1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 Intel Deutschland GmbH 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 24 * USA 25 * 26 * The full GNU General Public License is included in this distribution 27 * in the file called COPYING. 28 * 29 * Contact Information: 30 * Intel Linux Wireless <linuxwifi@intel.com> 31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 32 * 33 * BSD LICENSE 34 * 35 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 43 * * Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * * Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in 47 * the documentation and/or other materials provided with the 48 * distribution. 49 * * Neither the name Intel Corporation nor the names of its 50 * contributors may be used to endorse or promote products derived 51 * from this software without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 54 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 55 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 56 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 57 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 58 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 59 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 60 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 61 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 62 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 63 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 64 *****************************************************************************/ 65 #include <linux/types.h> 66 #include <linux/slab.h> 67 #include <linux/export.h> 68 #include <linux/etherdevice.h> 69 #include <linux/pci.h> 70 #include "iwl-drv.h" 71 #include "iwl-modparams.h" 72 #include "iwl-nvm-parse.h" 73 #include "iwl-prph.h" 74 #include "iwl-io.h" 75 #include "iwl-csr.h" 76 77 /* NVM offsets (in words) definitions */ 78 enum wkp_nvm_offsets { 79 /* NVM HW-Section offset (in words) definitions */ 80 HW_ADDR = 0x15, 81 82 /* NVM SW-Section offset (in words) definitions */ 83 NVM_SW_SECTION = 0x1C0, 84 NVM_VERSION = 0, 85 RADIO_CFG = 1, 86 SKU = 2, 87 N_HW_ADDRS = 3, 88 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, 89 90 /* NVM calibration section offset (in words) definitions */ 91 NVM_CALIB_SECTION = 0x2B8, 92 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION 93 }; 94 95 enum family_8000_nvm_offsets { 96 /* NVM HW-Section offset (in words) definitions */ 97 HW_ADDR0_WFPM_FAMILY_8000 = 0x12, 98 HW_ADDR1_WFPM_FAMILY_8000 = 0x16, 99 HW_ADDR0_PCIE_FAMILY_8000 = 0x8A, 100 HW_ADDR1_PCIE_FAMILY_8000 = 0x8E, 101 MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1, 102 103 /* NVM SW-Section offset (in words) definitions */ 104 NVM_SW_SECTION_FAMILY_8000 = 0x1C0, 105 NVM_VERSION_FAMILY_8000 = 0, 106 RADIO_CFG_FAMILY_8000 = 0, 107 SKU_FAMILY_8000 = 2, 108 N_HW_ADDRS_FAMILY_8000 = 3, 109 110 /* NVM REGULATORY -Section offset (in words) definitions */ 111 NVM_CHANNELS_FAMILY_8000 = 0, 112 NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7, 113 NVM_LAR_OFFSET_FAMILY_8000 = 0x507, 114 NVM_LAR_ENABLED_FAMILY_8000 = 0x7, 115 116 /* NVM calibration section offset (in words) definitions */ 117 NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8, 118 XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000 119 }; 120 121 /* SKU Capabilities (actual values from NVM definition) */ 122 enum nvm_sku_bits { 123 NVM_SKU_CAP_BAND_24GHZ = BIT(0), 124 NVM_SKU_CAP_BAND_52GHZ = BIT(1), 125 NVM_SKU_CAP_11N_ENABLE = BIT(2), 126 NVM_SKU_CAP_11AC_ENABLE = BIT(3), 127 NVM_SKU_CAP_MIMO_DISABLE = BIT(5), 128 }; 129 130 /* 131 * These are the channel numbers in the order that they are stored in the NVM 132 */ 133 static const u8 iwl_nvm_channels[] = { 134 /* 2.4 GHz */ 135 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 136 /* 5 GHz */ 137 36, 40, 44 , 48, 52, 56, 60, 64, 138 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 139 149, 153, 157, 161, 165 140 }; 141 142 static const u8 iwl_nvm_channels_family_8000[] = { 143 /* 2.4 GHz */ 144 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 