* in family 8000 Xtal calibration values moved to OTP */
1182 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1183 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1184 		lar_enabled = true;
1185 	} else {
1186 		u16 lar_offset = data->nvm_version < 0xE39 ?
1187 				 NVM_LAR_OFFSET_OLD :
1188 				 NVM_LAR_OFFSET;
1189 
1190 		lar_config = le16_to_cpup(regulatory + lar_offset);
1191 		data->lar_enabled = !!(lar_config &
1192 				       NVM_LAR_ENABLED);
1193 		lar_enabled = data->lar_enabled;
1194 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1195 	}
1196 
1197 	/* If no valid mac address was found - bail out */
1198 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1199 		kfree(data);
1200 		return NULL;
1201 	}
1202 
1203 	if (lar_enabled &&
1204 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1205 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1206 
1207 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1208 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1209 
1210 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1211 			sbands_flags, false, fw);
1212 	data->calib_version = 255;
1213 
1214 	return data;
1215 }
1216 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1217 
1218 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1219 				       int ch_idx, u16 nvm_flags,
1220 				       struct iwl_reg_capa reg_capa,
1221 				       const struct iwl_cfg *cfg)
1222 {
1223 	u32 flags = NL80211_RRF_NO_HT40;
1224 
1225 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1226 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1227 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1228 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1229 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1230 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1231 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1232 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1233 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1234 		else
1235 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1236 	}
1237 
1238 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1239 		flags |= NL80211_RRF_NO_80MHZ;
1240 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1241 		flags |= NL80211_RRF_NO_160MHZ;
1242 
1243 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1244 		flags |= NL80211_RRF_NO_IR;
1245 
1246 	if (nvm_flags & NVM_CHANNEL_RADAR)
1247 		flags |= NL80211_RRF_DFS;
1248 
1249 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1250 		flags |= NL80211_RRF_NO_OUTDOOR;
1251 
1252 	/* Set the GO concurrent flag only in case that NO_IR is set.
1253 	 * Otherwise it is meaningless
1254 	 */
1255 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1256 	    (flags & NL80211_RRF_NO_IR))
1257 		flags |= NL80211_RRF_GO_CONCURRENT;
1258 
1259 	/*
1260 	 * reg_capa is per regulatory domain so apply it for every channel
1261 	 */
1262 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1263 		if (!reg_capa.allow_40mhz)
1264 			flags |= NL80211_RRF_NO_HT40;
1265 
1266 		if (!reg_capa.allow_80mhz)
1267 			flags |= NL80211_RRF_NO_80MHZ;
1268 
1269 		if (!reg_capa.allow_160mhz)
1270 			flags |= NL80211_RRF_NO_160MHZ;
1271 	}
1272 	if (reg_capa.disable_11ax)
1273 		flags |= NL80211_RRF_NO_HE;
1274 
1275 	return flags;
1276 }
1277 
1278 static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1279 {
1280 	struct iwl_reg_capa reg_capa;
1281 
1282 	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1283 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1284 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1285 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1286 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1287 	} else {
1288 		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1289 		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1290 		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1291 		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1292 	}
1293 	return reg_capa;
1294 }
1295 
1296 struct ieee80211_regdomain *
1297 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1298 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1299 		       u16 geo_info, u16 cap, u8 resp_ver)
1300 {
1301 	int ch_idx;
1302 	u16 ch_flags;
