1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * All rights reserved.
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  *  * Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  *  * Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  *  * Neither the name Intel Corporation nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
56  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
57  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
58  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
59  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
60  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
61  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
62  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
63  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64  *****************************************************************************/
65 #include <linux/types.h>
66 #include <linux/slab.h>
67 #include <linux/export.h>
68 #include <linux/etherdevice.h>
69 #include <linux/pci.h>
70 #include "iwl-drv.h"
71 #include "iwl-modparams.h"
72 #include "iwl-nvm-parse.h"
73 #include "iwl-prph.h"
74 #include "iwl-io.h"
75 #include "iwl-csr.h"
76 
77 /* NVM offsets (in words) definitions */
78 enum wkp_nvm_offsets {
79 	/* NVM HW-Section offset (in words) definitions */
80 	HW_ADDR = 0x15,
81 
82 	/* NVM SW-Section offset (in words) definitions */
83 	NVM_SW_SECTION = 0x1C0,
84 	NVM_VERSION = 0,
85 	RADIO_CFG = 1,
86 	SKU = 2,
87 	N_HW_ADDRS = 3,
88 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
89 
90 	/* NVM calibration section offset (in words) definitions */
91 	NVM_CALIB_SECTION = 0x2B8,
92 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
93 };
94 
95 enum family_8000_nvm_offsets {
96 	/* NVM HW-Section offset (in words) definitions */
97 	HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
98 	HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
99 	HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
100 	HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
101 	MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
102 
103 	/* NVM SW-Section offset (in words) definitions */
104 	NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
105 	NVM_VERSION_FAMILY_8000 = 0,
106 	RADIO_CFG_FAMILY_8000 = 0,
107 	SKU_FAMILY_8000 = 2,
108 	N_HW_ADDRS_FAMILY_8000 = 3,
109 
110 	/* NVM REGULATORY -Section offset (in words) definitions */
111 	NVM_CHANNELS_FAMILY_8000 = 0,
112 	NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
113 	NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
114 	NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
115 
116 	/* NVM calibration section offset (in words) definitions */
117 	NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
118 	XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
119 };
120 
121 /* SKU Capabilities (actual values from NVM definition) */
122 enum nvm_sku_bits {
123 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
124 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
125 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
126 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
127 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 };
129 
130 /*
131  * These are the channel numbers in the order that they are stored in the NVM
132  */
133 static const u8 iwl_nvm_channels[] = {
134 	/* 2.4 GHz */
135 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
136 	/* 5 GHz */
137 	36, 40, 44 , 48, 52, 56, 60, 64,
138 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
139 	149, 153, 157, 161, 165
140 };
141 
142 static const u8 iwl_nvm_channels_family_8000[] = {
143 	/* 2.4 GHz */
144 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 	/* 5 GHz */
146 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
147 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
148 	149, 153, 157, 161, 165, 169, 173, 177, 181
149 };
150 
151 #define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
152 #define IWL_NUM_CHANNELS_FAMILY_8000	ARRAY_SIZE(iwl_nvm_channels_family_8000)
153 #define NUM_2GHZ_CHANNELS		14
154 #define NUM_2GHZ_CHANNELS_FAMILY_8000	14
155 #define FIRST_2GHZ_HT_MINUS		5
156 #define LAST_2GHZ_HT_PLUS		9
157 #define LAST_5GHZ_HT			165
158 #define LAST_5GHZ_HT_FAMILY_8000	181
159 #define N_HW_ADDR_MASK			0xF
160 
161 /* rate data (static) */
162 static struct ieee80211_rate iwl_cfg80211_rates[] = {
163 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
164 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
165 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
166 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
167 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
168 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
169 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
170 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
171 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
172 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
173 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