145 /* 5 GHz */ 146 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 147 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148 149, 153, 157, 161, 165, 169, 173, 177, 181 149 }; 150 151 #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) 152 #define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000) 153 #define NUM_2GHZ_CHANNELS 14 154 #define NUM_2GHZ_CHANNELS_FAMILY_8000 14 155 #define FIRST_2GHZ_HT_MINUS 5 156 #define LAST_2GHZ_HT_PLUS 9 157 #define LAST_5GHZ_HT 165 158 #define LAST_5GHZ_HT_FAMILY_8000 181 159 #define N_HW_ADDR_MASK 0xF 160 161 /* rate data (static) */ 162 static struct ieee80211_rate iwl_cfg80211_rates[] = { 163 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, 164 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, 165 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 166 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, 167 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 168 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, 169 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 170 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, 171 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, 172 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, 173 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, 174 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, 175 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, 176 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, 177 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, 178 }; 179 #define RATES_24_OFFS 0 180 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) 181 #define RATES_52_OFFS 4 182 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) 183 184 /** 185 * enum iwl_nvm_channel_flags - channel flags in NVM 186 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo 187 * @NVM_CHANNEL_IBSS: usable as an IBSS channel 188 * @NVM_CHANNEL_ACTIVE: active scanning allowed 189 * @NVM_CHANNEL_RADAR: radar detection required 190 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed 191 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS 192 * on same channel on 2.4 or same UNII band on 5.2 193 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?) 194 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) 195 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) 196 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) 197 */ 198 enum iwl_nvm_channel_flags { 199 NVM_CHANNEL_VALID = BIT(0), 200 NVM_CHANNEL_IBSS = BIT(1), 201 NVM_CHANNEL_ACTIVE = BIT(3), 202 NVM_CHANNEL_RADAR = BIT(4), 203 NVM_CHANNEL_INDOOR_ONLY = BIT(5), 204 NVM_CHANNEL_GO_CONCURRENT = BIT(6), 205 NVM_CHANNEL_WIDE = BIT(8), 206 NVM_CHANNEL_40MHZ = BIT(9), 207 NVM_CHANNEL_80MHZ = BIT(10), 208 NVM_CHANNEL_160MHZ = BIT(11), 209 }; 210 211 #define CHECK_AND_PRINT_I(x) \ 212 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "") 213 214 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz, 215 u16 nvm_flags, const struct iwl_cfg *cfg) 216 { 217 u32 flags = IEEE80211_CHAN_NO_HT40; 218 u32 last_5ghz_ht = LAST_5GHZ_HT; 219 220 if (cfg->device_family == IWL_DEVICE_FAMILY_8000) 221 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 222 223 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) { 224 if (ch_num <= LAST_2GHZ_HT_PLUS) 225 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 226 if (ch_num >= FIRST_2GHZ_HT_MINUS) 227 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 228 } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) { 229 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 230 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 231 else 232 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 233 } 234 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 235 flags |= IEEE80211_CHAN_NO_80MHZ; 236 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 237 flags |= IEEE80211_CHAN_NO_160MHZ; 238 239 if (!