1303 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1304 	const u16 *nvm_chan;
1305 	struct ieee80211_regdomain *regd, *copy_rd;
1306 	struct ieee80211_reg_rule *rule;
1307 	enum nl80211_band band;
1308 	int center_freq, prev_center_freq = 0;
1309 	int valid_rules = 0;
1310 	bool new_rule;
1311 	int max_num_ch;
1312 	struct iwl_reg_capa reg_capa;
1313 
1314 	if (cfg->uhb_supported) {
1315 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1316 		nvm_chan = iwl_uhb_nvm_channels;
1317 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1318 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1319 		nvm_chan = iwl_ext_nvm_channels;
1320 	} else {
1321 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1322 		nvm_chan = iwl_nvm_channels;
1323 	}
1324 
1325 	if (WARN_ON(num_of_ch > max_num_ch))
1326 		num_of_ch = max_num_ch;
1327 
1328 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1329 		return ERR_PTR(-EINVAL);
1330 
1331 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1332 		      num_of_ch);
1333 
1334 	/* build a regdomain rule for every valid channel */
1335 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1336 	if (!regd)
1337 		return ERR_PTR(-ENOMEM);
1338 
1339 	/* set alpha2 from FW. */
1340 	regd->alpha2[0] = fw_mcc >> 8;
1341 	regd->alpha2[1] = fw_mcc & 0xff;
1342 
1343 	/* parse regulatory capability flags */
1344 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1345 
1346 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1347 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1348 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1349 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1350 							     band);
1351 		new_rule = false;
1352 
1353 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1354 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1355 						    nvm_chan[ch_idx], ch_flags);
1356 			continue;
1357 		}
1358 
1359 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1360 							     ch_flags, reg_capa,
1361 							     cfg);
1362 
1363 		/* we can't continue the same rule */
1364 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1365 		    center_freq - prev_center_freq > 20) {
1366 			valid_rules++;
1367 			new_rule = true;
1368 		}
1369 
1370 		rule = &regd->reg_rules[valid_rules - 1];
1371 
1372 		if (new_rule)
1373 			rule->freq_range.start_freq_khz =
1374 						MHZ_TO_KHZ(center_freq - 10);
1375 
1376 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1377 
1378 		/* this doesn't matter - not used by FW */
1379 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1380 		rule->power_rule.max_eirp =
1381 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1382 
1383 		rule->flags = reg_rule_flags;
1384 
1385 		/* rely on auto-calculation to merge BW of contiguous chans */
1386 		rule->flags |= NL80211_RRF_AUTO_BW;
1387 		rule->freq_range.max_bandwidth_khz = 0;
1388 
1389 		prev_center_freq = center_freq;
1390 		prev_reg_rule_flags = reg_rule_flags;
1391 
1392 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1393 					    nvm_chan[ch_idx], ch_flags);
1394 
1395 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1396 		    band == NL80211_BAND_2GHZ)
1397 			continue;
1398 
1399 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1400 	}
1401 
1402 	/*
1403 	 * Certain firmware versions might report no valid channels
1404 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1405 	 * running. We'll get out of this situation later when the
1406 	 * rfkill is removed and we update the regdomain again, but
1407 	 * since cfg80211 doesn't accept an empty regdomain, add a
1408 	 * dummy (unusable) rule here in this case so we can init.
1409 	 */
1410 	if (!valid_rules) {
1411 		valid_rules = 1;
1412 		rule = &regd->reg_rules[valid_rules - 1];
1413 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1414 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1415 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1416 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1417 		rule->power_rule.max_eirp =
1418 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1419 	}
1420 
1421 	regd->n_reg_rules = valid_rules;
1422 
1423 	/*
1424 	 * Narrow down regdom for unused regulatory rules to prevent hole
1425 	 * between reg rules to wmm rules.