174 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
175 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
176 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
177 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
178 };
179 #define RATES_24_OFFS	0
180 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
181 #define RATES_52_OFFS	4
182 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
183 
184 /**
185  * enum iwl_nvm_channel_flags - channel flags in NVM
186  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
187  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
188  * @NVM_CHANNEL_ACTIVE: active scanning allowed
189  * @NVM_CHANNEL_RADAR: radar detection required
190  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
191  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
192  *	on same channel on 2.4 or same UNII band on 5.2
193  * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
194  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
195  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
196  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
197  */
198 enum iwl_nvm_channel_flags {
199 	NVM_CHANNEL_VALID = BIT(0),
200 	NVM_CHANNEL_IBSS = BIT(1),
201 	NVM_CHANNEL_ACTIVE = BIT(3),
202 	NVM_CHANNEL_RADAR = BIT(4),
203 	NVM_CHANNEL_INDOOR_ONLY = BIT(5),
204 	NVM_CHANNEL_GO_CONCURRENT = BIT(6),
205 	NVM_CHANNEL_WIDE = BIT(8),
206 	NVM_CHANNEL_40MHZ = BIT(9),
207 	NVM_CHANNEL_80MHZ = BIT(10),
208 	NVM_CHANNEL_160MHZ = BIT(11),
209 };
210 
211 #define CHECK_AND_PRINT_I(x)	\
212 	((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
213 
214 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
215 				 u16 nvm_flags, const struct iwl_cfg *cfg)
216 {
217 	u32 flags = IEEE80211_CHAN_NO_HT40;
218 	u32 last_5ghz_ht = LAST_5GHZ_HT;
219 
220 	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
221 		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
222 
223 	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
224 		if (ch_num <= LAST_2GHZ_HT_PLUS)
225 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
226 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
227 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
228 	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
229 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
230 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
231 		else
232 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
233 	}
234 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
235 		flags |= IEEE80211_CHAN_NO_80MHZ;
236 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
237 		flags |= IEEE80211_CHAN_NO_160MHZ;
238 
239 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
240 		flags |= IEEE80211_CHAN_NO_IR;
241 
242 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
243 		flags |= IEEE80211_CHAN_NO_IR;
244 
245 	if (nvm_flags & NVM_CHANNEL_RADAR)
246 		flags |= IEEE80211_CHAN_RADAR;
247 
248 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
249 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
250 
251 	/* Set the GO concurrent flag only in case that NO_IR is set.
252 	 * Otherwise it is meaningless
253 	 */
254 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
255 	    (flags & IEEE80211_CHAN_NO_IR))
256 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
257 
258 	return flags;
259 }
260 
261 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
262 				struct iwl_nvm_data *data,
263 				const __le16 * const nvm_ch_flags,
264 				bool lar_supported)
265 {
266 	int ch_idx;
267 	int n_channels = 0;
268 	struct ieee80211_channel *channel;
269 	u16 ch_flags;
270 	bool is_5ghz;
271 	int num_of_ch, num_2ghz_channels;
272 	const u8 *nvm_chan;
273 
274 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
275 		num_of_ch = IWL_NUM_CHANNELS;
276 		nvm_chan = &iwl_nvm_channels[0];
277 		num_2ghz_channels = NUM_2GHZ_CHANNELS;
278 	} else {
279 		num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
280 		nvm_chan = &iwl_nvm_channels_family_8000[0];
281 		num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
282 	}
283 
284 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
285 		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
286 
287 		if (ch_idx >= num_2ghz_channels &&
288 		    !data->sku_cap_band_52GHz_enable)
289 			continue;
290 
291 		if (ch_flags & NVM_CHANNEL_160MHZ)
292 			data->vht160_supported = true;
293 
294 		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
295 			/*
296 			 * Channels might become valid later if lar is
297 			 * supported, hence we still want to add them to
298 			 * the list of supported channels to cfg80211.
299 			 */
300 			IWL_DEBUG_EEPROM(dev,
301 					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
302 					 nvm_chan[ch_idx],
303 					 ch_flags,
304 					 (ch_idx >= num_2ghz_channels) ?
305 					 "5.2" : "2.4");
306 			continue;
307 		}
308 
309 		channel = &data->channels[n_channels];
310 		n_channels++;
311 
312 		channel->hw_value = nvm_chan[ch_idx];
313 		channel->band = (ch_idx < num_2ghz_channels) ?