(nvm_flags & NVM_CHANNEL_IBSS)) 240 flags |= IEEE80211_CHAN_NO_IR; 241 242 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 243 flags |= IEEE80211_CHAN_NO_IR; 244 245 if (nvm_flags & NVM_CHANNEL_RADAR) 246 flags |= IEEE80211_CHAN_RADAR; 247 248 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 249 flags |= IEEE80211_CHAN_INDOOR_ONLY; 250 251 /* Set the GO concurrent flag only in case that NO_IR is set. 252 * Otherwise it is meaningless 253 */ 254 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 255 (flags & IEEE80211_CHAN_NO_IR)) 256 flags |= IEEE80211_CHAN_IR_CONCURRENT; 257 258 return flags; 259 } 260 261 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, 262 struct iwl_nvm_data *data, 263 const __le16 * const nvm_ch_flags, 264 bool lar_supported) 265 { 266 int ch_idx; 267 int n_channels = 0; 268 struct ieee80211_channel *channel; 269 u16 ch_flags; 270 bool is_5ghz; 271 int num_of_ch, num_2ghz_channels; 272 const u8 *nvm_chan; 273 274 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 275 num_of_ch = IWL_NUM_CHANNELS; 276 nvm_chan = &iwl_nvm_channels[0]; 277 num_2ghz_channels = NUM_2GHZ_CHANNELS; 278 } else { 279 num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000; 280 nvm_chan = &iwl_nvm_channels_family_8000[0]; 281 num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000; 282 } 283 284 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 285 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx); 286 287 if (ch_idx >= num_2ghz_channels && 288 !data->sku_cap_band_52GHz_enable) 289 continue; 290 291 if (ch_flags & NVM_CHANNEL_160MHZ) 292 data->vht160_supported = true; 293 294 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) { 295 /* 296 * Channels might become valid later if lar is 297 * supported, hence we still want to add them to 298 * the list of supported channels to cfg80211. 299 */ 300 IWL_DEBUG_EEPROM(dev, 301 "Ch. %d Flags %x [%sGHz] - No traffic\n", 302 nvm_chan[ch_idx], 303 ch_flags, 304 (ch_idx >= num_2ghz_channels) ? 305 "5.2" : "2.4"); 306 continue; 307 } 308 309 channel = &data->channels[n_channels]; 310 n_channels++; 311 312 channel->hw_value = nvm_chan[ch_idx]; 313 channel->band = (ch_idx < num_2ghz_channels) ? 314 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 315 channel->center_freq = 316 ieee80211_channel_to_frequency( 317 channel->hw_value, channel->band); 318 319 /* Initialize regulatory-based run-time data */ 320 321 /* 322 * Default value - highest tx power value. max_power 323 * is not used in mvm, and is used for backwards compatibility 324 */ 325 channel->max_power = IWL_DEFAULT_MAX_TX_POWER; 326 is_5ghz = channel->band == NL80211_BAND_5GHZ; 327 328 /* don't put limitations in case we're using LAR */ 329 if (!lar_supported) 330 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], 331 ch_idx, is_5ghz, 332 ch_flags, cfg); 333 else 334 channel->flags = 0; 335 336 IWL_DEBUG_EEPROM(dev, 337 "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n", 338 channel->hw_value, 339 is_5ghz ? "5.2" : "2.4", 340 ch_flags, 341 CHECK_AND_PRINT_I(VALID), 342 CHECK_AND_PRINT_I(IBSS), 343 CHECK_AND_PRINT_I(ACTIVE), 344 CHECK_AND_PRINT_I(RADAR), 345 CHECK_AND_PRINT_I(INDOOR_ONLY), 346 CHECK_AND_PRINT_I(GO_CONCURRENT), 347 CHECK_AND_PRINT_I(WIDE), 348 CHECK_AND_PRINT_I(40MHZ), 349 CHECK_AND_PRINT_I(80MHZ), 350 CHECK_AND_PRINT_I(160MHZ), 351 channel->max_power, 352 ((ch_flags & NVM_CHANNEL_IBSS) && 353 !(ch_flags & NVM_CHANNEL_RADAR)) 354 ? "" : "not "); 355 } 356 357 return n_channels; 358 } 359 360 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg, 361 struct iwl_nvm_data *data, 362 struct ieee80211_sta_vht_cap *vht_cap, 363 u8 tx_chains, u8 rx_chains) 364 { 365 int num_rx_ants = num_of_ant(rx_chains); 366 int num_tx_ants = num_of_ant(tx_chains); 367 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?: 368 IEEE80211_VHT_MAX_AMPDU_1024K); 369 370 vht_cap->vht_supported = true; 371 372 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | 373 IEEE80211_VHT_CAP_RXSTBC_1 | 374 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 375 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 376 max_ampdu_exponent << 377 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 378 379 if (data->vht160_supported) 380 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | 381 IEEE80211_VHT_CAP_SHORT_GI_160; 382 383 if (cfg->vht_mu_mimo_supported) 384 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 385 386 if (cfg->ht_params->ldpc) 387 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 388 389 if (data->sku_cap_mimo_disabled) { 390 num_rx_ants = 1; 391 num_tx_ants = 1; 392 } 393 394 if (num_tx_ants > 1) 395 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 396 else 397 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; 398 399 switch (iwlwifi_mod_params.amsdu_size) { 400 case IWL_AMSDU_DEF: 401 if (cfg->mq_rx_supported) 402 vht_cap->cap |= 403 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 404 else 405 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 406 break; 407 case IWL_AMSDU_4K: 408 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 409 break; 410 case IWL_AMSDU_8K: 411 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; 412 break; 413 case IWL_AMSDU_12K: 414 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 415 break; 416 default: 417 break; 418 } 419 420 vht_cap->vht_mcs.rx_mcs_map = 421 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 422 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | 423 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 424 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 425 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 426 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 427 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 428 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); 429 430 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { 431 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; 432 /* this works because NOT_SUPPORTED == 3 */ 433 vht_cap->vht_mcs.rx_mcs_map |= 434 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); 435 } 436 437 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; 438 } 439 440 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg, 441 struct iwl_nvm_data *data, 442 const __le16 *ch_section, 443 u8 tx_chains, u8 rx_chains, bool lar_supported) 444 { 445 int n_channels; 446 int n_used = 0; 447 struct ieee80211_supported_band *sband; 448 449 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 450 n_channels = iwl_init_channel_map( 451 dev, cfg, data, 452 &ch_section[NVM_CHANNELS], lar_supported); 453 else 454 n_channels = iwl_init_channel_map( 455 dev, cfg, data, 456 &ch_section[NVM_CHANNELS_FAMILY_8000], 457 lar_supported); 458 459 sband = &data->bands[NL80211_BAND_2GHZ]; 460 sband->band = NL80211_BAND_2GHZ; 461 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; 462 sband->n_bitrates = N_RATES_24; 463 n_used += iwl_init_sband_channels(data, sband, n_channels, 464 NL80211_BAND_2GHZ); 465 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ, 466 tx_chains, rx_chains); 467 468 sband = &data->bands[NL80211_BAND_5GHZ]; 469 sband->band = NL80211_BAND_5GHZ; 470 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 471 sband->n_bitrates = N_RATES_52; 472 n_used += iwl_init_sband_channels(data, sband, n_channels, 473 NL80211_BAND_5GHZ); 474 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ, 475 tx_chains, rx_chains); 476 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) 477 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap, 478 tx_chains, rx_chains); 479 480 if (n_channels != n_used) 481 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", 482 n_used, n_channels); 483 } 484 485 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 486 const __le16 *phy_sku) 487 { 488 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 489 return le16_to_cpup(nvm_sw + SKU); 490 491 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); 492 } 493 494 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 495 { 496 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 497 return le16_to_cpup(nvm_sw + NVM_VERSION); 498 else 499 return le32_to_cpup((__le32 *)(nvm_sw + 500 NVM_VERSION_FAMILY_8000)); 501 } 502 503 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 504 const __le16 *phy_sku) 505 { 506 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 