1426 	 */
1427 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1428 			  GFP_KERNEL);
1429 	if (!copy_rd)
1430 		copy_rd = ERR_PTR(-ENOMEM);
1431 
1432 	kfree(regd);
1433 	return copy_rd;
1434 }
1435 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1436 
1437 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1438 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1439 #define MAX_NVM_FILE_LEN	16384
1440 
1441 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1442 		    unsigned int len)
1443 {
1444 #define IWL_4165_DEVICE_ID	0x5501
1445 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1446 
1447 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1448 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1449 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1450 		/* OTP 0x52 bug work around: it's a 1x1 device */
1451 		data[3] = ANT_B | (ANT_B << 4);
1452 }
1453 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1454 
1455 /*
1456  * Reads external NVM from a file into mvm->nvm_sections
1457  *
1458  * HOW TO CREATE THE NVM FILE FORMAT:
1459  * ------------------------------
1460  * 1. create hex file, format:
1461  *      3800 -> header
1462  *      0000 -> header
1463  *      5a40 -> data
1464  *
1465  *   rev - 6 bit (word1)
1466  *   len - 10 bit (word1)
1467  *   id - 4 bit (word2)
1468  *   rsv - 12 bit (word2)
1469  *
1470  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1471  *
1472  * 3. create binary file from the hex file
1473  *
1474  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1475  */
1476 int iwl_read_external_nvm(struct iwl_trans *trans,
1477 			  const char *nvm_file_name,
1478 			  struct iwl_nvm_section *nvm_sections)
1479 {
1480 	int ret, section_size;
1481 	u16 section_id;
1482 	const struct firmware *fw_entry;
1483 	const struct {
1484 		__le16 word1;
1485 		__le16 word2;
1486 		u8 data[];
1487 	} *file_sec;
1488 	const u8 *eof;
1489 	u8 *temp;
1490 	int max_section_size;
1491 	const __le32 *dword_buff;
1492 
1493 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1494 #define NVM_WORD2_ID(x) (x >> 12)
1495 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1496 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1497 #define NVM_HEADER_0	(0x2A504C54)
1498 #define NVM_HEADER_1	(0x4E564D2A)
1499 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1500 
1501 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1502 
1503 	/* Maximal size depends on NVM version */
1504 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1505 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1506 	else
1507 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1508 
1509 	/*
1510 	 * Obtain NVM image via request_firmware. Since we already used
1511 	 * request_firmware_nowait() for the firmware binary load and only
1512 	 * get here after that we assume the NVM request can be satisfied
1513 	 * synchronously.
1514 	 */
1515 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1516 	if (ret) {
1517 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1518 			nvm_file_name, ret);
1519 		return ret;
1520 	}
1521 
1522 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1523 		 nvm_file_name, fw_entry->size);
1524 
1525 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1526 		IWL_ERR(trans, "NVM file too large\n");
1527 		ret = -EINVAL;
1528 		goto out;
1529 	}
1530 
1531 	eof = fw_entry->data + fw_entry->size;
1532 	dword_buff = (__le32 *)fw_entry->data;
1533 
1534 	/* some NVM file will contain a header.
1535 	 * The header is identified by 2 dwords header as follow:
1536 	 * dword[0] = 0x2A504C54
1537 	 * dword[1] = 0x4E564D2A
1538 	 *
1539 	 * This header must be skipped when providing the NVM data to the FW.
1540 	 */
1541 	if (fw_entry->size > NVM_HEADER_SIZE &&
1542 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1543 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1544 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1545 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1546 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1547 			 le32_to_cpu(dword_buff[3]));
1548 
1549 		/* nvm file validation, dword_buff[2] holds the file version */
1550 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1551 		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1552 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1553 			ret = -EFAULT;
1554 			goto out;
1555 		}
1556 	} else {
1557 		file_sec = (void *)fw_entry->data;
1558 	}
1559 
1560 	while (true) {
1561 		if (file_sec->data > eof) {
1562 			IWL_ERR(trans,
1563 				"ERROR - NVM file too short for section header\n");
1564 			ret = -EINVAL;
1565 			break;
1566 		}
1567 
1568 		/* check for EOF marker */
1569 		if (!file_sec->word1 && !file_sec->word2) {
1570 			ret = 0;
1571 			break;
1572 		}
1573 
1574 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1575 			section_size =
1576 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1577 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1578 		} else {
1579 			section_size = 2 * EXT_NVM_WORD2_LEN(
1580 						le16_to_cpu(file_sec->word2));
1581 			section_id = EXT_NVM_WORD1_ID(
1582 						le16_to_cpu(file_sec->word1));
1583 		}
1584 