314 				NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
315 		channel->center_freq =
316 			ieee80211_channel_to_frequency(
317 				channel->hw_value, channel->band);
318 
319 		/* Initialize regulatory-based run-time data */
320 
321 		/*
322 		 * Default value - highest tx power value.  max_power
323 		 * is not used in mvm, and is used for backwards compatibility
324 		 */
325 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
326 		is_5ghz = channel->band == NL80211_BAND_5GHZ;
327 
328 		/* don't put limitations in case we're using LAR */
329 		if (!lar_supported)
330 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
331 							       ch_idx, is_5ghz,
332 							       ch_flags, cfg);
333 		else
334 			channel->flags = 0;
335 
336 		IWL_DEBUG_EEPROM(dev,
337 				 "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n",
338 				 channel->hw_value,
339 				 is_5ghz ? "5.2" : "2.4",
340 				 ch_flags,
341 				 CHECK_AND_PRINT_I(VALID),
342 				 CHECK_AND_PRINT_I(IBSS),
343 				 CHECK_AND_PRINT_I(ACTIVE),
344 				 CHECK_AND_PRINT_I(RADAR),
345 				 CHECK_AND_PRINT_I(INDOOR_ONLY),
346 				 CHECK_AND_PRINT_I(GO_CONCURRENT),
347 				 CHECK_AND_PRINT_I(WIDE),
348 				 CHECK_AND_PRINT_I(40MHZ),
349 				 CHECK_AND_PRINT_I(80MHZ),
350 				 CHECK_AND_PRINT_I(160MHZ),
351 				 channel->max_power,
352 				 ((ch_flags & NVM_CHANNEL_IBSS) &&
353 				  !(ch_flags & NVM_CHANNEL_RADAR))
354 					? "" : "not ");
355 	}
356 
357 	return n_channels;
358 }
359 
360 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
361 				  struct iwl_nvm_data *data,
362 				  struct ieee80211_sta_vht_cap *vht_cap,
363 				  u8 tx_chains, u8 rx_chains)
364 {
365 	int num_rx_ants = num_of_ant(rx_chains);
366 	int num_tx_ants = num_of_ant(tx_chains);
367 	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
368 					   IEEE80211_VHT_MAX_AMPDU_1024K);
369 
370 	vht_cap->vht_supported = true;
371 
372 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
373 		       IEEE80211_VHT_CAP_RXSTBC_1 |
374 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
375 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
376 		       max_ampdu_exponent <<
377 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
378 
379 	if (data->vht160_supported)
380 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
381 				IEEE80211_VHT_CAP_SHORT_GI_160;
382 
383 	if (cfg->vht_mu_mimo_supported)
384 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
385 
386 	if (cfg->ht_params->ldpc)
387 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
388 
389 	if (data->sku_cap_mimo_disabled) {
390 		num_rx_ants = 1;
391 		num_tx_ants = 1;
392 	}
393 
394 	if (num_tx_ants > 1)
395 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
396 	else
397 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
398 
399 	switch (iwlwifi_mod_params.amsdu_size) {
400 	case IWL_AMSDU_DEF:
401 		if (cfg->mq_rx_supported)
402 			vht_cap->cap |=
403 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
404 		else
405 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
406 		break;
407 	case IWL_AMSDU_4K:
408 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
409 		break;
410 	case IWL_AMSDU_8K:
411 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
412 		break;
413 	case IWL_AMSDU_12K:
414 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
415 		break;
416 	default:
417 		break;
418 	}
419 
420 	vht_cap->vht_mcs.rx_mcs_map =
421 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
422 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
423 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
424 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
425 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
426 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
427 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
428 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
429 
430 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
431 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
432 		/* this works because NOT_SUPPORTED == 3 */
433 		vht_cap->vht_mcs.rx_mcs_map |=
434 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
435 	}
436 
437 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
438 }
439 
440 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
441 			    struct iwl_nvm_data *data,
442 			    const __le16 *ch_section,
443 			    u8 tx_chains, u8 rx_chains, bool lar_supported)
444 {
445 	int n_channels;
446 	int n_used = 0;
447 	struct ieee80211_supported_band *sband;
448 
449 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
450 		n_channels = iwl_init_channel_map(
451 				dev, cfg, data,
452 				&ch_section[NVM_CHANNELS], lar_supported);
453 	else
454 		n_channels = iwl_init_channel_map(
455 				dev, cfg, data,