507 return le16_to_cpup(nvm_sw + RADIO_CFG); 508 509 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000)); 510 511 } 512 513 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 514 { 515 int n_hw_addr; 516 517 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 518 return le16_to_cpup(nvm_sw + N_HW_ADDRS); 519 520 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); 521 522 return n_hw_addr & N_HW_ADDR_MASK; 523 } 524 525 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, 526 struct iwl_nvm_data *data, 527 u32 radio_cfg) 528 { 529 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 530 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); 531 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); 532 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); 533 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); 534 return; 535 } 536 537 /* set the radio configuration for family 8000 */ 538 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg); 539 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg); 540 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg); 541 data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg); 542 data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg); 543 data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg); 544 } 545 546 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) 547 { 548 const u8 *hw_addr; 549 550 hw_addr = (const u8 *)&mac_addr0; 551 dest[0] = hw_addr[3]; 552 dest[1] = hw_addr[2]; 553 dest[2] = hw_addr[1]; 554 dest[3] = hw_addr[0]; 555 556 hw_addr = (const u8 *)&mac_addr1; 557 dest[4] = hw_addr[1]; 558 dest[5] = hw_addr[0]; 559 } 560 561 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans, 562 struct iwl_nvm_data *data) 563 { 564 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP)); 565 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP)); 566 567 /* If OEM did not fuse address - get it from OTP */ 568 if (!mac_addr0 && !mac_addr1) { 569 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP)); 570 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP)); 571 } 572 573 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 574 } 575 576 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, 577 const struct iwl_cfg *cfg, 578 struct iwl_nvm_data *data, 579 const __le16 *mac_override, 580 const __le16 *nvm_hw) 581 { 582 const u8 *hw_addr; 583 584 if (mac_override) { 585 static const u8 reserved_mac[] = { 586 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 587 }; 588 589 hw_addr = (const u8 *)(mac_override + 590 MAC_ADDRESS_OVERRIDE_FAMILY_8000); 591 592 /* 593 * Store the MAC address from MAO section. 594 * No byte swapping is required in MAO section 595 */ 596 memcpy(data->hw_addr, hw_addr, ETH_ALEN); 597 598 /* 599 * Force the use of the OTP MAC address in case of reserved MAC 600 * address in the NVM, or if address is given but invalid. 601 */ 602 if (is_valid_ether_addr(data->hw_addr) && 603 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) 604 return; 605 606 IWL_ERR(trans, 607 "mac address from nvm override section is not valid\n"); 608 } 609 610 if (nvm_hw) { 611 /* read the mac address from WFMP registers */ 612 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, 613 WFMP_MAC_ADDR_0)); 614 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, 615 WFMP_MAC_ADDR_1)); 616 617 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 618 619 return; 620 } 621 622 IWL_ERR(trans, "mac address is not found\n"); 623 } 624 625 static int iwl_set_hw_address(struct iwl_trans *trans, 626 const struct iwl_cfg *cfg, 627 struct iwl_nvm_data *data, const __le16 *nvm_hw, 628 const __le16 *mac_override) 629 { 630 if (cfg->mac_addr_from_csr) { 631 iwl_set_hw_address_from_csr(trans, data); 632 } else if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 633 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); 634 635 /* The byte order is little endian 16 bit, meaning 214365 */ 636 data->hw_addr[0] = hw_addr[1]; 637 data->hw_addr[1] = hw_addr[0]; 638 data->hw_addr[2] = hw_addr[3]; 639 data->hw_addr[3] = hw_addr[2]; 