1585 		if (section_size > max_section_size) {
1586 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1587 				section_size);
1588 			ret = -EINVAL;
1589 			break;
1590 		}
1591 
1592 		if (!section_size) {
1593 			IWL_ERR(trans, "ERROR - section empty\n");
1594 			ret = -EINVAL;
1595 			break;
1596 		}
1597 
1598 		if (file_sec->data + section_size > eof) {
1599 			IWL_ERR(trans,
1600 				"ERROR - NVM file too short for section (%d bytes)\n",
1601 				section_size);
1602 			ret = -EINVAL;
1603 			break;
1604 		}
1605 
1606 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1607 			 "Invalid NVM section ID %d\n", section_id)) {
1608 			ret = -EINVAL;
1609 			break;
1610 		}
1611 
1612 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1613 		if (!temp) {
1614 			ret = -ENOMEM;
1615 			break;
1616 		}
1617 
1618 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1619 
1620 		kfree(nvm_sections[section_id].data);
1621 		nvm_sections[section_id].data = temp;
1622 		nvm_sections[section_id].length = section_size;
1623 
1624 		/* advance to the next section */
1625 		file_sec = (void *)(file_sec->data + section_size);
1626 	}
1627 out:
1628 	release_firmware(fw_entry);
1629 	return ret;
1630 }
1631 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1632 
1633 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1634 				 const struct iwl_fw *fw)
1635 {
1636 	struct iwl_nvm_get_info cmd = {};
1637 	struct iwl_nvm_data *nvm;
1638 	struct iwl_host_cmd hcmd = {
1639 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1640 		.data = { &cmd, },
1641 		.len = { sizeof(cmd) },
1642 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1643 	};
1644 	int  ret;
1645 	bool empty_otp;
1646 	u32 mac_flags;
1647 	u32 sbands_flags = 0;
1648 	/*
1649 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1650 	 * in v3, except for the channel profile part of the
1651 	 * regulatory.  So we can just access the new struct, with the
1652 	 * exception of the latter.
1653 	 */
1654 	struct iwl_nvm_get_info_rsp *rsp;
1655 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1656 	bool v4 = fw_has_api(&fw->ucode_capa,
1657 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1658 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1659 	void *channel_profile;
1660 
1661 	ret = iwl_trans_send_cmd(trans, &hcmd);
1662 	if (ret)
1663 		return ERR_PTR(ret);
1664 
1665 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1666 		 "Invalid payload len in NVM response from FW %d",
1667 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1668 		ret = -EINVAL;
1669 		goto out;
1670 	}
1671 
1672 	rsp = (void *)hcmd.resp_pkt->data;
1673 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1674 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1675 	if (empty_otp)
1676 		IWL_INFO(trans, "OTP is empty\n");
1677 
1678 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1679 	if (!nvm) {
1680 		ret = -ENOMEM;
1681 		goto out;
1682 	}
1683 
1684 	iwl_set_hw_address_from_csr(trans, nvm);
1685 	/* TODO: if platform NVM has MAC address - override it here */
1686 
1687 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1688 		IWL_ERR(trans, "no valid mac address was found\n");
1689 		ret = -EINVAL;
1690 		goto err_free;
1691 	}
1692 
1693 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1694 
1695 	/* Initialize general data */
1696 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1697 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1698 	if (nvm->n_hw_addrs == 0)
1699 		IWL_WARN(trans,
1700 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1701 			 empty_otp);
1702 
1703 	/* Initialize MAC sku data */
1704 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1705 	nvm->sku_cap_11ac_enable =
1706 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1707 	nvm->sku_cap_11n_enable =
1708 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1709 	nvm->sku_cap_11ax_enable =
1710 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1711 	nvm->sku_cap_band_24ghz_enable =
1712 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1713 	nvm->sku_cap_band_52ghz_enable =
1714 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1715 	nvm->sku_cap_mimo_disabled =
1716 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1717 
1718 	/* Initialize PHY sku data */
1719 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1720 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1721 
1722 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1723 	    fw_has_capa(&fw->ucode_capa,
1724 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1725 		nvm->lar_enabled = true;
1726 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1727 	}
1728 
1729 	rsp_v3 = (void *)rsp;
1730 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1731 			  (void *)rsp_v3->regulatory.channel_profile;
1732 
1733 	iwl_init_sbands(trans, nvm,
1734 			channel_profile,
1735 			nvm->valid_tx_ant & fw->valid_tx_ant,
1736 			nvm->valid_rx_ant & fw->valid_rx_ant,
1737 			sbands_flags, v4, fw);
1738 
1739 	iwl_free_resp(&hcmd);
1740 	return nvm;
1741 
1742 err_free:
1743 	kfree(nvm);
1744 out:
1745 	iwl_free_resp(&hcmd);
1746 	return ERR_PTR(ret);
1747 }
1748 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1749