456 				&ch_section[NVM_CHANNELS_FAMILY_8000],
457 				lar_supported);
458 
459 	sband = &data->bands[NL80211_BAND_2GHZ];
460 	sband->band = NL80211_BAND_2GHZ;
461 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
462 	sband->n_bitrates = N_RATES_24;
463 	n_used += iwl_init_sband_channels(data, sband, n_channels,
464 					  NL80211_BAND_2GHZ);
465 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
466 			     tx_chains, rx_chains);
467 
468 	sband = &data->bands[NL80211_BAND_5GHZ];
469 	sband->band = NL80211_BAND_5GHZ;
470 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
471 	sband->n_bitrates = N_RATES_52;
472 	n_used += iwl_init_sband_channels(data, sband, n_channels,
473 					  NL80211_BAND_5GHZ);
474 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
475 			     tx_chains, rx_chains);
476 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
477 		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
478 				      tx_chains, rx_chains);
479 
480 	if (n_channels != n_used)
481 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
482 			    n_used, n_channels);
483 }
484 
485 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
486 		       const __le16 *phy_sku)
487 {
488 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
489 		return le16_to_cpup(nvm_sw + SKU);
490 
491 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
492 }
493 
494 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
495 {
496 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
497 		return le16_to_cpup(nvm_sw + NVM_VERSION);
498 	else
499 		return le32_to_cpup((__le32 *)(nvm_sw +
500 					       NVM_VERSION_FAMILY_8000));
501 }
502 
503 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
504 			     const __le16 *phy_sku)
505 {
506 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
507 		return le16_to_cpup(nvm_sw + RADIO_CFG);
508 
509 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
510 
511 }
512 
513 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
514 {
515 	int n_hw_addr;
516 
517 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
518 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
519 
520 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
521 
522 	return n_hw_addr & N_HW_ADDR_MASK;
523 }
524 
525 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
526 			      struct iwl_nvm_data *data,
527 			      u32 radio_cfg)
528 {
529 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
530 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
531 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
532 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
533 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
534 		return;
535 	}
536 
537 	/* set the radio configuration for family 8000 */
538 	data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
539 	data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
540 	data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
541 	data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
542 	data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
543 	data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
544 }
545 
546 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
547 {
548 	const u8 *hw_addr;
549 
550 	hw_addr = (const u8 *)&mac_addr0;
551 	dest[0] = hw_addr[3];
552 	dest[1] = hw_addr[2];
553 	dest[2] = hw_addr[1];
554 	dest[3] = hw_addr[0];
555 
556 	hw_addr = (const u8 *)&mac_addr1;
557 	dest[4] = hw_addr[1];
558 	dest[5] = hw_addr[0];
559 }
560 
561 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
562 					struct iwl_nvm_data *data)
563 {
564 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
565 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
566 
567 	/* If OEM did not fuse address - get it from OTP */
568 	if (!mac_addr0 && !mac_addr1) {
569 		mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
570 		mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
571 	}
572 
573 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
574 }
575 
576 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
577 					   const struct iwl_cfg *cfg,
578 					   struct iwl_nvm_data *data,
579 					   const __le16 *mac_override,
580 					   const __le16 *nvm_hw)
581 {
582 	const u8 *hw_addr;
583 
584 	if (mac_override) {
585 		static const u8 reserved_mac[] = {
586 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
587 		};
588 
589 		hw_addr = (const u8 *)(mac_override +
590 				 MAC_ADDRESS_OVERRIDE_FAMILY_8000);
591 
592 		/*
593 		 * Store the MAC address from MAO section.
594 		 * No byte swapping is required in MAO section
595 		 */
596 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
597 
598 		/*
599 		 * Force the use of the OTP MAC address in case of reserved MAC
600 		 * address in the NVM, or if address is given but invalid.