640 data->hw_addr[4] = hw_addr[5]; 641 data->hw_addr[5] = hw_addr[4]; 642 } else { 643 iwl_set_hw_address_family_8000(trans, cfg, data, 644 mac_override, nvm_hw); 645 } 646 647 if (!is_valid_ether_addr(data->hw_addr)) { 648 IWL_ERR(trans, "no valid mac address was found\n"); 649 return -EINVAL; 650 } 651 652 return 0; 653 } 654 655 struct iwl_nvm_data * 656 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 657 const __le16 *nvm_hw, const __le16 *nvm_sw, 658 const __le16 *nvm_calib, const __le16 *regulatory, 659 const __le16 *mac_override, const __le16 *phy_sku, 660 u8 tx_chains, u8 rx_chains, bool lar_fw_supported) 661 { 662 struct device *dev = trans->dev; 663 struct iwl_nvm_data *data; 664 bool lar_enabled; 665 u32 sku, radio_cfg; 666 u16 lar_config; 667 const __le16 *ch_section; 668 669 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 670 data = kzalloc(sizeof(*data) + 671 sizeof(struct ieee80211_channel) * 672 IWL_NUM_CHANNELS, 673 GFP_KERNEL); 674 else 675 data = kzalloc(sizeof(*data) + 676 sizeof(struct ieee80211_channel) * 677 IWL_NUM_CHANNELS_FAMILY_8000, 678 GFP_KERNEL); 679 if (!data) 680 return NULL; 681 682 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); 683 684 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); 685 iwl_set_radio_cfg(cfg, data, radio_cfg); 686 if (data->valid_tx_ant) 687 tx_chains &= data->valid_tx_ant; 688 if (data->valid_rx_ant) 689 rx_chains &= data->valid_rx_ant; 690 691 sku = iwl_get_sku(cfg, nvm_sw, phy_sku); 692 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; 693 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; 694 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; 695 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) 696 data->sku_cap_11n_enable = false; 697 data->sku_cap_11ac_enable = data->sku_cap_11n_enable && 698 (sku & NVM_SKU_CAP_11AC_ENABLE); 699 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; 700 701 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); 702 703 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 704 /* Checking for required sections */ 705 if (!nvm_calib) { 706 IWL_ERR(trans, 707 "Can't parse empty Calib NVM sections\n"); 708 kfree(data); 709 return NULL; 710 } 711 /* in family 8000 Xtal calibration values moved to OTP */ 712 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); 713 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); 714 lar_enabled = true; 715 ch_section = nvm_sw; 716 } else { 717 u16 lar_offset = data->nvm_version < 0xE39 ? 718 NVM_LAR_OFFSET_FAMILY_8000_OLD : 719 NVM_LAR_OFFSET_FAMILY_8000; 720 721 lar_config = le16_to_cpup(regulatory + lar_offset); 722 data->lar_enabled = !!(lar_config & 723 NVM_LAR_ENABLED_FAMILY_8000); 724 lar_enabled = data->lar_enabled; 725 ch_section = regulatory; 726 } 727 728 /* If no valid mac address was found - bail out */ 729 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { 730 kfree(data); 731 return NULL; 732 } 733 734 iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains, 735 lar_fw_supported && lar_enabled); 736 data->calib_version = 255; 737 738 return data; 739 } 740 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); 741 742 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan, 743 int ch_idx, u16 nvm_flags, 744 const struct iwl_cfg *cfg) 745 { 746 u32 flags = NL80211_RRF_NO_HT40; 747 u32 last_5ghz_ht = LAST_5GHZ_HT; 748 749 if (cfg->device_family == IWL_DEVICE_FAMILY_8000) 750 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 751 752 if (ch_idx < NUM_2GHZ_CHANNELS && 753 (nvm_flags & NVM_CHANNEL_40MHZ)) { 754 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) 755 flags &= ~NL80211_RRF_NO_HT40PLUS; 756 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) 757 flags &= ~NL80211_RRF_NO_HT40MINUS; 758 } else if (nvm_chan[ch_idx] <= last_5ghz_ht && 759 (nvm_flags & NVM_CHANNEL_40MHZ)) { 760 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 761 flags &= ~NL80211_RRF_NO_HT40PLUS; 762 else 763 flags &= ~NL80211_RRF_NO_HT40MINUS; 764 } 765 766 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 767 flags |= NL80211_RRF_NO_80MHZ; 