601 		 */
602 		if (is_valid_ether_addr(data->hw_addr) &&
603 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
604 			return;
605 
606 		IWL_ERR(trans,
607 			"mac address from nvm override section is not valid\n");
608 	}
609 
610 	if (nvm_hw) {
611 		/* read the mac address from WFMP registers */
612 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
613 						WFMP_MAC_ADDR_0));
614 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
615 						WFMP_MAC_ADDR_1));
616 
617 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
618 
619 		return;
620 	}
621 
622 	IWL_ERR(trans, "mac address is not found\n");
623 }
624 
625 static int iwl_set_hw_address(struct iwl_trans *trans,
626 			      const struct iwl_cfg *cfg,
627 			      struct iwl_nvm_data *data, const __le16 *nvm_hw,
628 			      const __le16 *mac_override)
629 {
630 	if (cfg->mac_addr_from_csr) {
631 		iwl_set_hw_address_from_csr(trans, data);
632 	} else if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
633 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
634 
635 		/* The byte order is little endian 16 bit, meaning 214365 */
636 		data->hw_addr[0] = hw_addr[1];
637 		data->hw_addr[1] = hw_addr[0];
638 		data->hw_addr[2] = hw_addr[3];
639 		data->hw_addr[3] = hw_addr[2];
640 		data->hw_addr[4] = hw_addr[5];
641 		data->hw_addr[5] = hw_addr[4];
642 	} else {
643 		iwl_set_hw_address_family_8000(trans, cfg, data,
644 					       mac_override, nvm_hw);
645 	}
646 
647 	if (!is_valid_ether_addr(data->hw_addr)) {
648 		IWL_ERR(trans, "no valid mac address was found\n");
649 		return -EINVAL;
650 	}
651 
652 	return 0;
653 }
654 
655 struct iwl_nvm_data *
656 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
657 		   const __le16 *nvm_hw, const __le16 *nvm_sw,
658 		   const __le16 *nvm_calib, const __le16 *regulatory,
659 		   const __le16 *mac_override, const __le16 *phy_sku,
660 		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
661 {
662 	struct device *dev = trans->dev;
663 	struct iwl_nvm_data *data;
664 	bool lar_enabled;
665 	u32 sku, radio_cfg;
666 	u16 lar_config;
667 	const __le16 *ch_section;
668 
669 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
670 		data = kzalloc(sizeof(*data) +
671 			       sizeof(struct ieee80211_channel) *
672 			       IWL_NUM_CHANNELS,
673 			       GFP_KERNEL);
674 	else
675 		data = kzalloc(sizeof(*data) +
676 			       sizeof(struct ieee80211_channel) *
677 			       IWL_NUM_CHANNELS_FAMILY_8000,
678 			       GFP_KERNEL);
679 	if (!data)
680 		return NULL;
681 
682 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
683 
684 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
685 	iwl_set_radio_cfg(cfg, data, radio_cfg);
686 	if (data->valid_tx_ant)
687 		tx_chains &= data->valid_tx_ant;
688 	if (data->valid_rx_ant)
689 		rx_chains &= data->valid_rx_ant;
690 
691 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
692 	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
693 	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
694 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
695 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
696 		data->sku_cap_11n_enable = false;
697 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
698 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
699 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
700 
701 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
702 
703 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
704 		/* Checking for required sections */
705 		if (!nvm_calib) {
706 			IWL_ERR(trans,
707 				"Can't parse empty Calib NVM sections\n");
708 			kfree(data);
709 			return NULL;
710 		}
711 		/* in family 8000 Xtal calibration values moved to OTP */
712 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
713 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
714 		lar_enabled = true;
715 		ch_section = nvm_sw;
716 	} else {
717 		u16 lar_offset = data->nvm_version < 0xE39 ?
718 				 NVM_LAR_OFFSET_FAMILY_8000_OLD :
719 				 NVM_LAR_OFFSET_FAMILY_8000;
720 
721 		lar_config = le16_to_cpup(regulatory + lar_offset);
722 		data->lar_enabled = !!(lar_config &
723 				       NVM_LAR_ENABLED_FAMILY_8000);
724 		lar_enabled = data->lar_enabled;
725 		ch_section = regulatory;
726 	}
727 
728 	/* If no valid mac address was found - bail out */
729 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
730 		kfree(data);
731 		return NULL;
732 	}
733 
734 	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
735 			lar_fw_supported && lar_enabled);
736 	data->calib_version = 255;
737 
738 	return data;
739 }
740 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
741 
742 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
743 				       int ch_idx, u16 nvm_flags,
744 				       const struct iwl_cfg *cfg)
745 {
746 	u32 flags = NL80211_RRF_NO_HT40;
747 	u32 last_5ghz_ht = LAST_5GHZ_HT;
748 
749 	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
750 		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
751 
752 	if (ch_idx < NUM_2GHZ_CHANNELS &&
753 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
754 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
755 			flags &= ~NL80211_RRF_NO_HT40PLUS;
756 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
757 			flags &= ~NL80211_RRF_NO_HT40MINUS;
758 	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
759 		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
760 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
761 			flags &= ~NL80211_RRF_NO_HT40PLUS;
762 		else
763 			flags &= ~NL80211_RRF_NO_HT40MINUS;
764 	}
765 
766 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
767 		flags |= NL80211_RRF_NO_80MHZ;
768 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
769 		flags |= NL80211_RRF_NO_160MHZ;
770 
771 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
772 		flags |= NL80211_RRF_NO_IR;
773 
774 	if (nvm_flags & NVM_CHANNEL_RADAR)
775 		flags |= NL80211_RRF_DFS;
776 
777 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
778 		flags |= NL80211_RRF_NO_OUTDOOR;
779 
780 	/* Set the GO concurrent flag only in case that NO_IR is set.
781 	 * Otherwise it is meaningless
782 	 */
783 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
784 	    (flags & NL80211_RRF_NO_IR))
785 		flags |= NL80211_RRF_GO_CONCURRENT;
786 
787 	return flags;
788 }
789 
790 struct ieee80211_regdomain *
791 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
792 		       int num_of_ch, __le32 *channels, u16 fw_mcc)
793 {
794 	int ch_idx;
795 	u16 ch_flags, prev_ch_flags = 0;
796 	const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
797 			     iwl_nvm_channels_family_8000 : iwl_nvm_channels;
798 	struct ieee80211_regdomain *regd;
799 	int size_of_regd;
800 	struct ieee80211_reg_rule *rule;
801 	enum nl80211_band band;
802 	int center_freq, prev_center_freq = 0;
803 	int valid_rules = 0;
804 	bool new_rule;
805 	int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
806 			 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
807 
808 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
809 		return ERR_PTR(-EINVAL);
810 
811 	if (WARN_ON(num_of_ch > max_num_ch))
812 		num_of_ch = max_num_ch;
813 
814 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
815 		      num_of_ch);
816 
817 	/* build a regdomain rule for every valid channel */
818 	size_of_regd =
819 		sizeof(struct ieee80211_regdomain) +
820 		num_of_ch * sizeof(struct ieee80211_reg_rule);
821 
822 	regd = kzalloc(size_of_regd, GFP_KERNEL);
823 	if (!regd)
824 		return ERR_PTR(-ENOMEM);
825 
826 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
827 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
828 		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
829 		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
830 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
831 							     band);
832 		new_rule = false;
833 
834 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
835 			IWL_DEBUG_DEV(dev, IWL_DL_LAR,
836 				      "Ch. %d Flags %x [%sGHz] - No traffic\n",
837 				      nvm_chan[ch_idx],
838 				      ch_flags,
839 				      (ch_idx >= NUM_2GHZ_CHANNELS) ?
840 				      "5.2" : "2.4");
841 			continue;
842 		}
843 
844 		/* we can't continue the same rule */
845 		if (ch_idx == 0 || prev_ch_flags != ch_flags ||
846 		    center_freq - prev_center_freq > 20) {
847 			valid_rules++;
848 			new_rule = true;
849 		}
850 
851 		rule = &regd->reg_rules[valid_rules - 1];
852 
853 		if (new_rule)
854 			rule->freq_range.start_freq_khz =
855 						MHZ_TO_KHZ(center_freq - 10);
856 
857 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
858 
859 		/* this doesn't matter - not used by FW */
860 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
861 		rule->power_rule.max_eirp =
862 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
863 
864 		rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
865 							  ch_flags, cfg);
866 
867 		/* rely on auto-calculation to merge BW of contiguous chans */
868 		rule->flags |= NL80211_RRF_AUTO_BW;
869 		rule->freq_range.max_bandwidth_khz = 0;
870 
871 		prev_ch_flags = ch_flags;
872 		prev_center_freq = center_freq;
873 
874 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
875 			      "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
876 			      center_freq,
877 			      band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
878 			      CHECK_AND_PRINT_I(VALID),
879 			      CHECK_AND_PRINT_I(ACTIVE),
880 			      CHECK_AND_PRINT_I(RADAR),
881 			      CHECK_AND_PRINT_I(WIDE),
882 			      CHECK_AND_PRINT_I(40MHZ),
883 			      CHECK_AND_PRINT_I(80MHZ),
884 			      CHECK_AND_PRINT_I(160MHZ),
885 			      CHECK_AND_PRINT_I(INDOOR_ONLY),
886 			      CHECK_AND_PRINT_I(GO_CONCURRENT),
887 			      ch_flags,
888 			      ((ch_flags & NVM_CHANNEL_ACTIVE) &&
889 			       !(ch_flags & NVM_CHANNEL_RADAR))
890 					 ? "" : "not ");
891 	}
892 
893 	regd->n_reg_rules = valid_rules;
894 
895 	/* set alpha2 from FW. */
896 	regd->alpha2[0] = fw_mcc >> 8;
897 	regd->alpha2[1] = fw_mcc & 0xff;
898 
899 	return regd;
900 }
901 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
902