768 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 769 flags |= NL80211_RRF_NO_160MHZ; 770 771 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 772 flags |= NL80211_RRF_NO_IR; 773 774 if (nvm_flags & NVM_CHANNEL_RADAR) 775 flags |= NL80211_RRF_DFS; 776 777 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 778 flags |= NL80211_RRF_NO_OUTDOOR; 779 780 /* Set the GO concurrent flag only in case that NO_IR is set. 781 * Otherwise it is meaningless 782 */ 783 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 784 (flags & NL80211_RRF_NO_IR)) 785 flags |= NL80211_RRF_GO_CONCURRENT; 786 787 return flags; 788 } 789 790 struct ieee80211_regdomain * 791 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, 792 int num_of_ch, __le32 *channels, u16 fw_mcc) 793 { 794 int ch_idx; 795 u16 ch_flags, prev_ch_flags = 0; 796 const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ? 797 iwl_nvm_channels_family_8000 : iwl_nvm_channels; 798 struct ieee80211_regdomain *regd; 799 int size_of_regd; 800 struct ieee80211_reg_rule *rule; 801 enum nl80211_band band; 802 int center_freq, prev_center_freq = 0; 803 int valid_rules = 0; 804 bool new_rule; 805 int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ? 806 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS; 807 808 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) 809 return ERR_PTR(-EINVAL); 810 811 if (WARN_ON(num_of_ch > max_num_ch)) 812 num_of_ch = max_num_ch; 813 814 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", 815 num_of_ch); 816 817 /* build a regdomain rule for every valid channel */ 818 size_of_regd = 819 sizeof(struct ieee80211_regdomain) + 820 num_of_ch * sizeof(struct ieee80211_reg_rule); 821 822 regd = kzalloc(size_of_regd, GFP_KERNEL); 823 if (!regd) 824 return ERR_PTR(-ENOMEM); 825 826 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 827 ch_flags = (u16)__le32_to_cpup(channels + ch_idx); 828 band = (ch_idx < NUM_2GHZ_CHANNELS) ? 829 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 830 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], 831 band); 832 new_rule = false; 833 834 if (!(ch_flags & NVM_CHANNEL_VALID)) { 835 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 836 "Ch. %d Flags %x [%sGHz] - No traffic\n", 837 nvm_chan[ch_idx], 838 ch_flags, 839 (ch_idx >= NUM_2GHZ_CHANNELS) ? 840 "5.2" : "2.4"); 841 continue; 842 } 843 844 /* we can't continue the same rule */ 845 if (ch_idx == 0 || prev_ch_flags != ch_flags || 846 center_freq - prev_center_freq > 20) { 847 valid_rules++; 848 new_rule = true; 849 } 850 851 rule = ®d->reg_rules[valid_rules - 1]; 852 853 if (new_rule) 854 rule->freq_range.start_freq_khz = 855 MHZ_TO_KHZ(center_freq - 10); 856 857 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); 858 859 /* this doesn't matter - not used by FW */ 860 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 861 rule->power_rule.max_eirp = 862 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 863 864 rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, 865 ch_flags, cfg); 866 867 /* rely on auto-calculation to merge BW of contiguous chans */ 868 rule->flags |= NL80211_RRF_AUTO_BW; 869 rule->freq_range.max_bandwidth_khz = 0; 870 871 prev_ch_flags = ch_flags; 872 prev_center_freq = center_freq; 873 874 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 875 "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n", 876 center_freq, 877 band == NL80211_BAND_5GHZ ? "5.2" : "2.4", 878 CHECK_AND_PRINT_I(VALID), 879 CHECK_AND_PRINT_I(ACTIVE), 880 CHECK_AND_PRINT_I(RADAR), 881 CHECK_AND_PRINT_I(WIDE), 882 CHECK_AND_PRINT_I(40MHZ), 883 CHECK_AND_PRINT_I(80MHZ), 884 CHECK_AND_PRINT_I(160MHZ), 885 CHECK_AND_PRINT_I(INDOOR_ONLY), 886 CHECK_AND_PRINT_I(GO_CONCURRENT), 887 ch_flags, 888 ((ch_flags & NVM_CHANNEL_ACTIVE) && 889 !(ch_flags & NVM_CHANNEL_RADAR)) 890 ? "" : "not "); 891 } 892 893 regd->n_reg_rules = valid_rules; 894 895 /* set alpha2 from FW. */ 896 regd->alpha2[0] = fw_mcc >> 8; 897 regd->alpha2[1] = fw_mcc & 0xff; 898 899 return regd; 900 } 901 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); 902